
Silvain Rideau silvain.rideau@berkeley.edu
1091 Evans www.normalesup.org/~srideau/en/teaching

Solutions to homework 7
Due October 31st

Problem 1 :
Let T be an L-theory. Let M ⊧ T and X be an L(M)-definable set. Recall that X is
coded in T if X is L(⌜X⌝ ∩M)-definable.

1. Show that the following are equivalent:

a) T eliminates imaginaries;

b) For all M ⊧ T , every L(M)-definable function is coded.

Hint:A definable function has a domain.

Solution: Since (graphs of) definable functions are particular cases of definable
sets, b) is a consequence of a). On the other hand, If b) holds and X is a definable
set, then the code for identity function on X is also a code for X. Indeed X is
L(A)-definable if and only if the identity function on X is L(A)-defined over A.

2. Let S0, . . . Sk be L-sorts. Assume that every L(M)-definable function whose do-
main is contained in S0 is coded and that every L(M)-definable function whose
domain is a subset of ∏k

i=1 Si is coded. Show that every L(M)-definable function
whose domain is in ∏k

i=0 Si is coded.

Solution:Replacing M by an elementary extension, we may assume that M is
∣L∣

+-saturated. Let f be a definable function whose domain is contained in ∏k
i=0 Si.

for all a ∈ S0(M), let fa(x) = f(a, x). Then fa is a definable function whose domain
is contained in ∏k

i=1 Si. By our hypothesis, fa is L(⌜fa⌝ ∩M)-definable so there
exists an L-formula ϕ(x, y, z) and c ∈ ⌜fa⌝ ∩M such that ϕ(x, y, c) holds if and
only if y = f(a, x). Since ⌜fa⌝ ⊆ dcleq(⌜f⌝ ∪ {a}), there exists an Leq(⌜f⌝)-definable
map g such that c = g(a). By hypothesis g is L(⌜g⌝ ∩M)-definable. Since g is
L
eq
(⌜f⌝)-definable, ⌜g⌝ ⊆ ⌜f⌝ and hence g is L(⌜f⌝∩M)-definable. In particular, fa

is L({a} ∪ (⌜f⌝ ∩M))-definable.

Let π(t) ∶= {¬(y = f(t, x) ↔ θ(x, y, t)) ∶ θ is an L(⌜f⌝ ∩M)-formula}. We have just
proved that π is not satisfiable inM . Note that, since ⌜f⌝ is the definable closure of
a singleton its cardinality is smaller or equal to ∣L

eq
∣ = ∣L∣. By ∣L∣

+-saturation ofM ,
π is not finitely satisfiable. It follows that there exist L(⌜f⌝∩M)-formulas θi(x, y, t),
for 0 ⩽ i < k such that for all a ∈ S0(M), the graph of fa is defined by θi(x, y, a) for
some i. Let Xi = {t ∈ S0 ∶ the graph of ft is defined by θi(x, y, t)}. The set Xi is
L(⌜f⌝ ∩M)-definable and y = f(t, x) is equivalent to ⋁i(t ∈ Xi ∧ θi(x, y, t)) which
is obviously an L(⌜f⌝ ∩M)-formula.

3. Show that the following are equivalent:

a) T eliminates imaginaries;

b) for every L-sort S andM ⊧ T , every L(M)-definable function f whose domain
is contained in S is coded.
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Solution:Once again, b) is a particular case of a). Let us now assume that b)
holds. We prove by induction on k that every L(M)-definable function f whose
domain is in ∏k

i=0 Si is coded. The case k = 0 is our hypothesis and the induction
step is the previous question. We conclude by the first question that T eliminates
imaginaries.

Problem 2 :
Let T be a complete L-theory with one sort X and no function symbols or constants.
Assume that T eliminates quantifiers and imaginaries and that, in models of T , the
algebraic and definable closure coincide. Let Lf,< be the language L with a new sort Y ,
a function symbol f ∶X → Y and a predicate <∶ Y 2. Let Tf,< be the theory axiomatizing
the following:

• f is surjective;

• For all a ∈ Y , f−1(a) is a model of T ;

• For all L-predicate R(x1, . . . , xn) and tuple x1, . . . , xn ∈ X, if R(x1, . . . , xn) holds
then for all i, j, f(xi) = f(xj).

• (Y,<) is a dense linear order without end-points.

1. Show that Tf,< eliminates quantifiers.

Solution: Let M , N ⊧ Tf,<, g a partial embedding from M into N whose domain
is A and a ∈M . Assuming that N is ∣A∣

+-saturated, we have to extend g to a. We
may assume that A is closed under f .

Let us first assume that a ∈ Y (M) ∖A. Then f−1(a) ∩A = ∅. Let D = {c ∈ Y (A) ∶

c < a}. Pick any b ∈ Y (N) ∖ g(A) such that for all c ∈ A, g(c) < b if and only if
c ∈ D — such a b exists by saturation and the fact that Y (N) is a dense linear
order without endpoints. Then g can be extended by sending a to b.

If a ∈ X(M), let c ∶= f(a) ∈ A. We have that f−1(c), f−1(g(c)) ⊧ T and since T
is complete, we have f−1(c) ≡ f−1(g(c)). Let gc be the restriction of g to f−1(c).
The map gc is a partial embedding from f−1(c) into f−1(g(c)). By quantifier
elimination, gc is a partial elementary embedding — when the domain of gc is
empty, we are using the fact that T is complete. Note that, since N is ∣A∣

+-
saturated, so is f−1(g(c)). It follows that gc can be extended to a. This extension
is also an extension of g since predicates of L are always false when applied to
points in distinct fibers.

2. Let M ⊧ Tf,< and A ⩽ M . Assume M is strongly ∣A∣
+-homogeneous and ∣A∣

+-
saturated. Pick c ∈ Y (M)∖Y (A) and for all a ∈ Y (A) pick σa be an L-automorphism
of f−1(a). Show that there exists σ ∈ AutLf,<

(M) such that for all a ∈ Y (a),
σ∣f−1(a) = σa and σ(c) ≠ c.

Solution:Note first that, by quantifier elimination, for any a, b ∈ Y (M), tp(a) =
tp(b) so there exists σ ∈ AutLf,<

(M) such that σ(a) = b. In particular, there is an
L-isomorphism θa,b ∶ f

−1
(a) → f−1(b).

Now, pick an order isomorphism τ of Y (M) fixing Y (A) and moving c. This can
always be done because Y (M) is a ∣A∣

+-saturated and strongly ∣A∣
+-homogeneous

dense linear order without endpoints. Let us define σ as follows. If y ∈ Y ,
σ(y) = τ(y). If f(x) ∈ Y (A), let σ(x) = σf(x)(x). If f(x) ∉ Y (A), let σ(x) =
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θf(x),τ(f(x))(x). Note that σ preserves f , σ∣Y = τ is an order isomorphism and,
fiber by fiber, σ is an L-isomorphism, so it is an Lf,<-automorphism of M .

If a ∈ Y (A), by definition of σ, we have that σ∣f−1(a) = σa. Also, σ(c) = τ(c) ≠ c.

3. LetM ⊧ Tf,< and A ⩽ M . For all a ∈ Y (M), let dcla denote the L-definable closure
in the L-structure f−1(a). Show that dcl(A) = Y (A) ∪ ⋃a∈Y (A) dcla(A ∩ f−1(a)).

Solution:Going to an elementary extension, we may assume that M is strongly
∣L(A)∣

+-homogeneous and ∣L(A)∣
+-saturated. Then an element c ∈M is in dcl(A)

if and only if c is fixed by all Lf,<-automorphisms of M that fix A. If c ∈

Y (M) ∖ Y (A) or c ∈ X(M) but f(c) ∉ Y (A), then we have build in the pre-
vious question an Lf,<-automorphism of M that does not fix c (take all the σa
to be the identity). If c ∈ X(M), a = f(c) ∈ Y (A) and c ∉ dcla(f−1(a)), then,
since f−1(A) is strongly ∣L(A)∣

+-homogeneous and ∣L(A)∣
+-saturated, we can find

an L(f−1(a) ∩ A)-automorphism σa of f−1(a) which does not fix c. In the pre-
vious question, we showed that we can find an Lf,<-automorphism of M equal
to σa on f−1(a). This automorphism does not fix c. It follows that dcl(A) ⊆

Y (A) ∪ ⋃a∈Y (A) dcla(A ∩ f−1(a)).

The converse inclusion is easier. Let c ∈ Y (A) ∪ ⋃a∈Y (A) dcla(A ∩ f−1(a)). If
c ∈ Y (A) ⊆ A, then we are done. Otherwise, we have c ∈ X(M). Let a = f(c).
There exists an L(f−1(a) ∩A)-formula ϕ(x) such that ϕ(f−1(a)) = {c}. Then c is
defined in M by f(c) = a ∧ ϕa(c) (where ϕa is the relativization of ϕ to f−1(a)).

4. Let M ⊧ Tf,< and g ∶X → Y be an Lf,<(M)-definable map. Show that there exists
(ai)0⩽i<k ∈ Y (M) such that if g(x) ≠ f(x), then g(x) = ai for some i.

Solution: Let A ⩽ M be such that g is L(A)-definable. We may assume that M
is ∣A∣

+-saturated. By the previous question, g(x) ∈ Y (A) ∪ {f(x)}. So the set of
L(A)-formulas π(x) ∶= {g(x) ≠ a ∶ a ∈ A} ∪ {g(x) ≠ f(x)} is not satisfiable in M
and, by saturation, π is not finitely satisfiable. It follows that there exists finitely
many ai ∈ Y (A) such that M ⊧ g(x) = f(x) ∨ ⋁i g(x) = ai.

5. Let M ⊧ Tf,< and g ∶ X → X be an Lf,<(M)-definable map. Assume that for all
x, f(g(x)) = f(x). Show that there exists finitely many ai ∈ Y (M), gi ∶ f−1(ai) →
f−1(ai) L(f−1(ai))-definable, Wj ⊆ Y open intervals and hj L-definable maps such
that:

• g∣f−1(ai) = gi;

• for all c ∈Wj , g∣f−1(c) = hj .

Solution:As before, let A ⩽M be such that g is L(A)-definable and let us assume
that M is ∣A∣

+-saturated. Pick y ∈ Y (M)∖Y (A), then g∣f−1(y) is an Lf,<(A∪{y})-
definable subset of f−1(Y ). By quantifier elimination in Tf,< (and induction on
quantifier free Lf,<-formulas), g∣f−1(y) is an L-definable in f−1(y).

It follows that the set π(y) ∶= {y ≠ a ∶ a ∈ Y (A)} ∪ {∃x1∃x2 f(x1) = y ∧ ¬(x2 =

g(x1) ↔ ϕ(x1, x2)) ∶ ϕ L-formula} is not satisfiable in M and it is therefore not
finitely satisfiable either. So there exists finitely many ai ∈ Y (A) and L-formulas
ϕj such that if y ≠ ai for any i, then g∣f−1(y) is defined in f−1(y) by ϕj , for some
j. The set Wj ∶= {y ∈ Y ∶ g∣f−1(y) = ϕj(f

−1
(y))} is an Lf,<-definable subset of

Y . It follows from quantifier elimination in Tf,< (and induction on quantifier free
Lf,<-formulas) that Wj is a finite union of points and open intervals. Making C
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bigger, we may assume that Wj is a finite union of open intervals. Renumbering
these intervals, we may assume that Wj is an open interval.

Finally, for every ai, g∣f−1(ai) is an Lf,<(A)-definable map, so, as above, it is of the
form ϕi(f

−1
(ai)) for some L(f−1(ai) ∩A)-formula.

6. Let M ⊧ Tf,< and g ∶ X → X be an Lf,<(M)-definable map. Assume that for
all x, f(g(x)) ≠ f(x). Show that there exists finitely many ai ∈ X(M), finitely
many cj ∈ Y (A), finitely many open intervals Wk ⊆ Y , L(f−1(cj))-formulas ϕi,j
and L-formulas ψi,k such that, for all i,

g(x) = ai if and only if x ∈ ⋃
j

ϕi,j(f
−1

(cj)) ∪⋃
k
⋃

y∈Wk

ψi,k(f
−1

(y)).

Solution:Once again, let A ⩽ M be such that g is L(A)-definable and let us as-
sume that M is ∣A∣

+-saturated. By Question 2.2, g(x) ∈ dclf(x)((A ∩ f−1(x)) ∪
{x}) ∪ ⋃a∈Y (a) dcla(A ∩ f−1(a)). Since f(g(x)) ≠ f(x), we have that g(x) ∈

⋃a∈Y (a) dcla(A ∩ f−1(a)). It follows that π(x) ∶= {g(x) ≠ c ∶ c ∈ ⋃a∈Y (a) dcla(A ∩

f−1(a))} is not satisfiable inM . So it is not finitely satisfiable either and the image
of g must be some finite set {ai ∶ 0 ⩽ i < n} ⊆ A.

For all c ∈ Y (M) ∖ Y (A), g−1(ai) ∩ f−1(c) is an Lf,<(A ∪ {c})-definable subset
of f−1(c). Then, there exists a formula ψ such that g−1(ai) ∩ f−1(c) = ψ(f−1(c).
Therefore, the set π(y) ∶= {y ≠ a ∶ a ∈ Y (A)} ∪ {∃xf(x) = y ∧ ¬(g(x) = ai ↔
ψ(x)) ∶ ψ L-formula} is not satisfiable in M . So it is not finitely satisfiable and
we find a finite set C ⊆ Y (A) and m L-formulas ψi,l such that, if y ∈ Y (M) ∖ C,
g−1(ai) ∩ f−1(y) = ψi,l(f−1(y)) for some l. Let k ∶ n → m. The set Wk = {y ∈ Y ∶

∀xf(x) = y → ⋀i(g(x) = ai ↔ ψi,k(i)(x))} is an Lf,<-definable subset of Y . It is a
finite union of points and open intervals. Making C bigger, we may assume that
Wk is a finite union of open intervals. Renumbering these intervals, we may assume
that Wk is an open interval.

Finally, for all cj ∈ C, g−1(ai) ∩ f−1(cj) is an Lf,<(A)-definable subset of f−1(cj)
and it is of the form ϕi,j(f

−1
(cj)) for some L(f−1(cj) ∩A)-formula.

7. Show that Tf,< eliminates imaginaries.

Solution:By Question 1.3, it suffices to show that every function, whose domain
is a subset of some sort, is coded. Note that if the image of the function is inside
a product of sorts, it suffices to code each of the components to code the function.
Let g ∶ X → X be a definable function. Let F ∶= {x ∈ X ∶ f(g(x)) = f(x)}. The
functions g1 ∶= g∣F and g2 ∶= g∣F c are both ⌜g⌝-definable and, since g = g1 ∪ g2, g is
⌜g1⌝ ∪ ⌜g2⌝-definable. So we may assume that for all x, f(g(x)) = f(x) or that for
all x, g(x) ≠ f(x).

Let us first assume that for all x, f(g(x)) = f(x). Let ai, gi, Wj and hj be as
in Question 2.5. Reordering the Wj and making W1 bigger, we may assume that
it is the largest interval which appears first in the order, on which g∣f−1(y) = g1.
Then W1 is ⌜g⌝-definable and it suffices to encode g∣f−1(W1) and g∣f−1(W c

1 ). Let
W1 = (a, b), then a, b ∈ ⌜g⌝ ∩ Y (M) and g∣f−1(W1) is Lf,<({a, b})-definable, i.e. it
is coded. By induction, we can remove all the Wj and we may assume that the
domain of g is included in finitely many fibers (which are among the f−1(ai)).

By removing some of the ai, we may assume that f−1(ai) always intersect the
domain of g. Note that, since Y is ordered, ai ∈ ⌜g⌝. By elimination of imaginaries
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in T , g∣f−1(ai) is coded by some tuple ci ∈ f−1(ai) ∩ ⌜g∣f−1(ai)⌝ ⊆ ⌜g⌝ and each
g∣f−1(ai) is Lf,<({ai, ci})-definable. It follows that g is coded.

If f(g(x)) ≠ f(x) for all x, let ai, cj , Wk, ϕi,j and ψi,k be as in Question 2.6. Note
that since Y is ordered and algebraic and definable closure coincide in T , ai ∈ ⌜g⌝
whenever g−1(ai) ≠ ∅. Reordering and enlarging W1 ∶= (b, c), we may assume
that it is the largest interval that appears first on which, for all i, g−1(ai) is given
by ψi,1. Note that g∣f−1(W1)∩g−1(ai) is Lf,<({ai, b, c})-definable. By induction, we
can remove each of the W1 until g is defined on finitely many fibers (among the
f−1(cj)). Removing the cj where f−1(cj) ∩ dom(g) = ∅, we have that cj ∈ ⌜g⌝. By
elimination of imaginaries in T , g−1(ai) ∩ f−1(cj) is coded by some di,j ∈ ⌜g⌝. It
follows that g is coded by the tuple of the di,j .

If g ∶ Y →X then g is coded if and only if g ○f is coded. But these functions where
just taken care of.

If g ∶ X → Y , let F ∶= {x ∈ X ∶ g(x) = f(x)}. For all y ∈ Y , Fy ∶= {x ∈ F ∶ f(x) = y}
is coded by some cy ∈ dcleq(⌜g⌝ ∪ {y}). Using that functions Y → X are coded,
and the proof of Question 2.2, we can show that the map y ↦ cy (and therefore F )
is coded. So it suffices to code g∣F c . Let ai be as in Question 2.3. Because Y is
ordered, ai ∈ ⌜g⌝ (provided we remove the useless ones). Moreover, as for F , the
set Xi = g

−1
(ai) is coded.

Finally, assume g ∶ Y → Y . Then g is coded since f ○ g is.
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