Silvain Rideau 1091 Evans

Solutions to homework 1

Problem 1:

Let \mathfrak{U} be some an ultrafilter on some infinite set I. Show that the following are equivalent:

- 1. The filter \mathfrak{U} is not principal;
- 2. The filter \mathfrak{U} contains the Fréchet filter on I.

Solution: First if $\mathfrak{U} = \langle i \rangle$ is principal, it does not contain the complement of $\{i\}$ which is cofinite so it cannot contain the Fréchet filter.

Let us now assume that \mathfrak{U} does not contain the Fréchet filter. So \mathfrak{U} does not contain some cofinite set. Since \mathfrak{U} is an ultrafilter, it follows that \mathfrak{U} contains some finite set X_0 . We may assume that X_0 has minimal cardinality. Pick any $i_0 \in X_0$, if $\{i_0\} \notin \mathfrak{U}$ it follows that $X_0 \setminus \{i_0\} \in \mathfrak{U}$, contradicting minimality of X_0 . It follows that $\{i_0\} \in \mathfrak{U}$ and \mathfrak{U} is principal.

Problem 2:

Let \mathcal{L} be a countable language, $(M_i)_{i \in \mathbb{Z}_{\geq 0}}$ a countable family of \mathcal{L} -structures, \mathfrak{U} a non principal ultrafilter on $\mathbb{Z}_{\geq 0}$, and $\Sigma(\overline{x}) = \{\varphi_j : j \in \mathbb{Z}_{\geq 0}\}$ a set of \mathcal{L} -formulas (whose free variables are in the tuple \overline{x}). We assume that for all finite $\Sigma_0 \subseteq \Sigma$, $\prod_{i \to \mathfrak{U}} M_i \models \exists \overline{x} \land_{\varphi \in \Sigma_0} \varphi(\overline{x})$.

1. For all $n \in \mathbb{Z}_{\geq 0}$, let $S(n) := \{i \in \mathbb{Z}_{\geq 0} : M_i \models \exists \overline{x} \wedge_{j=0}^n \varphi_j(\overline{x})\}$. Show that the S(n) form a decreasing chain of elements of \mathfrak{U} .

Solution: Since $\prod_{i \to \mathfrak{U}} M_i \models \exists \overline{x} \wedge_{j=0}^n \varphi_j(\overline{x})$, by Łoś's theorem, it follows that $S(n) \in \mathfrak{U}$. Moreover, if $i \in S(n+1)$ then $M_i \models \exists \overline{x} \wedge_{j=0}^{n+1} \varphi_j(\overline{x})$ so, in particular, $M_i \models \exists \overline{x} \wedge_{j=0}^n \varphi_j(\overline{x})$ and $i \in S(n)$. So $S(n+1) \subseteq S(n)$.

- 2. Let $\overline{b}_i \in M_i^{\overline{x}}$ be defined as follows:
 - If $i \in S(0)$, let m be maximal such that $m \leq i$ and $i \in S(m)$. Then pick $\overline{b_i} \in M_i^{\overline{x}}$ such that $M_i \models \bigwedge_j \varphi_{j=0}^m(\overline{b_i})$;
 - Otherwise, pick any $\overline{b}_i \in M_i$.

Show that for all $\varphi \in \Sigma$, we have $\prod_{i \to \mathfrak{U}} M_i \vDash \varphi([(\overline{b}_i)_i]_{\mathfrak{U}}).$

Solution: Pick some $j \in \mathbb{Z}_{\geq 0}$ and let $i \in \mathbb{Z}_{\geq 0}$ be such that $i \geq j$ and $i \in S(j)$. Then the maximal m such that $m \leq i$ and $i \in S(m)$ is larger than j. It follows that, by contraction, $M_i \models \varphi_j(\bar{b}_i)$. Since \mathfrak{U} is a non principal ultrafilter, it contains the cofinite set $\{i \in \mathbb{Z}_{\geq 0} : i \geq j\}$. Therefore it also contains $\{i \in \mathbb{Z}_{\geq 0} : i \geq j\} \cap S(j)\} \subseteq \{i \in \mathbb{Z}_{\geq 0} : M_i \models \varphi_j(\bar{b}_i)\}$. It follows that that last set is in \mathfrak{U} and, by Łoś's theorem, that $\prod_{i \to \mathfrak{U}} M_i \models \varphi_j([(\bar{b}_i)_i]_{\mathfrak{U}}).$

3. Let $M := \mathbb{Q}^{\mathfrak{U}}$ with the natural \mathcal{L}_{or} -structure. We identify \mathbb{Q} with its image under the diagonal embedding. Let $\mathcal{O} := \{a \in M : \exists n \in \mathbb{Z}_{>0} - n < a < n\}$ and $\mathfrak{M} := \{a \in M : \forall n \in \mathbb{Z}_{>0} - \frac{1}{n} < a < \frac{1}{n}\}$. Show that \mathcal{O} is a ring and that \mathfrak{M} is a maximal ideal.

Solution: Since $\mathbb{Q} \leq M$, it is quite clear that M is a field. To prove that \mathcal{O} is a ring, we have to show that it is closed under + and \cdot . If -n < x < n and -n < y < n, we have -2n < x + y < 2n and $-n^2 < xy < n^2$.

Let us now show that \mathfrak{M} is an ideal. Let $x, y \in \mathfrak{M}$. For all $n \in \mathbb{Z}_{>0}$, we have $-(2n)^{-1} < x < (2n)^{-1}$ and $-(2n)^{-1} < y < (2n)^{-1}$. So $-n^{-1} < x + y < n^{-1}$. If $x \in \mathcal{O}$ and $y \in \mathfrak{M}$, then for some $n \in \mathbb{Z}_{>0}$, we have -n < x < n and, for all $m \in \mathbb{Z}_{>0}$, $-(mn)^{-1} < y < (mn)^{-1}$. It follows that $-m^{-1} < xy < m^{-1}$. Moreover, if $x \in \mathcal{O} \setminus \mathfrak{M}$, there exists $n \in \mathbb{Z}_{>0}$ such that $x < -n^{-1}$ or $n^{-1} < x$. In both cases, we have $-n < x^{-1} < n$ and $x \in \mathcal{O}^*$. It follows that any ideal containing \mathfrak{M} contains a unit and is therefore \mathcal{O} itself.

4. Show that \mathcal{O}/\mathfrak{M} is isomorphic to \mathbb{R} .

Solution: Note first $\mathbb{Q} \leq \mathcal{O}$ and $\mathbb{Q} \cap \mathfrak{M} = \{0\}$, it follows that \mathbb{Q} can be identified with a subring of $k \coloneqq \mathcal{O}/\mathfrak{M}$. Moreover, \mathfrak{M} is convex, so \mathcal{O}/\mathfrak{M} can be ordered by $\overline{x} \leq \overline{y}$ if sor some choice of x and $y, x \leq y$. It is then easy to check that, since \mathcal{O} is an ordered ring, k is an ordered field. In particular, + and \cdot are continuous on k.

Now, pick $\overline{x} < \overline{y} \in k$. There exists $n \in \mathbb{Z}_{>0}$ such that $y - x > n^{-1}$. Moreover, we can find $m \in \mathbb{Z}_{>0}$ such that -m < x < y < m. If e partition [-m, m] into 2nm intervals of length n^{-1} . The bounds of these intervals are rational and x and y cannot be in the same interval. It follows that there exist $q \in \mathbb{Q}$ such that x < q < y and hence $\overline{x} < q < \overline{y}$. We have just proved that \mathbb{Q} is dense in k.

Let us now prove that k is complete. Let $X \subset k$ be bounded above and non empty. Let $X_{\mathbb{Q}} := \{x \in \mathbb{Q} : x < y \text{ for some } y \in X\}$ and $Y_{\mathbb{Q}} := \mathbb{Q} \setminus X_{\mathbb{Q}}$. Let $\Sigma(x) := \{q < x : q \in X_{\mathbb{Q}}\} \cup \{x < q : q \in Y_{\mathbb{Q}}\}$. Then $\Sigma(x)$ is finitely satisfiable in \mathbb{Q} so there exists $a \in M$ realizing Σ . Since $X_{\mathbb{Q}}$ and $Y_{\mathbb{Q}}$ are non empty, $a \in \mathcal{O}$ and since \mathbb{Q} is dense in k, \overline{a} is the sup[remum of X. So k is a complete topological field containing \mathbb{Q} as a dense subfield.

So we define $f : \mathbb{R} \to k$ by $f(x) = \sup\{q \in \mathbb{Q} : q < x\}$. This is injective and surjective by density of \mathbb{Q} in both \mathbb{R} and k. This si also a continuous map since, for all $\varepsilon \in \mathbb{Q}_{>0}$, if $x \leq y$ and $y - x < \varepsilon$, then $X := \{q \in \mathbb{Q} : q < x\} \leq \{q \in \mathbb{Q} : q < x\} = Y$ and thus $f(x) = \sup X \leq \sup Y = f(y)$. Moreover, $Y \subseteq X + \varepsilon$ and hence $f(y) \leq f(x) + \varepsilon$. Finally, the maps f(x + y) and f(x) + f(y) (resp. $f(x \cdot y)$ and $f(x) \cdot f(y)$) are continuous and coincide on $\mathbb{Q} \times \mathbb{Q}$ which is dense in $\mathbb{R} \times \mathbb{R}$ so they are equal.

Problem 3:

Prove whether each of the following classes is elementary, finitely axiomatisable or none of those.

1. Infinite sets in some language \mathcal{L} with one sort.

Solution: Let $\varphi_n := \exists x_1 \dots \exists x_n \land_{i \neq j} \neg x_i = x_j$ and $T_{\infty} := \{\varphi_n : n \in \mathbb{Z}_{>0}\}$. Models of T_{∞} are exactly infinite \mathcal{L} -structures. So this class is elementary. This class is not finitely axiomatisable because if T_0 is a finite \mathcal{L} -theory whose models are all infinite, then $T_{\infty} \models \bigcap_{\varphi \in T_0} \varphi$. By compactness, it follows that for some $n \in \mathbb{Z}_{>0}$, $\varphi_n \vdash \bigcap_{\varphi \in T_0} \varphi$. Let M be any \mathcal{L} -structure with cardinality n (we can always find such a structure by taking all constants equal, all functions equal and constant and all predicates empty). But then $M \models T_0$ is finite, a contradiction.

2. Finite sets in some language \mathcal{L} with one sort.

Solution: Essentially for the same reason as above, finite \mathcal{L} -structures are not an elementary class. Indeed assume that T is an \mathcal{L} -theory whose models are all finite \mathcal{L} -structures. Then $T \cup T_{\infty}$ is satisfiable. Indeed a finite subset of $T \cup T_{\infty}$ is contained in $T \cup \{\varphi_n : n \leq m\}$ and any \mathcal{L} -structure of cardinal m is a model of that theory.

But $M \models T \cup T_{\infty}$ is an infinite model of T, a contradiction. If you think the two last proofs are similar, it is because it is essentially the same proof. You can actually prove that if a class C is elementary and its complement is elementary then both are finitely axiomatisable.

3. Fields in $\mathcal{L}_{rg} \coloneqq \{\mathbf{K}; 0: \mathbf{K}, 1: \mathbf{K}, -: \mathbf{K} \to \mathbf{K}, +: \mathbf{K}^2 \to \mathbf{K}, \cdot: \mathbf{K}^2 \to \mathbf{K}\}.$

Solution: This class is finitely axiomatisable (by T_{field}) and you can find the axioms in any textbook on abstract algebra.

4. Characteristic p fields (for some prime p) in \mathcal{L}_{rg} .

Solution: This class is finitely axiomatized by $T_{field} \cup \{\sum_{i=1}^{p} 1 = 0\}$.

5. Characteristic 0 fields in \mathcal{L}_{rg} .

Solution: Let $T_{field,0} = T_{field} \cup \{\neg \sum_{i=1}^{p} 1 = 0 : p \in \mathbb{Z}_{>0}\}$. Then models of $T_{field,0}$ are exactly characteristic zero fields. This class is not finitely axiomatisable because if it where, by some theory T', then we would have $T_{field,0} \vdash \bigcap_{\varphi \in T'} \varphi$ and by compactness, $T_{field} \cup \{\sum_{i=1}^{p} 1 = 0 : 0 . But any field of characteristic larger than <math>m$ is a model of the theory on the left, but not of the theory on the right, a contradiction.

6. Algebraically closed fields in \mathcal{L}_{rg} (in that case, some of the proofs require a certain amount of algebra).

Solution: Let $\{\psi_n := \forall \overline{x} \neg x_n = 0 \rightarrow (\exists y \sum_{i=0}^n x_i y^i = 0)\}$ and ACF := $T_{field} \cup \{\psi_n : n \in \mathbb{Z}_{>0}\}$. Models of ACF are exactly algebraically closed fields. This class is not finitely axiomatisable because if it where, by the same arguments as above, there ould be a formula θ whose models are all algebraically closed fields such that $T_{field} \cup \{\psi_n : 0 < n < m\}$. To obtain a contradiction, we just have to find a field K over which every polynomial of degree at most m has a root but which is not algebraically closed.

This can be done in the following way. Let p be a prime integer larger than m and K be the union of all the extensions of \mathbb{Q} (inside some fixed algebraic closure $\overline{\mathbb{Q}}^a$) whose degree is prime to p. Let $P \in \mathbb{Q}[X]$ be irreducible of degree p (for example $X^p - 2$). If P has a root in $a \in K$, then $\mathbb{Q}(a) \leq L \leq K$ with $[L:\mathbb{Q}]$ prime to p (by definition of K). But by multiplicativity of the degree in towers, since $[\mathbb{Q}:\mathbb{Q}(a)]$, we must have $p|[L:\mathbb{Q}]$, a contradiction. So K is not algebraically closed. Now if P is a polynomial of degree smaller than m and $a \in \overline{\mathbb{Q}}^a$ is a root of P, then $[\mathbb{Q}(a):\mathbb{Q}] \leq m$ and is therefore prime to p, it follows that $\mathbb{Q}(q) \leq K$ and P has a root in K.