## Homework 4

## Problem 1:

Let $\mathcal{L}_{n}$ be the language with one sort and $n$ binary predicates $\left(E_{i}\right)_{0 \leqslant i<n}$.

1. Give an $\mathcal{L}_{n}$-theory $T_{n}$ such that in models of $T_{n}$, for all $i$, the $E_{i}$ are equivalence relations, $E_{i+1}$ is finer than $E_{i}$ (i.e. every $E_{i+1}$-class is included in an $E_{i}$-class), $E_{0}$ has infinitely many classes, every $E_{i}$ class is covered by infinitely many $E_{i+1}$-classes and the classes of $E_{n-1}$ are infinite.
2. How many countable models does $T_{n}$ have, up to isomorphism?
3. Let $M, N \vDash T_{n}, A \subseteq M$ finite, $f: A \rightarrow N$ be an embedding and $a \in M$. Show that $f$ can be extended to $a$.
4. Show that any $f$ as in the previous question is a partial elementary embedding from $M$ into $N$.
5. Show that $f$ is also elementary even when $A$ is not finite.
6. Let $M \vDash T_{n}, A \subseteq M$ non empty and $p \in \mathcal{S}_{x}^{M}(A)$ where $|x|=1$. To simplify notations, let $E_{n}$ be the equality and $E_{-1}$ be the trivial equivalence relation with just one equivalence class. Show that one (and only one) of the following holds:

- there exists $a \in A$ such that $p$ is the unique type containing $x=a$;
- there exists $i \in\{-1,0, \ldots, n\}$ and $a \in A$ such that $p$ is the unique type containing $x E_{i} a$ and, for all $c \in A, \neg x E_{i+1} c$.

7. Show that $T_{n}$ is $\kappa$-stable for all $\kappa \geqslant \aleph_{0}$.
8. Show that $T_{n}$ has a saturated model of cardinality $\kappa$ for all $\kappa \geqslant \kappa_{0}$.
9. Let $\mathcal{L}_{\infty}:=\bigcup_{n} \mathcal{L}_{n}$ and $T_{\infty}:=\cup_{n} T_{n}$. Show that $T_{\infty}$ is a satisfiable $\mathcal{L}_{\infty}$-theory.
10. Let $M \vDash T_{\infty}$ and $p \in \mathcal{S}_{x}^{M}(M)$ where $|x|=1$. Let $E_{-1}$ be the trivial equivalence relation with just one equivalence class. Show that one (and only one) of the following holds:

- there exists $a \in M$ such that $p$ is the unique type containing $x=a$;
- there exists $a \in M$ such that $p$ is the unique type containing $\neg x=a$ and $x E_{i} a$ for all $i \in \mathbb{Z}_{\geqslant 0}$;
- there exists $i \in \mathbb{Z}_{\geqslant 0}$ and $a \in M$ such that $p$ is the unique type containing $x E_{i} a$ and, for all $c \in M, \neg y E_{i+1} c$;
- there is no $a \in M$ such that $p$ contains $x E_{i} a$, for all $i \in \mathbb{Z}_{\geqslant 0}$, and there exists $a_{i} \in M$ such that for all $i \in \mathbb{Z}_{\geqslant 0}, p$ is the unique type containing $x E_{i} a_{i}$ and $\neg x E_{i+1} a_{i}$, for all $i \in \mathbb{Z}_{\geqslant 0}$.

11. Let $M \vDash T_{\infty}, A \subseteq M$ be infinite and $x$ a tuple of variables. Show that $\left|\mathcal{S}_{x}^{M}(A)\right| \leqslant$ $|A|^{\aleph_{0}}$ and that this bound is sharp.
