Silvain Rideau 1091 Evans

Homework 6

Problem 1:

Let M be an \mathcal{L} -structure and $A \subseteq M$. We say that $a \in M$ is algebraic over A if there exists an $\mathcal{L}(A)$ -formula φ such that $M \models \varphi(a)$ and $|\varphi(M)|$ is finite. We define $\operatorname{acl}(A) = \{a \in M : a \text{ is algebraic over } A\}$.

- 1. Show that $|A| \leq |\operatorname{acl}(A)| \leq |A| + |\mathcal{L}|$.
- 2. Show that $\operatorname{acl}(\operatorname{acl}(A)) = \operatorname{acl}(A)$.
- 3. Let $a \in \operatorname{acl}(A)$, show that $\operatorname{tp}(a/A) \in \mathcal{S}^M(A)$ is isolated.
- 4. Show that $a \in acl(A)$ if and only if for all $N \ge M$, tp(a/A) only has finitely many realisations in N.

Hint: Use compactness to prove that $a \notin \operatorname{acl}(A)$ implies that there is some $N \geq M$ in which $\operatorname{tp}(a/A)$ has infinitely many realisations.

5. Let $\kappa = |\mathcal{L}| + |A|$. Assume that M is κ^+ -saturated. Show that:

$$\operatorname{acl}(A) = \bigcap_{A \subseteq N \leq M} N.$$

6. Let $\operatorname{Aut}(M/A)$ be the set of \mathcal{L} -automorphisms of M that fix A pointwise. We say that $a \in M$ has a finite orbit under the action of $\operatorname{Aut}(M/A)$ if the set $\{\sigma(a) : \sigma \in \operatorname{Aut}(M/A)\}$ is finite.

Assume that M is strongly κ^+ -homogeneous and κ^+ -saturated. Show that:

 $\operatorname{acl}(A) = \{a \in M : a \text{ has a finite orbit under the action of } \operatorname{Aut}(M/A)\}.$

7. Let $\mathcal{R} := (\mathbb{R}, +, \cdot)$. Show that the only automorphism of \mathcal{R} is the identity, but that $\operatorname{acl}(\mathbb{Q})$ is a strict subset of \mathbb{R} .

Problem 2:

Let \mathcal{L} be a countable language and T be a complete \mathcal{L} -theory.

1. Pick $p \in S_x(T)$ and c a new tuple of constants. Let $T_p := T \cup p(c)$. Show that if T_c is \aleph_0 -categorical, then so is T.

Hint: Show that the restriction map $\mathcal{S}_y(T_c) \to \mathcal{S}_y(T)$ is unto.

- 2. Assume that T is not \aleph_0 -categorical, show that it has a least three countable models up to isomorphism.
- 3. Let $\mathcal{L}_C = \mathcal{L}_{\leq} \cup \{c_i : i \in \omega\}$ and $\text{DLO}_C \coloneqq \text{DLO} \cup \{c_i < c_j : i < j\}$. Show that DLO_C is complete and has three countable models up to isomorphism.