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Solutions to homework 1

Problem 1 :
Let U be some an ultrafilter on some infinite set I. Show that the following are equivalent:

1. The filter U is not principal;

2. The filter U contains the Fréchet filter on I.

Solution: First if U = ⟨i⟩ is principal, it does not contain the complement of {i} which
is cofinite so it cannot contain the Fréchet filter.
Let us now assume that U does not contain the Fréchet filter. So U does not contain some
cofinite set. Since U is an ultrafilter, it follows that U contains some finite set X0. We
may assume that X0 has minimal cardinality. Pick any i0 ∈X0, if {i0} ∉ U it follows that
X0 ∖{i0} ∈ U, contradicting minimality of X0. It follows that {i0} ∈ U and U is principal.

Problem 2 :
Let L be a countable language, (Mi)i∈Z⩾0 a countable family of L-structures, U a non prin-
cipal ultrafilter on Z⩾0, and Σ(x) = {ϕj ∶ j ∈ Z⩾0} a set of L-formulas (whose free variables
are in the tuple x). We assume that for all finite Σ0 ⊆ Σ, ∏i→UMi ⊧ ∃x ⋀ϕ∈Σ0

ϕ(x).

1. For all n ∈ Z⩾0, let S(n) ∶= {i ∈ Z⩾0 ∶ Mi ⊧ ∃x ⋀
n
j=0ϕj(x)}. Show that the S(n)

form a decreasing chain of elements of U.

Solution: Since ∏i→UMi ⊧ ∃x ⋀
n
j=0ϕj(x), by Łoś’s theorem, it follows that S(n) ∈

U. Moreover, if i ∈ S(n + 1) then Mi ⊧ ∃x ⋀n+1
j=0 ϕj(x) so, in particular, Mi ⊧

∃x ⋀n
j=0ϕj(x) and i ∈ S(n). So S(n + 1) ⊆ S(n).

2. Let bi ∈Mx
i be defined as follows:

• If i ∈ S(0), let m be maximal such that m ⩽ i and i ∈ S(m). Then pick bi ∈Mx
i

such that Mi ⊧ ⋀j ϕ
m
j=0(bi);

• Otherwise, pick any bi ∈Mi.

Show that for all ϕ ∈ Σ, we have ∏i→UMi ⊧ ϕ([(bi)i]U).

Solution:Pick some j ∈ Z⩾0 and let i ∈ Z⩾0 be such that i ⩾ j and i ∈ S(j). Then
the maximal m such that m ⩽ i and i ∈ S(m) is larger than j. It follows that,
by contraction, Mi ⊧ ϕj(bi). Since U is a non principal ultrafilter, it contains the
cofinite set {i ∈ Z⩾0 ∶ i ⩾ j}. Therefore it also contains {i ∈ Z⩾0 ∶ i ⩾ j}∩S(j)} ⊆ {i ∈
Z⩾0 ∶Mi ⊧ ϕj(bi)}. It follows that that last set is in U and, by Łoś’s theorem, that
∏i→UMi ⊧ ϕj([(bi)i]U).

3. Let M ∶= QU with the natural Lor-structure. We identify Q with its image under
the diagonal embedding. Let O ∶= {a ∈M ∶ ∃n ∈ Z>0 −n < a < n} and M ∶= {a ∈M ∶

∀n ∈ Z>0 −
1
n < a < 1

n}. Show that O is a ring and that M is a maximal ideal.

Solution: Since Q ≼ M , it is quite clear that M is a field. To prove that O is a
ring, we have to show that it is closed under + and ⋅. If −n < x < n and −n < y < n,
we have −2n < x + y < 2n and −n2 < xy < n2.
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Let us now show that M is an ideal. Let x, y ∈ M. For all n ∈ Z>0, we have
−(2n)−1 < x < (2n)−1 and −(2n)−1 < y < (2n)−1. So −n−1 < x + y < n−1. If x ∈ O

and y ∈ M, then for some n ∈ Z>0, we have −n < x < n and, for all m ∈ Z>0,
−(mn)−1 < y < (mn)−1. It follows that −m−1 < xy < m−1. Moreover, if x ∈ O ∖M,
there exists n ∈ Z>0 such that x < −n−1 or n−1 < x. In both cases, we have
−n < x−1 < n and x ∈ O⋆. It follows that any ideal containing M contains a unit
and is therefore O itself.

4. Show that O/M is isomorphic to R.

Solution:Note first Q ⩽ O and Q ∩M = {0}, it follows that Q can be identified
with a subring of k ∶= O/M. Moreover, M is convex, so O/M can be ordered by
x ⩽ y if sor some choice of x and y, x ⩽ y. It is then easy to check that, since O is
an ordered ring, k is an ordered field. In particular, + and ⋅ are continuous on k.

Now, pick x < y ∈ k. There exists n ∈ Z>0 such that y − x > n−1. Moreover, we can
find m ∈ Z>0 such that −m < x < y < m. If e partition [−m,m] into 2nm intervals
of length n−1. The bounds of these intervals are rational and x and y cannot be in
the same interval. It follows that there exist q ∈ Q such that x < q < y and hence
x < q < y. We have just proved that Q is dense in k.

Let us now prove that k is complete. Let X ⊂ k be bounded above and non empty.
Let XQ ∶= {x ∈ Q ∶ x < y for some y ∈ X} and YQ ∶= Q ∖XQ. Let Σ(x) ∶= {q < x ∶ q ∈
XQ} ∪ {x < q ∶ q ∈ YQ}. Then Σ(x) is finitely satisfiable in Q so there exists a ∈M
realizing Σ. Since XQ and YQ are non empty, a ∈ O and since Q is dense in k, a is
the sup[remum of X. So k is a complete topological field containing Q as a dense
subfield.

So we define f ∶ R→ k by f(x) = sup{q ∈ Q ∶ q < x}. This is injective and surjective
by density of Q in both R and k. This si also a continuous map since, for all
ε ∈ Q>0, if x ⩽ y and y − x < ε, then X ∶= {q ∈ Q ∶ q < x} ⩽ {q ∈ Q ∶ q < x} =∶ Y and
thus f(x) = supX ⩽ supY = f(y). Moroever, Y ⊆X + ε and hence f(y) ⩽ f(x) + ε.
Finally, the maps f(x + y) and f(x) + f(y) (resp. f(x ⋅ y) and f(x) ⋅ f(y)) are
continuous and coincide on Q ×Q which is dense in R ×R so they are equal.

Problem 3 :
Prove whether each of the following classes is elementary, finitely axiomatisable or none
of those.

1. Infinite sets in some language L with one sort.

Solution: Let ϕn ∶= ∃x1 . . .∃xn ⋀i≠j ¬xi = xj and T∞ ∶= {ϕn ∶ n ∈ Z>0}. Models
of T∞ are exactly infinite L-structures. So this class is elementary. This class is
not finitely axiomatisable because if T0 is a finite L-theory whose models are all
infinite, then T∞ ⊧ ⋂ϕ∈T0

ϕ. By compactness, it follows that for some n ∈ Z>0,
ϕn ⊢ ⋂ϕ∈T0

ϕ. Let M be any L-structure with cardinality n (we can always find
such a structure by taking all constants equal, all functions equal and constant and
all predicates empty). But then M ⊧ T0 is finite, a contradiction.

2. Finite sets in some language L with one sort.

Solution:Essentially for the same reason as above, finite L-structures are not an
elementary class. Indeed assume that T is an L-theory whose models are all finite
L-structures. Then T∪T∞ is satisfiable. Indeed a finite subset of T∪T∞ is contained
in T ∪ {ϕn ∶ n ⩽ m} and any L-structure of cardinal m is a model of that theory.
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ButM ⊧ T ∪T∞ is an infinite model of T , a contradiction. If you think the two last
proofs are similar, it is because it is essentially the same proof. You can actually
prove that if a class C is elementary and its complement is elementary then both
are finitely axiomatisable.

3. Fields in Lrg ∶= {K; 0 ∶K,1 ∶K,− ∶K→K,+ ∶K2 →K, ⋅ ∶K2 →K}.

Solution:This class is finitely axiomatisable (by Tfield) and you can find the ax-
ioms in any textbook on abstract algebra.

4. Characteristic p fields (for some prime p) in Lrg.

Solution:This class is finitely axiomatized by Tfield ∪ {∑
p
i=1 1 = 0}.

5. Characteristic 0 fields in Lrg.

Solution: Let Tfield,0 = Tfield ∪ {¬∑
p
i=1 1 = 0 ∶ p ∈ Z>0}. Then models of Tfield,0 are

exactly characteristic zero fields. This class is not finitely axiomatisable because if
it where, by some theory T ′, then we would have Tfield,0 ⊢ ⋂ϕ∈T ′ ϕ and by com-
pactness, Tfield ∪ {∑

p
i=1 1 = 0 ∶ 0 < p < m} ⊢ ⋂ϕ∈T ′ ϕ. But any field of characteristic

larger than m is a model of the theory on the left, but not of the theory on the
right, a contradiction.

6. Algebraically closed fields in Lrg (in that case, some of the proofs require a certain
amount of algebra).

Solution: Let {ψn ∶= ∀x¬xn = 0 → (∃y ∑n
i=0 xiy

i = 0)} and ACF ∶= Tfield ∪ {ψn ∶

n ∈ Z>0}. Models of ACF are exactly algebraically closed fields. This class is
not finitely axiomatisable because if it where, by the same arguments as above,
there ould be a formula θ whose models are all algebraically closed fields such that
Tfield ∪ {ψn ∶ 0 < n < m}. To obtain a contradiction, we just have to find a field
K over which every polynomial of degree at most m has a root but which is not
algebraically closed.

This can be done in the following way. Let p be a prime integer larger than m and
K be the union of all the extensions of Q (inside some fixed algebraic closure Qa

)
whose degree is prime to p. Let P ∈ Q[X] be irreducible of degree p (for example
Xp − 2). If P has a root in a ∈ K, then Q(a) ⩽ L ⩽ K with [L ∶ Q] prime to p (by
definition of K). But by multiplicativity of the degree in towers, since [Q ∶ Q(a)],
we must have p∣[L ∶ Q], a contradiction. So K is not algebraically closed. Now
if P is a polynomial of degree smaller than m and a ∈ Qa

is a root of P , then
[Q(a) ∶ Q] ⩽ m and is therefore prime to p, it follows that Q(q) ⩽ K and P has a
root in K.
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