Silvain Rideau 1091 Evans

Homework 3

Problem I (Vaught's test):

We say that a theory *T* is κ -categorical if all models of *T* of cardinality κ are isomorphic. Show that if *T* only has infinite models and is κ -categorical for some $\kappa \ge |\mathcal{L}|$, then *T* is complete.

Problem 2 (Vector spaces):

Let *K* be an field (if you prefer, take $K = \mathbb{R}$). Let \mathcal{L} be the language with one sort **V** a constant 0, a function $-: \mathbf{V} \to \mathbf{V}$, a function $+: \mathbf{V}^2 \to \mathbf{V}$ and for all $x \in K$, a function $\lambda_x : \mathbf{V} \to \mathbf{V}$. Any *K*-vector space can naturally be made into an \mathcal{L} -structure by interpreting + as the addition, 0 the additive identity, – as the additive inverse and λ_x as scalar multiplication be *x*

- 1. Show there exist a theory T whose models are all the infinite K-vector spaces.
- Let V_i ≤ U_i, for i = 1, 2 be K-vector spaces such that dim(U₁) = dim(U₂) > dim(V₁) = dim(V₂). Show that there exists an isomorphism f : U₁ → U₂ such that f(V₁) = f(V₂). This is just linear algebra and is the only linear algebra fact you'll need to do the rest.
- 3. Show that *T* is κ -categorical for all $\kappa > |\mathcal{L}|$. Conclude that *T* is complete.
- 4. Let $V \leq U$ be two infinite *K*-vector spaces such that $\dim(V) < \dim(U)$ and $\dim(U) > |\mathcal{L}|$, then $V \leq U$.
- 5. Show that this remains true without the dimension hypothesis.
- 6. Let $U \models T$, $V \le U$ and $\pi(x) = \{\neg x = c : c \in V\}$. Let $a, b \in U$ be two realizations of π . Show that $\operatorname{tp}^U(a/V) = \operatorname{tp}^U(b/V)$.
- 7. Let *x* be a single variable, show that $S_x^U(V) = \{ tp^U(a/V) : a \in V \} \cup \{ p_\infty \}$ where $p_\infty \supseteq \pi$ (in particular, you have to show that there is a unique complete type over *V* extending π).
- 8. Pick $p \in \mathcal{S}_x^U(V) \setminus \{p_\infty\}$. Show that $\{p\}$ is open.
- 9. Show that $X \subseteq S_x^U(V)$ containing p_{∞} is open if and only if X is cofinite.
- 10. Let $\varphi(x)$ be an \mathcal{L} -formula, show that $\varphi(V)$ is finite or cofinite.

If you don't like linear algebra, you can replace T by the theory of infinite sets in the language with one sort and no symbol and dimension by cardinal. All of the (obvious adaptations of the) questions above remain true