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Homework 6

Problem 1 :
Let M be an L-structure and A ⊆ M . We say that a ∈ M is algebraic over A if there
exists an L(A)-formula ϕ such that M ⊧ ϕ(a) and ∣ϕ(M)∣ is finite. We define acl(A) =
{a ∈M ∶ a is algebraic over A}.

1. Show that ∣A∣ ⩽ ∣acl(A)∣ ⩽ ∣A∣ + ∣L∣.

Solution:To each element of acl(A) we can associate a formula ϕa such that
M ⊧ ϕa(a) and ∣ϕa(M)∣ infinite. The map a↦ ϕa is not injective but it has finite
fibers: any element such that ϕa = ϕb must be in ϕa(M) = ϕb(M) which is finite.
So ∣A∣ ⩽ ∑ϕa

∣ϕa(M)∣ ⩽ ∣L(A)∣ℵ0 = ∣A∣ + ∣L∣.

2. Show that acl(acl(A)) = acl(A).

Solution:Note that a is the only realisation of the formula x = a so any a ∈ A is
algebraic over A. It follows that acl(A) ⊆ acl(acl(A)). Now pick a ∈ acl(acl(A)).
There exists a tuple c ∈ acl(A)x and an L(A)-formulaϕ(y, x) such thatM ⊧ ϕ(a, c)
and ∣ϕ(M)∣ = n < ℵ0. Let ci denote the components of c. Since ci ∈ acl(A), there
exists L(A)-formulas ψi(xi) such that M ⊧ ψi(ci) and ∣ψi(M)∣ =mi < ℵ0.

Let θ(y) ∶= ∃x1 . . .∃x∣c∣⋀iψi(xi)∧ϕ(y, x)∧(∀y0 . . .∀yn(⋀j ϕ(yj , x))→ (⋁j1≠j2 yj1 =
yj2)). Then M ⊧ θ(a) and ∣θ(M)∣ ⩽ n∏i ni < ℵ0. Indeed there are at most
ni choices for each xi and for each of this choices at most n choices for y. So
a ∈ acl(A).

3. Let a ∈ acl(A), show that tp(a/A) ∈ SM(A) is isolated.

Solution: Let ϕ(x) be an L(A)-formula such thatM ⊧ ϕ(a) and ∣ϕ(M)∣ = {a1, . . . , ak}.
Note that M ⊧ ∀yϕ(y) → ⋁i y = ai. In particular, the only realisations of ϕ in el-
ementary extensions of M are the ai. It follows that ⟨ϕ⟩ = {tp(ai/A) ∶ 0 < i ⩽ k}
is finite. Because SMy (A) is Hausdorff, we can find an open U such that U ∩ ⟨ϕ⟩ =
{tp(a/A)} which is therefore open, i.e. tp(a/A) is isolated.

4. Show that a ∈ acl(A) if and only if for all N ≽M , tp(a/A) only has finitely many
realisations in N .

Hint:Use compactness to prove that a ∉ acl(A) implies that there is some N ≽M
in which tp(a/A) has infinitely many realisations.

Solution:We have already proved in the previous question that for all N ≽ M ,
if ϕ(M) is finite, ϕ(N) = ϕ(M) is finite. Since ϕ ∈ tp(a/A), it follows that all
realisations of tp(a/A) in any N ≽M are in the finite set ϕ(M).
Let us now prove the converse and assume that a ∉ acl(A). Let C = {ci ∶ i ∈ ω} be
a set of new constants and Σ ∶= Del(M) ∪ {ci ≠ cj ∶ i < j} ∪ {ϕ(ci) ∶ i ∈ ω and ϕ ∈
tp(a/A)}. Let us prove that Σ is finitely satisfiable. Let Σ0 ⊆ Σ be finite, we have
Σ0 ⊆ Del(M) ∪ {ci ≠ cj ∶ 0 ⩽ i < j < n} ∪ {ϕj(ci) ∶ 0 ⩽ i < n and 0 ⩽ j < k} for
some ϕj ∈ tp(a/A). Let ψ ∶= ⋀j ϕj . Since M ⊧ ψ(a), ψ is an L(A)-formula and
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a ∉ acl(A), ∣ψ(M)∣ = ℵ0. In particular we can find n distinct realisation of ψ in M
to interpret the ci.

Let N⋆ ⊧ Σ. We have N ∶= N⋆∣L ≽ M and every cN
⋆

is a distinct realisation of
tp(a/A).

5. Let κ = ∣L∣ + ∣A∣. Assume that M is κ+-saturated. Show that:

acl(A) = ⋂
A⊆N≼M

N.

Solution:Pick N ≼M containing A, a ∈ acl(A) and ϕ an L(A)-formula such that
∣ϕ(M)∣ = n < ℵ0 and M ⊧ ϕ(a). Let θ = ∃y1 . . .∀yn ⋀iϕ(yi)∧⋀j≠i yj ≠ yi. We have
M ⊧ θ so N ⊧ θ and ∣ϕ(N)∣ ⩾ n = ∣ϕ(M)∣. Since N ≼M , ϕ(N) ⊆ ϕ(M) and hence
they are equal. It follows that a ∈ ϕ(N) ⊆ N .

Conversely, assume a ∉ acl(A) and letM0 ≼M contain A∪{a} and have cardinality
κ = ∣A∣+L. Let C0 be the set of all realisations of tp(a/A) inM0 (there are at most
∣M0∣ = κ of them). Let Σ(x) ∶= tp(a/A)∪{x ≠ c mod c ∈M0}. Let Σ0 ⊆ Σ be finite,
then we may assume that Σ0 = {ϕ(x)} ∪ {x ≠ ci ∶ 0 ⩽ i < n} for some ϕ ∈ tp(a/A)
and ci ∈ C. Since ϕ(M) is infinite, we can find a realisation that avoids the ci. So
Σ is a partial type over at most κ parameters so it is realized in M be some c0.
Note that c0 ∉M0.

We have tp(a/A) = tp(c0/A) the map sending c0 to a and fixing A is a partial
elementary embedding. By weak κ+ homogeneity (and induction), we can extend
f to a partial elementary embedding g ∶ M0c0 → M . Let N = g(M0). Since g is
partial elementary andM0 ≼M , we also have N ≼M . Since g fixes A, we also have
A ⊆ N . Finally, since c0 ∉M0, we have a ∉ N .

6. Let Aut(M/A) be the set of L-automorphisms of M that fix A pointwise. We say
that a ∈M has a finite orbit under the action of Aut(M/A) if the set {σ(a) ∶ σ ∈
Aut(M/A)} is finite.
Assume that M is strongly κ+-homogeneous and κ+-saturated. Show that:

acl(A) = {a ∈M ∶ a has a finite orbit under the action of Aut(M/A)}.

Solution: Let us assume that a ∈ acl(A), then there is an L(A)-formula ϕ(x) such
that M ⊧ ϕ(a) and ∣ϕ(M)∣ is finite. Every automotphism in Aut(M/A) preserves
ϕ(M) so the orbit of a under the action of Aut(M/A) is contained in ϕ(M) and
hence is finite.

Conversely, let us assume that a ∉ acl(A). By the same compactness as before,
because M is κ+-saturated, we can find infinitely many realisations of tp(a/A) in
M . Note that since M is κ+-homogeneous, two points in M are in the same orbit
under the action of Aut(M/A) if and only if they have the same type over A. So
the orbit of a under the action of Aut(M/A) is infinite.

7. Let R ∶= (R,+, ⋅). Show that the only automorphism of R is the identity, but that
acl(Q) is a strict subset of R.

Solution:The element 0 ∈ R is the unique realisation of ϕ(x) ∶= ∀y x + y = y
and therefore every σ ∈ Aut(R) fixes 0. Similarly 1 is the only realisation of
ψ(x) ∶= ∀y y ⋅ x = y and therefore 1 is also fixed by Aut(R). Since n = ∑n

i=1 1 and
+ is preserved by Aut(R), it follows that Z is preserved by Aut(R). Finally, since
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there is a unique way of extending a ring morphism to the field of fractions, Q is
also fixed by Aut(R).
Note that x < y on R si defined by θ(x, y) ∶= ∃z y − x = z2 and any σ ∈ Aut(R) has
to be strictly increasing. Since Q is dense in R for the order topology and Q is fixed
by Aut(R), it follows that all of R is fixed by Aut(R), i.e. the only automorphism
of R is the identity.

But ∣R∣ = 2ℵ0 > ℵ0 = ∣acl(Q)∣ so acl(Q) ⊂ R.

Problem 2 :
Let L be a countable language and T be a complete L-theory.

1. Pick p ∈ Sx(T ) and c a new tuple of constants. Let Tp ∶= T ∪ p(c). Show that if Tp
is ℵ0-categorical, then so is T .

Hint: Show that the restriction map Sy(Tp)→ Sy(T ) is unto.

Solution:Pick q ∈ Sy(T ). Let N ⊧ T realize both p and q. Let c ∈ Nx realize
p and a ∈ Ny realize q. Let Nc be the obvious enrichment of N to a model of
Tp. Let r ∶= tpNc(a) ∈ Sy(Tp), then r∣L = tpN(a) = p. So the restriction map
Sy(Tp)→ Sy(T ) is unto.
If Tp is ℵ0-categorical, then for all y, Sy(Tp) is finite. It follows that Sy(T ) is also
finite and by the previous question T is ℵ0-categorical.

2. Assume that T is not ℵ0-categorical, show that it has a least three countable models
up to isomorphism.

Solution: Since T is not ℵ0-categorical, we can find a type p ∈ Sx(T ) such that p
is not isolated. Let M be a countable model omitting p and N a countable model
realizing p (and fix c ∈ Nx a realization of p). Let Tp be as above (for the p we just
found). By the previous question we can find q ∈ Sy(Tp) which is not isolated. By
omitting types we may assume that Nc ⊧ Tp omits q.

By compactness, we can find N1 ≽ N countable such that for all c′ in N realizing
p, N1

c′ realizes q (where the constants c are now interpreted as c′). Iterating this
construction, we find N i+1 ≽ N i such that for all c′ in N i realizing p, N i+1

c′ realizes
q. Let R = ⋃i∈ωN

i. By the chain theorem, R ⊧ T (and it is countable). Moreover,
for all c′ in R realizing p, Rc′ realizes q.

Because R and N both realize p they are not isomorphic to M which omits it.
Moreover, if f ∶ N → R is an isomorphism, then f(c) realizes p in R so we can
find d realizing q in Rf(c). But it would follow that f−1(d) realizes q in Nc, a
contradiction.

3. Let LC = L< ∪ {ci ∶ i ∈ ω} and DLOC ∶= DLO ∪ {ci < cj ∶ i < j}. Show that DLOC is
complete and has three countable models up to isomorphism.

Solution: Since DLO eliminates quantifiers, for any M ⊧ DLO and C ⊂M , DLO∪
∆M(C) is complete. Note that DLOC is exactly an instance of such a theory when
C is taken to be an increasing chain. So DLOC is complete.

Let M , N and R be Q with the usual order. Let cMi = i, cNi = −1
i and cRi =

∑i
j=0

1
j! . In M , the sequence ci is unbounded. In N the sequence has a lower upper

bound (which is 0). In R, the sequence is bounded but has no lower upper bound
(because e is not rational). So these three models cannot be isomorphic. Indeed
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any isomorphism would send a upper bound to an upper bound and a lower upper
bound to a lower upper bound.

Let us now show that any countable S ⊧ DLOC is isomorphic to one of the above.
Assume that the sequence cSi has no upper bound in S and let I be the set of partial
L(C)-embeddings with finite domains from S to M . Since DLOC is complete, I
contains ∅→M . Let us now assume that we have a partial embedding f ∶ A→M
for some A ⊆ S finite and a ∈ S. If a ∈ A ∪C, then the extension is quite obvious.
Otherwise let D ∶= {d ∈ {−∞} ∪A ∪C ∶ d < a}. The set D must be finite, otherwise
C ⊆D and a is an upper bound of C in S, a contradiction. Let d0 be the maximal
element of D and ci0 the maximal element of D∩C. Let d1 be the minimal element
of {ci0+1} ∪ (A ∖ D), then tp(a/A ∪ C) is isolated by d0 < x < d1. By density
and absence of endpoints, this formula is realized in M by some b (where di is
interpreted as f(di) if di ∈ A, as cM if di ∈ C and as −∞ if di = −∞). It is easy to
check that we can extend f by sending a to b. The last part of the back-and-forth
is symmetric. Since M and S are countable and I has the back-and-forth, they are
isomorphic.

Let us now assume that C has a lower upper bound in S and let us call that bound
e. As above, we show that the set I of partial LC-embeddings from S to N with
finite domain containing e and sending e to 0 has the back-and-forth. The set I is
non empty because the map e ↦ 0 can easily seen to be a partial LC-embedding.
Let f ∶ A → N be a partial embedding with finite domain sending e to 0. Let
D ∶= {d ∈ A ∪C ∪ {e,−∞} ∶ d < a}. If a ∈ A ∪C ∪ {e} or D is finite, we proceed as
before. If D is infinite, then we must have C < a, but because e is a lower upper
bound, we also have e ∈D. Let d0 ∶= maxD ∩A and d1 ∶= min{+∞}∪A∖D. Then
C < e ⩽ d0 and tp(a/A∪C ∪ {e}) is isolated by d0 < x < d1. By density, we can also
b in N such that f(d0) < b < f(d1) (with the obvious convention that f(+∞) = +∞)
and we extend f by sending a to b. It follows that S is isomorphic to N .

Finally, let us assume that C has an upper bound, but no lower upper bound. As
above, we show that the set I of partial LC-embeddings from S to R with finite
domain has the back-and-forth. The set I is non empty because the map ∅ → N
is in I by completeness. Let f ∶ A→ N be a partial embedding with finite domain.
Let D ∶= {d ∈ A ∪ C ∪ {−∞} ∶ d < a}. If a ∈ A ∪ C or D is finite, we proceed as
before. If D is infinite, then we must have C < a. There are now two cases. If there
exists an d ∈D such that d > C, then we define d0 ∶= maxD ∩A and we proceed as
before. If there is no d ∈ D such that d > C, let d1 ∶= min{+∞} ∪A ∖D. Because
C has no lower upper bound in R, we can find b ∈ R such that C < b < d1. We can
now extend f by sending a to b. It follows that S is isomorphic to R.
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