Silvain Rideau 1091 Evans

Homework 1

Problem 1:

Let \mathfrak{U} be some an ultrafilter on some infinite set I. Show that the following are equivalent:

- 1. The filter \mathfrak{U} is not principal;
- 2. The filter \mathfrak{U} contains the Fréchet filter on I.

Problem 2:

Let \mathcal{L} be a countable language, $(M_i)_{i \in \mathbb{Z}_{\geq 0}}$ a countable family of \mathcal{L} -structures, \mathfrak{U} a non principal ultrafilter on $\mathbb{Z}_{\geq 0}$, and $\Sigma(\overline{x}) = \{\varphi_j : j \in \mathbb{Z}_{\geq 0}\}$ a set of \mathcal{L} -formulas (whose free variables are in the tuple \overline{x}). We assume that for all finite $\Sigma_0 \subseteq \Sigma$, $\prod_{i \in \mathfrak{U}} M_i \models \exists \overline{x} \land_{\varphi \in \Sigma_0} \varphi(\overline{x})$.

- 1. For all $n \in \mathbb{Z}_{\geq 0}$, let $S(n) := \{i \in \mathbb{Z}_{\geq 0} : M_i \models \exists \overline{x} \wedge_{j=0}^n \varphi_j(\overline{x})\}$. Show that the S(n) form a decreasing chain of elements of \mathfrak{U} .
- 2. For all i, et $\overline{b}_i \in M_i^{\overline{x}}$ be defined as follows:
 - If $i \in S(0)$, let m be maximal such that $m \leq i$ and $i \in S(m)$. Then pick $\overline{b_i} \in M_i$ such that $M_i \models \bigwedge_j \varphi_{j=0}^m(\overline{b_i})$;
 - Otherwise, pick any $\overline{b}_i \in M_i$.

Show that for all $\varphi \in \Sigma$, we have $\prod_{i \to \mathfrak{U}} M_i \models \varphi([(\overline{b}_i)_i]_{\mathfrak{U}}).$

- 3. Let $M := \mathbb{Q}^{\mathfrak{U}} = \prod_{i \to \mathfrak{U}} \mathbb{Q}$ with the natural \mathcal{L}_{or} -structure. We identify \mathbb{Q} with its image under the diagonal embedding (i.e. the map $x \mapsto [(x)_i]_{\mathfrak{U}}$). Let $\mathcal{O} := \{a \in M : \exists n \in \mathbb{Z}_{>0} n < a < n\}$ and $\mathfrak{M} := \{a \in M : \forall n \in \mathbb{Z}_{>0} \frac{1}{n} < a < \frac{1}{n}\}$. Show that \mathcal{O} is a ring and that \mathfrak{M} is a maximal ideal.
- 4. Show that \mathcal{O}/\mathfrak{M} is isomorphic to \mathbb{R} .

Problem 3:

Prove whether each of the following classes is elementary (i.e. the set of models of a theory), finitely axiomatisable (i.e. the set of models of a finite theory) or none of those.

- 1. Infinite sets in some language \mathcal{L} with one sort.
- 2. Finite sets in some language \mathcal{L} with one sort.
- 3. Fields in $\mathcal{L}_{rg} \coloneqq \{\mathbf{K}; 0: \mathbf{K}, 1: \mathbf{K}, -: \mathbf{K} \to \mathbf{K}, +: \mathbf{K} < 2 > \to \mathbf{K}, \cdot: \mathbf{K} < 2 > \to \mathbf{K} \}.$
- 4. Characteristic p fields (for some fixed prime p) in \mathcal{L}_{rg} .
- 5. Characteristic 0 fields in \mathcal{L}_{rg} .
- 6. Algebraically closed fields in \mathcal{L}_{rg} (the proof requires algebra beyond Math 113).