Homework 5

Problem 1:

Let $\mathcal{L}_{\leq} := \{X; \leq X^2\}$. We say that a total order X, \leq is discrete if for all $x \in X$, $\{y \in X : y \leq x\}$ has a maximal element and $\{y \in X : x < y\}$ has a minimal element. Note that this definition of discrete order implies that there are no end points.

- 1. Give a theory T whose models are exactly the non empty discrete total orders.
- 2. Let (X, <) be an order, show that the following are equivalent:
 - a) $X \models T;$
 - b) there exists a (non empty) total order (Y, <) such that X is $\mathcal{L}_{<}$ -isomorphic to $\mathbb{Z} \times Y$ with the right to left lexicographic order (i.e. (n, x) < (m, y) if x < y or x = y and n < m).
- 3. Show that T does not eliminate quantifiers.
- 4. Let $\mathcal{L}_s := \mathcal{L}_> \cup \{s : X \to X\}$. Give a theory T_s whose models are exactly the models of T where s is interpreted as the successor function, i.e. $s(x) = \min\{y \in X : y > x\}$.
- 5. Show that T_s eliminates quantifiers and is complete.
- 6. Show that T is complete.

Problem 2 :

Let M be an \mathcal{L} -structure and λ be a cardinal. We say that M is a λ -model if $|M| = \lambda$ and for every \mathcal{L} -formula φ , either $\varphi(M)$ is finite or $|\varphi(M)| = \lambda$.

- 1. Let M be an \mathcal{L} structure and λ be a cardinal greater or equal to |M| and $|\mathcal{L}|$. Show that there exists $N \ge M$ which is a λ -model.
- 2. Let T be an \mathcal{L} -theory and λ be a cardinal greater than $|\mathcal{L}|$. Assume that all the λ -models of T are isomorphic. Show that T is complete.
- 3. Assume that T is λ -categorical for some $\lambda \ge |\mathcal{L}|$. Show that every model of T of cardinality λ is a λ -model.

Problem 3:

Let M be an \mathcal{L} -structure and $A \subseteq M$. Let $\kappa = \aleph_0 + |A|$. Assume M is strongly κ^+ homogeneous and κ^+ -saturated. Let $X \subseteq M^x$ be $\mathcal{L}(M)$ -definable and assume that for all $\sigma \in \operatorname{Aut}(M/A)$, $\sigma(X) = X$. Show that X is $\mathcal{L}(A)$ -definable.