Midterm

October 12th and 13th

To do a later question in a problem, you can always assume a previous question even if you have not answered it.

Problem 1 :

Let T be a theory with infinite models in a language \mathcal{L} with one sort. Assume that:

- T eliminates quantifiers;
- For all $A \subseteq M \vDash T, \operatorname{acl}(A)=A$.
- For all \mathcal{L}-formula $\varphi(x, y)$, there exists $k \in \mathbb{Z}_{\geqslant 0}$ such that for all $M \vDash T$ and $a \in M^{y}$, if $|\varphi(M, a)| \geqslant k$, then $\varphi(M, a)$ is infinite. We say that T eliminates \exists^{∞}.

Let $M \vDash T$ and let < be a total order on M. We say that < is generic if for all M-definable infinite $X \subseteq M$ and $a<b \in M \cup\{+\infty,-\infty\}, X \cap(a, b) \neq \varnothing$, where (a, b) is the open interval between a and b.

1. Show that if T is strongly minimal and only has infinite models, then it eliminates \exists^{∞}.
2. Let $M \vDash T$ be infinite and < be a total order on M. Show that there exists $N \geqslant M$ with a generic order extending < .
3. Let $\mathcal{L}_{<}$be \mathcal{L} with a new binary symbol $<$. Show that there exists an $\mathcal{L}_{<}$-theory $T_{<}$ such that models of $T_{<}$are exactly the models of T where < is generic (with respect to the \mathcal{L}-structure of $M)$.
4. Show that $T_{<}$eliminates quantifiers.
5. Show that $T_{<}$is complete.
6. Let $M \vDash T_{<}$and $A \subseteq M$. Show that $\operatorname{acl}(A)=A$ (here, the algebraic closure is understood in M as an $\mathcal{L}_{<}$-structure).
7. Assume \mathcal{L} is countable. Show that $T_{<}$is ω-categorical if and only if T is ω categorical.

Problem 2 :

Let T be a theory, $\kappa>|\mathcal{L}|, M \vDash T$ be κ-saturated, and $X \subseteq M^{x}$ be \varnothing-definable. Consider the following statements.
(i) Any M-definable set $Y \subseteq X^{n}$ is X-definable.
(ii) For all $a \in M^{z}$, there exists $C \subseteq X$ such that $|C|<\kappa$ and for all $b \in M^{z}, \operatorname{tp}^{M}(a / C)=$ $\operatorname{tp}^{M}(b / C)$ implies $\operatorname{tp}^{M}(a / X)=\operatorname{tp}^{M}(b / X)$.
(iii) For all $a, b \in M^{z}, \operatorname{tp}^{M^{\mathrm{eq}}}(a / C)=\operatorname{tp}^{M^{\mathrm{eq}}}(b / C)$ implies $\operatorname{tp}^{M}(a / X)=\operatorname{tp}^{M}(b / X)$, where $C=\operatorname{dcl}^{\mathrm{eq}}(a) \cap \operatorname{dcl}^{\mathrm{eq}}(X)$.

1. Show that (i) implies (iii).
2. Assume that (i) does not hold. Show that there exists $a \in M^{x}$ and a formula $\varphi(x, y)$ such that, for any $C \subseteq X$ with $|C|<\kappa$, there exists $b_{1}, b_{2} \in X^{n}$ with $\operatorname{tp}\left(b_{1} / C\right)=\operatorname{tp}\left(b_{2} / C\right), M \vDash \varphi\left(a, b_{1}\right)$ and $M \vDash \neg \varphi\left(a, b_{2}\right)$.
3. Show that (i), (ii) and (iii) are equivalent.
4. Assume (i). Let $N \geqslant M, a \in N^{z}$ and $X(N):=\psi(N)$ for any formula ψ such that $X=\psi(M)$. Show that $\operatorname{tp}(a / X)$ is realized in M if and only if $\operatorname{dcl}^{\text {eq }}(a) \cap$ $\operatorname{dcl}^{\mathrm{eq}}(X(N)) \subseteq M^{\mathrm{eq}}$.
5. Assume (i) and M is saturated (and $|M|>|\mathcal{L}|$). Let $a, b \in M^{z}$ be such that $\operatorname{tp}(a / X)=\operatorname{tp}(b / X)$. Show that there exists $\sigma \in \operatorname{Aut}(M / X)=\{\sigma \in \operatorname{Aut}(M):$ $\left.\left.\sigma\right|_{X}=\mathrm{id}\right\}$ such that $\sigma(a)=b$.
