Solutions to homework 8

Problem 1:

Let M an \mathcal{L} -structure. We say that an $\mathcal{L}(M)$ -formula $\varphi(x, y)$, where x and y are sorted in the same way, has the order property in M if there exists $A = (a_i)_{i \in \mathbb{Z}_{>0}}$ tuples in Msuch that $M \models \varphi(a_i, a_j)$ if and only if i < j.

1. Assume that there exists an \mathcal{L} -formula $\varphi(x, y)$ with the order property in M, show that there exists an indiscernible sequence $(a_i)_{i \in \mathbb{Z}_{>0}}$ in some $N \geq M$ such that $N \models \varphi(a_i, a_j)$ if and only if i < j.

Solution: Let $\{c_i : i \in \mathbb{Z}_{>0}\}$ be new constants and $\Sigma = \mathcal{D}^{\mathrm{el}}(M) \cup \{\varphi(c_i, c_j) : i < j \in \mathbb{Z}_{>0}\} \cup \{\neg \varphi(c_i, c_j) : j \leq i \in \mathbb{Z}_{>0}\} \cup \{\psi(c_{i_1}, \ldots, c_{i_n}) \leftrightarrow \psi(c_{j_1}, \ldots, c_{j_n}) : i_1 < \ldots i_n \in \mathbb{Z}_{>0} \text{ and } j_1 < \ldots j_n \in \mathbb{Z}_{>0}\}$. It suffices to show that Σ is finitely satisfiable. Let $\Sigma_0 \subseteq \Sigma$ be finite. Then there exists \mathcal{L} -formulas $(\psi_l)_{l < k}$ such that $\Sigma_0 \subseteq \mathcal{D}^{\mathrm{el}}(M) \cup \{\varphi(c_i, c_j) : i < j \in \mathbb{Z}_{>0}\} \cup \{\neg \varphi(c_i, c_j) : j \leq i \in \mathbb{Z}_{>0}\} \cup \{\psi_l(c_{i_1}, \ldots, c_{i_n}) \leftrightarrow \psi_l(c_{j_1}, \ldots, c_{j_n}) : i_1 < \ldots i_n \in \mathbb{Z}_{>0}\} \cup \{\neg \varphi(c_i, c_j) : j \leq i \in \mathbb{Z}_{>0}\} \cup \{\psi_l(c_{i_1}, \ldots, c_{i_n}) \leftrightarrow \psi_l(c_{j_1}, \ldots, c_{j_n}) : i_1 < \ldots i_n \in \mathbb{Z}_{>0}, j_1 < \ldots j_n \in \mathbb{Z}_{>0} \text{ and } l < k\}$ — note that provided we add useless variables to the ψ_l we can assume that the ψ_l all have the same variables. Define $f : [A]^n \to 2^k$ by $f(\{a_{i_1}, \ldots, a_{i_n})(l) = 1$ if and only if $M \models \psi_l(a_{i_1}, \ldots, a_{i_n})$, where $i_1 < \ldots i_n \in \mathbb{Z}_{>0}$. By Ramsey's theorem, there exists $X \subseteq A$ infinite monochromatic. Let $g : \mathbb{Z}_{>0} \to X$ be an infinite strictly increasing function. Then, interpreting c_i as $a_{q(i)}$ makes M into a model of Σ_0 .

2. Let *I* be a totally ordered set and $A \coloneqq (a_i)_{i \in I}$ be an indiscernible sequence in some \mathcal{L} -structure *M*. Assume that *A* is not an indiscernible set. Show that there exists a formula $\varphi(x_1, \ldots, x_n)$ and a transposition $\tau = (i \ i + 1)$ such that $M \vDash \varphi(a_1, \ldots, a_n)$ and $M \vDash \neg \varphi(a_{\tau(1)}, \ldots, a_{\tau(n)})$.

Solution: If A is not indiscernible, then exists $i_1 < \ldots < i_n \in I$, $j_1, \ldots, j_n \in I$ and an *LL*-formula $phi(x_1, \ldots, x_n)$ such that $M \models \varphi(a_{i_1}, \ldots, a_{i_n})$ and $M \models \neg \varphi(a_{j_1}, ldots, a_{j_n})$. There exists a permutation $\sigma \in \mathfrak{S}_n$ such that $j_{\sigma^{-1}(1)} < \ldots < j_{\sigma^{-1}(n)}$. Since A is an indiscernible sequence, we also have $M \models \neg \varphi(a_{i_\sigma(1)}, \ldots, a_{i_{\sigma(n)}})$. Since \mathfrak{S}_n is generated by the permutations $(i \ i + 1)$, there exists finitely many such transpositions τ_k such that $\sigma = \prod_k \tau_k$. Let $\sigma_l = \prod_{k < l} \tau_k$ and l_0 be maximal such that $M \models \varphi(a_{i_{\sigma_l}(1)}, \ldots, a_{i_{\sigma(n)}})$. Then $M \models \neg \varphi(a_{\tau_l \circ \sigma_l}(1), \ldots, a_{\tau_l \circ \sigma_l}(n))$. Reordering the variables, we get that $M \models \varphi(a_{i_1}, \ldots, a_{i_n})$ and $M \models \neg \varphi(a_{i_1}, \ldots, a_{i_{j_1}}, \ldots, a_{i_n})$.

3. Let A be as above, show that there is a $\mathcal{L}(N)$ -formula with the order property in $N \ge M$.

Solution: Let A be an indiscernible sequence of order $\omega \cdot 3$ in some $N \ge M$ with the same type as A. Let $psi(x, y) \coloneqq \varphi(a_1, \ldots, a_{i-1}, x, y, a_{\omega 2}, \ldots, a_{\omega 2+n-i-2}) \land x \ne y$. Since A and A have the same type, $M \vDash \varphi(a_1, \ldots, a_{i-1}, a_{\omega+k}, a_{\omega+l}, a_{\omega 2}, a_{\omega 2+n-i-2})$ if and only if k < l.

- 4. T be an \mathcal{L} -theory, show that the following are equivalent:
 - a) There exists $M \models T$ and and indiscernible sequence in M which is not an indiscernible set;

- b) There exists $M \models T$ and $\varphi(x, y)$ an $\mathcal{L}(M)$ -formula with the order property in M;
- c) There exists $M \models T$ and $\varphi(x, y)$ an \mathcal{L} -formula with the order property in M;

Solution: It is proved in Question 3 that a) implies b). It is clear that c) is a consequence of b). So there remains to prove that c) implies a). Assume c). By Question 1, we find an indiscernible sequence $A = (a_i)_{i \in \mathbb{Z}_{>0}} \subseteq N \models T$ such that $N \models \varphi(a_i, a_j)$ if and only of i < j. So A is not an indiscernible set.

5. Assume that there exists an \mathcal{L} -formula $\varphi(x, y)$ with the order property in M, show that for any total order (I, <), there exists $(a_i)_{i \in I}$ tuples in $N \ge M$ such that $N \models \varphi(a_i, b_j)$ if and only if i < j.

Solution: By the first question, there exists $A_0 = \{a_i \in i \in \mathbb{Z}_{>0}\} \subseteq N_0 \geq M$ an indiscernible sequence such that $N_0 \models \varphi(a_i, a_j)$ if and only if i < j. Then there exists $A \subseteq N \geq N_0$ an indiscernible sequence indexed by I such that $\operatorname{tp}(A) = \operatorname{tp}(A_0)$. In particular, for all $i, j \in I$, if i < j, $N \models \varphi(a_i, a_j)$ and if $j \leq i$, $N \models \neg \varphi(a_i, a_j)$.

This is slightly overkill since we obtain an indiscernible A in the end. We can obviously also do it using a straighforward compactness argument.

6. Let φ and $(a_i)_{i \in I}$ be as in the previous question. Show that there is an injective map from the set of proper cuts of I (i.e. downwards closed strict subsets of I) into $S_x(\bigcup_{i \in I} a_i)$.

Solution: Let D be a cut of I and let $\pi_D(x) := \{\varphi(a_i, x) : i \in D\} \cup \{\neg \varphi(a_i, x) : i \notin D\}$. Then π_D is finitely satisfable. Indeed, if $\pi_0 \subseteq \pi$ is finite and I_0 is the set of $i \in I$ such that a_i appears in π_0 ; if $I_0 \setminus D$ is non empty then a_{i_0} for i_0 minimal in $I_0 \setminus D$ realizes π_0 and if it is empty, any a_i for $i \in I \setminus D$ realizes π_0 . Let $p_D \supseteq \pi_D$ be any complete type over $\bigcup_{i \in I} a_i$. Note that $\varphi(a_i, x) \in p_D$ if and only if $i \in D$. It follows that the map $D \mapsto p_D$ is injective.

7. (This is really much more set theoretic) Let κ be a cardinal and μ be the smallest cardinal such that $\kappa < \kappa^{\mu}$. Let $\kappa^{<\mu}$ be the set of all function from some $\alpha < \mu$ into κ . Order $\kappa^{<\mu}$ lexicographically (i.e. f < g if there exists α that for all $\beta < \alpha$, $f|_{\beta} = g|_{\beta}$ and either $f(\alpha)$ is not defined or $f(\alpha) < g(\alpha)$). Show that $\kappa^{<\mu}$ is a total order of size $\leq \kappa$ with $> \kappa$ many cuts.

Solution: Pick some $f \in \kappa^{\mu}$ and define $D_f := \{g \in \kappa^{<\mu} : \exists \alpha \mu, g \leq f|_{\alpha}\}$, which is a cut of $\kappa^{<\mu}$. Note that the map $f \mapsto D_f$ is injective. Indeed, if $f \neq g$, there exists a minimal α such that $f(\alpha) \neq g(\alpha)$. We may assume that $f(\alpha) < g(\alpha)$. Then $g|_{\alpha} \in D_g \setminus D_f$.

It follows that there are least $\kappa^{\mu} > \kappa$ cuts in $\kappa^{<\mu}$. Moreover, $\kappa^{<mu} = \bigcup_{\alpha < \mu} \kappa^{\alpha}$. Since $\alpha < \mu$, $|\alpha| < \mu$ and hence, by construction, $|\kappa^{\alpha}| \leq \kappa$. Since $\kappa^{\kappa} > \kappa$, we have $\mu \leq \kappa$ and hence $|\kappa^{<\mu}| \leq \sum_{\alpha < \mu} |\kappa^{\alpha}| \leq \kappa^2 = \kappa$.

8. Let T be an \mathcal{L} -theory and assume that there exists $M \models T$ and $\varphi(x, y)$ an \mathcal{L} -formula with the order property in M, show that T is not κ -stable for any cardinal κ .

Solution: By Question 5, we can find $N \models T$ and $a_i, b_i \in N$ for $i \in \kappa^{<\mu}$ where μ is as in Question 7. By Question 6, $|S_x(\bigcup_{i \in \kappa^{<mu}})| \ge \kappa^{\mu} > \kappa$, contradicting κ -stability of T.

The converse is also true (this is a theorem of Shelah), but it is much harder.