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Solutions to homework 1

Problem 1 :
Let 4 be some an ultrafilter on some infinite set I. Show that the following are equivalent:

1. The filter 4 is not principal;

2. The filter Y contains the Fréchet filter on I.

Solution: First if 4 = (i) is principal, it does not contain the complement of {i} which
is cofinite so it cannot contain the Fréchet filter.

Let us now assume that I does not contain the Fréchet filter. So 4 does not contain some
cofinite set. Since 4 is an ultrafilter, it follows that il contains some finite set Xy. We
may assume that X has minimal cardinality. Pick any io € Xo, if {ig} ¢ 4l it follows that
Xo g} € U, contradicting minimality of Xy. It follows that {ip} € {4l and 4 is principal.

Problem 2 :

Let £ be a countable language, (M;);ez,, a countable family of £-structures, { a non prin-
cipal ultrafilter on Zso, and X(Z) = {p; : j € Zso} a set of L-formulas (whose free variables
are in the tuple T). We assume that for all finite 3o € 3, [T,y M; & 3T Ayes, 0 (7).

1. For all n € Zxo, let S(n) = {i € Zso : M; & 3T N} ¢;(Z)}. Show that the S(n)
form a decreasing chain of elements of 4l.

Solution: Since [,y M; F 3T N\]_q¢;(T), by Lo§’s theorem, it follows that S(n) €

. Moreover, if i € S(n+ 1) then M; = 3T /\?jo1 ©;(T) so, in particular, M; &

3z Nj_g ;(T) and i € S(n). So S(n+1) c S(n).

2. Let b; € Mf be defined as follows:

o IfieS(0), let m be maximal such that m <4 and i € S(m). Then pick b; € M?
such that M; E A; ¢Lo(bi);

e Otherwise, pick any b; € M;.
Show that for all ¢ € ¥, we have [T,_¢ M; = o([(5:)i]s).

Solution: Pick some j € Zso and let i € Zsg be such that i > j and i € S(j). Then
the maximal m such that m < i and ¢ € S(m) is larger than j. It follows that,
by contraction, M; E ¢; (l_)z) Since 4 is a non principal ultrafilter, it contains the
cofinite set {i € Zso : i > j}. Therefore it also contains {i € Zsp:i2>j}nS(j)}c{ie
Zso: M; & @;(bi)}. Tt follows that that last set is in 4l and, by F.og’s theorem, that
i Mi = @ ([(bi)i]u)-

3. Let M := Q" with the natural Lo-structure. We identify Q with its image under
the diagonal embedding. Let O:={ae M :3Ine€Zsg -n<a<n}and M:={ae M :
VneZsy — % <a< %} Show that O is a ring and that 91 is a maximal ideal.

Solution: Since Q < M, it is quite clear that M is a field. To prove that O is a

ring, we have to show that it is closed under + and -. If -n <x <n and -n <y <n,

we have —2n < z +y < 2n and —-n? < zy < n’.



Let us now show that 91 is an ideal. Let x, y € 9. For all n € Z,g, we have
—-(2n)t<z<@n)tand -2n) P <y<(2n)l. So ntl<z+y<nt IfzeO
and y € M, then for some n € Z.g, we have —n < x < n and, for all m € Zsg,
—(mn)™t <y < (mn)7L. It follows that —m™! < zy < m™'. Moreover, if x € O \ 9N,

there exists n € Zso such that z < —n~! or n™! < z. In both cases, we have
-n <zt <nand x e O*. It follows that any ideal containing 90t contains a unit

and is therefore O itself.
4. Show that O/ is isomorphic to R.

Solution: Note first Q < O and Q n 9 = {0}, it follows that Q can be identified
with a subring of k := O/9. Moreover, M is convex, so O/9M can be ordered by
T <7 if sor some choice of z and y, x <y. It is then easy to check that, since O is
an ordered ring, k is an ordered field. In particular, + and - are continuous on k.

Now, pick Z <7 € k. There exists n € Zs( such that y —z > n~'. Moreover, we can
find m € Zo such that -m <z <y < m. If e partition [-m,m] into 2nm intervals
of length n~!. The bounds of these intervals are rational and z and y cannot be in
the same interval. It follows that there exist ¢ € Q such that z < ¢ < ¥ and hence
T < q <y. We have just proved that Q is dense in k.

Let us now prove that k is complete. Let X c k be bounded above and non empty.
Let Xg:={xeQ:xz <y for some y e X} and Yp := Q\ Xq. Let ¥(z) :={g<z:qc
Xo}u{z<q:qeYy}. Then X(x) is finitely satisfiable in Q so there exists a € M
realizing . Since Xg and Ygp are non empty, a € O and since Q is dense in k, @ is
the sup[remum of X. So k is a complete topological field containing Q as a dense
subfield.

So we define f: R — k by f(x) =sup{q € Q:q<x}. This is injective and surjective
by density of Q in both R and k. This si also a continuous map since, for all
ee€Qs,ifr<yand y—wz<e, then X :={qeQ:q<z}<{qeQ:gq<x} =Y and
thus f(z) =sup X <supY = f(y). Moroever, Y ¢ X +¢ and hence f(y) < f(z) +e.

Finally, the maps f(x +y) and f(x) + f(y) (resp. f(z-y) and f(x)- f(y)) are
continuous and coincide on Q x Q which is dense in R x R so they are equal.

Problem 3 :
Prove whether each of the following classes is elementary, finitely axiomatisable or none
of those.

1. Infinite sets in some language £ with one sort.

Solution: Let ¢, = 3x1...3x, Nizj—~2; = xj and T = {¢y : n € Zso}. Models
of T are exactly infinite L-structures. So this class is elementary. This class is
not finitely axiomatisable because if Tj is a finite L-theory whose models are all
infinite, then T F Nyery, - By compactness, it follows that for some n € Z.o,
©n + Neery - Let M be any L-structure with cardinality n (we can always find
such a structure by taking all constants equal, all functions equal and constant and
all predicates empty). But then M & Ty is finite, a contradiction.

2. Finite sets in some language £ with one sort.

Solution: Essentially for the same reason as above, finite L-structures are not an
elementary class. Indeed assume that 7" is an L-theory whose models are all finite
L-structures. Then T'UT,, is satisfiable. Indeed a finite subset of TUT is contained
in Tu{p,:n<m} and any L-structure of cardinal m is a model of that theory.



But M = TuT is an infinite model of T', a contradiction. If you think the two last
proofs are similar, it is because it is essentially the same proof. You can actually
prove that if a class C is elementary and its complement is elementary then both
are finitely axiomatisable.

. Fields in £, :={K;0:K,1: K,-: K-> K,+:K* > K, - : K? > K}.

Solution: This class is finitely axiomatisable (by Tf;e1q) and you can find the ax-
ioms in any textbook on abstract algebra.

. Characteristic p fields (for some prime p) in L.
Solution: This class is finitely axiomatized by T'fie1q U { Zle 1=0}.
. Characteristic 0 fields in L.

Solution: Let Tic1q,0 = Tricta Y {~ Y41 1=0:p€Zso}. Then models of Tyie1q,0 are
exactly characteristic zero fields. This class is not finitely axiomatisable because if
it where, by some theory T”, then we would have Tfictd,0 = Nyerr ¢ and by com-
pactness, T'f;e1q U {Zle 1=0:0<p<m}+ Nyerr - But any field of characteristic
larger than m is a model of the theory on the left, but not of the theory on the
right, a contradiction.

. Algebraically closed fields in £, (in that case, some of the proofs require a certain
amount of algebra).

Solution: Let {¢y, := VT -z, =0 > (3y Xl ozy' = 0)} and ACF := Tieq U {1y, :
n € Zso}. Models of ACF are exactly algebraically closed fields. This class is
not finitely axiomatisable because if it where, by the same arguments as above,
there ould be a formula 6 whose models are all algebraically closed fields such that
Tfietld U {tn : 0 < <m}. To obtain a contradiction, we just have to find a field
K over which every polynomial of degree at most m has a root but which is not
algebraically closed.

This can be done in the following way. Let p be a prime integer larger than m and
K be the union of all the extensions of Q (inside some fixed algebraic closure @a)
whose degree is prime to p. Let P € Q[X] be irreducible of degree p (for example
XP?—-2). If P has aroot in a € K, then Q(a) < L < K with [L : Q] prime to p (by
definition of K'). But by multiplicativity of the degree in towers, since [Q: Q(a)],
we must have p|[L : Q], a contradiction. So K is not algebraically closed. Now
if P is a polynomial of degree smaller than m and a € @a is a root of P, then
[Q(a) : Q] < m and is therefore prime to p, it follows that Q(¢) < K and P has a
root in K.



