Silvain Rideau 1091 Evans

Solutions to homework 4

Problem 1:

Let \mathcal{L}_n be the language with one sort and n binary predicates $(E_i)_{0 \leq i < n}$.

1. Give an \mathcal{L}_n -theory T_n such that in models of T_n , for all i, the E_i are equivalence relations, E_{i+1} is finer than E_i (i.e. every E_{i+1} -class is included in an E_i -class), E_0 has infinitely many classes, every E_i class is covered by infinitely many E_{i+1} -classes and the classes of E_{n-1} are infinite.

Solution: We define:

$$T_n := \{ \forall x \, x E_i x : 0 \leq i < n \} \\ \cup \{ \forall x \forall y \, x E_i y \rightarrow y E_i x : 0 \leq i < n \} \\ \cup \{ \forall x \forall y \forall z \, (x E_i y \land y E_i z) \rightarrow x E_i z : 0 \leq i < n \} \\ \cup \{ \forall x \forall y \, x E_{i+1} y \rightarrow x E_i y : 0 \leq i < n - 1 \} \\ \cup \{ \forall x \exists y_1 \dots \exists y_k \bigwedge_j x E_i y_j \land \bigwedge_{j_1 \neq j_2} \neg y_{j_1} E_{i+1} y_{j_2} : 0 \leq i < n - 1 \text{ and } k > 0 \} \\ \cup \{ \exists y_1 \dots \exists y_k \bigwedge_{j_1 \neq j_2} \neg y_{j_1} E_0 y_{j_2} : k > 0 \} \\ \cup \{ \forall x \exists y_1 \dots \exists y_k \bigwedge_j x E_{n-1} y_j \land \bigwedge_{j_1 \neq j_2} \neg y_{j_1} = y_{j_2} : k > 0 \}$$

2. How many countable models does T_n have, up to isomorphism?

Solution: There is only one countable model of T_n up to isomorphism. Indeed, let $M, N \models T_n$ be coutable. Since E_0 has infinitely many classes, there must be \aleph_0 many of them. Let us fix a bijection f_0 between M/E_0 and N/E_0 . Fix an E_0 class x in M. Then both x and $f_0(x)$ are convered by infinitely many, hence countably many, E_1 -classe. So one can fix a bijection $f_{1,x}$ between x/E_1 and $f(x)/E_1$. Let $f_1 \coloneqq \bigcup_{x \in M/E_0} f_{1,x}$. Then f_1 is a bijection between M/E_1 and N/E_1 . If $\pi_{1,0}$ is the projection $S/E_1 \to S/E_0$ where S is the unique sort of \mathcal{L}_n , then $\pi_{1,0} \circ f_1 = f_0 \circ \pi_{1,0}$. Similarly, we build by induction maps f_i for all $i \leq n$ where E_n denotes the equality. The map f_n is a bijection between M and N such that for all $i < n, \pi_{n,i} \circ f_n = f_i \circ \pi_{n,i}$, so f_n is an \mathcal{L}_n -isomorphism.

3. Let $M, N \models T_n, A \subseteq M$ finite, $f : A \to N$ be a partial embedding and $a \in M$. Show that f can be extended to a.

Solution: Let E_{-1} denote the trivial equivalence relation and E_n denote the equality. If A is empty, pick any point in $c \in N$, then sending a to c is a partial embedding. Otherwise, let \hat{a}^i denote the E_i -class of a and i_0 be maximal such that there exists $b \in A \cap \hat{a}^{i_0}$. Let $b_0 \in A$ be such that $aE_{i_0}b_0$. If $i_0 = n$ then $a = b_0 \in A$ and we do not have to extend f. Otherwise, pick $c \in N$ such that $cE_{i_0}f(b_0)$ and $\neg cE_{i_0+1}f(b)$ for any $b \in A$. We can always find such a c since every E_{i_0} is covered by infinitely many E_{i_0+1} -classes. Note that i_0 is also maximal such that there exists $d \in f(A) \cap \hat{c}^{i_0}$.

Define $g: A \cup \{a\} \to N$ extending f by sending a to c. Since $A \cup \{a\}$ is a substructure of M and f is an partial embedding, we only have to check that for all $b \in A$ and all $i \leq n$, aE_ib if and only if $cE_if(b)$. Assume aE_ib for some i and b. By maximality of i_0 we have $i \leq i_0$ and therefore $bE_iaE_ib_0$, so $f(b)E_if(b_0)E_ic$. The converse is symmetric. 4. Show that any f as in the previous question is a partial elementary embedding from M into N.

Solution: We show, by induction on $\varphi(x)$, that for any $g \subseteq f$ with finite domain and $a \in \text{dom}(g)^x$, $M \models \varphi(a)$ if and only if $N \models \varphi(g(a))$. If φ is atomic, this is immediate because g is a partial embedding. The induction goes through easily for Boolean combinations so the only case we are left to prove is when $\varphi = \exists y \psi(y, x)$.

If $M \vDash \exists y \psi(y, a)$, then we can find $c \in M$ such that $M \vDash \psi(c, a)$. By the previous question we can find h extendending g, such that h has a finite domain and h is defined at c. By induction we have $N \vDash \psi(h(c), h(a))$, in particular, $N \vDash \exists y \psi(y, h(a))$. Note that M and N play symmetric roles, so the converse is also true.

If we apply what we just proved to f itself, we see that f is elementary.

5. Show that f is also elementary even when A is not finite.

Solution: Let $\varphi(x)$ be an \mathcal{L} -formula and $a \in A^x$. By the previous question $f|_a$ is elementary and thus $M \models \varphi(a)$ if and only if $N \models \varphi(f(a))$.

- 6. Let $M \models T_n$, $A \subseteq M$ non empty and $p \in \mathcal{S}_x^M(A)$ where |x| = 1. To simplify notations, let E_n be the equality and E_{-1} be the trivial equivalence relation with just one equivalence class. Show that one (and only one) of the following holds:
 - there exists $a \in A$ such that p is the unique type containing x = a;
 - there exists $i \in \{-1, 0, ..., n\}$ and $a \in A$ such that p is the unique type containing xE_ia and, for all $c \in A$, $\neg xE_{i+1}c$.

Solution: Let i_0 be maximal such that there is a formula of the form $xE_{i_0}a$ in p. If i = n, then p contains x = a for some $a \in A$. If $q \in S_x^M(A)$ also contains x = a, then the only possible realisation of q in any elementary extension of M is a. Since q is realized in some elementary extension of M, then a must be a realization of q. Similarly, a realizes p. So $q = \operatorname{tp}(a/A) = p$.

If $i_0 < n$, let $a \in A$ be such that p contains $xE_{i_0}a$. By maximality of i_0 , p contains $\neg yE_{i+1}c$ for all $c \in A$. Let $q \in S_x^M(A)$ have the same property. Changing M for an elementary extension, we may assume that M is $|A|^+$ -saturated. Let d (resp. e) be a realisation of p (resp. q) in M. Then the map $f : A \cup \{d\} \rightarrow A \cup \{e\}$ is a partial embedding (cf. Question 3). By Question 5, f is a partial elementary embedding and so $p = \operatorname{tp}(d/A) = \operatorname{tp}(e/A) = q$.

7. Show that T_n is κ -stable for all $\kappa \ge \kappa_0$.

Solution: Let $A \subseteq M \models T$ have cardinality $\kappa \ge \aleph_0$. In the previous question, we have described all types over A. There are $|\kappa|$ of the first kind and at most n|A| of the second. It follows that $|\mathcal{S}_x^M(A)| = \kappa$.

8. Show that T_n has a saturated model of cardinality κ for all $\kappa \ge \aleph_0$.

Solution: Let $M = \kappa^n$ and E_i be defined by "the first i + 1 coordinates are equal". Then $M \models T_n$. Let $A \subseteq M$ be such that $|A| < \kappa$. Pick any $p \in \mathcal{S}_x^M(A)$. If p contains x = a, then, as seen above, it is realized by a. If not there is $a \in A$ and $i_0 < n$ such that p contains $xE_{i_0}a$ and $\neg xE_{i_0+1}c$ for all $c \in A$. The E_{i_0} -class of a is covered by κ many E_{i_0+1} -classe and, since $|A| < \kappa$, not all of them contain a point from A. So we can find $d \in \hat{a}^{i_0} \setminus (\bigcup_{c \in A} \hat{c}^{i_0+1})$. By uniqueness of p, we must have $M \models p(d)$. 9. Let $\mathcal{L}_{\infty} \coloneqq \bigcup_n \mathcal{L}_n$ and $T_{\infty} \coloneqq \bigcup_n T_n$. Show that T_{∞} is a satisfiable \mathcal{L}_{∞} -theory.

Solution: Since each T_n is satisfiable, T_{∞} is finitely consistent and hence, by compactness consistent. One can also construct a model of T_{∞} by taking $M = \kappa^{\omega}$ for any cardinal κ and define E_n to hold if "the first n + 1 coordinates are equal".

- 10. Let $M \models T_{\infty}$ and $p \in \mathcal{S}_x^M(M)$ where |x| = 1. Let E_{-1} be the trivial equivalence relation with just one equivalence class. Show that one (and only one) of the following holds:
 - there exists $a \in M$ such that p is the unique type containing x = a;
 - there exists $a \in M$ such that p is the unique type containing $\neg x = a$ and xE_ia for all $i \in \mathbb{Z}_{\geq 0}$;
 - there exists $i \in \mathbb{Z}_{\geq 0}$ and $a \in M$ such that p is the unique type containing $xE_i a$ and, for all $c \in M$, $\neg yE_{i+1}c$;
 - there is no $a \in M$ such that p contains xE_ia , for all $i \in \mathbb{Z}_{\geq 0}$, and there exists $a_i \in M$ such that for all $i \in \mathbb{Z}_{\geq 0}$, p is the unique type containing xE_ia_i and $\neg xE_{i+1}a_i$, for all $i \in \mathbb{Z}_{\geq 0}$.

Solution: Note that these four cases are clearly mutually exclusive.

If p contains x = a for some $a \in M$, then, as seen before p is the unique such type. Let us now assume that p contains $x \neq a$ for all $a \in M$. Let $I = \{i \in \mathbb{Z}_{\geq 0} : \exists a \in M p \text{ contains } xE_ia\}$. Let us first assume that $I \subset \mathbb{Z}_{\geq 0}$. Let i_0 be its maximal element and $a \in M$ be such that p contains $xE_{i_0}a$. Then p is of the third kind. Note that for all $n > i_0$, $p|_{\mathcal{L}_n}$ contains $xE_{i_0}a$ and $\neg xE_{i_0+1}c$ for all $c \in M$. If $q \in \mathcal{S}_x^M(M)$ id another type containing $xE_{i_0}a$ and $\neg xE_{i_0+1}c$ for all $c \in M$, then, by Question 6, for all $n > i_0$, $p|_{\mathcal{L}_n} = q|_{\mathcal{L}_n}$, so p = q.

Now let us assume that $I = \mathbb{Z}_{\geq 0}$. If there is an $a \in M$ such that $xE_i a$ for all i, then we are in the second case. Note that $p|_{\mathcal{L}_n}$ contains $xE_{n-1}a$ and $x \neq c$ for all $c \in M$, so, by Question 6, p is unique.

Finally, there remains the case where for all $a \in M$, there is a maximal *i* such that xE_ia is in *p*. Pick some $i \in \mathbb{Z}_{\geq 0}$. Then there is an $a \in M$ such that xE_ia is in *p*. If *p* contains $\neg xE_{i+1}a$, take $a_i = a$. Otherwise, because $M \models T_{\infty}$, we can find $a_i \in M$ such that a_iE_ia and $\neg a_iE_{i+1}a$. Then *p* contains xE_ia_i and $\neg xE_{i+1}a_i$. Note that there is no $a \in M$ such that aE_ia_i for all $i \in \mathbb{Z}_{\geq 0}$. Indeed, if such an *a* existed then *p* would contain xE_ia for all $i \in \mathbb{Z}_{\geq 0}$. Let $q \in \mathcal{S}_x^M(M)$ also contain xE_ia_i and $\neg xE_{i+1}a_i$, for all $i \in \mathbb{Z}_{\geq 0}$. For all $a \in M$, there is an *i* such that aE_ia_i does not hold, it follows that *q* contains $\neg xE_ia$ and hence $x \neq a$. So both $p|_{\mathcal{L}_n}$ and $q|_{\mathcal{L}_n}$ contains $xE_{n-1}a_{n-1}$ and $x \neq a$ for all $a \in M$. By Question 6, $p|_{\mathcal{L}_n} = q|_{\mathcal{L}_n}$ and hence p = q.

11. Let $M \models T_{\infty}$, $A \subseteq M$ be infinite and x a tuple of variables. Show that $|\mathcal{S}_x^M(A)| \leq |A|^{\aleph_0}$ and that this bound is sharp.

Solution: Let us first assume that |x| = 1. By downwards Löwenheim-Skolem, we can find $M_0 \leq M$ containing A and such that $|M_0| = |A|$. There is a surjection $\mathcal{S}^M(M_0) \to \mathcal{S}^M(A)$. If $|\mathcal{S}^M_x(M_0)| \leq |M_0|^{\aleph_0}$, then $|\mathcal{S}^M_x(A)| \leq |M_0|^{\aleph_0} = |A|^{\aleph_0}$. So we may assume that A = M.

The previous question gives us a complete description of $\mathcal{S}_x^M(M)$. There are |M| types of the first kind, |M| types of the second kind, $|M|\aleph_0 = |M|$ types of the third kind and at most $|M|^{\aleph_0}$ types of the fourth kind (they only depend on the choice of the a_i). It follows that $|\mathcal{S}_x^M(M)| \leq |M|^{\aleph_0}$.

Now assume |xy| = n + 1 where |y| = 1. To any $p \in \mathcal{S}_{xy}^M(A)$, we can associate $q \in \mathcal{S}_x^M(A)$ its restriction to the first n variables and $r \in \mathcal{S}_y^{M^*}(Aa)$ where a realizes q in some $M^* \ge M$. Moreover, knowing q are r completely determines p and |Aa| = |A|. By induction and the dimension 1 case, $|\mathcal{S}_{xy}^M(A)| \le (|A|^{\aleph_0})^2 = |A|^{\aleph_0}$.

Let us now show that the bound is sharp. Let $M := \kappa^{\omega}$ and let E_i be defined by "the first i + 1 coordinates are equal". Let $A := \{\varepsilon \in \kappa^{\omega} : \exists i_0 \forall i > i_0 \varepsilon(i) = 0\}$. We have $|A| = \kappa$. Pick any ε , $\eta \in M$. There exists an i such that $\varepsilon(i) \neq \eta(i)$. Let $\nu \in A$ be defined by $\nu(j) = \varepsilon(j)$ for all $j \leq i$ and $\nu(j) = 0$ for all j > i. Then $\varepsilon E_i \nu$ and $\neg \eta E_i \nu$. It follows that $\operatorname{tp}(\varepsilon/A) \neq \operatorname{tp}(\eta/A)$ and hence, if |x| = 1, $|\mathcal{S}_x^M(A)| \ge \kappa^{\aleph_0} = |A|^{\aleph_0}$. As above, an easy induction shows that this also holds if |x| > 1.