Homework 4

Problem 1:

Let \mathcal{L}_n be the language with one sort and *n* binary predicates $(E_i)_{0 \leq i < n}$.

- 1. Give an \mathcal{L}_n -theory T_n such that in models of T_n , for all i, the E_i are equivalence relations, E_{i+1} is finer than E_i (i.e. every E_{i+1} -class is included in an E_i -class), E_0 has infinitely many classes, every E_i class is covered by infinitely many E_{i+1} -classes and the classes of E_{n-1} are infinite.
- 2. How many countable models does T_n have, up to isomorphism?
- 3. Let $M, N \models T_n, A \subseteq M$ finite, $f : A \to N$ be an embedding and $a \in M$. Show that f can be extended to a.
- 4. Show that any f as in the previous question is a partial elementary embedding from M into N.
- 5. Show that f is also elementary even when A is not finite.
- 6. Let $M \models T_n$, $A \subseteq M$ non empty and $p \in \mathcal{S}_x^M(A)$ where |x| = 1. To simplify notations, let E_n be the equality and E_{-1} be the trivial equivalence relation with just one equivalence class. Show that one (and only one) of the following holds:
 - there exists $a \in A$ such that p is the unique type containing x = a;
 - there exists $i \in \{-1, 0, ..., n\}$ and $a \in A$ such that p is the unique type containing $xE_i a$ and, for all $c \in A$, $\neg xE_{i+1}c$.
- 7. Show that T_n is κ -stable for all $\kappa \ge \aleph_0$.
- 8. Show that T_n has a saturated model of cardinality κ for all $\kappa \ge \aleph_0$.
- 9. Let $\mathcal{L}_{\infty} \coloneqq \bigcup_n \mathcal{L}_n$ and $T_{\infty} \coloneqq \bigcup_n T_n$. Show that T_{∞} is a satisfiable \mathcal{L}_{∞} -theory.
- 10. Let $M \models T_{\infty}$ and $p \in \mathcal{S}_x^M(M)$ where |x| = 1. Let E_{-1} be the trivial equivalence relation with just one equivalence class. Show that one (and only one) of the following holds:
 - there exists $a \in M$ such that p is the unique type containing x = a;
 - there exists $a \in M$ such that p is the unique type containing $\neg x = a$ and xE_ia for all $i \in \mathbb{Z}_{\geq 0}$;
 - there exists $i \in \mathbb{Z}_{\geq 0}$ and $a \in M$ such that p is the unique type containing xE_ia and, for all $c \in M$, $\neg yE_{i+1}c$;
 - there is no $a \in M$ such that p contains xE_ia , for all $i \in \mathbb{Z}_{\geq 0}$, and there exists $a_i \in M$ such that for all $i \in \mathbb{Z}_{\geq 0}$, p is the unique type containing xE_ia_i and $\neg xE_{i+1}a_i$, for all $i \in \mathbb{Z}_{\geq 0}$.
- 11. Let $M \models T_{\infty}$, $A \subseteq M$ be infinite and x a tuple of variables. Show that $|\mathcal{S}_x^M(A)| \leq |A|^{\aleph_0}$ and that this bound is sharp.