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Homework 6

Problem 1 :

Let M be an L-structure and A € M. We say that a € M is algebraic over A if there
exists an L(A)-formula ¢ such that M = ¢(a) and |p(M)]| is finite. We define acl(A) =
{a € M : a is algebraic over A}.

1. Show that |A| < |acl(A)| < |A| +|L£].

Solution: To each element of acl(A) we can associate a formula ¢, such that
M = pq(a) and |, (M)| infinite. The map a — @, is not injective but it has finite
fibers: any element such that ¢, = ¢, must be in @, (M) = (M) which is finite.
So |A| < Xy, lpa(M)| < |£(A)[Ro = |A] +[£].

2. Show that acl(acl(A)) = acl(A).

Solution: Note that a is the only realisation of the formula x = a so any a € A is
algebraic over A. It follows that acl(A) c acl(acl(A)). Now pick a € acl(acl(A)).
There exists a tuple ¢ € acl(A)* and an L(A)-formulap(y, z) such that M = ¢(a, c)
and |p(M)|=n < Rg. Let ¢; denote the components of ¢. Since ¢; € acl(A), there
exists L(A)-formulas 1;(z;) such that M = ;(¢;) and [1;(M)] = m; < Rp.

Let Q(y) =dxy... EIx|c| /\z ¢i(9€i)/\80(y737)A(VZ/0 cee Vyn(/\] (p(ijx)) e (Vj1¢j2 Y =
Yj,)). Then M & 6(a) and |§(M)| < n[l;n; < Rg. Indeed there are at most
n; choices for each z; and for each of this choices at most n choices for y. So
a € acl(A).

3. Let a € acl(A), show that tp(a/A) e SM(A) is isolated.

Solution: Let () be an L(A)-formula such that M = ¢(a) and |p(M)| = {a1,...,ax}.
Note that M = Yye(y) - V;y = a;. In particular, the only realisations of ¢ in el-
ementary extensions of M are the a;. It follows that () = {tp(a;/A) : 0 <i <k}

is finite. Because SéW(A) is Hausdorff, we can find an open U such that U n (p) =
{tp(a/A)} which is therefore open, i.e. tp(a/A) is isolated.

4. Show that a € acl(A) if and only if for all N > M, tp(a/A) only has finitely many
realisations in N.

Hint: Use compactness to prove that a ¢ acl(A) implies that there is some N > M
in which tp(a/A) has infinitely many realisations.

Solution: We have already proved in the previous question that for all N > M,
if (M) is finite, p(N) = (M) is finite. Since ¢ € tp(a/A), it follows that all
realisations of tp(a/A) in any N > M are in the finite set ¢(M).

Let us now prove the converse and assume that a ¢ acl(A). Let C = {¢;:i € w} be
a set of new constants and ¥ := DY (M) u{c; #¢; i< jlu{p(c):icwand pe
tp(a/A)}. Let us prove that ¥ is finitely satisfiable. Let ¥y € ¥ be finite, we have
Yo DY M)u{ci#c;:0<i<j<n}u{pi(c):0<i<nand0<j <k} for
some @; € tp(a/A). Let ¢ := Aj@;. Since M & (a), ¢ is an L(A)-formula and



a ¢ acl(A), [ (M)| = Ro. In particular we can find n distinct realisation of ¥ in M
to interpret the c;.

Let N* £ X. We have N := N*|, > M and every ¢V is a distinct realisation of
tp(a/A).

. Let k= |L] +]A|. Assume that M is k*-saturated. Show that:

acl(A)= () N.
AcN<M

Solution: Pick N < M containing A, a € acl(A) and ¢ an L(A)-formula such that
lp(M)| =n <R and M & @(a). Let 0 =3y1 ... YVyn Ni(yi) ANjiy; # yi- We have
ME60so NEGand |p(N)|>2n=|p(M)|. Since N <M, o(N) < (M) and hence
they are equal. It follows that a € p(N) < N.

Conversely, assume a ¢ acl(A) and let My < M contain Au{a} and have cardinality
k =|A|+ L. Let Cp be the set of all realisations of tp(a/A) in My (there are at most
|Mo| = k of them). Let ¥(x) :=tp(a/A)u{x # ¢ mod ce My}. Let £y € X be finite,
then we may assume that Yo = {¢(z)} u{z # ¢; : 0 < i <n} for some ¢ € tp(a/A)
and ¢; € C. Since (M) is infinite, we can find a realisation that avoids the ¢;. So
> is a partial type over at most x parameters so it is realized in M be some cy.
Note that cg ¢ M.

We have tp(a/A) = tp(co/A) the map sending ¢y to a and fixing A is a partial
elementary embedding. By weak x* homogeneity (and induction), we can extend
f to a partial elementary embedding g : Mocy — M. Let N = g(Mp). Since g is
partial elementary and My < M, we also have N < M. Since g fixes A, we also have
A c N. Finally, since cg ¢ My, we have a ¢ N.

. Let Aut(M/A) be the set of L-automorphisms of M that fix A pointwise. We say
that a € M has a finite orbit under the action of Aut(M/A) if the set {o(a):0 €
Aut(M/A)} is finite.

Assume that M is strongly x*-homogeneous and k*-saturated. Show that:

acl(A) = {a € M : a has a finite orbit under the action of Aut(M/A)}.

Solution: Let us assume that a € acl(A), then there is an £(A)-formula ¢(z) such
that M = ¢(a) and |p(M)] is finite. Every automotphism in Aut(M/A) preserves
©(M) so the orbit of a under the action of Aut(M/A) is contained in p(M) and
hence is finite.

Conversely, let us assume that a ¢ acl(A). By the same compactness as before,
because M is rk*-saturated, we can find infinitely many realisations of tp(a/A) in
M. Note that since M is k*-homogeneous, two points in M are in the same orbit
under the action of Aut(M/A) if and only if they have the same type over A. So
the orbit of a under the action of Aut(M/A) is infinite.

. Let R := (R, +,). Show that the only automorphism of R is the identity, but that
acl(Q) is a strict subset of R.

Solution: The element 0 € R is the unique realisation of p(z) = Vyx +y = y
and therefore every o € Aut(R) fixes 0. Similarly 1 is the only realisation of
Y(z) :=Vyy -z =y and therefore 1 is also fixed by Aut(R). Since n =Y ;1 and
+ is preserved by Aut(R), it follows that Z is preserved by Aut(R). Finally, since



there is a unique way of extending a ring morphism to the field of fractions, Q is

also fixed by Aut(R).

Note that z <y on R si defined by 6(z,y) := 3zy - x = 2 and any ¢ € Aut(R) has
to be strictly increasing. Since Q is dense in R for the order topology and Q is fixed
by Aut(R), it follows that all of R is fixed by Aut(R), i.e. the only automorphism
of R is the identity.

But |R| = 2% > R = |acl(Q)] so acl(Q) c R.

Problem 2 :
Let £ be a countable language and T be a complete L-theory.

1. Pick p € S;(T') and ¢ a new tuple of constants. Let T}, := T'U p(c). Show that if T},
is Ro-categorical, then so is T

Hint:Show that the restriction map Sy(7},) - Sy(7") is unto.

Solution: Pick ¢ € §,(T"). Let N & T realize both p and ¢. Let ¢ € N* realize
p and a € NY realize q. Let N, be the obvious enrichment of N to a model of
T,. Let r = tp™(a) € S,(T}), then 7|, = tpN(a) = p. So the restriction map
Sy(Tp) = Sy(T) is unto.

If T}, is Ro-categorical, then for all y, S,(7,) is finite. It follows that S,(T") is also
finite and by the previous question 1" is Rg-categorical.

2. Assume that T is not Rg-categorical, show that it has a least three countable models
up to isomorphism.

Solution: Since T is not Ry-categorical, we can find a type p € S,(T') such that p
is not isolated. Let M be a countable model omitting p and N a countable model
realizing p (and fix ¢ € N* a realization of p). Let T}, be as above (for the p we just
found). By the previous question we can find g € Sy(7},) which is not isolated. By
omitting types we may assume that N, = T}, omits q.

By compactness, we can find N! > N countable such that for all ¢/ in N realizing
p, N cl, realizes ¢ (where the constants ¢ are now interpreted as ¢’). Iterating this
construction, we find N**! > N* such that for all ¢ in N? realizing p, N1 realizes
q. Let R =Uje, N*. By the chain theorem, R & T (and it is countable). Moreover,
for all ¢ in R realizing p, R realizes q.

Because R and N both realize p they are not isomorphic to M which omits it.
Moreover, if f: N — R is an isomorphism, then f(c) realizes p in R so we can
find d realizing ¢ in Ry). But it would follow that f71(d) realizes q in N, a
contradiction.

3. Let Lo =L.u{ciiew} and DLO¢ :=DLO U {¢; <¢j:i<j}. Show that DLO¢ is
complete and has three countable models up to isomorphism.

Solution: Since DLO eliminates quantifiers, for any M = DLO and C ¢ M, DLOuU

Ap(C) is complete. Note that DLO¢ is exactly an instance of such a theory when

C is taken to be an increasing chain. So DLO¢ is complete.

Let M, N and R be Q with the usual order. Let C;M = 1, CZN = —% and Cf =
j=0 -

bound (which is 0). In R, the sequence is bounded but has no lower upper bound

(because e is not rational). So these three models cannot be isomorphic. Indeed

In M, the sequence ¢; is unbounded. In N the sequence has a lower upper



any isomorphism would send a upper bound to an upper bound and a lower upper
bound to a lower upper bound.

Let us now show that any countable S = DLO¢ is isomorphic to one of the above.
Assume that the sequence cf has no upper bound in S and let I be the set of partial
L(C)-embeddings with finite domains from S to M. Since DLO¢ is complete, I
contains & - M. Let us now assume that we have a partial embedding f: A - M
for some A ¢ S finite and a € S. If a € Au C, then the extension is quite obvious.
Otherwise let D :={de{-o0}UuAuC:d<a}. The set D must be finite, otherwise
C ¢ D and a is an upper bound of C' in S, a contradiction. Let dy be the maximal
element of D and c¢;, the maximal element of DnC'. Let d; be the minimal element
of {¢iy+1} U (AN D), then tp(a/Au C) is isolated by dy < x < d;. By density
and absence of endpoints, this formula is realized in M by some b (where d; is
interpreted as f(d;) if d; € A, as ¢™ if d; € C and as —oo if d; = —00). It is easy to
check that we can extend f by sending a to b. The last part of the back-and-forth
is symmetric. Since M and S are countable and I has the back-and-forth, they are
isomorphic.

Let us now assume that C has a lower upper bound in S and let us call that bound
e. As above, we show that the set I of partial Lo-embeddings from S to N with
finite domain containing e and sending e to 0 has the back-and-forth. The set I is
non empty because the map e — 0 can easily seen to be a partial Lo-embedding.
Let f: A - N be a partial embedding with finite domain sending e to 0. Let
D:={de AuCu{e,—o0}:d<a}. faec AuCu{e} or D is finite, we proceed as
before. If D is infinite, then we must have C < a, but because e is a lower upper
bound, we also have e € D. Let dp := max Dn A and d; := min{+oo} U A\ D. Then
C <e<dyand tp(a/AuCu{e}) is isolated by dy < x < dy. By density, we can also
bin N such that f(dy) <b< f(dy) (with the obvious convention that f(+00) = +00)
and we extend f by sending a to b. It follows that .S is isomorphic to N.

Finally, let us assume that C' has an upper bound, but no lower upper bound. As
above, we show that the set I of partial Lo-embeddings from S to R with finite
domain has the back-and-forth. The set [ is non empty because the map @ - N
is in I by completeness. Let f: A - N be a partial embedding with finite domain.
Let D:={de AuCu{-co}:d<a}. Ifae AuC or D is finite, we proceed as
before. If D is infinite, then we must have C' < a. There are now two cases. If there
exists an d € D such that d > C, then we define dg := max D n A and we proceed as
before. If there is no d € D such that d > C, let d; := min{+o0} U A\ D. Because
C' has no lower upper bound in R, we can find b € R such that C <b< d;. We can
now extend f by sending a to b. It follows that .S is isomorphic to R.



