Solutions to homework 1

Problem 1:

Let \mathfrak{U} be some an ultrafilter on some infinite set I. Show that the following are equivalent:

1. The filter \mathfrak{U} is not principal;
2. The filter \mathfrak{U} contains the Fréchet filter on I.

Solution: First if $\mathfrak{U}=\langle i\rangle$ is principal, it does not contain the complement of $\{i\}$ which is cofinite so it cannot contain the Fréchet filter.
Let us now assume that \mathfrak{U} does not contain the Fréchet filter. So \mathfrak{U} does not contain some cofinite set. Since \mathfrak{U} is an ultrafilter, it follows that \mathfrak{U} contains some finite set X_{0}. We may assume that X_{0} has minimal cardinality. Pick any $i_{0} \in X_{0}$, if $\left\{i_{0}\right\} \notin \mathfrak{U}$ it follows that $X_{0} \backslash\left\{i_{0}\right\} \in \mathfrak{U}$, contradicting minimality of X_{0}. It follows that $\left\{i_{0}\right\} \in \mathfrak{U}$ and \mathfrak{U} is principal.

Problem 2 :

Let \mathcal{L} be a countable language, $\left(M_{i}\right)_{i \in \mathbb{Z}}{ }_{00}$ a countable family of \mathcal{L}-structures, \mathfrak{U} a non principal ultrafilter on $\mathbb{Z}_{\geqslant 0}$, and $\Sigma(\bar{x})=\left\{\varphi_{j}: j \in \mathbb{Z}_{\geqslant 0}\right\}$ a set of \mathcal{L}-formulas (whose free variables are in the tuple $\bar{x})$. We assume that for all finite $\Sigma_{0} \subseteq \Sigma, \prod_{i \rightarrow \mathfrak{U}} M_{i} \vDash \exists \bar{x} \wedge_{\varphi \in \Sigma_{0}} \varphi(\bar{x})$.

1. For all $n \in \mathbb{Z}_{\geqslant 0}$, let $S(n):=\left\{i \in \mathbb{Z}_{\geqslant 0}: M_{i} \vDash \exists \bar{x} \bigwedge_{j=0}^{n} \varphi_{j}(\bar{x})\right\}$. Show that the $S(n)$ form a decreasing chain of elements of \mathfrak{U}.

Solution: Since $\prod_{i \rightarrow \mathfrak{U}} M_{i} \vDash \exists \bar{x} \bigwedge_{j=0}^{n} \varphi_{j}(\bar{x})$, by Loś's theorem, it follows that $S(n) \in$ \mathfrak{U}. Moreover, if $i \in S(n+1)$ then $M_{i} \vDash \exists \bar{x} \bigwedge_{j=0}^{n+1} \varphi_{j}(\bar{x})$ so, in particular, $M_{i} \vDash$ $\exists \bar{x} \wedge_{j=0}^{n} \varphi_{j}(\bar{x})$ and $i \in S(n)$. So $S(n+1) \subseteq S(n)$.
2. Let $\bar{b}_{i} \in M_{i}^{\bar{x}}$ be defined as follows:

- If $i \in S(0)$, let m be maximal such that $m \leqslant i$ and $i \in S(m)$. Then pick $\overline{b_{i}} \in M_{i}^{\bar{x}}$ such that $M_{i} \vDash \wedge_{j} \varphi_{j=0}^{m}\left(\bar{b}_{i}\right)$;
- Otherwise, pick any $\bar{b}_{i} \in M_{i}$.

Show that for all $\varphi \in \Sigma$, we have $\prod_{i \rightarrow \mathfrak{U}} M_{i} \vDash \varphi\left(\left[\left(\bar{b}_{i}\right)_{i}\right]_{\mathfrak{L}}\right)$.
Solution: Pick some $j \in \mathbb{Z}_{\geqslant 0}$ and let $i \in \mathbb{Z}_{\geqslant 0}$ be such that $i \geqslant j$ and $i \in S(j)$. Then the maximal m such that $m \leqslant i$ and $i \in S(m)$ is larger than j. It follows that, by contraction, $M_{i} \vDash \varphi_{j}\left(\bar{b}_{i}\right)$. Since \mathfrak{U} is a non principal ultrafilter, it contains the cofinite set $\left\{i \in \mathbb{Z}_{\geqslant 0}: i \geqslant j\right\}$. Therefore it also contains $\left.\left\{i \in \mathbb{Z}_{\geqslant 0}: i \geqslant j\right\} \cap S(j)\right\} \subseteq\{i \epsilon$ $\left.\mathbb{Z}_{\geqslant 0}: M_{i} \vDash \varphi_{j}\left(\bar{b}_{i}\right)\right\}$. It follows that that last set is in \mathfrak{U} and, by Łoś's theorem, that $\Pi_{i \rightarrow \mathfrak{U}} M_{i}$ ю $\varphi_{j}\left(\left[\left(\bar{b}_{i}\right)_{i}\right]_{\mathfrak{L}}\right)$.
3. Let $M:=\mathbb{Q}^{\mathfrak{U}}$ with the natural $\mathcal{L}_{\text {or }}$-structure. We identify \mathbb{Q} with its image under the diagonal embedding. Let $\mathcal{O}:=\left\{a \in M: \exists n \in \mathbb{Z}_{>0}-n<a<n\right\}$ and $\mathfrak{M}:=\{a \in M$: $\left.\forall n \in \mathbb{Z}_{>0}-\frac{1}{n}<a<\frac{1}{n}\right\}$. Show that \mathcal{O} is a ring and that \mathfrak{M} is a maximal ideal.

Solution: Since $\mathbb{Q} \leqslant M$, it is quite clear that M is a field. To prove that \mathcal{O} is a ring, we have to show that it is closed under + and \cdot. If $-n<x<n$ and $-n<y<n$, we have $-2 n<x+y<2 n$ and $-n^{2}<x y<n^{2}$.

Let us now show that \mathfrak{M} is an ideal. Let $x, y \in \mathfrak{M}$. For all $n \in \mathbb{Z}_{>0}$, we have $-(2 n)^{-1}<x<(2 n)^{-1}$ and $-(2 n)^{-1}<y<(2 n)^{-1}$. So $-n^{-1}<x+y<n^{-1}$. If $x \in \mathcal{O}$ and $y \in \mathfrak{M}$, then for some $n \in \mathbb{Z}_{>0}$, we have $-n<x<n$ and, for all $m \in \mathbb{Z}_{>0}$, $-(m n)^{-1}<y<(m n)^{-1}$. It follows that $-m^{-1}<x y<m^{-1}$. Moreover, if $x \in \mathcal{O} \backslash \mathfrak{M}$, there exists $n \in \mathbb{Z}_{>0}$ such that $x<-n^{-1}$ or $n^{-1}<x$. In both cases, we have $-n<x^{-1}<n$ and $x \in \mathcal{O}^{\star}$. It follows that any ideal containing \mathfrak{M} contains a unit and is therefore \mathcal{O} itself.
4. Show that $\mathcal{O} / \mathfrak{M}$ is isomorphic to \mathbb{R}.

Solution: Note first $\mathbb{Q} \leqslant \mathcal{O}$ and $\mathbb{Q} \cap \mathfrak{M}=\{0\}$, it follows that \mathbb{Q} can be identified with a subring of $k:=\mathcal{O} / \mathfrak{M}$. Moreover, \mathfrak{M} is convex, so $\mathcal{O} / \mathfrak{M}$ can be ordered by $\bar{x} \leqslant \bar{y}$ if sor some choice of x and $y, x \leqslant y$. It is then easy to check that, since \mathcal{O} is an ordered ring, k is an ordered field. In particular, + and \cdot are continuous on k.
Now, pick $\bar{x}<\bar{y} \in k$. There exists $n \in \mathbb{Z}_{>0}$ such that $y-x>n^{-1}$. Moreover, we can find $m \in \mathbb{Z}_{>0}$ such that $-m<x<y<m$. If e partition $[-m, m$] into $2 n m$ intervals of length n^{-1}. The bounds of these intervals are rational and x and y cannot be in the same interval. It follows that there exist $q \in \mathbb{Q}$ such that $x<q<y$ and hence $\bar{x}<q<\bar{y}$. We have just proved that \mathbb{Q} is dense in k.
Let us now prove that k is complete. Let $X \subset k$ be bounded above and non empty. Let $X_{\mathbb{Q}}:=\{x \in \mathbb{Q}: x<y$ for some $y \in X\}$ and $Y_{\mathbb{Q}}:=\mathbb{Q} \backslash X_{\mathbb{Q}}$. Let $\Sigma(x):=\{q<x: q \in$ $\left.X_{\mathbb{Q}}\right\} \cup\left\{x<q: q \in Y_{\mathbb{Q}}\right\}$. Then $\Sigma(x)$ is finitely satisfiable in \mathbb{Q} so there exists $a \in M$ realizing Σ. Since $X_{\mathbb{Q}}$ and $Y_{\mathbb{Q}}$ are non empty, $a \in \mathcal{O}$ and since \mathbb{Q} is dense in k, \bar{a} is the $\sup [$ remum of X. So k is a complete topological field containing \mathbb{Q} as a dense subfield.
So we define $f: \mathbb{R} \rightarrow k$ by $f(x)=\sup \{q \in \mathbb{Q}: q<x\}$. This is injective and surjective by density of \mathbb{Q} in both \mathbb{R} and k. This si also a continuous map since, for all $\varepsilon \in \mathbb{Q}_{>0}$, if $x \leqslant y$ and $y-x<\varepsilon$, then $X:=\{q \in \mathbb{Q}: q<x\} \leqslant\{q \in \mathbb{Q}: q<x\}=: Y$ and thus $f(x)=\sup X \leqslant \sup Y=f(y)$. Moroever, $Y \subseteq X+\varepsilon$ and hence $f(y) \leqslant f(x)+\varepsilon$. Finally, the maps $f(x+y)$ and $f(x)+f(y)$ (resp. $f(x \cdot y)$ and $f(x) \cdot f(y)$) are continuous and coincide on $\mathbb{Q} \times \mathbb{Q}$ which is dense in $\mathbb{R} \times \mathbb{R}$ so they are equal.

Problem 3 :

Prove whether each of the following classes is elementary, finitely axiomatisable or none of those.

1. Infinite sets in some language \mathcal{L} with one sort.

Solution: Let $\varphi_{n}:=\exists x_{1} \ldots \exists x_{n} \wedge_{i \neq j} \neg x_{i}=x_{j}$ and $T_{\infty}:=\left\{\varphi_{n}: n \in \mathbb{Z}_{>0}\right\}$. Models of T_{∞} are exactly infinite \mathcal{L}-structures. So this class is elementary. This class is not finitely axiomatisable because if T_{0} is a finite \mathcal{L}-theory whose models are all infinite, then $T_{\infty} \vDash \bigcap_{\varphi \in T_{0}} \varphi$. By compactness, it follows that for some $n \in \mathbb{Z}_{>0}$, $\varphi_{n} \vdash \bigcap_{\varphi \in T_{0}} \varphi$. Let M be any \mathcal{L}-structure with cardinality n (we can always find such a structure by taking all constants equal, all functions equal and constant and all predicates empty). But then $M \vDash T_{0}$ is finite, a contradiction.
2. Finite sets in some language \mathcal{L} with one sort.

Solution: Essentially for the same reason as above, finite \mathcal{L}-structures are not an elementary class. Indeed assume that T is an \mathcal{L}-theory whose models are all finite \mathcal{L}-structures. Then $T \cup T_{\infty}$ is satisfiable. Indeed a finite subset of $T \cup T_{\infty}$ is contained in $T \cup\left\{\varphi_{n}: n \leqslant m\right\}$ and any \mathcal{L}-structure of cardinal m is a model of that theory.

But $M \vDash T \cup T_{\infty}$ is an infinite model of T, a contradiction. If you think the two last proofs are similar, it is because it is essentially the same proof. You can actually prove that if a class C is elementary and its complement is elementary then both are finitely axiomatisable.
3. Fields in $\mathcal{L}_{\text {rg }}:=\left\{\mathbf{K} ; 0: \mathbf{K}, 1: \mathbf{K},-: \mathbf{K} \rightarrow \mathbf{K},+: \mathbf{K}^{2} \rightarrow \mathbf{K}, \cdot: \mathbf{K}^{2} \rightarrow \mathbf{K}\right\}$.

Solution: This class is finitely axiomatisable (by $T_{\text {field }}$) and you can find the axioms in any textbook on abstract algebra.
4. Characteristic p fields (for some prime p) in $\mathcal{L}_{\mathrm{rg}}$.

Solution: This class is finitely axiomatized by $T_{\text {field }} \cup\left\{\sum_{i=1}^{p} 1=0\right\}$.
5. Characteristic 0 fields in $\mathcal{L}_{\text {rg }}$.

Solution: Let $T_{\text {field }, 0}=T_{\text {field }} \cup\left\{\neg \sum_{i=1}^{p} 1=0: p \in \mathbb{Z}_{>0}\right\}$. Then models of $T_{\text {field }, 0}$ are exactly characteristic zero fields. This class is not finitely axiomatisable because if it where, by some theory T^{\prime}, then we would have $T_{\text {field }, 0} \vdash \bigcap_{\varphi \in T^{\prime}} \varphi$ and by compactness, $T_{\text {field }} \cup\left\{\sum_{i=1}^{p} 1=0: 0<p<m\right\} \vdash \bigcap_{\varphi \in T^{\prime}} \varphi$. But any field of characteristic larger than m is a model of the theory on the left, but not of the theory on the right, a contradiction.
6. Algebraically closed fields in $\mathcal{L}_{\text {rg }}$ (in that case, some of the proofs require a certain amount of algebra).

Solution: Let $\left\{\psi_{n}:=\forall \bar{x} \neg x_{n}=0 \rightarrow\left(\exists y \sum_{i=0}^{n} x_{i} y^{i}=0\right)\right\}$ and ACF $:=T_{\text {field }} \cup\left\{\psi_{n}:\right.$ $\left.n \in \mathbb{Z}_{>0}\right\}$. Models of ACF are exactly algebraically closed fields. This class is not finitely axiomatisable because if it where, by the same arguments as above, there ould be a formula θ whose models are all algebraically closed fields such that $T_{\text {field }} \cup\left\{\psi_{n}: 0<n<m\right\}$. To obtain a contradiction, we just have to find a field K over which every polynomial of degree at most m has a root but which is not algebraically closed.
This can be done in the following way. Let p be a prime integer larger than m and K be the union of all the extensions of \mathbb{Q} (inside some fixed algebraic closure $\overline{\mathbb{Q}}^{\mathrm{a}}$) whose degree is prime to p. Let $P \in \mathbb{Q}[X]$ be irreducible of degree p (for example $X^{p}-2$). If P has a root in $a \in K$, then $\mathbb{Q}(a) \leqslant L \leqslant K$ with $[L: \mathbb{Q}]$ prime to p (by definition of $K)$. But by multiplicativity of the degree in towers, since $[\mathbb{Q}: \mathbb{Q}(a)]$, we must have $p \mid[L: \mathbb{Q}]$, a contradiction. So K is not algebraically closed. Now if P is a polynomial of degree smaller than m and $a \in \overline{\mathbb{Q}}^{\mathrm{a}}$ is a root of P, then $[\mathbb{Q}(a): \mathbb{Q}] \leqslant m$ and is therefore prime to p, it follows that $\mathbb{Q}(q) \leqslant K$ and P has a root in K.

