Midterm

October 12th and 13th

To do a later question in a problem, you can always assume a previous question even if you have not answered it.

Problem 1:

Let T be a theory with infinite models in a language \mathcal{L} with one sort. Assume that:

- T eliminates quantifiers;
- For all $A \subseteq M \models T$, acl(A) = A.
- For all \mathcal{L} -formula $\varphi(x,y)$, there exists $k \in \mathbb{Z}_{\geq 0}$ such that for all $M \models T$ and $a \in M^y$, if $|\varphi(M,a)| \geq k$, then $\varphi(M,a)$ is infinite. We say that T eliminates \exists^{∞} .

Let $M \models T$ and let < be a total order on M. We say that < is generic if for all M-definable infinite $X \subseteq M$ and $a < b \in M \cup \{+\infty, -\infty\}$, $X \cap (a, b) \neq \emptyset$, where (a, b) is the open interval between a and b.

1. Show that if T is strongly minimal and only has infinite models, then it eliminates \exists^{∞} .

Solution: Assume T does not eliminate \exists^{∞} . So for some formula $\varphi(x,y)$, for all $i \in \mathbb{Z}_{\geq 0}$, there exists $M_i \models T$ and $a_i \in M_i^y$ such that $i \leq |\varphi(M_i, a_i)| < \infty$. Let us first assume that $|x| = 1^1$. Note that since M_i is infinite, $\neg \varphi(M_i, a_i)$ is infinite.

Let \mathfrak{U} be a non-principal ultrafilter on $\mathbb{Z}_{\geq 0}$, $M := \prod_{i \to \mathfrak{U}} M_i \models T$ and $a := [(a_i)_i]_{\mathfrak{U}} \in M^y$. Then for all $i \in \mathbb{Z}_{\geq 0}$, since $M_j \models \exists^{\geq i} x \ \varphi(x, a_j) \land \exists^{\geq i} x \ \neg \varphi(x, a_j)$ for all $j \geq i$, we have $|\varphi(M, a)| \geq i$ and $|\neg \varphi(M, a)| \geq i$, for all i, i.e. $\varphi(M, a)$ is infinite and coinfinite, contradicting strong minimality of T.

We now proceed by induction on |x|. We just proved that we cannot have |x| = 1. If x = (s,t) where |t| = 1, then, by induction, there exists k such that for all $M \models T$, $a \in M^y$ and $b \in M^t$, if $|\varphi(M,b,a)| \ge k$, then it is infinite and if $|\exists s \varphi(s,M,a)| \ge k$, it is infinite. If $\varphi(M,a)$ is finite, the projection to M^t is finite so size at most k. Moreover, for all b in the projection, $\varphi(M,b,a)$ is finite of size at most k so $\varphi(M,a)$ is size at most k^2 . But that contradicts our initial hypothesis regarding φ .

2. Let $M \models T$ be infinite and < be a total order on M. Show that there exists $N \not > M$ with a generic order extending <.

Solution: First, let us show that we can build $N \ge M$ and an order on N extending that of M, such that any infinite M-definable subset of some N^x has a non empty intersection with any interval whose bounds are in $M \cup \{-\infty, +\infty\}$. Let $N \ge M$ be $(|M| + |\mathcal{L}|)^+$ -saturated. It follows that any infinite N-definable set has cardinality at least $\kappa^+ := (|M| + |\mathcal{L}|)^+$. Let $\{(a_i, b_i, X_i) : i \in \kappa\}$ be an enumeration of all triples $a < b \in M \cup \{-\infty, +\infty\}$ and infinite M-definable set $X \subseteq N$. We construct a total order $<_i$ extending < and all $<_j$ for j < i, on some $A_i \subseteq N$ with $|A_i| < \kappa$, by induction

 $^{^{1}}$ I was sneaky, but no one noticed... The definition I gave for elimination of \exists^{∞} is, a priori, more general than the definition usually considered since I allowed arbitrary finite tuples for x. But, as we will see, both definitions are equivalent

on *i*. Assume that $<_j$ is built for all j < i. Since X_i is large enough, we can find some $c_i \in X_i \setminus \bigcup_{j < i} A_j$. Then $<_i$ is the order on $\{c_i\} \cup \bigcup_{j < i} A_j$ extending all the $<_j$ and such that c_i is just above a_i . Let $<_{\kappa} = \bigcup_{i < \kappa} <_i$. We extend $<_{\kappa}$ to a total order on N by choosing an order on $N \setminus (\bigcup_{i < \kappa} A_i)$ and setting all these elements above the elements of $\bigcup_{i < \kappa} A_i$.

We now build an elementary chain $(N_i)_{i\in\omega}$, by induction on i, with $N_0 = M$ and N_{i+1} built from N_i as above. Then $N = \bigcup_i N_i \ge M$ and for any $a < b \in N \cup \{-\infty, +\infty\}$ and infinite N-definable $X \subseteq N$, there exists an i such that $a < b \in N_i \cup \{-\infty, +\infty\}$ and X is N_i -definable. But then, since $N_{i+1} \ge N$, $X \cap N_{i+1}$ is an infinite N_i -definable set and $(a, b) \cap X \cap N_{i+1} \neq \emptyset$ by construction. So N has the required properties.

3. Let $\mathcal{L}_{<}$ be \mathcal{L} with a new binary symbol <. Show that there exists an $\mathcal{L}_{<}$ -theory $T_{<}$ such that models of $T_{<}$ are exactly the models of T where < is generic (with respect to the \mathcal{L} -structure of M).

Solution: For every \mathcal{L} -formula $\varphi(x,y)$, where |x|=1, let k_{φ} be the bound given by elimination of \exists^{∞} and Ψ_{φ} be the sentence $\forall y (\exists^{\geqslant k_{\varphi}} x \ \varphi(x,y) \to (\forall a \forall b \ a < b \to (\exists x \ a < x \land x < b \land \varphi(x,y)) \land (\forall a \ (\exists x \ x < a \land \varphi(x,y)) \land (\exists x \ x > a \land \varphi(x,y))))$. Then $T_{<} = T \cup \{\Psi_{\varphi} : \varphi(x,y) \ \mathcal{L}$ -formula} has the required properties. Indeed, $M \models T_{<}$ then $M \models T$ and for every infinite $X = \varphi(M,a)$, where $a \in M^{y}$, then $|X| \geqslant k_{\varphi}$ and hence, by Ψ_{φ} , X is dense in (M,<). Conversely, if $M \models T$ has a generic order <, then for any formula $\varphi(x,y)$ and $a \in M^{y}$, if $|\varphi(M,a)| \geqslant k_{\varphi}$, then $\varphi(M,a)$ is infinite and hence, by genericity, intersects every open interval.

4. Show that T_{\leq} eliminates quantifiers.

Solution: Let $M, N \vDash T_{<}, A \subseteq M, f: A \to N$ be a partial embedding and assume N is $|A|^+$ -saturated. Pick any $c \in M$. If $c \in \operatorname{acl}(A) = A$, then f is already defined at a. Otherwise, for any \mathcal{L} -formula $\varphi(x, a)$, where $a \in A^y$, if $M \vDash \varphi(c, a)$, then $\varphi(M, a)$ is infinite. By quantifier elimination in T, it follows that $\varphi(N, f(a))$ is also infinite. So it intersects any open interval. Then $\pi(x) = \{\varphi(x, f(a)) : M \vDash \varphi(c, a), a \in A^y \text{ and } \varphi \text{ is an } \mathcal{L}\text{-formula}\} \cup \{x > f(a) : a \in A \text{ and } c < a\} \cup \{x > f(a) : a \in A \text{ and } c > a\}$ is finitely satisfiable. Here, we are using the fact that the intersection of $\mathcal{L}(A)$ -definable sets containing c is still a $\mathcal{L}(A)$ -definable set containing c, that f respects the order and that the non-empty intersection of open intervals is an open interval. Let d realize π in N, then f can be extended by sending c to d.

5. Show that T_{\leq} is complete.

Solution: Since the interpretation of any constant is in $acl(\emptyset) = \emptyset$, it follows that \mathcal{L} does not have any constant. So $T_{<}$ is a theory that eliminates quantifiers in a language without constants, so it is complete.

6. Let $M \models T_{<}$ and $A \subseteq M$. Show that acl(A) = A (here, the algebraic closure is understood in M as an $\mathcal{L}_{<}$ -structure).

Solution: Pick any $b \in M \setminus A$, then c is not algebraic over A in M as an \mathcal{L} -structure, so any \mathcal{L} -formula $\varphi(x,a)$, with $a \in A^y$ and $M \models \varphi(c,a)$, is such that $\varphi(M,a)$ is infinite. Assume M is $|A|^+$ -saturated, let $B \subseteq M$ be any countable set and let $\pi(x) = \{\varphi(x,a) : M \models \varphi(c,a), a \in A^y \text{ and } \varphi \text{ is an } \mathcal{L}\text{-formula}\} \cup \{x > a : a \in A \text{ and } c < a\} \cup \{x > a : a \in A \text{ and } c > a\} \cup \{x \neq b : b \in B\}$. As in the previous question, π is finitely satisfiable so it is satisfied in M. It follows from quantifier elimination in $T_{<}$, that any realisation of π has the same type as c over A and hence $\operatorname{tp}(c/A)$ has infinitely many realizations in M, so $a \notin \operatorname{acl}(A)$.

7. Assume \mathcal{L} is countable. Show that $T_{<}$ is ω -categorical if and only if T is ω -categorical.

Solution: Let us first assume that T is ω -categorical and let $M \models T_{<}$ be countable. Pick any finite $A \subseteq M$ and $p \in \mathcal{S}_x^M(A)$ where |x| = 1. Let $a \in A$ be the maximal element of $\{c \in A : "c < x" \in p\}$ — if this set is empty, let $a = -\infty$ —, $b \in A$ be the minimal element of $\{c \in A : "x < c" \in p\}$ — if this set is empty, let $b = +\infty$ — and let $\varphi(x)$ be an $\mathcal{L}(A)$ -formula isolating $p|_{\mathcal{L}}$ — this formula exists because T is ω -categorical and hence so is $\mathcal{D}^{\mathrm{el}}(A)$, by counting types. If $\varphi(M)$ is finite, then any realization of p is in $\mathrm{acl}(A) = A$ and hence p contains a formula of the form x = c; it is then obviously realized by c in M. If $\varphi(M)$ is infinite, then, by density, we can find $c \in \varphi(M) \cap (a,b)$. Then, $c \models p|_{\mathcal{L}}$ and for all $d \in A$, d < c if and only if "d < x" $\in p$. By quantifier elimination, it follows that $c \models p$. So every countable model of $T_{<}$ is saturated and $T_{<}$ is ω -categorical.

If $T < \text{is } \omega$ -categorical, let $M \models T_<$ be countable and x be a finite tuples of variables. Then M realizes only finitely many $\mathcal{L}_<$ -types in variables x, so $M|_{\mathcal{L}} \models T$ realizes only finitely many \mathcal{L} -types in variables x. It follows that T is ω -categorical.

Problem 2:

Let T be a theory, $\kappa > |\mathcal{L}|$, $M \models T$ be κ -saturated, and $X \subseteq M^x$ be \varnothing -definable. Consider the following statements.

- (i) Any M-definable set $Y \subseteq X^n$ is X-definable.
- (ii) For all $a \in M^z$, there exists $C \subseteq X$ such that $|C| < \kappa$ and for all $b \in M^z$, $\operatorname{tp}^M(a/C) = \operatorname{tp}^M(b/C)$ implies $\operatorname{tp}^M(a/X) = \operatorname{tp}^M(b/X)$.
- (iii) For all $a, b \in M^z$, $\operatorname{tp}^{M^{eq}}(a/C) = \operatorname{tp}^{M^{eq}}(b/C)$ implies $\operatorname{tp}^M(a/X) = \operatorname{tp}^M(b/X)$, where $C = \operatorname{dcl}^{eq}(a) \cap \operatorname{dcl}^{eq}(X)$.
 - 1. Show that (i) implies (iii).

Solution: Let $a \in M^z$ and $\varphi(t,z)$ be some formula, where t is a tuple of n variables sorted like x. The a-definable set $Y = \varphi(M,a) \cap X^n$ is also X-definable by (i). So ${}^rY \subseteq \operatorname{dcl^{eq}}(a) \cap \operatorname{dcl^{eq}}(X) = C$ and hence Y is C-definable (in M^{eq}). It follows that the formula $\forall t \ (t \in Y \leftrightarrow \varphi(z,t) \land t \in X^n)$ is a formula in $\operatorname{tp}^{M^{eq}}(a/C)$, so if $\operatorname{tp}^{M^{eq}}(b/C) = \operatorname{tp}^{M^{eq}}(a/C)$, $\varphi(b,M) \cap X^n = Y$ and for all $m \in X^n$, $M \models \varphi(a,m)$ if and only if $M \models \varphi(b,m)$. Since this holds for every formula φ , $\operatorname{tp}^M(a/X) = \operatorname{tp}^M(b/X)$.

2. Assume that (i) does not hold. Show that there exists $a \in M^x$ and a formula $\varphi(t,y)$ such that, for any $C \subseteq X$ with $|C| < \kappa$, there exists $b_1, b_2 \in X^n$ with $\operatorname{tp}(b_1/C) = \operatorname{tp}(b_2/C)$, $M \vDash \varphi(a, b_1)$ and $M \vDash \neg \varphi(a, b_2)$.

Solution: If (i) does not hold, there exists $\varphi(t,z)$ and $a \in M^z$, such that $\varphi(M,a) \cap X^n$ is not X-definable. Pick any $C \subseteq X$ with $|C| < \kappa$ and $\psi(t)$ an $\mathcal{L}^{eq}(C)$ -formula. If for all $b_1, b_2 \in X^n$, $M \vDash (\psi(b_1) \leftrightarrow \psi(b_2)) \rightarrow (\varphi(b_1, a) \rightarrow \varphi(b_2, a))$, then, since $\varphi(M,a) \cap X^n$ is neither X^n nor \emptyset that are both X-definable, $\psi(M) = \varphi(M,a) \cap X^n$ or $\neg \psi(M) = \varphi(M,a) \cap X^n$, a contradiction. It follows that there exists $b_1, b_2 \in X^n$ such that $M \vDash (\psi(b_1) \leftrightarrow \psi(b_2)) \wedge \varphi(b_1, a) \wedge \neg \varphi(a, b_2)$. By compactness, there exists $b_1, b_2 \in X^n$ such that $M \vDash \varphi(b_1, a) \wedge \neg \varphi(a, b_2)$ and for all $\mathcal{L}(C)$ -formula $\psi(t)$, $M \vDash \psi(b_1) \leftrightarrow \psi(b_2)$ — i.e. $\operatorname{tp}(b_1/C) = \operatorname{tp}(b_2/C)$.

3. Show that (i), (ii) and (iii) are equivalent.

Solution: We have shown that (i) implies (iii) in question 2.1. If (i) fails, let a and $\varphi(t,z)$ be as in 2.2. and for any choice of $C \subseteq X^n$, let b_1,b_2 be as in 2.2. By κ -saturation, we find $a' \in M^z$ such that $\operatorname{tp}(ab_1/C) = \operatorname{tp}(a'b_2/C)$. But then $\operatorname{tp}(a_1/C) = \operatorname{tp}(a_2/C)$ and $M \models \neg \varphi(a,b_2) \land \varphi(a',b_2)$ — i.e. $\operatorname{tp}(a/X) \neg \operatorname{tp}(a'/X)$. So (ii) fails.

There remains to prove that (iii) implies (ii). Let us assume (iii) holds. Pick any $a \in M^z$ and let $C = \operatorname{dcl}^{\operatorname{eq}}(a) \cap \operatorname{dcl}^{\operatorname{eq}}(X)$. We can find $D \subseteq M$ with |D| = |C| and $C \subseteq \operatorname{dcl}^{\operatorname{eq}}(D)$. Indeed, any $c \in C$ lives in a sort $S_{\varphi,y}$ for some formula $\varphi(x,y)$ and, by surjectivity, $c = f_{\varphi,y}(d)$ for some $d \in M^y$. If $\operatorname{tp}(a/D) = \operatorname{tp}(b/D)$, then $\operatorname{tp}^{M^{\operatorname{eq}}}(a/C) = \operatorname{tp}^{M^{\operatorname{eq}}}(b/C)$, and hence, by (ii) $\operatorname{tp}(a/X) = \operatorname{tp}(b/X)$.

4. Assume (i). Let $N \ge M$, $a \in N^z$ and $X(N) := \psi(N)$ for any formula ψ such that $X = \psi(M)$. Show that $\operatorname{tp}(a/X)$ is realized in M if and only if $\operatorname{dcl}^{\operatorname{eq}}(a) \cap \operatorname{dcl}^{\operatorname{eq}}(X(N)) \subseteq M^{\operatorname{eq}}$.

Solution: First, let us show that X(N) has (i) in N. Fix a formula $\varphi(t,z)$ where t is a tuple of n variables sorted like x and let $\Sigma(z) = \{ \forall s \ s \in X^m \to (\exists tt \in X^n \land \neg(\varphi(t,z) \leftrightarrow \chi(t,s))) : \chi \mathcal{L}\text{-formula} \}$. By (i), Σ is not satisfiable in M and hence, by κ -saturation, it is not finitely satisfiable. So there exists χ_i for $i \leq n$ such that for all $a \in M^z$, $\varphi(M,a) \cap \psi(M)^n = \chi_i(M,b)$ for some $b \in X^m$. This is a first order statement so it also holds in N and hence (i) holds of X(N) in N.

If $\operatorname{tp}(a/X)$ is realized by some $b \in M^z$, then for every $c \in \operatorname{dcl}^{\operatorname{eq}}(b) \cap \operatorname{dcl}^{\operatorname{eq}}(X)$, there exists $\mathcal{L}^{\operatorname{eq}}$ -definable maps f and g and $d \in X^n$ such that f(b) = g(d), but this formula is in $\operatorname{tp}(b/X)$, so it also holds of a and $\operatorname{dcl}^{\operatorname{eq}}(a) \cap \operatorname{dcl}^{\operatorname{eq}}(X(N)) = \operatorname{dcl}^{\operatorname{eq}}(b) \cap \operatorname{dcl}^{\operatorname{eq}}(X) \subseteq M^{\operatorname{eq}}$. Conversely, if $C := \operatorname{dcl}^{\operatorname{eq}}(a) \cap \operatorname{dcl}^{\operatorname{eq}}(X(N)) \subseteq M^{\operatorname{eq}}$, let $b \in M$ realize $\operatorname{tp}(a/C)$. By (iii) we have $\operatorname{tp}(b/X) = \operatorname{tp}(a/X)$ which is therefore realized in M.

5. Assume (i) and M is saturated (and $|M| > |\mathcal{L}|$). Let $a, b \in M^z$ be such that $\operatorname{tp}(a/X) = \operatorname{tp}(b/X)$. Show that there exists $\sigma \in \operatorname{Aut}(M/X) = \{\sigma \in \operatorname{Aut}(M) : \sigma|_X = \operatorname{id}\}$ such that $\sigma(a) = b$.

Solution: Let us show that the set I of partial elementary embedding from M to M whose domain is of the form $A \cup X$ where |A| < |M| and whose restriction to X is the identity, has the back and forth. It is obviously non-empty as it contains the identity on X. Now, pick any $f \in I$, with domain $A \cup X$ and $c \in M$. let $p := tp(c/A \cup X)$ and let $q := f_*p \in \mathcal{S}_x(f(A) \cup X)$. Note that $dcl^{eq}(f(A) \cup X)$ is the image, by (the unique extension of) f (to $dcleq(A \cup X)$), of $dcl^{eq}(A \cup X)$. Hence, for any $d \models q$ in $N \geqslant M$, $dcl^{eq}(f(A) \cup d) \cap dcl^{eq}(f(A) \cup X(N)) \subseteq dcl^{eq}(f(A) \cup X) \subseteq M^{eq}$. Applying the previous question in M as a model of $\mathcal{D}^{el}(f(A))$, we find $d \models q$ in M and we can extend f. The other direction is symmetric.

Since $\operatorname{tp}(a/X) = \operatorname{tp}(b/X)$, the map fixing X and sending a to b is an element of I. Let $\{m_{\alpha} : \alpha \in |M|\} = M$. Using back and forth, we build, by induction, a coherent system of partial elementary embeddings f_{α} and g_{α} extending f, such that m_{α} is in the domain of f_{α} and in the image of g_{α} . The union of all these partial elementary embeddings is an isomorphism of M, fixing X pointwise and sending a to b.