Solutions to homework 8

Problem 1:

Let M an \mathcal{L}-structure. We say that an $\mathcal{L}(M)$-formula $\varphi(x, y)$, where x and y are sorted in the same way, has the order property in M if there exists $A=\left(a_{i}\right)_{i \in \mathbb{Z}_{>0}}$ tuples in M such that $M \vDash \varphi\left(a_{i}, a_{j}\right)$ if and only if $i<j$.

1. Assume that there exists an \mathcal{L}-formula $\varphi(x, y)$ with the order property in M, show that there exists an indiscernible sequence $\left(a_{i}\right)_{i \in \mathbb{Z}_{>0}}$ in some $N \geqslant M$ such that $N \vDash \varphi\left(a_{i}, a_{j}\right)$ if and only if $i<j$.

Solution: Let $\left\{c_{i}: i \in \mathbb{Z}_{>0}\right\}$ be new constants and $\Sigma=\mathcal{D}^{\text {el }}(M) \cup\left\{\varphi\left(c_{i}, c_{j}\right): i<\right.$ $\left.j \in \mathbb{Z}_{>0}\right\} \cup\left\{\neg \varphi\left(c_{i}, c_{j}\right): j \leqslant i \in \mathbb{Z}_{>0}\right\} \cup\left\{\psi\left(c_{i_{1}}, \ldots, c_{i_{n}}\right) \leftrightarrow \psi\left(c_{j_{1}}, \ldots, c_{j_{n}}\right): i_{1}<\ldots i_{n} \epsilon\right.$ $\mathbb{Z}_{>0}$ and $\left.j_{1}<\ldots j_{n} \in \mathbb{Z}_{>0}\right\}$. It suffices to show that Σ is finitely satisfiable. Let $\Sigma_{0} \subseteq$ Σ be finite. Then there exists \mathcal{L}-formulas $\left(\psi_{l}\right)_{l<k}$ such that $\Sigma_{0} \subseteq \mathcal{D}^{\mathrm{el}}(M) \cup\left\{\varphi\left(c_{i}, c_{j}\right)\right.$: $\left.i<j \in \mathbb{Z}_{>0}\right\} \cup\left\{\neg \varphi\left(c_{i}, c_{j}\right): j \leqslant i \in \mathbb{Z}_{>0}\right\} \cup\left\{\psi_{l}\left(c_{i_{1}}, \ldots, c_{i_{n}}\right) \leftrightarrow \psi_{l}\left(c_{j_{1}}, \ldots, c_{j_{n}}\right): i_{1}<\right.$ $\ldots i_{n} \in \mathbb{Z}_{>0}, j_{1}<\ldots j_{n} \in \mathbb{Z}_{>0}$ and $\left.l<k\right\}$ - note that provided we add useless variables to the ψ_{l} we can assume that the ψ_{l} all have the same variables. Define $f:[A]^{n} \rightarrow 2^{k}$ by $f\left(\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right)(l)=1\right.$ if and only if $M \vDash \psi_{l}\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$, where $i_{1}<\ldots i_{n} \in \mathbb{Z}_{>0}$. By Ramsey's theorem, there exists $X \subseteq A$ infinite monochromatic. Let $g: \mathbb{Z}_{>0} \rightarrow X$ be an infinite strictly increasing function. Then, interpreting c_{i} as $a_{g(i)}$ makes M into a model of Σ_{0}.
2. Let I be a totally ordered set and $A:=\left(a_{i}\right)_{i \in I}$ be an indiscernible sequence in some \mathcal{L}-structure M. Assume that A is not an indiscernible set. Show that there exists a formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and a transposition $\tau=(i i+1)$ such that $M \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$ and $M \vDash \neg \varphi\left(a_{\tau(1)}, \ldots, a_{\tau(n)}\right)$.

Solution: If A is not indiscernible, then exists $i_{1}<\ldots<i_{n} \in I, j_{1}, \ldots, j_{n} \in$ I and an $L L$-formula $p h i\left(x_{1}, \ldots, x_{n}\right)$ such that $M \vDash \varphi\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$ and $M \vDash$ $\neg \varphi\left(a_{j_{1}}, l\right.$ dots,$\left.a_{j_{n}}\right)$. There exists a permutation $\sigma \in \mathfrak{S}_{n}$ such that $j_{\sigma^{-1}(1)}<\ldots<$ $j_{\sigma^{-1}(n)}$. Since A is an indiscernible sequence, we also have $M \vDash \neg \varphi\left(a_{i_{\sigma}(1)}, \ldots, a_{i_{\sigma(n)}}\right)$. Since \mathfrak{S}_{n} is generated by the permutations $(i i+1)$, there exists finitely many such transpositions τ_{k} such that $\sigma=\prod_{k} \tau_{k}$. Let $\sigma_{l}=\prod_{k<l} \tau_{k}$ and l_{0} be maximal such that $M \vDash \varphi\left(a_{i_{\sigma_{l}(1)}}, \ldots, a_{i_{\sigma_{l}(n)}}\right)$. Then $M \vDash \neg \varphi\left(a_{\tau_{\imath} \circ \sigma_{l}(1)}, \ldots, a_{\tau_{\imath} \circ \sigma_{l}(n)}\right)$. Reordering the variables, we get that $M \vDash \varphi\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$ and $M \vDash \neg \varphi\left(a_{i_{1}}, \ldots, a_{i+1}, a_{i}, \ldots, a_{i_{n}}\right)$.
3. Let A be as above, show that there is a $\mathcal{L}(N)$-formula with the order property in $N \geqslant M$.

Solution: Let A be an indiscernible sequence of order $\omega \cdot 3$ in some $N \geqslant M$ with the same type as A. Let $p s i(x, y):=\varphi\left(a_{1}, \ldots, a_{i-1}, x, y, a_{\omega 2}, \ldots, a_{\omega 2+n-i-2}\right) \wedge x \neq y$. Since A and A have the same type, $M \vDash \varphi\left(a_{1}, \ldots, a_{i-1}, a_{\omega+k}, a_{\omega+l}, a_{\omega 2}, a_{\omega 2+n-i-2}\right)$ if and only if $k<l$.
4. T be an \mathcal{L}-theory, show that the following are equivalent:
a) There exists $M \vDash T$ and and indiscernible sequence in M which is not an indiscernible set;
b) There exists $M \vDash T$ and $\varphi(x, y)$ an $\mathcal{L}(M)$-formula with the order property in M;
c) There exists $M \vDash T$ and $\varphi(x, y)$ an \mathcal{L}-formula with the order property in M;

Solution:It is proved in Question 3 that a) implies b). It is clear that c) is a consequence of b). So there remains to prove that c) implies a). Assume c). By Question 1, we find an indiscernible sequence $\left.A=\left(a_{i}\right)_{i \in \mathbb{Z}_{>0}}\right\} \subseteq N \vDash T$ such that $N \vDash \varphi\left(a_{i}, a_{j}\right)$ if and only of $i<j$. So A is not an indiscernible set.
5. Assume that there exists an \mathcal{L}-formula $\varphi(x, y)$ with the order property in M, show that for any total order $(I,<)$, there exists $\left(a_{i}\right)_{i \in I}$ tuples in $N \geqslant M$ such that $N \vDash \varphi\left(a_{i}, b_{j}\right)$ if and only if $i<j$.

Solution: By the first question, there exists $A_{0}=\left\{a_{i} \in i \in \mathbb{Z}_{>0}\right\} \subseteq N_{0} \geqslant M$ an indiscernible sequence such that $N_{0} \vDash \varphi\left(a_{i}, a_{j}\right)$ if and only if $i<j$. Then there exists $A \subseteq N \geqslant N_{0}$ an indiscernible sequence indexed by I such that $\operatorname{tp}(A)=\operatorname{tp}\left(A_{0}\right)$. In particular, for all $i, j \in I$, if $i<j, N \vDash \varphi\left(a_{i}, a_{j}\right)$ and if $j \leqslant i, N \vDash \neg \varphi\left(a_{i}, a_{j}\right)$.
This is slightly overkill since we obtain an indiscernible A in the end. We can obviously also do it using a straighforward compactness argument.
6. Let φ and $\left(a_{i}\right)_{i \in I}$ be as in the previous question. Show that there is an injective map from the set of proper cuts of I (i.e. downwards closed strict subsets of I) into $\mathcal{S}_{x}\left(\bigcup_{i \in I} a_{i}\right)$.

Solution: Let D be a cut of I and let $\pi_{D}(x):=\left\{\varphi\left(a_{i}, x\right): i \in D\right\} \cup\left\{\neg \varphi\left(a_{i}, x\right): i \notin\right.$ $D\}$. Then π_{D} is finitely satisfaible. Indeed, if $\pi_{0} \subseteq \pi$ is finite and I_{0} is the set of $i \in I$ such that a_{i} appears in π_{0}; if $I_{0} \backslash D$ is non empty then $a_{i_{0}}$ for i_{0} minimal in $I_{0} \backslash D$ realizes π_{0} and if it is empty, any a_{i} for $i \in I \backslash D$ realizes π_{0}. Let $p_{D} \supseteq \pi_{D}$ be any complete type over $\bigcup_{i \in I} a_{i}$. Note that $\varphi\left(a_{i}, x\right) \in p_{D}$ if and only if $i \in D$. It follows that the map $D \mapsto p_{D}$ is injective.
7. (This is really much more set theoretic) Let κ be a cardinal and μ be the smallest cardinal such that $\kappa<\kappa^{\mu}$. Let $\kappa^{<\mu}$ be the set of all function from some $\alpha<\mu$ into κ. Order $\kappa^{<\mu}$ lexicographically (i.e. $f<g$ if there exists α that for all $\beta<\alpha,\left.f\right|_{\beta}=\left.g\right|_{\beta}$ and either $f(\alpha)$ is not defined or $f(\alpha)<g(\alpha))$. Show that $\kappa^{<\mu}$ is a total order of size $\leqslant \kappa$ with $>\kappa$ many cuts.

Solution: Pick some $f \in \kappa^{\mu}$ and define $D_{f}:=\left\{g \in \kappa^{<\mu}: \exists \alpha \mu, g \leqslant\left. f\right|_{\alpha}\right\}$, which is a cut of $\kappa^{<\mu}$. Note that the map $f \mapsto D_{f}$ is injective. Indeed, if $f \neq g$, there exists a minimal α such that $f(\alpha) \neq g(\alpha)$. We may assume that $f(\alpha)<g(\alpha)$. Then $\left.g\right|_{\alpha} \in D_{g} \backslash D_{f}$.
It follows that there are least $\kappa^{\mu}>\kappa$ cuts in $\kappa^{<\mu}$. Moreover, $\kappa^{<m u}=\bigcup_{\alpha<\mu} \kappa^{\alpha}$. Since $\alpha<\mu,|\alpha|<\mu$ and hence, by construction, $\left|\kappa^{\alpha}\right| \leqslant \kappa$. Since $\kappa^{\kappa}>\kappa$, we have $\mu \leqslant \kappa$ and hence $\left|\kappa^{<\mu}\right| \leqslant \sum_{\alpha<\mu}\left|\kappa^{\alpha}\right| \leqslant \kappa^{2}=\kappa$.
8. Let T be an \mathcal{L}-theory and assume that there exists $M \vDash T$ and $\varphi(x, y)$ an \mathcal{L}-formula with the order property in M, show that T is not κ-stable for any cardinal κ.

Solution: By Question 5, we can find $N \vDash T$ and $a_{i}, b_{i} \in N$ for $i \in \kappa^{<\mu}$ where μ is as in Question 7. By Question $6,\left|\mathcal{S}_{x}\left(\cup_{i \epsilon \kappa<m u}\right)\right| \geqslant \kappa^{\mu}>\kappa$, contradicting κ-stability of T.

The converse is also true (this is a theorem of Shelah), but it is much harder.

