Midterm

October 12th and 13th

To do a later question in a problem, you can always assume a previous question even if you have not answered it.

Problem 1:

Let T be a theory with infinite models in a language \mathcal{L} with one sort. Assume that:

- T eliminates quantifiers;
- For all $A \subseteq M \vDash T, \operatorname{acl}(A)=A$.
- For all \mathcal{L}-formula $\varphi(x, y)$, there exists $k \in \mathbb{Z}_{\geqslant 0}$ such that for all $M \vDash T$ and $a \in M^{y}$, if $|\varphi(M, a)| \geqslant k$, then $\varphi(M, a)$ is infinite. We say that T eliminates \exists^{∞}.

Let $M \vDash T$ and let < be a total order on M. We say that < is generic if for all M-definable infinite $X \subseteq M$ and $a<b \in M \cup\{+\infty,-\infty\}, X \cap(a, b) \neq \varnothing$, where (a, b) is the open interval between a and b.

1. Show that if T is strongly minimal and only has infinite models, then it eliminates \exists^{∞}.

Solution: Assume T does not eliminate \exists^{∞}. So for some formula $\varphi(x, y)$, for all $i \in \mathbb{Z}_{\geqslant 0}$, there exists $M_{i} \vDash T$ and $a_{i} \in M_{i}^{y}$ such that $i \leqslant\left|\varphi\left(M_{i}, a_{i}\right)\right|<\infty$. Let us first assume that $|x|=1^{1}$. Note that since M_{i} is infinite, $\neg \varphi\left(M_{i}, a_{i}\right)$ is infinite.
Let \mathfrak{U} be a non-principal ultrafilter on $\mathbb{Z}_{\geqslant 0}, M:=\prod_{i \rightarrow \mathfrak{U}} M_{i} \vDash T$ and $a:=\left[\left(a_{i}\right)_{i}\right]_{\mathfrak{U}} \in$ M^{y}. Then for all $i \in \mathbb{Z}_{\geqslant 0}$, since $M_{j} \vDash \exists^{\geqslant i} x \varphi\left(x, a_{j}\right) \wedge \exists \geqslant i x \neg \varphi\left(x, a_{j}\right)$ for all $j \geqslant i$, we have $|\varphi(M, a)| \geqslant i$ and $|\neg \varphi(M, a)| \geqslant i$, for all i, i.e. $\varphi(M, a)$ is infinite and coinfinite, contradicting strong minimality of T.

We now proceed by induction on $|x|$. We just proved that we cannot have $|x|=1$. If $x=(s, t)$ where $|t|=1$, then, by induction, there exists k such that for all $M \vDash T$, $a \in M^{y}$ and $b \in M^{t}$, if $|\varphi(M, b, a)| \geqslant k$, then it is infinite and if $|\exists s \varphi(s, M, a)| \geqslant k$, it is infinite. If $\varphi(M, a)$ is finite, the projection to M^{t} is finite so size at most k. Moreover, for all b in the projection, $\varphi(M, b, a)$ is finite of size at most k so $\varphi(M, a)$ is size at most k^{2}. But that contradicts our initial hypothesis regarding φ.
2. Let $M \vDash T$ be infinite and < be a total order on M. Show that there exists $N \geqslant M$ with a generic order extending < .

Solution: First, let us show that we can build $N \geqslant M$ and an order on N extending that of M, such that any infinite M-definable subset of some N^{x} has a non empty intersection with any interval whose bounds are in $M \cup\{-\infty,+\infty\}$. Let $N \geqslant M$ be $(|M|+|\mathcal{L}|)^{+}$-saturated. It follows that any infinite N-definable set has cardinality at least $\kappa^{+}:=(|M|+|\mathcal{L}|)^{+}$. Let $\left\{\left(a_{i}, b_{i}, X_{i}\right): i \in \kappa\right\}$ be an enumeration of all triples $a<b \in M \cup\{-\infty,+\infty\}$ and infinite M-definable set $X \subseteq N$. We construct a total order $<_{i}$ extending $<$ and all $<_{j}$ for $j<i$, on some $A_{i} \subseteq N$ with $\left|A_{i}\right|<\kappa$, by induction

[^0]on i. Assume that $<_{j}$ is built for all $j<i$. Since X_{i} is large enough, we can find somec $_{i} \in X_{i} \backslash \bigcup_{j<i} A_{j}$. Then $<_{i}$ is the order on $\left\{c_{i}\right\} \cup \bigcup_{j<i} A_{j}$ extending all the $<_{j}$ and such that c_{i} is just above a_{i}. Let $<_{\kappa}=\bigcup_{i<\kappa}<_{i}$. We extend $<_{\kappa}$ to a total order on N by choosing an order on $N \backslash\left(\cup_{i<\kappa} A_{i}\right)$ and setting all these elements above the elements of $\bigcup_{i<\kappa} A_{i}$).
We now build an elementary chain $\left(N_{i}\right)_{i \in \omega}$, by induction on i, with $N_{0}=M$ and N_{i+1} built from N_{i} as above. Then $N=\cup_{i} N_{i} \geqslant M$ and for any $a<b \in N \cup\{-\infty,+\infty\}$ and infinite N-definable $X \subseteq N$, there exists an i such that $a<b \in N_{i} \cup\{-\infty,+\infty\}$ and X is N_{i}-definable. But then, since $N_{i+1} \geqslant N, X \cap N_{i+1}$ is an infinite N_{i}-definable set and $(a, b) \cap X \cap N_{i+1} \neq \varnothing$ by construction. So N has the required properties.
3. Let $\mathcal{L}_{<}$be \mathcal{L} with a new binary symbol $<$. Show that there exists an $\mathcal{L}_{<}$-theory $T_{<}$ such that models of $T_{<}$are exactly the models of T where $<$ is generic (with respect to the \mathcal{L}-structure of M).

Solution: For every \mathcal{L}-formula $\varphi(x, y)$, where $|x|=1$, let k_{φ} be the bound given by elimination of \exists^{∞} and Ψ_{φ} be the sentence $\forall y\left(\exists \geqslant k_{\varphi} x \varphi(x, y) \rightarrow(\forall a \forall b a<b \rightarrow\right.$ $(\exists x a<x \wedge x<b \wedge \varphi(x, y)) \wedge(\forall a(\exists x x<a \wedge \varphi(x, y)) \wedge(\exists x x>a \wedge \varphi(x, y))))$. Then $T_{<}=T \cup\left\{\Psi_{\varphi}: \varphi(x, y) \mathcal{L}\right.$-formula $\}$ has the required properties. Indeed, $M \vDash T_{<}$ then $M \vDash T$ and for every infinite $X=\varphi(M, a)$, where $a \in M^{y}$, then $|X| \geqslant k_{\varphi}$ and hence, by Ψ_{φ}, X is dense in ($M,<$). Conversely, if $M \vDash T$ has a generic order <, then for any formula $\varphi(x, y)$ and $a \in M^{y}$, if $|\varphi(M, a)| \geqslant k_{\varphi}$, then $\varphi(M, a)$ is infinite and hence, by genericity, intersects every open interval.
4. Show that $T_{<}$eliminates quantifiers.

Solution: Let $M, N \vDash T_{<}, A \subseteq M, f: A \rightarrow N$ be a partial embedding and assume N is $|A|^{+}$-saturated. Pick any $c \in M$. If $c \in \operatorname{acl}(A)=A$, then f is already defined at a. Otherwise, for any \mathcal{L}-formula $\varphi(x, a)$, where $a \in A^{y}$, if $M \vDash \varphi(c, a)$, then $\varphi(M, a)$ is infinite. By quantifier elimination in T, it follows that $\varphi(N, f(a))$ is also infinite. So it intersects any open interval. Then $\pi(x)=\{\varphi(x, f(a)): M \vDash \varphi(c, a), a \in$ A^{y} and φ is an \mathcal{L}-formula $\} \cup\{x>f(a): a \in A$ and $c<a\} \cup\{x>f(a): a \in A$ and $c>$ $a\}$ is finitely satisfiable. Here, we are using the fact that the intersection of $\mathcal{L}(A)$ definable sets containing c is still a $\mathcal{L}(A)$-definable set containing c, that f respects the order and that the non-empty intersection of open intervals is an open interval. Let d realize π in N, then f can be extended by sending c to d.
5. Show that $T_{<}$is complete.

Solution: Since the interpretation of any constant is in $\operatorname{acl}(\varnothing)=\varnothing$, it follows that \mathcal{L} does not have any constant. So $T_{<}$is a theory that eliminates quantifiers in a language without constants, so it is complete.
6. Let $M \vDash T_{<}$and $A \subseteq M$. Show that $\operatorname{acl}(A)=A$ (here, the algebraic closure is understood in M as an $\mathcal{L}_{<}$-structure).

Solution: Pick any $b \in M \backslash A$, then c is not algebraic over A in M as an \mathcal{L} structure, so any \mathcal{L}-formula $\varphi(x, a)$, with $a \in A^{y}$ and $M \vDash \varphi(c, a)$, is such that $\varphi(M, a)$ is infinite. Assume M is $|A|^{+}$-saturated, let $B \subseteq M$ be any countable set and let $\pi(x)=\left\{\varphi(x, a): M \vDash \varphi(c, a), a \in A^{y}\right.$ and φ is an \mathcal{L}-formula $\}\{x>a$: $a \in A$ and $c<a\} \cup\{x>a: a \in A$ and $c>a\} \cup\{x \neq b: b \in B\}$. As in the previous question, π is finitely satisfiable so it is satisfied in M. It follows from quantifier elimination in $T_{<}$, that any realisation of π has the same type as c over A and hence $\operatorname{tp}(c / A)$ has infinitely many realizations in M, so $a \notin \operatorname{acl}(A)$.
7. Assume \mathcal{L} is countable. Show that $T_{<}$is ω-categorical if and only if T is ω categorical.

Solution: Let us first assume that T is ω-categorical and let $M \vDash T_{<}$be countable. Pick any finite $A \subseteq M$ and $p \in \mathcal{S}_{x}^{M}(A)$ where $|x|=1$. Let $a \in A$ be the maximal element of $\{c \in A: " c<x " \in p\}$ - if this set is empty, let $a=-\infty-, b \in A$ be the minimal element of $\{c \in A: " x<c " \in p\}$ - if this set is empty, let $b=+\infty-$ and let $\varphi(x)$ be an $\mathcal{L}(A)$-formula isolating $\left.p\right|_{\mathcal{L}}$ - this formula exists because T is ω-categorical and hence so is $\mathcal{D}^{\text {el }}(A)$, by counting types. If $\varphi(M)$ is finite, then any realization of p is in $\operatorname{acl}(A)=A$ and hence p contains a formula of the form $x=c$; it is then obviously realized by c in M. If $\varphi(M)$ is infinite, then, by density, we can find $c \in \varphi(M) \cap(a, b)$. Then, $\left.c \vDash p\right|_{\mathcal{L}}$ and for all $d \in A, d<c$ if and only if " $d<x " \in p$. By quantifier elimination, it follows that $c \vDash p$. So every countable model of $T_{<}$is saturated and $T_{<}$is ω-categorical.
If $\mathrm{T}<$ is ω-categorical, let $M \vDash T_{<}$be countable and x be a finite tuples of variables. Then M realizes only finitely many $\mathcal{L}_{<}$-types in variables x, so $\left.M\right|_{\mathcal{L}} \vDash T$ realizes only finitely many \mathcal{L}-types in variables x. It follows that T is ω-categorical.

Problem 2 :

Let T be a theory, $\kappa>|\mathcal{L}|, M \vDash T$ be κ-saturated, and $X \subseteq M^{x}$ be \varnothing-definable. Consider the following statements.
(i) Any M-definable set $Y \subseteq X^{n}$ is X-definable.
(ii) For all $a \in M^{z}$, there exists $C \subseteq X$ such that $|C|<\kappa$ and for all $b \in M^{z}$, $\operatorname{tp}^{M}(a / C)=$ $\operatorname{tp}^{M}(b / C)$ implies $\operatorname{tp}^{M}(a / X)=\operatorname{tp}^{M}(b / X)$.
(iii) For all $a, b \in M^{z}, \operatorname{tp}^{M^{\text {eq }}}(a / C)=\operatorname{tp}^{M^{\text {eq }}}(b / C)$ implies $\operatorname{tp}^{M}(a / X)=\operatorname{tp}^{M}(b / X)$, where $C=\operatorname{dcl}^{\mathrm{eq}}(a) \cap \operatorname{dcl}^{\mathrm{eq}}(X)$.

1. Show that (i) implies (iii).

Solution: Let $a \in M^{z}$ and $\varphi(t, z)$ be some formula, where t is a tuple of n variables sorted like x. The a-definable set $Y=\varphi(M, a) \cap X^{n}$ is also X-definable by (i). So ${ }^{「} Y^{\urcorner} \subseteq \operatorname{dcl}^{\text {eq }}(a) \cap \operatorname{dcl}^{\text {eq }}(X)=C$ and hence Y is C-definable (in $M^{\text {eq }}$). It follows that the formula $\forall t\left(t \in Y \leftrightarrow \varphi(z, t) \wedge t \in X^{n}\right)$ is a formula in $\operatorname{tp}^{M^{\text {eq }}}(a / C)$, so if $\operatorname{tp}^{M^{\text {eq }}}(b / C)=\operatorname{tp}^{M^{\text {eq }}}(a / C), \varphi(b, M) \cap X^{n}=Y$ and for all $m \in X^{n}, M \vDash \varphi(a, m)$ if and only if $M \vDash \varphi(b, m)$. Since this holds for every formula $\varphi, \operatorname{tp}^{M}(a / X)=$ $t p^{M}(b / X)$.
2. Assume that (i) does not hold. Show that there exists $a \in M^{x}$ and a formula $\varphi(t, y)$ such that, for any $C \subseteq X$ with $|C|<\kappa$, there exists $b_{1}, b_{2} \in X^{n}$ with $\operatorname{tp}\left(b_{1} / C\right)=$ $\operatorname{tp}\left(b_{2} / C\right), M \vDash \varphi\left(a, b_{1}\right)$ and $M \vDash \neg \varphi\left(a, b_{2}\right)$.

Solution: If (i) does not hold, there exists $\varphi(t, z)$ and $a \in M^{z}$, such that $\varphi(M, a) \cap$ X^{n} is not X-definable. Pick any $C \subseteq X$ with $|C|<\kappa$ and $\psi(t)$ an $\mathcal{L}^{\text {eq }}(C)$-formula. If for all $b_{1}, b_{2} \in X^{n}, M \vDash\left(\psi\left(b_{1}\right) \leftrightarrow \psi(b 2)\right) \rightarrow\left(\varphi\left(b_{1}, a\right) \rightarrow \varphi\left(b_{2}, a\right)\right)$, then, since $\varphi(M, a) \cap X^{n}$ is neither X^{n} nor \varnothing that are both X-definable, $\psi(M)=\varphi(M, a) \cap X^{n}$ or $\neg \psi(M)=\varphi(M, a) \cap X^{n}$, a contradiction. It follows that there exists $b_{1}, b_{2} \in X^{n}$ such that $M \vDash\left(\psi\left(b_{1}\right) \leftrightarrow \psi\left(b_{2}\right)\right) \wedge \varphi\left(b_{1}, a\right) \wedge \neg \varphi\left(a, b_{2}\right)$. By compactness, there exists $b_{1}, b_{2} \in X^{n}$ such that $M \vDash \varphi\left(b_{1}, a\right) \wedge \neg \varphi\left(a, b_{2}\right)$ and for all $\mathcal{L}(C)$-formula $\psi(t)$, $M \vDash \psi\left(b_{1}\right) \leftrightarrow \psi\left(b_{2}\right)$ - i.e. $\operatorname{tp}\left(b_{1} / C\right)=\operatorname{tp}\left(b_{2} / C\right)$.
3. Show that (i), (ii) and (iii) are equivalent.

Solution: We have shown that (i) implies (iii) in question 2.1. If (i) fails, let a and $\varphi(t, z)$ be as in 2.2. and for any choice of $C \subseteq X^{n}$, let b_{1}, b_{2} be as in 2.2. By κ-saturation, we find $a^{\prime} \in M^{z}$ such that $\operatorname{tp}\left(a b_{1} / C\right)=\operatorname{tp}\left(a^{\prime} b_{2} / C\right)$. But then $\operatorname{tp}\left(a_{1} / C\right)=\operatorname{tp}\left(a_{2} / C\right)$ and $M \vDash \neg \varphi\left(a, b_{2}\right) \wedge \varphi\left(a^{\prime}, b_{2}\right)$ - i.e. $\operatorname{tp}(a / X) \neg \operatorname{tp}\left(a^{\prime} / X\right)$. So (ii) fails.

There remains to prove that (iii) implies (ii). Let us assume (iii) holds. Pick any $a \in M^{z}$ and let $C=\operatorname{dcl}^{\text {eq }}(a) \cap \operatorname{dcl}^{\text {eq }}(X)$. We can find $D \subseteq M$ with $|D|=|C|$ and $C \subseteq \operatorname{dcl}^{\text {eq }}(D)$. Indeed, any $c \in C$ lives in a sort $S_{\varphi, y}$ for some formula $\varphi(x, y)$ and, by surjectivity, $c=f_{\varphi, y}(d)$ for some $d \in M^{y}$. If $\operatorname{tp}(a / D)=\operatorname{tp}(b / D)$, then $\operatorname{tp}^{M^{\text {eq }}}(a / C)=\operatorname{tp}^{M^{\text {eq }}}(b / C)$, and hence, by (ii) $\operatorname{tp}(a / X)=\operatorname{tp}(b / X)$.
4. Assume (i). Let $N \geqslant M, a \in N^{z}$ and $X(N):=\psi(N)$ for any formula ψ such that $X=\psi(M)$. Show that $\operatorname{tp}(a / X)$ is realized in M if and only if $\operatorname{dcl}^{\mathrm{eq}}(a) \cap$ $\operatorname{dcl}^{\mathrm{eq}}(X(N)) \subseteq M^{\mathrm{eq}}$.

Solution: First, let us show that $X(N)$ has (i) in N. Fix a formula $\varphi(t, z)$ where t is a tuple of n variables sorted like x and let $\Sigma(z)=\left\{\forall s s \in X^{m} \rightarrow(\exists t t \in\right.$ $\left.X^{n} \wedge \neg(\varphi(t, z) \leftrightarrow \chi(t, s))\right): \chi \mathcal{L}$-formula\}. By (i), Σ is not satisfiable in M and hence, by κ-saturation, it is not finitely satisfiable. So there exists χ_{i} for $i \leqslant n$ such that for all $a \in M^{z}, \varphi(M, a) \cap \psi(M)^{n}=\chi_{i}(M, b)$ for some $b \in X^{m}$. This is a first order statement so it also holds in N and hence (i) holds of $X(N)$ in N.
If $\operatorname{tp}(a / X)$ is realized by some $b \in M^{z}$, then for every $c \in \operatorname{dcl}^{\text {eq }}(b) \cap \operatorname{dcl}^{\mathrm{eq}}(X)$, there exists $\mathcal{L}^{\text {eq }}$-definable maps f and g and $d \in X^{n}$ such that $f(b)=g(d)$, but this formula is in $\operatorname{tp}(b / X)$, so it also holds of a and $\operatorname{dcl}^{\text {eq }}(a) \cap \operatorname{dcl}^{\mathrm{eq}}(X(N))=$ $\operatorname{dcl}^{\mathrm{eq}}(b) \cap \operatorname{dcl}^{\mathrm{eq}}(X) \subseteq M^{\mathrm{eq}}$. Conversely, if $C:=\operatorname{dcl}^{\mathrm{eq}}(a) \cap \operatorname{dcl}^{\mathrm{eq}}(X(N)) \subseteq M^{\mathrm{eq}}$, let $b \in M$ realize $\operatorname{tp}(a / C)$. By (iii) we have $\operatorname{tp}(b / X)=t p(a / X)$ which is therefore realized in M.
5. Assume (i) and M is saturated (and $|M|>|\mathcal{L}|$). Let $a, b \in M^{z}$ be such that $\operatorname{tp}(a / X)=\operatorname{tp}(b / X)$. Show that there exists $\sigma \in \operatorname{Aut}(M / X)=\{\sigma \in \operatorname{Aut}(M):$ $\left.\left.\sigma\right|_{X}=\mathrm{id}\right\}$ such that $\sigma(a)=b$.

Solution: Let us show that the set I of partial elementary embedding from M to M whose domain is of the form $A \cup X$ where $|A|<|M|$ and whose restriction to X is the identity, has the back and forth. It is obviously non-empty as it contains the identity on X. Now, pick any $f \in I$, with domain $A \cup X$ and $c \in M$. let $p:=t p(c / A \cup X)$ and let $q:=f_{\star} p \in \mathcal{S}_{x}(f(A) \cup X)$. Note that dcl ${ }^{\text {eq }}(f(A) \cup X)$ is the image, by (the unique extension of) $\mathrm{f}($ to $d c l e q(A \cup X))$, of $\mathrm{dcl}^{\mathrm{eq}}(A \cup X)$. Hence, for any $d \vDash q$ in $N \geqslant M, \operatorname{dcl}^{\mathrm{eq}}(f(A) \cup d) \cap \operatorname{dcl}^{\mathrm{eq}}(f(A) \cup X(N)) \subseteq \operatorname{dcl}^{\mathrm{eq}}(f(A) \cup X) \subseteq M^{\mathrm{eq}}$. Applying the previous question in M as a model of $\mathcal{D}^{\mathrm{el}}(f(A))$, we find $d \vDash q$ in M and we can extend f. The other direction is symmetric.
Since $\operatorname{tp}(a / X)=\operatorname{tp}(b / X)$, the map fixing X and sending a to b is an element of I. Let $\left\{m_{\alpha}: \alpha \in|M|\right\}=M$. Using back and forth, we build, by induction, a coherent system of partial elementary embeddings f_{α} and g_{α} extending f, such that m_{α} is in the domain of f_{α} and in the image of g_{α}. The union of all these partial elementary embeddings is an isomorphism of M, fixing X pointwise and sending a to b.

[^0]: ${ }^{1}$ I was sneaky, but no one noticed... The definition I gave for elimination of \exists^{∞} is, a priori, more general than the definition usually considered since I allowed arbitrary finite tuples for x. But, as we will see, both definitions are equivalent

