Midterm

October 12th and 13th

To do a later question in a problem, you can always assume a previous question even if you have not answered it.

Problem 1 :

Let T be a theory with infinite models in a language \mathcal{L} with one sort. Assume that:

- T eliminates quantifiers;
- For all $A \subseteq M \models T$, $\operatorname{acl}(A) = A$.
- For all \mathcal{L} -formula $\varphi(x, y)$, there exists $k \in \mathbb{Z}_{\geq 0}$ such that for all $M \models T$ and $a \in M^y$, if $|\varphi(M, a)| \geq k$, then $\varphi(M, a)$ is infinite. We say that T eliminates \exists^{∞} .

Let $M \models T$ and let < be a total order on M. We say that < is generic if for all M-definable infinite $X \subseteq M$ and $a < b \in M \cup \{+\infty, -\infty\}, X \cap (a, b) \neq \emptyset$, where (a, b) is the open interval between a and b.

- 1. Show that if T is strongly minimal and only has infinite models, then it eliminates \exists^{∞} .
- 2. Let $M \models T$ be infinite and < be a total order on M. Show that there exists $N \ge M$ with a generic order extending <.
- 3. Let $\mathcal{L}_{<}$ be \mathcal{L} with a new binary symbol <. Show that there exists an $\mathcal{L}_{<}$ -theory $T_{<}$ such that models of $T_{<}$ are exactly the models of T where < is generic (with respect to the \mathcal{L} -structure of M).
- 4. Show that T_{\leq} eliminates quantifiers.
- 5. Show that T_{\leq} is complete.
- 6. Let $M \models T_{\leq}$ and $A \subseteq M$. Show that $\operatorname{acl}(A) = A$ (here, the algebraic closure is understood in M as an \mathcal{L}_{\leq} -structure).
- 7. Assume \mathcal{L} is countable. Show that T_{\leq} is ω -categorical if and only if T is ω -categorical.

Problem 2:

Let T be a theory, $\kappa > |\mathcal{L}|$, $M \models T$ be κ -saturated, and $X \subseteq M^x$ be \emptyset -definable. Consider the following statements.

- (i) Any *M*-definable set $Y \subseteq X^n$ is *X*-definable.
- (ii) For all $a \in M^z$, there exists $C \subseteq X$ such that $|C| < \kappa$ and for all $b \in M^z$, $\operatorname{tp}^M(a/C) = \operatorname{tp}^M(b/C)$ implies $\operatorname{tp}^M(a/X) = \operatorname{tp}^M(b/X)$.
- (iii) For all $a, b \in M^z$, $\operatorname{tp}^{M^{eq}}(a/C) = \operatorname{tp}^{M^{eq}}(b/C)$ implies $\operatorname{tp}^M(a/X) = \operatorname{tp}^M(b/X)$, where $C = \operatorname{dcl}^{eq}(a) \cap \operatorname{dcl}^{eq}(X)$.
 - 1. Show that (i) implies (iii).

- 2. Assume that (i) does not hold. Show that there exists $a \in M^x$ and a formula $\varphi(x,y)$ such that, for any $C \subseteq X$ with $|C| < \kappa$, there exists $b_1, b_2 \in X^n$ with $\operatorname{tp}(b_1/C) = \operatorname{tp}(b_2/C), M \vDash \varphi(a, b_1)$ and $M \vDash \neg \varphi(a, b_2)$.
- 3. Show that (i), (ii) and (iii) are equivalent.
- 4. Assume (i). Let $N \ge M$, $a \in N^z$ and $X(N) := \psi(N)$ for any formula ψ such that $X = \psi(M)$. Show that $\operatorname{tp}(a/X)$ is realized in M if and only if $\operatorname{dcl}^{\operatorname{eq}}(a) \cap \operatorname{dcl}^{\operatorname{eq}}(X(N)) \subseteq M^{\operatorname{eq}}$.
- 5. Assume (i) and M is saturated (and $|M| > |\mathcal{L}|$). Let $a, b \in M^z$ be such that $\operatorname{tp}(a/X) = \operatorname{tp}(b/X)$. Show that there exists $\sigma \in \operatorname{Aut}(M/X) = \{\sigma \in \operatorname{Aut}(M) : \sigma|_X = \operatorname{id}\}$ such that $\sigma(a) = b$.