Solutions to homework 7

Due October 31st

Problem 1：

Let T be an \mathcal{L}－theory．Let $M \vDash T$ and X be an $\mathcal{L}(M)$－definable set．Recall that X is coded in T if X is $\mathcal{L}\left({ }^{「} X^{`} \cap M\right)$－definable．

1．Show that the following are equivalent：
a）T eliminates imaginaries；
b）For all $M \vDash T$ ，every $\mathcal{L}(M)$－definable function is coded．
Hint：A definable function has a domain．

Solution：Since（graphs of）definable functions are particular cases of definable sets，b）is a consequence of a）．On the other hand，If b）holds and X is a definable set，then the code for identity function on X is also a code for X ．Indeed X is $\mathcal{L}(A)$－definable if and only if the identity function on X is $\mathcal{L}(A)$－defined over A ．

2．Let $S_{0}, \ldots S_{k}$ be \mathcal{L}－sorts．Assume that every $\mathcal{L}(M)$－definable function whose do－ main is contained in S_{0} is coded and that every $\mathcal{L}(M)$－definable function whose domain is a subset of $\prod_{i=1}^{k} S_{i}$ is coded．Show that every $\mathcal{L}(M)$－definable function whose domain is in $\prod_{i=0}^{k} S_{i}$ is coded．

Solution：Replacing M by an elementary extension，we may assume that M is $|\mathcal{L}|^{+}$－saturated．Let f be a definable function whose domain is contained in $\prod_{i=0}^{k} S_{i}$ ． for all $a \in S_{0}(M)$ ，let $f_{a}(x)=f(a, x)$ ．Then f_{a} is a definable function whose domain is contained in $\prod_{i=1}^{k} S_{i}$ ．By our hypothesis，f_{a} is $\mathcal{L}\left({ }^{r} f_{a}{ }^{7} \cap M\right)$－definable so there exists an \mathcal{L}－formula $\varphi(x, y, z)$ and $c \in{ }^{「} f_{a}{ }^{7} \cap M$ such that $\varphi(x, y, c)$ holds if and only if $y=f(a, x)$ ．Since ${ }^{\ulcorner } f_{a}{ }^{\urcorner} \subseteq \operatorname{dcl}^{\mathrm{eq}}\left({ }^{\ulcorner } f^{\urcorner} \cup\{a\}\right)$ ，there exists an $\mathcal{L}^{\mathrm{eq}}\left({ }^{\ulcorner } f^{\urcorner}\right)$－definable map g such that $c=g(a)$ ．By hypothesis g is $\mathcal{L}\left({ }^{\ulcorner } g^{\urcorner} \cap M\right)$－definable．Since g is $\mathcal{L}^{\mathrm{eq}}\left({ }^{\ulcorner } f^{\top}\right)$－definable，${ }^{「} g^{\urcorner} \subseteq{ }^{「} f^{\urcorner}$and hence g is $\mathcal{L}\left({ }^{\ulcorner } f^{\top} \cap M\right)$－definable．In particular，f_{a} is $\mathcal{L}\left(\{a\} \cup\left({ }^{\ulcorner } f^{\urcorner} \cap M\right)\right)$－definable．
Let $\pi(t):=\left\{\neg(y=f(t, x) \leftrightarrow \theta(x, y, t)): \theta\right.$ is an $\mathcal{L}\left({ }^{\ulcorner } f^{\urcorner} \cap M\right)$－formula $\}$ ．We have just proved that π is not satisfiable in M ．Note that，since ${ }^{\ulcorner } f^{\top}$ is the definable closure of a singleton its cardinality is smaller or equal to $\left|\mathcal{L}^{\mathrm{eq}}\right|=|\mathcal{L}|$ ．By $|\mathcal{L}|^{+}$－saturation of M ， π is not finitely satisfiable．It follows that there exist $\mathcal{L}\left({ }^{r} f^{\urcorner} \cap M\right)$－formulas $\theta_{i}(x, y, t)$ ， for $0 \leqslant i<k$ such that for all $a \in S_{0}(M)$ ，the graph of f_{a} is defined by $\theta_{i}(x, y, a)$ for some i ．Let $X_{i}=\left\{t \in S_{0}\right.$ ：the graph of f_{t} is defined by $\left.\theta_{i}(x, y, t)\right\}$ ．The set X_{i} is $\mathcal{L}\left(\left\ulcorner f^{\urcorner} \cap M\right)\right.$－definable and $y=f(t, x)$ is equivalent to $\bigvee_{i}\left(t \in X_{i} \wedge \theta_{i}(x, y, t)\right)$ which is obviously an $\mathcal{L}\left(\left\ulcorner f^{\urcorner} \cap M\right)\right.$－formula．

3．Show that the following are equivalent：
a）T eliminates imaginaries；
b）for every \mathcal{L}－sort S and $M \vDash T$ ，every $\mathcal{L}(M)$－definable function f whose domain is contained in S is coded．

Solution: Once again, b) is a particular case of a). Let us now assume that b) holds. We prove by induction on k that every $\mathcal{L}(M)$-definable function f whose domain is in $\prod_{i=0}^{k} S_{i}$ is coded. The case $k=0$ is our hypothesis and the induction step is the previous question. We conclude by the first question that T eliminates imaginaries.

Problem 2:

Let T be a complete \mathcal{L}-theory with one sort X and no function symbols or constants. Assume that T eliminates quantifiers and imaginaries and that, in models of T, the algebraic and definable closure coincide. Let $\mathcal{L}_{f,<}$ be the language \mathcal{L} with a new sort Y, a function symbol $f: X \rightarrow Y$ and a predicate $<: Y^{2}$. Let $T_{f,<}$ be the theory axiomatizing the following:

- f is surjective;
- For all $a \in Y, f^{-1}(a)$ is a model of T;
- For all \mathcal{L}-predicate $R\left(x_{1}, \ldots, x_{n}\right)$ and tuple $x_{1}, \ldots, x_{n} \in X$, if $R\left(x_{1}, \ldots, x_{n}\right)$ holds then for all $i, j, f\left(x_{i}\right)=f\left(x_{j}\right)$.
- $(Y,<)$ is a dense linear order without end-points.

1. Show that $T_{f,<}$ eliminates quantifiers.

Solution: Let $M, N \vDash T_{f,<,} g$ a partial embedding from M into N whose domain is A and $a \in M$. Assuming that N is $|A|^{+}$-saturated, we have to extend g to a. We may assume that A is closed under f.
Let us first assume that $a \in Y(M) \backslash A$. Then $f^{-1}(a) \cap A=\varnothing$. Let $D=\{c \in Y(A)$: $c<a\}$. Pick any $b \in Y(N) \backslash g(A)$ such that for all $c \in A, g(c)<b$ if and only if $c \in D$ - such a b exists by saturation and the fact that $Y(N)$ is a dense linear order without endpoints. Then g can be extended by sending a to b.
If $a \in X(M)$, let $c:=f(a) \in A$. We have that $f^{-1}(c), f^{-1}(g(c)) \vDash T$ and since T is complete, we have $f^{-1}(c) \equiv f^{-1}(g(c))$. Let g_{c} be the restriction of g to $f^{-1}(c)$. The map g_{c} is a partial embedding from $f^{-1}(c)$ into $f^{-1}(g(c))$. By quantifier elimination, g_{c} is a partial elementary embedding - when the domain of g_{c} is empty, we are using the fact that T is complete. Note that, since N is $|A|^{+}$saturated, so is $f^{-1}(g(c))$. It follows that g_{c} can be extended to a. This extension is also an extension of g since predicates of \mathcal{L} are always false when applied to points in distinct fibers.
2. Let $M \vDash T_{f,<}$ and $A \leqslant M$. Assume M is strongly $|A|^{+}$-homogeneous and $|A|^{+}$saturated. Pick $c \in Y(M) \backslash Y(A)$ and for all $a \in Y(A)$ pick σ_{a} be an \mathcal{L}-automorphism of $f^{-1}(a)$. Show that there exists $\sigma \in \operatorname{Aut}_{\mathcal{L}_{f,<}}(M)$ such that for all $a \in Y(a)$, $\left.\sigma\right|_{f^{-1}(a)}=\sigma_{a}$ and $\sigma(c) \neq c$.

Solution: Note first that, by quantifier elimination, for any $a, b \in Y(M), \operatorname{tp}(a)=$ $\operatorname{tp}(b)$ so there exists $\sigma \in \operatorname{Aut}_{\mathcal{L}_{f,<}}(M)$ such that $\sigma(a)=b$. In particular, there is an \mathcal{L}-isomorphism $\theta_{a, b}: f^{-1}(a) \rightarrow f^{-1}(b)$.
Now, pick an order isomorphism τ of $Y(M)$ fixing $Y(A)$ and moving c. This can always be done because $Y(M)$ is a $|A|^{+}$-saturated and strongly $|A|^{+}$-homogeneous dense linear order without endpoints. Let us define σ as follows. If $y \in Y$, $\sigma(y)=\tau(y)$. If $f(x) \in Y(A)$, let $\sigma(x)=\sigma_{f(x)}(x)$. If $f(x) \notin Y(A)$, let $\sigma(x)=$
$\theta_{f(x), \tau(f(x))}(x)$. Note that σ preserves $f,\left.\sigma\right|_{Y}=\tau$ is an order isomorphism and, fiber by fiber, σ is an \mathcal{L}-isomorphism, so it is an $\mathcal{L}_{f,<}$-automorphism of M.
If $a \in Y(A)$, by definition of σ, we have that $\left.\sigma\right|_{f^{-1}(a)}=\sigma_{a}$. Also, $\sigma(c)=\tau(c) \neq c$.
3. Let $M \vDash T_{f,<}$ and $A \leqslant M$. For all $a \in Y(M)$, let dcl ${ }^{a}$ denote the \mathcal{L}-definable closure in the \mathcal{L}-structure $f^{-1}(a)$. Show that $\operatorname{dcl}(A)=Y(A) \cup \bigcup_{a \in Y(A)} \operatorname{dcl}^{a}\left(A \cap f^{-1}(a)\right)$.

Solution: Going to an elementary extension, we may assume that M is strongly $|\mathcal{L}(A)|^{+}$-homogeneous and $|\mathcal{L}(A)|^{+}$-saturated. Then an element $c \in M$ is in $\operatorname{dcl}(A)$ if and only if c is fixed by all $\mathcal{L}_{f,<-}$-automorphisms of M that fix A. If $c \in$ $Y(M) \backslash Y(A)$ or $c \in X(M)$ but $f(c) \notin Y(A)$, then we have build in the pre-
 to be the identity). If $c \in X(M), a=f(c) \in Y(A)$ and $c \notin \operatorname{dcl}^{a}\left(f^{-1}(a)\right)$, then, since $f^{-1}(A)$ is strongly $|\mathcal{L}(A)|^{+}$-homogeneous and $|\mathcal{L}(A)|^{+}$-saturated, we can find an $\mathcal{L}\left(f^{-1}(a) \cap A\right)$-automorphism σ_{a} of $f^{-1}(a)$ which does not fix c. In the previous question, we showed that we can find an $\mathcal{L}_{f,<}$-automorphism of M equal to σ_{a} on $f^{-1}(a)$. This automorphism does not fix c. It follows that $\operatorname{dcl}(A) \subseteq$ $Y(A) \cup \bigcup_{a \in Y(A)} \operatorname{dcl}^{a}\left(A \cap f^{-1}(a)\right)$.
The converse inclusion is easier. Let $c \in Y(A) \cup \cup_{a \in Y(A)} \operatorname{dcl}^{a}\left(A \cap f^{-1}(a)\right)$. If $c \in Y(A) \subseteq A$, then we are done. Otherwise, we have $c \in X(M)$. Let $a=f(c)$. There exists an $\mathcal{L}\left(f^{-1}(a) \cap A\right)$-formula $\varphi(x)$ such that $\varphi\left(f^{-1}(a)\right)=\{c\}$. Then c is defined in M by $f(c)=a \wedge \varphi_{a}(c)$ (where φ_{a} is the relativization of φ to $f^{-1}(a)$).
4. Let $M \vDash T_{f,<}$ and $g: X \rightarrow Y$ be an $\mathcal{L}_{f,<}(M)$-definable map. Show that there exists $\left(a_{i}\right)_{0 \leqslant i<k} \in Y(M)$ such that if $g(x) \neq f(x)$, then $g(x)=a_{i}$ for some i.

Solution: Let $A \leqslant M$ be such that g is $\mathcal{L}(A)$-definable. We may assume that M is $|A|^{+}$-saturated. By the previous question, $g(x) \in Y(A) \cup\{f(x)\}$. So the set of $\mathcal{L}(A)$-formulas $\pi(x):=\{g(x) \neq a: a \in A\} \cup\{g(x) \neq f(x)\}$ is not satisfiable in M and, by saturation, π is not finitely satisfiable. It follows that there exists finitely many $a_{i} \in Y(A)$ such that $M \vDash g(x)=f(x) \vee \bigvee_{i} g(x)=a_{i}$.
5. Let $M \vDash T_{f,<}$ and $g: X \rightarrow X$ be an $\mathcal{L}_{f,<}(M)$-definable map. Assume that for all $x, f(g(x))=f(x)$. Show that there exists finitely many $a_{i} \in Y(M), g_{i}: f^{-1}\left(a_{i}\right) \rightarrow$ $f^{-1}\left(a_{i}\right) \mathcal{L}\left(f^{-1}\left(a_{i}\right)\right)$-definable, $W_{j} \subseteq Y$ open intervals and $h_{j} \mathcal{L}$-definable maps such that:

- $\left.g\right|_{f^{-1}\left(a_{i}\right)}=g_{i}$;
- for all $c \in W_{j},\left.g\right|_{f^{-1}(c)}=h_{j}$.

Solution: As before, let $A \leqslant M$ be such that g is $\mathcal{L}(A)$-definable and let us assume that M is $|A|^{+}$-saturated. Pick $y \in Y(M) \backslash Y(A)$, then $\left.g\right|_{f^{-1}(y)}$ is an $\mathcal{L}_{f,<}(A \cup\{y\})$ definable subset of $f^{-1}(Y)$. By quantifier elimination in $T_{f,<}$ (and induction on quantifier free $\mathcal{L}_{f,<^{-}}$-formulas), $\left.g\right|_{f^{-1}(y)}$ is an \mathcal{L}-definable in $f^{-1}(y)$.
It follows that the set $\pi(y):=\{y \neq a: a \in Y(A)\} \cup\left\{\exists x_{1} \exists x_{2} f\left(x_{1}\right)=y \wedge \neg\left(x_{2}=\right.\right.$ $\left.g\left(x_{1}\right) \leftrightarrow \varphi\left(x_{1}, x_{2}\right)\right): \varphi \mathcal{L}$-formula $\}$ is not satisfiable in M and it is therefore not finitely satisfiable either. So there exists finitely many $a_{i} \in Y(A)$ and \mathcal{L}-formulas φ_{j} such that if $y \neq a_{i}$ for any i, then $\left.g\right|_{f^{-1}(y)}$ is defined in $f^{-1}(y)$ by φ_{j}, for some j. The set $W_{j}:=\left\{y \in Y:\left.g\right|_{f^{-1}(y)}=\varphi_{j}\left(f^{-1}(y)\right)\right\}$ is an $\mathcal{L}_{f,<}$-definable subset of Y. It follows from quantifier elimination in $T_{f,<}$ (and induction on quantifier free $\mathcal{L}_{f,<}-$ formulas) that W_{j} is a finite union of points and open intervals. Making C
bigger, we may assume that W_{j} is a finite union of open intervals. Renumbering these intervals, we may assume that W_{j} is an open interval.
Finally, for every $a_{i},\left.g\right|_{f^{-1}\left(a_{i}\right)}$ is an $\mathcal{L}_{f,<}(A)$-definable map, so, as above, it is of the form $\varphi_{i}\left(f^{-1}\left(a_{i}\right)\right)$ for some $\mathcal{L}\left(f^{-1}\left(a_{i}\right) \cap A\right)$-formula.
6. Let $M \vDash T_{f,<}$ and $g: X \rightarrow X$ be an $\mathcal{L}_{f,<}(M)$-definable map. Assume that for all $x, f(g(x)) \neq f(x)$. Show that there exists finitely many $a_{i} \in X(M)$, finitely many $c_{j} \in Y(A)$, finitely many open intervals $W_{k} \subseteq Y, \mathcal{L}\left(f^{-1}\left(c_{j}\right)\right)$-formulas $\varphi_{i, j}$ and \mathcal{L}-formulas $\psi_{i, k}$ such that, for all i,

$$
g(x)=a_{i} \text { if and only if } x \in \bigcup_{j} \varphi_{i, j}\left(f^{-1}\left(c_{j}\right)\right) \cup \bigcup_{k} \bigcup_{y \in W_{k}} \psi_{i, k}\left(f^{-1}(y)\right)
$$

Solution: Once again, let $A \leqslant M$ be such that g is $\mathcal{L}(A)$-definable and let us assume that M is $|A|^{+}$-saturated. By Question 2.2, $g(x) \in \operatorname{dcl}^{f(x)}\left(\left(A \cap f^{-1}(x)\right) \cup\right.$ $\{x\}) \cup \bigcup_{a \in Y(a)} \operatorname{dcl}^{a}\left(A \cap f^{-1}(a)\right)$. Since $f(g(x)) \neq f(x)$, we have that $g(x) \in$ $\bigcup_{a \in Y(a)} \operatorname{dcl}^{a}\left(A \cap f^{-1}(a)\right)$. It follows that $\pi(x):=\left\{g(x) \neq c: c \in \bigcup_{a \in Y(a)} \operatorname{dcl}^{a}(A \cap\right.$ $\left.\left.f^{-1}(a)\right)\right\}$ is not satisfiable in M. So it is not finitely satisfiable either and the image of g must be some finite set $\left\{a_{i}: 0 \leqslant i<n\right\} \subseteq A$.
For all $c \in Y(M) \backslash Y(A), g^{-1}\left(a_{i}\right) \cap f^{-1}(c)$ is an $\mathcal{L}_{f,<}(A \cup\{c\})$-definable subset of $f^{-1}(c)$. Then, there exists a formula ψ such that $g^{-1}\left(a_{i}\right) \cap f^{-1}(c)=\psi\left(f^{-1}(c)\right.$. Therefore, the set $\pi(y):=\{y \neq a: a \in Y(A)\} \cup\left\{\exists x f(x)=y \wedge \neg\left(g(x)=a_{i} \leftrightarrow\right.\right.$ $\psi(x)): \psi \mathcal{L}$-formula $\}$ is not satisfiable in M. So it is not finitely satisfiable and we find a finite set $C \subseteq Y(A)$ and $m \mathcal{L}$-formulas $\psi_{i, l}$ such that, if $y \in Y(M) \backslash C$, $g^{-1}\left(a_{i}\right) \cap f^{-1}(y)=\psi_{i, l}\left(f^{-1}(y)\right)$ for some l. Let $k: n \rightarrow m$. The set $W_{k}=\{y \in Y:$ $\left.\forall x f(x)=y \rightarrow \bigwedge_{i}\left(g(x)=a_{i} \leftrightarrow \psi_{i, k(i)}(x)\right)\right\}$ is an $\mathcal{L}_{f,<}$-definable subset of Y. It is a finite union of points and open intervals. Making C bigger, we may assume that W_{k} is a finite union of open intervals. Renumbering these intervals, we may assume that W_{k} is an open interval.
Finally, for all $c_{j} \in C, g^{-1}\left(a_{i}\right) \cap f^{-1}\left(c_{j}\right)$ is an $\mathcal{L}_{f,<}(A)$-definable subset of $f^{-1}\left(c_{j}\right)$ and it is of the form $\varphi_{i, j}\left(f^{-1}\left(c_{j}\right)\right)$ for some $\mathcal{L}\left(f^{-1}\left(c_{j}\right) \cap A\right)$-formula.
7. Show that $T_{f,<}$ eliminates imaginaries.

Solution: By Question 1.3, it suffices to show that every function, whose domain is a subset of some sort, is coded. Note that if the image of the function is inside a product of sorts, it suffices to code each of the components to code the function. Let $g: X \rightarrow X$ be a definable function. Let $F:=\{x \in X: f(g(x))=f(x)\}$. The functions $g_{1}:=\left.g\right|_{F}$ and $g_{2}:=\left.g\right|_{F^{c}}$ are both ${ }^{「} g^{\prime}$-definable and, since $g=g_{1} \cup g_{2}, g$ is ${ }^{\ulcorner } g_{1}{ }^{\top} \cup{ }^{\ulcorner } g_{2}{ }^{`}$-definable. So we may assume that for all $x, f(g(x))=f(x)$ or that for all $x, g(x) \neq f(x)$.
Let us first assume that for all $x, f(g(x))=f(x)$. Let a_{i}, g_{i}, W_{j} and h_{j} be as in Question 2.5. Reordering the W_{j} and making W_{1} bigger, we may assume that it is the largest interval which appears first in the order, on which $\left.g\right|_{f^{-1}(y)}=g_{1}$. Then W_{1} is ${ }^{\ulcorner } g^{`}$-definable and it suffices to encode $\left.g\right|_{f^{-1}\left(W_{1}\right)}$ and $\left.g\right|_{f^{-1}\left(W_{1}^{c}\right)}$. Let $W_{1}=(a, b)$, then $a, b \in{ }^{\ulcorner } g^{\urcorner} \cap Y(M)$ and $\left.g\right|_{f^{-1}\left(W_{1}\right)}$ is $\mathcal{L}_{f,<}(\{a, b\})$-definable, i.e. it is coded. By induction, we can remove all the W_{j} and we may assume that the domain of g is included in finitely many fibers (which are among the $f^{-1}\left(a_{i}\right)$).
By removing some of the a_{i}, we may assume that $f^{-1}\left(a_{i}\right)$ always intersect the domain of g. Note that, since Y is ordered, $a_{i} \in{ }^{「} g{ }^{`}$. By elimination of imaginaries
in $T,\left.g\right|_{f^{-1}\left(a_{i}\right)}$ is coded by some tuple $\left.c_{i} \in f^{-1}\left(a_{i}\right) \cap{ }^{「} g\right|_{f^{-1}\left(a_{i}\right)}{ }^{`} \subseteq{ }^{「} g^{`}$ and each $\left.g\right|_{f^{-1}\left(a_{i}\right)}$ is $\mathcal{L}_{f,<}\left(\left\{a_{i}, c_{i}\right\}\right)$－definable．It follows that g is coded．
If $f(g(x)) \neq f(x)$ for all x ，let $a_{i}, c_{j}, W_{k}, \varphi_{i, j}$ and $\psi_{i, k}$ be as in Question 2．6．Note that since Y is ordered and algebraic and definable closure coincide in $T, a_{i} \in{ }^{「} g{ }^{\top}$ whenever $g^{-1}\left(a_{i}\right) \neq \varnothing$ ．Reordering and enlarging $W_{1}:=(b, c)$ ，we may assume that it is the largest interval that appears first on which，for all $i, g^{-1}\left(a_{i}\right)$ is given by $\psi_{i, 1}$ ．Note that $\left.g\right|_{f^{-1}\left(W_{1}\right) \cap g^{-1}\left(a_{i}\right)}$ is $\mathcal{L}_{f,<}\left(\left\{a_{i}, b, c\right\}\right)$－definable．By induction，we can remove each of the W_{1} until g is defined on finitely many fibers（among the $\left.f^{-1}\left(c_{j}\right)\right)$ ．Removing the c_{j} where $f^{-1}\left(c_{j}\right) \cap \operatorname{dom}(g)=\varnothing$ ，we have that $c_{j} \in{ }^{「} g^{7}$ ．By elimination of imaginaries in $T, g^{-1}\left(a_{i}\right) \cap f^{-1}\left(c_{j}\right)$ is coded by some $d_{i, j} \in{ }^{\top} g^{`}$ ．It follows that g is coded by the tuple of the $d_{i, j}$ ．
If $g: Y \rightarrow X$ then g is coded if and only if $g \circ f$ is coded．But these functions where just taken care of．
If $g: X \rightarrow Y$ ，let $F:=\{x \in X: g(x)=f(x)\}$ ．For all $y \in Y, F_{y}:=\{x \in F: f(x)=y\}$ is coded by some $c_{y} \in \operatorname{dcl}^{\mathrm{eq}}\left({ }^{\ulcorner } g^{\urcorner} \cup\{y\}\right)$ ．Using that functions $Y \rightarrow X$ are coded， and the proof of Question 2．2，we can show that the map $y \mapsto c_{y}$（and therefore F ） is coded．So it suffices to code $\left.g\right|_{F^{c}}$ ．Let a_{i} be as in Question 2．3．Because Y is ordered，$a_{i} \in\left\ulcorner{ }^{「}{ }^{\top}\right.$（provided we remove the useless ones）．Moreover，as for F ，the set $X_{i}=g^{-1}\left(a_{i}\right)$ is coded．
Finally，assume $g: Y \rightarrow Y$ ．Then g is coded since $f \circ g$ is．

