Silvain Rideau 1091 Evans

Homework 2

Problem 1:

Let C be a set of finite \mathcal{L} -structures. Let $T = \{\varphi : \varphi \text{ is a sentence and for all } M \in C, M \models \varphi\}.$

- I. Give a necessary and sufficient condition for T to have an infinite model.
- 2. Assume that T has infinite models, give a theory T' such that the models of T' are exactly the infinite models of T.
- 3. Show that $T' \models \varphi$ if and only if there exists some $n \in \mathbb{N}$ such that for all $M \in C$ of cardinality greater than $n, M \models \varphi$.

Problem 2:

A sentence φ is said to be universal if it is of the form $\forall x_1 \dots \forall x_n \psi(x_1, \dots, x_n)$ where ψ is quantifier free.

- I. Let φ be universal, M an \mathcal{L} -structure, and $N \leq M$. Show that if $M \vDash \varphi$ then $N \vDash \varphi$.
- Let T be an L-theory and c̄ a tuple of new constants (i.e. that do not appear in L). Let φ(x̄) be an L-formula, such that x̄ is sorted as c̄. Show that if T ⊨ φ(c̄) then T ⊨ ∀x̄ φ(x̄).
- 3. Let $M \models T_{\forall}$. Show that the $\mathcal{L}(M)$ -theory $\Delta_M(M) \cup T$ is consistent.
- 4. Let *T* and T' be two theories, show that the following are equivalent:
 - a) $T_{\forall} \subseteq T'_{\forall}$;
 - b) Every model of T' can be embedded in a model of T.
- 5. Show that *T* is stable under substructure (i.e. if $N \models T$ and $f : M \rightarrow N$ is an embedding, then $M \models T$) if and only if *T* is equivalent to T_{\forall} .
- 6. Let *T* be the \mathcal{L}_{rg} -theory of algebraically closed fields (where $\{\mathbf{K}; 0 : \mathbf{K}, 1 : \mathbf{K}, : \mathbf{K} \rightarrow \mathbf{K}, + : \mathbf{K}^2 \rightarrow \mathbf{K}, \cdot : \mathbf{K}^2 \rightarrow \mathbf{K}\}$). Which are the models of T_{\forall} .
- 7. Let $\mathcal{L} = \{X; \langle :X^2\}$ and T, T' be two \mathcal{L} -theories containing the theory of infinite total orders. Show that $T_{\forall} = T'_{\forall}$.