Solutions to homework 7

Due October 31st

Problem 1:

Let T be an \mathcal{L} -theory. Let $M \models T$ and X be an $\mathcal{L}(M)$ -definable set. Recall that X is coded in T if X is $\mathcal{L}({}^{r}X^{\gamma} \cap M)$ -definable.

- 1. Show that the following are equivalent:
 - a) T eliminates imaginaries;
 - b) For all $M \models T$, every $\mathcal{L}(M)$ -definable function is coded.

Hint: A definable function has a domain.

Solution: Since (graphs of) definable functions are particular cases of definable sets, b) is a consequence of a). On the other hand, If b) holds and X is a definable set, then the code for identity function on X is also a code for X. Indeed X is $\mathcal{L}(A)$ -definable if and only if the identity function on X is $\mathcal{L}(A)$ -defined over A.

2. Let $S_0, \ldots S_k$ be \mathcal{L} -sorts. Assume that every $\mathcal{L}(M)$ -definable function whose domain is contained in S_0 is coded and that every $\mathcal{L}(M)$ -definable function whose domain is a subset of $\prod_{i=1}^k S_i$ is coded. Show that every $\mathcal{L}(M)$ -definable function whose domain is in $\prod_{i=0}^k S_i$ is coded.

Solution: Replacing M by an elementary extension, we may assume that M is $|\mathcal{L}|^+$ -saturated. Let f be a definable function whose domain is contained in $\prod_{i=0}^k S_i$. for all $a \in S_0(M)$, let $f_a(x) = f(a, x)$. Then f_a is a definable function whose domain is contained in $\prod_{i=1}^k S_i$. By our hypothesis, f_a is $\mathcal{L}(\ulcornerf_a\urcorner \cap M)$ -definable so there exists an \mathcal{L} -formula $\varphi(x, y, z)$ and $c \in \ulcornerf_a\urcorner \cap M$ such that $\varphi(x, y, c)$ holds if and only if y = f(a, x). Since $\ulcornerf_a\urcorner \subseteq dcl^{eq}(\ulcornerf\urcorner \cup \{a\})$, there exists an $\mathcal{L}^{eq}(\ulcornerf\urcorner)$ -definable map g such that c = g(a). By hypothesis g is $\mathcal{L}(\ulcornerg\urcorner \cap M)$ -definable. Since g is $\mathcal{L}(\ulcornera\rbrace \cup (\ulcornerf\urcorner \cap M))$ -definable. In particular, f_a is $\mathcal{L}(\{a\} \cup (\ulcornerf\urcorner \cap M))$ -definable.

Let $\pi(t) := \{\neg(y = f(t, x) \leftrightarrow \theta(x, y, t)) : \theta \text{ is an } \mathcal{L}(\ulcornerf\urcorner \cap M)\text{-formula}\}$. We have just proved that π is not satisfiable in M. Note that, since $\ulcornerf\urcorner$ is the definable closure of a singleton its cardinality is smaller or equal to $|\mathcal{L}^{\text{eq}}| = |\mathcal{L}|$. By $|\mathcal{L}|^+$ -saturation of M, π is not finitely satisfiable. It follows that there exist $\mathcal{L}(\ulcornerf\urcorner \cap M)$ -formulas $\theta_i(x, y, t)$, for $0 \leq i < k$ such that for all $a \in S_0(M)$, the graph of f_a is defined by $\theta_i(x, y, a)$ for some *i*. Let $X_i = \{t \in S_0 : \text{the graph of } f_t \text{ is defined by } \theta_i(x, y, t)\}$. The set X_i is $\mathcal{L}(\ulcornerf\urcorner \cap M)$ -definable and y = f(t, x) is equivalent to $\bigvee_i(t \in X_i \land \theta_i(x, y, t))$ which is obviously an $\mathcal{L}(\ulcornerf\urcorner \cap M)$ -formula.

- 3. Show that the following are equivalent:
 - a) T eliminates imaginaries;
 - b) for every \mathcal{L} -sort S and $M \models T$, every $\mathcal{L}(M)$ -definable function f whose domain is contained in S is coded.

Solution: Once again, b) is a particular case of a). Let us now assume that b) holds. We prove by induction on k that every $\mathcal{L}(M)$ -definable function f whose domain is in $\prod_{i=0}^{k} S_i$ is coded. The case k = 0 is our hypothesis and the induction step is the previous question. We conclude by the first question that T eliminates imaginaries.

Problem 2:

Let T be a complete \mathcal{L} -theory with one sort X and no function symbols or constants. Assume that T eliminates quantifiers and imaginaries and that, in models of T, the algebraic and definable closure coincide. Let $\mathcal{L}_{f,<}$ be the language \mathcal{L} with a new sort Y, a function symbol $f: X \to Y$ and a predicate $\langle : Y^2 \rangle$. Let $T_{f,<}$ be the theory axiomatizing the following:

- f is surjective;
- For all $a \in Y$, $f^{-1}(a)$ is a model of T;
- For all \mathcal{L} -predicate $R(x_1, \ldots, x_n)$ and tuple $x_1, \ldots, x_n \in X$, if $R(x_1, \ldots, x_n)$ holds then for all $i, j, f(x_i) = f(x_j)$.
- (Y, <) is a dense linear order without end-points.
- 1. Show that $T_{f,<}$ eliminates quantifiers.

Solution: Let $M, N \models T_{f,<}, g$ a partial embedding from M into N whose domain is A and $a \in M$. Assuming that N is $|A|^+$ -saturated, we have to extend g to a. We may assume that A is closed under f.

Let us first assume that $a \in Y(M) \setminus A$. Then $f^{-1}(a) \cap A = \emptyset$. Let $D = \{c \in Y(A) : c < a\}$. Pick any $b \in Y(N) \setminus g(A)$ such that for all $c \in A$, g(c) < b if and only if $c \in D$ — such a b exists by saturation and the fact that Y(N) is a dense linear order without endpoints. Then g can be extended by sending a to b.

If $a \in X(M)$, let $c := f(a) \in A$. We have that $f^{-1}(c)$, $f^{-1}(g(c)) \models T$ and since Tis complete, we have $f^{-1}(c) \equiv f^{-1}(g(c))$. Let g_c be the restriction of g to $f^{-1}(c)$. The map g_c is a partial embedding from $f^{-1}(c)$ into $f^{-1}(g(c))$. By quantifier elimination, g_c is a partial elementary embedding — when the domain of g_c is empty, we are using the fact that T is complete. Note that, since N is $|A|^+$ saturated, so is $f^{-1}(g(c))$. It follows that g_c can be extended to a. This extension is also an extension of g since predicates of \mathcal{L} are always false when applied to points in distinct fibers.

2. Let $M \models T_{f,<}$ and $A \le M$. Assume M is strongly $|A|^+$ -homogeneous and $|A|^+$ saturated. Pick $c \in Y(M) \setminus Y(A)$ and for all $a \in Y(A)$ pick σ_a be an \mathcal{L} -automorphism
of $f^{-1}(a)$. Show that there exists $\sigma \in \operatorname{Aut}_{\mathcal{L}_{f,<}}(M)$ such that for all $a \in Y(a)$, $\sigma|_{f^{-1}(a)} = \sigma_a$ and $\sigma(c) \neq c$.

Solution: Note first that, by quantifier elimination, for any $a, b \in Y(M)$, $\operatorname{tp}(a) = \operatorname{tp}(b)$ so there exists $\sigma \in \operatorname{Aut}_{\mathcal{L}_{f,<}}(M)$ such that $\sigma(a) = b$. In particular, there is an \mathcal{L} -isomorphism $\theta_{a,b} : f^{-1}(a) \to f^{-1}(b)$.

Now, pick an order isomorphism τ of Y(M) fixing Y(A) and moving c. This can always be done because Y(M) is a $|A|^+$ -saturated and strongly $|A|^+$ -homogeneous dense linear order without endpoints. Let us define σ as follows. If $y \in Y$, $\sigma(y) = \tau(y)$. If $f(x) \in Y(A)$, let $\sigma(x) = \sigma_{f(x)}(x)$. If $f(x) \notin Y(A)$, let $\sigma(x) =$ $\theta_{f(x),\tau(f(x))}(x)$. Note that σ preserves f, $\sigma|_{Y} = \tau$ is an order isomorphism and, fiber by fiber, σ is an \mathcal{L} -isomorphism, so it is an $\mathcal{L}_{f,<}$ -automorphism of M.

If $a \in Y(A)$, by definition of σ , we have that $\sigma|_{f^{-1}(a)} = \sigma_a$. Also, $\sigma(c) = \tau(c) \neq c$.

3. Let $M \models T_{f,<}$ and $A \leq M$. For all $a \in Y(M)$, let dcl^a denote the \mathcal{L} -definable closure in the \mathcal{L} -structure $f^{-1}(a)$. Show that $\operatorname{dcl}(A) = Y(A) \cup \bigcup_{a \in Y(A)} \operatorname{dcl}^a(A \cap f^{-1}(a))$.

Solution: Going to an elementary extension, we may assume that M is strongly $|\mathcal{L}(A)|^+$ -homogeneous and $|\mathcal{L}(A)|^+$ -saturated. Then an element $c \in M$ is in dcl(A) if and only if c is fixed by all $\mathcal{L}_{f,<}$ -automorphisms of M that fix A. If $c \in Y(M) \setminus Y(A)$ or $c \in X(M)$ but $f(c) \notin Y(A)$, then we have build in the previous question an $\mathcal{L}_{f,<}$ -automorphism of M that does not fix c (take all the σ_a to be the identity). If $c \in X(M)$, $a = f(c) \in Y(A)$ and $c \notin dcl^a(f^{-1}(a))$, then, since $f^{-1}(A)$ is strongly $|\mathcal{L}(A)|^+$ -homogeneous and $|\mathcal{L}(A)|^+$ -saturated, we can find an $\mathcal{L}(f^{-1}(a) \cap A)$ -automorphism σ_a of $f^{-1}(a)$ which does not fix c. In the previous question, we showed that we can find an $\mathcal{L}_{f,<}$ -automorphism of M equal to σ_a on $f^{-1}(a)$. This automorphism does not fix c. It follows that dcl $(A) \subseteq Y(A) \cup \bigcup_{a \in Y(A)} dcl^a(A \cap f^{-1}(a))$.

The converse inclusion is easier. Let $c \in Y(A) \cup \bigcup_{a \in Y(A)} \operatorname{dcl}^a(A \cap f^{-1}(a))$. If $c \in Y(A) \subseteq A$, then we are done. Otherwise, we have $c \in X(M)$. Let a = f(c). There exists an $\mathcal{L}(f^{-1}(a) \cap A)$ -formula $\varphi(x)$ such that $\varphi(f^{-1}(a)) = \{c\}$. Then c is defined in M by $f(c) = a \wedge \varphi_a(c)$ (where φ_a is the relativization of φ to $f^{-1}(a)$).

4. Let $M \models T_{f,<}$ and $g: X \to Y$ be an $\mathcal{L}_{f,<}(M)$ -definable map. Show that there exists $(a_i)_{0 \leq i < k} \in Y(M)$ such that if $g(x) \neq f(x)$, then $g(x) = a_i$ for some *i*.

Solution: Let $A \leq M$ be such that g is $\mathcal{L}(A)$ -definable. We may assume that M is $|A|^+$ -saturated. By the previous question, $g(x) \in Y(A) \cup \{f(x)\}$. So the set of $\mathcal{L}(A)$ -formulas $\pi(x) \coloneqq \{g(x) \neq a : a \in A\} \cup \{g(x) \neq f(x)\}$ is not satisfiable in M and, by saturation, π is not finitely satisfiable. It follows that there exists finitely many $a_i \in Y(A)$ such that $M \models g(x) = f(x) \lor \bigvee_i g(x) = a_i$.

- 5. Let $M \models T_{f,<}$ and $g: X \to X$ be an $\mathcal{L}_{f,<}(M)$ -definable map. Assume that for all x, f(g(x)) = f(x). Show that there exists finitely many $a_i \in Y(M), g_i: f^{-1}(a_i) \to f^{-1}(a_i) \mathcal{L}(f^{-1}(a_i))$ -definable, $W_j \subseteq Y$ open intervals and $h_j \mathcal{L}$ -definable maps such that:
 - $g|_{f^{-1}(a_i)} = g_i;$
 - for all $c \in W_j$, $g|_{f^{-1}(c)} = h_j$.

Solution: As before, let $A \leq M$ be such that g is $\mathcal{L}(A)$ -definable and let us assume that M is $|A|^+$ -saturated. Pick $y \in Y(M) \setminus Y(A)$, then $g|_{f^{-1}(y)}$ is an $\mathcal{L}_{f,<}(A \cup \{y\})$ -definable subset of $f^{-1}(Y)$. By quantifier elimination in $T_{f,<}$ (and induction on quantifier free $\mathcal{L}_{f,<}$ -formulas), $g|_{f^{-1}(y)}$ is an \mathcal{L} -definable in $f^{-1}(y)$.

It follows that the set $\pi(y) \coloneqq \{y \neq a : a \in Y(A)\} \cup \{\exists x_1 \exists x_2 f(x_1) = y \land \neg(x_2 = g(x_1) \leftrightarrow \varphi(x_1, x_2)) : \varphi \mathcal{L}$ -formula} is not satisfiable in M and it is therefore not finitely satisfiable either. So there exists finitely many $a_i \in Y(A)$ and \mathcal{L} -formulas φ_j such that if $y \neq a_i$ for any i, then $g|_{f^{-1}(y)}$ is defined in $f^{-1}(y)$ by φ_j , for some j. The set $W_j \coloneqq \{y \in Y : g|_{f^{-1}(y)} = \varphi_j(f^{-1}(y))\}$ is an $\mathcal{L}_{f,<}$ -definable subset of Y. It follows from quantifier elimination in $T_{f,<}$ (and induction on quantifier free $\mathcal{L}_{f,<}$ -formulas) that W_j is a finite union of points and open intervals. Making C

bigger, we may assume that W_j is a finite union of open intervals. Renumbering these intervals, we may assume that W_j is an open interval.

Finally, for every a_i , $g|_{f^{-1}(a_i)}$ is an $\mathcal{L}_{f,<}(A)$ -definable map, so, as above, it is of the form $\varphi_i(f^{-1}(a_i))$ for some $\mathcal{L}(f^{-1}(a_i) \cap A)$ -formula.

6. Let $M \models T_{f,<}$ and $g: X \to X$ be an $\mathcal{L}_{f,<}(M)$ -definable map. Assume that for all $x, f(g(x)) \neq f(x)$. Show that there exists finitely many $a_i \in X(M)$, finitely many $c_j \in Y(A)$, finitely many open intervals $W_k \subseteq Y, \mathcal{L}(f^{-1}(c_j))$ -formulas $\varphi_{i,j}$ and \mathcal{L} -formulas $\psi_{i,k}$ such that, for all i,

$$g(x) = a_i$$
 if and only if $x \in \bigcup_j \varphi_{i,j}(f^{-1}(c_j)) \cup \bigcup_k \bigcup_{y \in W_k} \psi_{i,k}(f^{-1}(y)).$

Solution: Once again, let $A \leq M$ be such that g is $\mathcal{L}(A)$ -definable and let us assume that M is $|A|^+$ -saturated. By Question 2.2, $g(x) \in \operatorname{dcl}^{f(x)}((A \cap f^{-1}(x)) \cup \{x\}) \cup \bigcup_{a \in Y(a)} \operatorname{dcl}^a(A \cap f^{-1}(a))$. Since $f(g(x)) \neq f(x)$, we have that $g(x) \in \bigcup_{a \in Y(a)} \operatorname{dcl}^a(A \cap f^{-1}(a))$. It follows that $\pi(x) \coloneqq \{g(x) \neq c : c \in \bigcup_{a \in Y(a)} \operatorname{dcl}^a(A \cap f^{-1}(a))\}$ is not satisfiable in M. So it is not finitely satisfiable either and the image of g must be some finite set $\{a_i : 0 \leq i < n\} \subseteq A$.

For all $c \in Y(M) \setminus Y(A)$, $g^{-1}(a_i) \cap f^{-1}(c)$ is an $\mathcal{L}_{f,<}(A \cup \{c\})$ -definable subset of $f^{-1}(c)$. Then, there exists a formula ψ such that $g^{-1}(a_i) \cap f^{-1}(c) = \psi(f^{-1}(c))$. Therefore, the set $\pi(y) := \{y \neq a : a \in Y(A)\} \cup \{\exists x f(x) = y \land \neg(g(x) = a_i \leftrightarrow \psi(x)) : \psi \mathcal{L}$ -formula} is not satisfiable in M. So it is not finitely satisfiable and we find a finite set $C \subseteq Y(A)$ and $m \mathcal{L}$ -formulas $\psi_{i,l}$ such that, if $y \in Y(M) \setminus C$, $g^{-1}(a_i) \cap f^{-1}(y) = \psi_{i,l}(f^{-1}(y))$ for some l. Let $k : n \to m$. The set $W_k = \{y \in Y : \forall x f(x) = y \to \bigwedge_i(g(x) = a_i \leftrightarrow \psi_{i,k(i)}(x))\}$ is an $\mathcal{L}_{f,<}$ -definable subset of Y. It is a finite union of points and open intervals. Making C bigger, we may assume that W_k is a finite union of open intervals. Renumbering these intervals, we may assume that W_k is an open interval.

Finally, for all $c_j \in C$, $g^{-1}(a_i) \cap f^{-1}(c_j)$ is an $\mathcal{L}_{f,<}(A)$ -definable subset of $f^{-1}(c_j)$ and it is of the form $\varphi_{i,j}(f^{-1}(c_j))$ for some $\mathcal{L}(f^{-1}(c_j) \cap A)$ -formula.

7. Show that $T_{f,<}$ eliminates imaginaries.

Solution: By Question 1.3, it suffices to show that every function, whose domain is a subset of some sort, is coded. Note that if the image of the function is inside a product of sorts, it suffices to code each of the components to code the function. Let $g: X \to X$ be a definable function. Let $F := \{x \in X : f(g(x)) = f(x)\}$. The functions $g_1 := g|_F$ and $g_2 := g|_{F^c}$ are both $\lceil g \rceil$ -definable and, since $g = g_1 \cup g_2$, g is $\lceil g_1 \rceil \cup \lceil g_2 \rceil$ -definable. So we may assume that for all x, f(g(x)) = f(x) or that for all $x, g(x) \neq f(x)$.

Let us first assume that for all x, f(g(x)) = f(x). Let a_i , g_i , W_j and h_j be as in Question 2.5. Reordering the W_j and making W_1 bigger, we may assume that it is the largest interval which appears first in the order, on which $g|_{f^{-1}(y)} = g_1$. Then W_1 is $\lceil g \rceil$ -definable and it suffices to encode $g|_{f^{-1}(W_1)}$ and $g|_{f^{-1}(W_1^c)}$. Let $W_1 = (a, b)$, then $a, b \in \lceil g \rceil \cap Y(M)$ and $g|_{f^{-1}(W_1)}$ is $\mathcal{L}_{f,<}(\{a, b\})$ -definable, i.e. it is coded. By induction, we can remove all the W_j and we may assume that the domain of g is included in finitely many fibers (which are among the $f^{-1}(a_i)$).

By removing some of the a_i , we may assume that $f^{-1}(a_i)$ always intersect the domain of g. Note that, since Y is ordered, $a_i \in \lceil g \rceil$. By elimination of imaginaries

in T, $g|_{f^{-1}(a_i)}$ is coded by some tuple $c_i \in f^{-1}(a_i) \cap [g|_{f^{-1}(a_i)}] \subseteq [g]$ and each $g|_{f^{-1}(a_i)}$ is $\mathcal{L}_{f,<}(\{a_i, c_i\})$ -definable. It follows that g is coded.

If $f(g(x)) \neq f(x)$ for all x, let $a_i, c_j, W_k, \varphi_{i,j}$ and $\psi_{i,k}$ be as in Question 2.6. Note that since Y is ordered and algebraic and definable closure coincide in $T, a_i \in \ulcornerg\urcorner$ whenever $g^{-1}(a_i) \neq \varnothing$. Reordering and enlarging $W_1 := (b, c)$, we may assume that it is the largest interval that appears first on which, for all $i, g^{-1}(a_i)$ is given by $\psi_{i,1}$. Note that $g|_{f^{-1}(W_1)\cap g^{-1}(a_i)}$ is $\mathcal{L}_{f,<}(\{a_i, b, c\})$ -definable. By induction, we can remove each of the W_1 until g is defined on finitely many fibers (among the $f^{-1}(c_j)$). Removing the c_j where $f^{-1}(c_j) \cap \operatorname{dom}(g) = \varnothing$, we have that $c_j \in \ulcornerg\urcorner$. By elimination of imaginaries in $T, g^{-1}(a_i) \cap f^{-1}(c_j)$ is coded by some $d_{i,j} \in \ulcornerg\urcorner$. It follows that g is coded by the tuple of the $d_{i,j}$.

If $g: Y \to X$ then g is coded if and only if $g \circ f$ is coded. But these functions where just taken care of.

If $g: X \to Y$, let $F := \{x \in X : g(x) = f(x)\}$. For all $y \in Y$, $F_y := \{x \in F : f(x) = y\}$ is coded by some $c_y \in \operatorname{dcl}^{\operatorname{eq}}(\lceil g \rceil \cup \{y\})$. Using that functions $Y \to X$ are coded, and the proof of Question 2.2, we can show that the map $y \mapsto c_y$ (and therefore F) is coded. So it suffices to code $g|_{F^c}$. Let a_i be as in Question 2.3. Because Y is ordered, $a_i \in \lceil g \rceil$ (provided we remove the useless ones). Moreover, as for F, the set $X_i = g^{-1}(a_i)$ is coded.

Finally, assume $g: Y \to Y$. Then g is coded since $f \circ g$ is.