Solutions to homework 4

Problem 1:

Let \mathcal{L}_{n} be the language with one sort and n binary predicates $\left(E_{i}\right)_{0 \leqslant i<n}$.

1. Give an \mathcal{L}_{n}-theory T_{n} such that in models of T_{n}, for all i, the E_{i} are equivalence relations, E_{i+1} is finer than E_{i} (i.e. every E_{i+1}-class is included in an E_{i}-class), E_{0} has infinitely many classes, every E_{i} class is covered by infinitely many E_{i+1}-classes and the classes of E_{n-1} are infinite.

Solution: We define:

$$
\begin{aligned}
T_{n}:= & \left\{\forall x x E_{i} x: 0 \leqslant i<n\right\} \\
& \cup\left\{\forall x \forall y x E_{i} y \rightarrow y E_{i} x: 0 \leqslant i<n\right\} \\
& \cup\left\{\forall x \forall y \forall z\left(x E_{i} y \wedge y E_{i} z\right) \rightarrow x E_{i} z: 0 \leqslant i<n\right\} \\
& \cup\left\{\forall x \forall y x E_{i+1} y \rightarrow x E_{i} y: 0 \leqslant i<n-1\right\} \\
& \cup\left\{\forall x \exists y_{1} \ldots \exists y_{k} \bigwedge_{j} x E_{i} y_{j} \wedge \bigwedge_{j_{1} \neq j_{2}} \neg y_{j_{1}} E_{i+1} y_{j_{2}}: 0 \leqslant i<n-1 \text { and } k>0\right\} \\
& \cup\left\{\exists y_{1} \ldots \exists y_{k} \bigwedge_{j_{1} \neq j_{2}} \neg y_{j_{1}} E_{0} y_{j_{2}}: k>0\right\} \\
& \cup\left\{\forall x \exists y_{1} \ldots \exists y_{k} \bigwedge_{j} x E_{n-1} y_{j} \wedge \bigwedge_{j_{1} \neq j_{2}} \neg y_{j_{1}}=y_{j_{2}}: k>0\right\}
\end{aligned}
$$

2. How many countable models does T_{n} have, up to isomorphism?

Solution: There is only one countable model of T_{n} up to isomorphism. Indeed, let $M, N \vDash T_{n}$ be coutable. Since E_{0} has infinitely many classes, there must be \aleph_{0} many of them. Let us fix a bijection f_{0} between M / E_{0} and N / E_{0}. Fix an E_{0} class x in M. Then both x and $f_{0}(x)$ are convered by infinitely many, hence countably many, E_{1}-classe. So one can fix a bijection $f_{1, x}$ between x / E_{1} and $f(x) / E_{1}$. Let $f_{1}:=\bigcup_{x \in M / E_{0}} f_{1, x}$. Then f_{1} is a bijection between M / E_{1} and N / E_{1}. If $\pi_{1,0}$ is the projection $S / E_{1} \rightarrow S / E_{0}$ where S is the unique sort of \mathcal{L}_{n}, then $\pi_{1,0} \circ f_{1}=f_{0} \circ \pi_{1,0}$. Similarly, we build by induction maps f_{i} for all $i \leqslant n$ where E_{n} denotes the equality. The map f_{n} is a bijection between M and N such that for all $i<n, \pi_{n, i} \circ f_{n}=f_{i} \circ \pi_{n, i}$, so f_{n} is an \mathcal{L}_{n}-isomorphism.
3. Let $M, N \vDash T_{n}, A \subseteq M$ finite, $f: A \rightarrow N$ be a partial embedding and $a \in M$. Show that f can be extended to a.

Solution: Let E_{-1} denote the trivial equivalence relation and E_{n} denote the equality. If A is empty, pick any point in $c \in N$, then sending a to c is a partial embedding. Otherwise, let \hat{a}^{i} denote the E_{i}-class of a and i_{0} be maximal such that there exists $b \in A \cap \hat{a}^{i_{0}}$. Let $b_{0} \in A$ be such that $a E_{i_{0}} b_{0}$. If $i_{0}=n$ then $a=b_{0} \in A$ and we do not have to extend f. Otherwise, pick $c \in N$ such that $c E_{i_{0}} f\left(b_{0}\right)$ and $\neg c E_{i_{0}+1} f(b)$ for any $b \in A$. We can always find such a c since every $E_{i_{0}}$ is covered by infinitely many $E_{i_{0}+1}$-classes. Note that i_{0} is also maximal such that there exists $d \in f(A) \cap \hat{c}^{i^{0}}$.
Define $g: A \cup\{a\} \rightarrow N$ extending f by sending a to c. Since $A \cup\{a\}$ is a substructure of M and f is an partial embedding, we only have to check that for all $b \in A$ and all $i \leqslant n, a E_{i} b$ if and only if $c E_{i} f(b)$. Assume $a E_{i} b$ for some i and b. By maximality of i_{0} we have $i \leqslant i_{0}$ and therefore $b E_{i} a E_{i} b_{0}$, so $f(b) E_{i} f\left(b_{0}\right) E_{i} c$. The converse is symmetric.
4. Show that any f as in the previous question is a partial elementary embedding from M into N.

Solution: We show, by induction on $\varphi(x)$, that for any $g \subseteq f$ with finite domain and $a \in \operatorname{dom}(g)^{x}, M \vDash \varphi(a)$ if and only if $N \vDash \varphi(g(a))$. If φ is atomic, this is immediate because g is a partial embedding. The induction goes through easily for Boolean combinations so the only case we are left to prove is when $\varphi=\exists y \psi(y, x)$.
If $M \vDash \exists y \psi(y, a)$, then we can find $c \in M$ such that $M \vDash \psi(c, a)$. By the previous question we can find h extendending g, such that h has a finite domain and h is defined at c. By induction we have $N \vDash \psi(h(c), h(a)$, in particular, $N \vDash \exists y \psi(y, h(a))$. Note that M and N play symmetric roles, so the converse is also true.
If we apply what we just proved to f itself, we see that f is elementary.
5. Show that f is also elementary even when A is not finite.

Solution: Let $\varphi(x)$ be an \mathcal{L}-formula and $a \in A^{x}$. By the previous question $\left.f\right|_{a}$ is elementary and thus $M \vDash \varphi(a)$ if and only if $N \vDash \varphi(f(a))$.
6. Let $M \vDash T_{n}, A \subseteq M$ non empty and $p \in \mathcal{S}_{x}^{M}(A)$ where $|x|=1$. To simplify notations, let E_{n} be the equality and E_{-1} be the trivial equivalence relation with just one equivalence class. Show that one (and only one) of the following holds:

- there exists $a \in A$ such that p is the unique type containing $x=a$;
- there exists $i \in\{-1,0, \ldots, n\}$ and $a \in A$ such that p is the unique type containing $x E_{i} a$ and, for all $c \in A, \neg x E_{i+1} c$.

Solution: Let i_{0} be maximal such that there is a formula of the form $x E_{i_{0}} a$ in p. If $i=n$, then p contains $x=a$ for some $a \in A$. If $q \in \mathcal{S}_{x}^{M}(A)$ also contains $x=a$, then the only possible realisation of q in any elementary extension of M is a. Since q is realized in some elementary extension of M, then a must be a realization of q. Similarly, a realizes p. So $q=\operatorname{tp}(a / A)=p$.
If $i_{0}<n$, let $a \in A$ be such that p contains $x E_{i_{0}} a$. By maximality of i_{0}, p contains $\neg y E_{i+1} c$ for all $c \in A$. Let $q \in \mathcal{S}_{x}^{M}(A)$ have the same property. Changing M for an elementary extension, we may assume that M is $|A|^{+}$-saturated. Let d (resp. e) be a realisation of $p($ resp. $q)$ in M. Then the map $f: A \cup\{d\} \rightarrow A \cup\{e\}$ is a partial embedding (cf. Question 3). By Question $5, f$ is a partial elementary embedding and so $p=\operatorname{tp}(d / A)=\operatorname{tp}(e / A)=q$.
7. Show that T_{n} is κ-stable for all $\kappa \geqslant \aleph_{0}$.

Solution: Let $A \subseteq M \vDash T$ have cardinality $\kappa \geqslant \aleph_{0}$. In the previous question, we have described all types over A. There are $|\kappa|$ of the first kind and at most $n|A|$ of the second. It follows that $\left|\mathcal{S}_{x}^{M}(A)\right|=\kappa$.
8. Show that T_{n} has a saturated model of cardinality κ for all $\kappa \geqslant \aleph_{0}$.

Solution: Let $M=\kappa^{n}$ and E_{i} be defined by "the first $i+1$ coordinates are equal". Then $M \vDash T_{n}$. Let $A \subseteq M$ be such that $|A|<\kappa$. Pick any $p \in \mathcal{S}_{x}^{M}(A)$. If p contains $x=a$, then, as seen above, it is realized by a. If not there is $a \in A$ and $i_{0}<n$ such that p contains $x E_{i_{0}} a$ and $\neg x E_{i_{0}+1} c$ for all $c \in A$. The $E_{i_{0}}$-class of a is covered by
 we can find $d \in \hat{a}^{i_{0}} \backslash\left(\bigcup_{c \in A} \hat{c}^{i_{0}+1}\right)$. By uniqueness of p, we must have $M \vDash p(d)$.
9. Let $\mathcal{L}_{\infty}:=\bigcup_{n} \mathcal{L}_{n}$ and $T_{\infty}:=\bigcup_{n} T_{n}$. Show that T_{∞} is a satisfiable \mathcal{L}_{∞}-theory.

Solution: Since each T_{n} is satisfiable, T_{∞} is finitely consistent and hence, by compactness consistent. One can also construct a model of T_{∞} by taking $M=\kappa^{\omega}$ for any cardinal κ and define E_{n} to hold if "the first $n+1$ coordinates are equal".
10. Let $M \vDash T_{\infty}$ and $p \in \mathcal{S}_{x}^{M}(M)$ where $|x|=1$. Let E_{-1} be the trivial equivalence relation with just one equivalence class. Show that one (and only one) of the following holds:

- there exists $a \in M$ such that p is the unique type containing $x=a$;
- there exists $a \in M$ such that p is the unique type containing $\neg x=a$ and $x E_{i} a$ for all $i \in \mathbb{Z}_{\geqslant 0}$;
- there exists $i \in \mathbb{Z}_{\geqslant 0}$ and $a \in M$ such that p is the unique type containing $x E_{i} a$ and, for all $c \in M, \neg y E_{i+1} c$;
- there is no $a \in M$ such that p contains $x E_{i} a$, for all $i \in \mathbb{Z}_{\geqslant 0}$, and there exists $a_{i} \in M$ such that for all $i \in \mathbb{Z}_{\geqslant 0}, p$ is the unique type containing $x E_{i} a_{i}$ and $\neg x E_{i+1} a_{i}$, for all $i \in \mathbb{Z}_{\geqslant 0}$.

Solution: Note that these four cases are clearly mutually exclusive.
If p contains $x=a$ for some $a \in M$, then, as seen before p is the unique such type. Let us now assume that p contains $x \neq a$ for all $a \in M$. Let $I=\left\{i \in \mathbb{Z}_{\geqslant 0}\right.$: $\exists a \in M p$ contains $\left.x E_{i} a\right\}$. Let us first assume that $I \subset \mathbb{Z}_{\geqslant 0}$. Let i_{0} be its maximal element and $a \in M$ be such that p contains $x E_{i_{0}} a$. Then p is of the third kind. Note that for all $n>i_{0},\left.p\right|_{\mathcal{L}_{n}}$ contains $x E_{i_{0}} a$ and $\neg x E_{i_{0}+1} c$ for all $c \in M$. If $q \in \in \mathcal{S}_{x}^{M}(M)$ id another type containing $x E_{i_{0}} a$ and $\neg x E_{i_{0}+1} c$ for all $c \in M$, then, by Question 6, for all $n>i_{0},\left.p\right|_{\mathcal{L}_{n}}=\left.q\right|_{\mathcal{L}_{n}}$, so $p=q$.
Now let us assume that $I=\mathbb{Z}_{\geqslant 0}$. If there is an $a \in M$ such that $x E_{i} a$ for all i, then we are in the second case. Note that $\left.p\right|_{\mathcal{L}_{n}}$ contains $x E_{n-1} a$ and $x \neq c$ for all $c \in M$, so, by Question 6, p is unique.
Finally, there remains the case where for all $a \in M$, there is a maximal i such that $x E_{i} a$ is in p. Pick some $i \in \mathbb{Z}_{\geqslant 0}$. Then there is an $a \in M$ such that $x E_{i} a$ is in p. If p contains $\neg x E_{i+1} a$, take $a_{i}=a$. Otherwise, because $M \vDash T_{\infty}$, we can find $a_{i} \in M$ such that $a_{i} E_{i} a$ and $\neg a_{i} E_{i+1} a$. Then p contains $x E_{i} a_{i}$ and $\neg x E_{i+1} a_{i}$. Note that there is no $a \in M$ such that $a E_{i} a_{i}$ for all $i \in \mathbb{Z} \geqslant 0$. Indeed, if such an a existed then p would contain $x E_{i} a$ for all $i \in \mathbb{Z}_{\geqslant 0}$. Let $q \in \in \mathcal{S}_{x}^{M}(M)$ also contain $x E_{i} a_{i}$ and $\neg x E_{i+1} a_{i}$, for all $i \in \mathbb{Z}_{\geqslant 0}$. For all $a \in M$, there is an i such that $a E_{i} a_{i}$ does not hold, it follows that q contains $\neg x E_{i} a$ and hence $x \neq a$. So both $\left.p\right|_{\mathcal{L}_{n}}$ and $\left.q\right|_{\mathcal{L}_{n}}$ contains $x E_{n-1} a_{n-1}$ and $x \neq a$ for all $a \in M$. By Question 6, $\left.p\right|_{\mathcal{L}_{n}}=\left.q\right|_{\mathcal{L}_{n}}$ and hence $p=q$.
11. Let $M \vDash T_{\infty}, A \subseteq M$ be infinite and x a tuple of variables. Show that $\left|\mathcal{S}_{x}^{M}(A)\right| \leqslant$ $|A|^{\aleph_{0}}$ and that this bound is sharp.

Solution: Let us first assume that $|x|=1$. By downwards Löwenheim-Skolem, we can find $M_{0} \leqslant M$ containing A and such that $\left|M_{0}\right|=|A|$. There is a surjection $\mathcal{S}^{M}\left(M_{0}\right) \rightarrow \mathcal{S}^{M}(A)$. If $\left|\mathcal{S}_{x}^{M}\left(M_{0}\right)\right| \leqslant\left|M_{0}\right|^{\alpha_{0}}$, then $\left|\mathcal{S}_{x}^{M}(A)\right| \leqslant\left|M_{0}\right|^{\aleph_{0}}=|A|^{\alpha_{0}}$. So we may assume that $A=M$.
The previous question gives us a complete description of $\mathcal{S}_{x}^{M}(M)$. There are $|M|$ types of the first kind, $|M|$ types of the second kind, $|M| \aleph_{0}=|M|$ types of the third kind and at most $|M|^{\alpha_{0}}$ types of the fourth kind (they only depend on the choice of the a_{i}). It follows that $\left|\mathcal{S}_{x}^{M}(M)\right| \leqslant|M|^{\alpha_{0}}$.

Now assume $|x y|=n+1$ where $|y|=1$. To any $p \in \mathcal{S}_{x y}^{M}(A)$, we can associate $q \in \mathcal{S}_{x}^{M}(A)$ its restriction to the first n variables and $r \in \mathcal{S}_{y}^{M^{*}}(A a)$ where a realizes q in some $M^{\star} \geqslant M$. Moreover, knowing q are r completely determines p and $|A a|=|A|$. By induction and the dimension 1 case, $\left|\mathcal{S}_{x y}^{M}(A)\right| \leqslant\left(|A|^{\alpha_{0}}\right)^{2}=|A|^{\aleph_{0}}$.
Let us now show that the bound is sharp. Let $M:=\kappa^{\omega}$ and let E_{i} be defined by "the first $i+1$ coordinates are equal". Let $A:=\left\{\varepsilon \in \kappa^{\omega}: \exists i_{0} \forall i>i_{0} \varepsilon(i)=0\right\}$. We have $|A|=\kappa$. Pick any $\varepsilon, \eta \in M$. There exists an i such that $\varepsilon(i) \neq \eta(i)$. Let $\nu \in A$ be defined by $\nu(j)=\varepsilon(j)$ for all $j \leqslant i$ and $\nu(j)=0$ for all $j>i$. Then $\varepsilon E_{i} \nu$ and $\neg \eta E_{i} \nu$. It follows that $\operatorname{tp}(\varepsilon / A) \neq \operatorname{tp}(\eta / A)$ and hence, if $|x|=1,\left|\mathcal{S}_{x}^{M}(A)\right| \geqslant \kappa^{\aleph_{0}}=|A|^{\aleph_{0}}$. As above, an easy induction shows that this also holds if $|x|>1$.

