Silvain Rideau 1091 Evans

Solutions to homework 2

Problem 1:

Let C be a set of finite \mathcal{L} -structures. Let $T = \{\varphi : \varphi \text{ is a sentence and for all } M \in C, M \models \varphi\}.$

I. Give a necessary and sufficient condition for T to have an infinite model.

Solution: T has an infinite model if and only if for all $n \in \mathbb{Z}_{\geq 0}$, there exists $M \in C$ such that $|M| \geq n$.

Indeed, let us assume that for all $n \in \mathbb{Z}_{\geq 0}$, there exists $M \in C$ such that $|M| \geq n$. Consider $\varphi_n \coloneqq \exists x_1 \dots \exists x_n \wedge_{i \neq j} \neg x_i \equiv x_j$. Then $M \vDash \varphi_n$ if and only if $|M| \geq n$. Infinite model of T are exactly the models of $T' \coloneqq T \cup \{\varphi_n : n \in \mathbb{Z}_{>0}\}$. By compactness, it suffices to show that T' is finitely consistent. Let $T_0 \subseteq T$ be finite. Then there exists $m \in \mathbb{Z}_{>0}$ such that $T_0 \subseteq T \cup \{\varphi_n : 0 < n \leq m\}$. By hypothesis, there exists $M \in C$ such that $|M| \geq m$, then $M \vDash T_0$.

Conversely, if there exists m such that every $M \in C$ has cardinality smaller than m, then $\neg \varphi_m \in T$ and every model of T has cardinality smaller than m.

2. Assume that T has infinite models, give a theory T' such that the models of T' are exactly the infinite models of T.

Solution: The infinite models of T are exactly the models of $T' := T \cup \{\varphi_n : n \in \mathbb{Z}_{>0}\}.$

3. Show that $T' \models \varphi$ if and only if there exists some $n \in \mathbb{N}$ such that for all $M \in C$ of cardinality greater than $n, M \models \varphi$.

Solution: By compactness, $T' \vDash \varphi$ if and only if there exists $m \in \mathbb{Z}_{>0}$ such that $T \cup \varphi_m \vDash \varphi$. It follows that for every $M \in C$ such that $|M| \ge m, M \vDash \varphi$.

Conversely if every $M \in C$ such that $|M| \ge m$ verify $M \models \varphi$, then $\varphi_n \rightarrow \varphi \in T$. Since every model of T' is a model of φ_n and a model of T, it follows that $T \models \varphi$.

Problem 2 :

A sentence φ is said to be universal if it is of the form $\forall x_1 \dots \forall x_n \psi(x_1, \dots, x_n)$ where ψ is quantifier free.

I. Let φ be universal, M and $N \mathcal{L}$ -structures and $f : N \to M$ and embedding. Show that if $M \vDash \varphi$ then $N \vDash \varphi$.

Solution: If $M \models \exists \forall \overline{x} \psi(\overline{x})$ then for all $\overline{a} \in M^{\overline{x}}$, $M \models \psi(\overline{a})$. In particular, for all $\overline{a} \in N^{\overline{x}}$, $M \models \psi(f(\overline{a}))$. But since f is an embedding and ψ is quantifier free, this implies that $N \models \psi(\overline{a})$.

 Let T be an L-theory and c̄ a tuple of new constants (i.e. that do not appear in L). Let φ(x̄) be an L-formula, such that x̄ is sorted as c̄. Show that if T ⊨ φ(c̄) then T ⊨ ∀x̄ φ(x̄).

Solution: Let $M \models T$ and $\overline{a} \in M^{\overline{x}}$. Let M^* the $\mathcal{L} \cup \{\overline{c}\}$ -enrichment of M such that $\overline{c}^{M^*} = \overline{a}$. Then, since \overline{c} does not appear in T and $M \models T$, we have $M^* \models T$ and hence $M^* \models \varphi(\overline{c})$, i.e. $M \models \varphi(\overline{a})$. Since \overline{a} and M were arbitrary, we do get $T \models \forall \overline{x} \varphi(\overline{x})$.

3. Let $M \models T_{\forall} := \{\varphi \text{ universal } \mathcal{L}\text{-sentence } : T \models \varphi\}$. Show that the $\mathcal{L}(M)$ -theory $\Delta_M(M) \cup T$ is consistent.

Solution: By compactness, if this theory is not consistent, there exists a quantifier free \mathcal{L} -formula $\varphi(\overline{x})$ such that $\varphi(\overline{m}) \in \Delta(M)$ and $T \cup \{\varphi(\overline{m})\}$ is inconsistent. To be precise, there are finitely many $\varphi_i(m_i)$ but we can take their conjunction. If $T \cup \{\varphi(\overline{m})\}$, it follows that $T \models \neg \varphi(\overline{m})$ and, by the previous question, $T \models \forall \overline{x} \neg \varphi(\overline{x})$. So $\forall \overline{x} \neg \varphi(\overline{x}) \in T_{\forall}$ and therefore $M \models \forall \overline{x} \varphi(\overline{x})$. In particular, $M \models \neg \varphi(\overline{m})$, contradicting the fact that $\varphi(\overline{m}) \in \Delta(M)$.

- 4. Let T and T' be two theories, show that the following are equivalent:
 - a) $T_{\forall} \subseteq T'_{\forall};$
 - b) Every model of T' can be embedded in a model of T.

Solution: Let us first assume that $T_{\forall} \subseteq T'_{\forall}$. If $M \models T'$, then $M \models T'_{\forall}$ and in particular $M \models T_{\forall}$. By the previous question, We can find $N^* \models \Delta(M) \cup T$. Let $N \coloneqq N^*|_{\mathcal{L}}$, then $N \models T$ and there is en embedding $M \rightarrow N$.

Conversely, pick $\varphi \in T_{\forall}$ and let $M \models T'$. By hypothesis, we find $N \models T$ and an embedding $M \rightarrow N$. By definition of T_{\forall} , $N \models \varphi$ and, by the first question, $M \models \varphi$. It follows that $T' \models \varphi$ and that $\varphi \in T'_{\forall}$.

5. Show that *T* is stable under substructure (i.e. if $N \models T$ and $f : M \rightarrow N$ is an embedding, then $M \models T$) if and only if *T* is equivalent to T_{\forall} .

Solution: Every model of T is a models of T_{\forall} . It follows that we only have to show that every model of T_{\forall} is a model of T. Let $M \models T_{\forall}$. By question 3, we can find $N \models T$ and and embedding $M \rightarrow N$. Since T is stable under substructure, we also have $M \models T$.

6. Let *T* be the \mathcal{L}_{rg} -theory of algebraically closed fields (where $\{\mathbf{K}; 0 : \mathbf{K}, 1 : \mathbf{K}, - : \mathbf{K} \rightarrow \mathbf{K}, + : \mathbf{K}^2 \rightarrow \mathbf{K}, \cdot : \mathbf{K}^2 \rightarrow \mathbf{K}\}$). Which are the models of T_{\forall} .

Solution: Let T' be the \mathcal{L}_{rg} -theory of integral domains. It contains only universal statements: because we have 0, 1 and – in the language, the axioms of rings are universal and integrality can be expressed as $\forall x \forall y x \cdot y = 0 \rightarrow (x = 0 \lor y = 0)$. So T' is equivalent to T'_{\forall} .

Moreover, every every integral domain embeds in a field (its faction field) which in turn embeds in an algebraically closed field (its algebraic closure). So $T_{\forall} \subseteq T'_{\forall} = T'$. Finally, every algebraically closed field is n integral domain so $T \models T' = T'_{\forall}$ and hence $T' \subseteq T_{\forall}$. So T_{\forall} is exactly the theory of integral domains.

7. Let $\mathcal{L} = \{X; \langle :X^2\}$ and T, T' be two \mathcal{L} -theories containing the theory of infinite total orders. Show that $T_{\forall} = T'_{\forall}$.

Solution: Let us show that, given any two infinite total orders X and Y, we can embed X in a elementary extension of Y. This will conclude the proof as it will imply that any model of T, here X, can be embedded in a model of T', here the elementary extension of Y. So $T'_{\forall} \subseteq T_{\forall}$. Symmetrically, $T_{\forall} \subseteq T'_{\forall}$.

Let us prove that $\mathcal{D}^{\text{el}}(Y) \cup \Delta(X)$ is consistent (here we are very careful to take distinct new constants to represent X and Y). A finite subset of that theory is included in $\mathcal{D}^{\text{el}}(Y) \cup \Delta(X_0)$ for some finite $X_0 \subseteq X$. Since Y is infinite, we can find a finite chain in Y of length $|X_0|$. The map sending X_0 to that chain (in the right order) is an embedding. It follows that, interpreting the elements of X_0 as given by the embedding (and the other elements of X arbitrarily) we can enrich Y into a model of $\mathcal{D}^{\mathrm{el}}(Y) \cup \Delta(X_0)$. By compactness, $\mathcal{D}^{\mathrm{el}}(Y) \cup \Delta(X)$ is consistent.