Homework 6

Problem 1:

Let M be an \mathcal{L}-structure and $A \subseteq M$. We say that $a \in M$ is algebraic over A if there exists an $\mathcal{L}(A)$-formula φ such that $M \vDash \varphi(a)$ and $|\varphi(M)|$ is finite. We define $\operatorname{acl}(A)=$ $\{a \in M: a$ is algebraic over $A\}$.

1. Show that $|A| \leqslant|\operatorname{acl}(A)| \leqslant|A|+|\mathcal{L}|$.

Solution: To each element of $\operatorname{acl}(A)$ we can associate a formula φ_{a} such that $M \vDash \varphi_{a}(a)$ and $\left|\varphi_{a}(M)\right|$ infinite. The map $a \mapsto \varphi_{a}$ is not injective but it has finite fibers: any element such that $\varphi_{a}=\varphi_{b}$ must be in $\varphi_{a}(M)=\varphi_{b}(M)$ which is finite. So $|A| \leqslant \sum_{\varphi_{a}}\left|\varphi_{a}(M)\right| \leqslant|\mathcal{L}(A)| \kappa_{0}=|A|+|\mathcal{L}|$.
2. Show that $\operatorname{acl}(\operatorname{acl}(A))=\operatorname{acl}(A)$.

Solution: Note that a is the only realisation of the formula $x=a$ so any $a \in A$ is algebraic over A. It follows that $\operatorname{acl}(A) \subseteq \operatorname{acl}(\operatorname{acl}(A))$. Now pick $a \in \operatorname{acl}(\operatorname{acl}(A))$. There exists a tuple $c \in \operatorname{acl}(A)^{x}$ and an $\mathcal{L}(A)$-formula $\varphi(y, x)$ such that $M \vDash \varphi(a, c)$ and $|\varphi(M)|=n<\aleph_{0}$. Let c_{i} denote the components of c. Since $c_{i} \in \operatorname{acl}(A)$, there exists $\mathcal{L}(A)$-formulas $\psi_{i}\left(x_{i}\right)$ such that $M \vDash \psi_{i}\left(c_{i}\right)$ and $\left|\psi_{i}(M)\right|=m_{i}<\aleph_{0}$.
Let $\theta(y):=\exists x_{1} \ldots \exists x_{|c|} \wedge_{i} \psi_{i}\left(x_{i}\right) \wedge \varphi(y, x) \wedge\left(\forall y_{0} \ldots \forall y_{n}\left(\wedge_{j} \varphi\left(y_{j}, x\right)\right) \rightarrow\left(\bigvee_{j_{1} \neq j_{2}} y_{j_{1}}=\right.\right.$ $\left.\left.y_{j_{2}}\right)\right)$. Then $M \vDash \theta(a)$ and $|\theta(M)| \leqslant n \prod_{i} n_{i}<\aleph_{0}$. Indeed there are at most n_{i} choices for each x_{i} and for each of this choices at most n choices for y. So $a \in \operatorname{acl}(A)$.
3. Let $a \in \operatorname{acl}(A)$, show that $\operatorname{tp}(a / A) \in \mathcal{S}^{M}(A)$ is isolated.

Solution: Let $\varphi(x)$ be an $\mathcal{L}(A)$-formula such that $M \vDash \varphi(a)$ and $|\varphi(M)|=\left\{a_{1}, \ldots, a_{k}\right\}$. Note that $M \vDash \forall y \varphi(y) \rightarrow \bigvee_{i} y=a_{i}$. In particular, the only realisations of φ in elementary extensions of M are the a_{i}. It follows that $\langle\varphi\rangle=\left\{\operatorname{tp}\left(a_{i} / A\right): 0<i \leqslant k\right\}$ is finite. Because $\mathcal{S}_{y}^{M}(A)$ is Hausdorff, we can find an open U such that $U \cap\langle\varphi\rangle=$ $\{\operatorname{tp}(a / A)\}$ which is therefore open, i.e. $\operatorname{tp}(a / A)$ is isolated.
4. Show that $a \in \operatorname{acl}(A)$ if and only if for all $N \geqslant M, \operatorname{tp}(a / A)$ only has finitely many realisations in N.

Hint: Use compactness to prove that $a \notin \operatorname{acl}(A)$ implies that there is some $N \geqslant M$ in which $\operatorname{tp}(a / A)$ has infinitely many realisations.

Solution: We have already proved in the previous question that for all $N \geqslant M$, if $\varphi(M)$ is finite, $\varphi(N)=\varphi(M)$ is finite. Since $\varphi \in \operatorname{tp}(a / A)$, it follows that all realisations of $\operatorname{tp}(a / A)$ in any $N \geqslant M$ are in the finite set $\varphi(M)$.
Let us now prove the converse and assume that $a \notin \operatorname{acl}(A)$. Let $C=\left\{c_{i}: i \in \omega\right\}$ be a set of new constants and $\Sigma:=\mathcal{D}^{\text {el }}(M) \cup\left\{c_{i} \neq c_{j}: i<j\right\} \cup\left\{\varphi\left(c_{i}\right): i \in \omega\right.$ and $\varphi \epsilon$ $\operatorname{tp}(a / A)\}$. Let us prove that Σ is finitely satisfiable. Let $\Sigma_{0} \subseteq \Sigma$ be finite, we have $\Sigma_{0} \subseteq \mathcal{D}^{\mathrm{el}}(M) \cup\left\{c_{i} \neq c_{j}: 0 \leqslant i<j<n\right\} \cup\left\{\varphi_{j}\left(c_{i}\right): 0 \leqslant i<n\right.$ and $\left.0 \leqslant j<k\right\}$ for some $\varphi_{j} \in \operatorname{tp}(a / A)$. Let $\psi:=\wedge_{j} \varphi_{j}$. Since $M \vDash \psi(a), \psi$ is an $\mathcal{L}(A)$-formula and
$a \notin \operatorname{acl}(A),|\psi(M)|=\aleph_{0}$. In particular we can find n distinct realisation of ψ in M to interpret the c_{i}.
Let $N^{\star} \vDash \Sigma$. We have $N:=\left.N^{\star}\right|_{\mathcal{L}} \geqslant M$ and every $c^{N^{\star}}$ is a distinct realisation of $\operatorname{tp}(a / A)$.
5. Let $\kappa=|\mathcal{L}|+|A|$. Assume that M is κ^{+}-saturated. Show that:

$$
\operatorname{acl}(A)=\bigcap_{A \subseteq N \leqslant M} N .
$$

Solution: Pick $N \leqslant M$ containing $A, a \in \operatorname{acl}(A)$ and φ an $\mathcal{L}(A)$-formula such that $|\varphi(M)|=n<\aleph_{0}$ and $M \vDash \varphi(a)$. Let $\theta=\exists y_{1} \ldots \forall y_{n} \wedge_{i} \varphi\left(y_{i}\right) \wedge \wedge_{j \neq i} y_{j} \neq y_{i}$. We have $M \vDash \theta$ so $N \vDash \theta$ and $|\varphi(N)| \geqslant n=|\varphi(M)|$. Since $N \leqslant M, \varphi(N) \subseteq \varphi(M)$ and hence they are equal. It follows that $a \in \varphi(N) \subseteq N$.
Conversely, assume $a \notin \operatorname{acl}(A)$ and let $M_{0} \leqslant M$ contain $A \cup\{a\}$ and have cardinality $\kappa=|A|+\mathcal{L}$. Let C_{0} be the set of all realisations of $\operatorname{tp}(a / A)$ in M_{0} (there are at most $\left|M_{0}\right|=\kappa$ of them). Let $\Sigma(x):=\operatorname{tp}(a / A) \cup\left\{x \neq c \bmod c \in M_{0}\right\}$. Let $\Sigma_{0} \subseteq \Sigma$ be finite, then we may assume that $\Sigma_{0}=\{\varphi(x)\} \cup\left\{x \neq c_{i}: 0 \leqslant i<n\right\}$ for some $\varphi \in \operatorname{tp}(a / A)$ and $c_{i} \in C$. Since $\varphi(M)$ is infinite, we can find a realisation that avoids the c_{i}. So Σ is a partial type over at most κ parameters so it is realized in M be some c_{0}. Note that $c_{0} \notin M_{0}$.
We have $\operatorname{tp}(a / A)=\operatorname{tp}\left(c_{0} / A\right)$ the map sending c_{0} to a and fixing A is a partial elementary embedding. By weak κ^{+}homogeneity (and induction), we can extend f to a partial elementary embedding $g: M_{0} c_{0} \rightarrow M$. Let $N=g\left(M_{0}\right)$. Since g is partial elementary and $M_{0} \leqslant M$, we also have $N \leqslant M$. Since g fixes A, we also have $A \subseteq N$. Finally, since $c_{0} \notin M_{0}$, we have $a \notin N$.
6. Let $\operatorname{Aut}(M / A)$ be the set of \mathcal{L}-automorphisms of M that fix A pointwise. We say that $a \in M$ has a finite orbit under the action of $\operatorname{Aut}(M / A)$ if the set $\{\sigma(a): \sigma \epsilon$ $\operatorname{Aut}(M / A)\}$ is finite.
Assume that M is strongly κ^{+}-homogeneous and κ^{+}-saturated. Show that:

$$
\operatorname{acl}(A)=\{a \in M: a \text { has a finite orbit under the action of } \operatorname{Aut}(M / A)\} .
$$

Solution: Let us assume that $a \in \operatorname{acl}(A)$, then there is an $\mathcal{L}(A)$-formula $\varphi(x)$ such that $M \vDash \varphi(a)$ and $|\varphi(M)|$ is finite. Every automotphism in $\operatorname{Aut}(M / A)$ preserves $\varphi(M)$ so the orbit of a under the action of $\operatorname{Aut}(M / A)$ is contained in $\varphi(M)$ and hence is finite.

Conversely, let us assume that $a \notin \operatorname{acl}(A)$. By the same compactness as before, because M is κ^{+}-saturated, we can find infinitely many realisations of $\operatorname{tp}(a / A)$ in M. Note that since M is κ^{+}-homogeneous, two points in M are in the same orbit under the action of $\operatorname{Aut}(M / A)$ if and only if they have the same type over A. So the orbit of a under the action of $\operatorname{Aut}(M / A)$ is infinite.
7. Let $\mathcal{R}:=(\mathbb{R},+, \cdot)$. Show that the only automorphism of \mathcal{R} is the identity, but that $\operatorname{acl}(\mathbb{Q})$ is a strict subset of \mathbb{R}.

Solution: The element $0 \in \mathbb{R}$ is the unique realisation of $\varphi(x):=\forall y x+y=y$ and therefore every $\sigma \in \operatorname{Aut}(\mathcal{R})$ fixes 0 . Similarly 1 is the only realisation of $\psi(x):=\forall y y \cdot x=y$ and therefore 1 is also fixed by $\operatorname{Aut}(\mathcal{R})$. Since $n=\sum_{i=1}^{n} 1$ and + is preserved by $\operatorname{Aut}(\mathcal{R})$, it follows that \mathbb{Z} is preserved by $\operatorname{Aut}(\mathcal{R})$. Finally, since
there is a unique way of extending a ring morphism to the field of fractions, \mathbb{Q} is also fixed by $\operatorname{Aut}(\mathcal{R})$.
Note that $x<y$ on \mathbb{R} si defined by $\theta(x, y):=\exists z y-x=z^{2}$ and any $\sigma \in \operatorname{Aut}(\mathcal{R})$ has to be strictly increasing. Since \mathbb{Q} is dense in \mathbb{R} for the order topology and \mathbb{Q} is fixed by $\operatorname{Aut}(\mathcal{R})$, it follows that all of \mathbb{R} is fixed by $\operatorname{Aut}(\mathcal{R})$, i.e. the only automorphism of \mathcal{R} is the identity.
But $|\mathbb{R}|=2^{\aleph_{0}}>\aleph_{0}=|\operatorname{acl}(\mathbb{Q})|$ so $\operatorname{acl}(\mathbb{Q}) \subset \mathbb{R}$.

Problem 2:

Let \mathcal{L} be a countable language and T be a complete \mathcal{L}-theory.

1. Pick $p \in \mathcal{S}_{x}(T)$ and c a new tuple of constants. Let $T_{p}:=T \cup p(c)$. Show that if T_{p} is \aleph_{0}-categorical, then so is T.

Hint: Show that the restriction map $\mathcal{S}_{y}\left(T_{p}\right) \rightarrow \mathcal{S}_{y}(T)$ is unto.
Solution: Pick $q \in \mathcal{S}_{y}(T)$. Let $N \vDash T$ realize both p and q. Let $c \in N^{x}$ realize p and $a \in N^{y}$ realize q. Let N_{c} be the obvious enrichment of N to a model of T_{p}. Let $r:=\operatorname{tp}^{N_{c}}(a) \in \mathcal{S}_{y}\left(T_{p}\right)$, then $\left.r\right|_{\mathcal{L}}=\operatorname{tp} N(a)=p$. So the restriction map $\mathcal{S}_{y}\left(T_{p}\right) \rightarrow \mathcal{S}_{y}(T)$ is unto.
If T_{p} is \aleph_{0}-categorical, then for all $y, \mathcal{S}_{y}\left(T_{p}\right)$ is finite. It follows that $\mathcal{S}_{y}(T)$ is also finite and by the previous question T is \aleph_{0}-categorical.
2. Assume that T is not \aleph_{0}-categorical, show that it has a least three countable models up to isomorphism.

Solution: Since T is not \aleph_{0}-categorical, we can find a type $p \in \mathcal{S}_{x}(T)$ such that p is not isolated. Let M be a countable model omitting p and N a countable model realizing p (and fix $c \in N^{x}$ a realization of p). Let T_{p} be as above (for the p we just found). By the previous question we can find $q \in \mathcal{S}_{y}\left(T_{p}\right)$ which is not isolated. By omitting types we may assume that $N_{c} \vDash T_{p}$ omits q.
By compactness, we can find $N^{1} \geqslant N$ countable such that for all c^{\prime} in N realizing $p, N_{c^{\prime}}^{1}$ realizes q (where the constants c are now interpreted as c^{\prime}). Iterating this construction, we find $N^{i+1} \geqslant N^{i}$ such that for all c^{\prime} in N^{i} realizing $p, N_{c^{\prime}}^{i+1}$ realizes q. Let $R=\bigcup_{i \epsilon \omega} N^{i}$. By the chain theorem, $R \vDash T$ (and it is countable). Moreover, for all c^{\prime} in R realizing $p, R_{c^{\prime}}$ realizes q.
Because R and N both realize p they are not isomorphic to M which omits it. Moreover, if $f: N \rightarrow R$ is an isomorphism, then $f(c)$ realizes p in R so we can find d realizing q in $R_{f(c)}$. But it would follow that $f^{-1}(d)$ realizes q in N_{c}, a contradiction.
3. Let $\mathcal{L}_{C}=\mathcal{L}_{<} \cup\left\{c_{i}: i \in \omega\right\}$ and $\mathrm{DLO}_{C}:=\mathrm{DLO} \cup\left\{c_{i}<c_{j}: i<j\right\}$. Show that DLO_{C} is complete and has three countable models up to isomorphism.

Solution: Since DLO eliminates quantifiers, for any $M \vDash \mathrm{DLO}$ and $C \subset M, \mathrm{DLO} \cup$ $\Delta_{M}(C)$ is complete. Note that DLO_{C} is exactly an instance of such a theory when C is taken to be an increasing chain. So DLO_{C} is complete.
Let M, N and R be \mathbb{Q} with the usual order. Let $c_{i}^{M}=i, c_{i}^{N}=-\frac{1}{i}$ and $c_{i}^{R}=$ $\sum_{j=0}^{i} \frac{1}{j!}$. In M, the sequence c_{i} is unbounded. In N the sequence has a lower upper bound (which is 0). In R, the sequence is bounded but has no lower upper bound (because e is not rational). So these three models cannot be isomorphic. Indeed
any isomorphism would send a upper bound to an upper bound and a lower upper bound to a lower upper bound.
Let us now show that any countable $S \vDash \mathrm{DLO}_{C}$ is isomorphic to one of the above. Assume that the sequence c_{i}^{S} has no upper bound in S and let I be the set of partial $\mathcal{L}(C)$-embeddings with finite domains from S to M. Since DLO_{C} is complete, I contains $\varnothing \rightarrow M$. Let us now assume that we have a partial embedding $f: A \rightarrow M$ for some $A \subseteq S$ finite and $a \in S$. If $a \in A \cup C$, then the extension is quite obvious. Otherwise let $D:=\{d \in\{-\infty\} \cup A \cup C: d<a\}$. The set D must be finite, otherwise $C \subseteq D$ and a is an upper bound of C in S, a contradiction. Let d_{0} be the maximal element of D and $c_{i_{0}}$ the maximal element of $D \cap C$. Let d_{1} be the minimal element of $\left\{c_{i_{0}+1}\right\} \cup(A \backslash D)$, then $\operatorname{tp}(a / A \cup C)$ is isolated by $d_{0}<x<d_{1}$. By density and absence of endpoints, this formula is realized in M by some b (where d_{i} is interpreted as $f\left(d_{i}\right)$ if $d_{i} \in A$, as c^{M} if $d_{i} \in C$ and as $-\infty$ if $\left.d_{i}=-\infty\right)$. It is easy to check that we can extend f by sending a to b. The last part of the back-and-forth is symmetric. Since M and S are countable and I has the back-and-forth, they are isomorphic.
Let us now assume that C has a lower upper bound in S and let us call that bound e. As above, we show that the set I of partial \mathcal{L}_{C}-embeddings from S to N with finite domain containing e and sending e to 0 has the back-and-forth. The set I is non empty because the map $e \mapsto 0$ can easily seen to be a partial \mathcal{L}_{C}-embedding. Let $f: A \rightarrow N$ be a partial embedding with finite domain sending e to 0 . Let $D:=\{d \in A \cup C \cup\{e,-\infty\}: d<a\}$. If $a \in A \cup C \cup\{e\}$ or D is finite, we proceed as before. If D is infinite, then we must have $C<a$, but because e is a lower upper bound, we also have $e \in D$. Let $d_{0}:=\max D \cap A$ and $d_{1}:=\min \{+\infty\} \cup A \backslash D$. Then $C<e \leqslant d_{0}$ and $\operatorname{tp}(a / A \cup C \cup\{e\})$ is isolated by $d_{0}<x<d_{1}$. By density, we can also b in N such that $f\left(d_{0}\right)<b<f\left(d_{1}\right)$ (with the obvious convention that $f(+\infty)=+\infty$) and we extend f by sending a to b. It follows that S is isomorphic to N.
Finally, let us assume that C has an upper bound, but no lower upper bound. As above, we show that the set I of partial \mathcal{L}_{C}-embeddings from S to R with finite domain has the back-and-forth. The set I is non empty because the map $\varnothing \rightarrow N$ is in I by completeness. Let $f: A \rightarrow N$ be a partial embedding with finite domain. Let $D:=\{d \in A \cup C \cup\{-\infty\}: d<a\}$. If $a \in A \cup C$ or D is finite, we proceed as before. If D is infinite, then we must have $C<a$. There are now two cases. If there exists an $d \in D$ such that $d>C$, then we define $d_{0}:=\max D \cap A$ and we proceed as before. If there is no $d \in D$ such that $d>C$, let $d_{1}:=\min \{+\infty\} \cup A \backslash D$. Because C has no lower upper bound in R, we can find $b \in R$ such that $C<b<d_{1}$. We can now extend f by sending a to b. It follows that S is isomorphic to R.

