Homework 8

Problem 1:

Let M an \mathcal{L} -structure. We say that an $\mathcal{L}(M)$ -formula $\varphi(x, y)$, where x and y are sorted in the same way, has the order property in M if there exists $X = (a_i)_{i \in \mathbb{Z}_{>0}}$ tuples in Msuch that $M \models \varphi(a_i, a_j)$ if and only if i < j.

- 1. Assume that there exists an \mathcal{L} -formula $\varphi(x, y)$ with the order property in M, show that there exists an indiscernible sequence $(a_i)_{i \in \mathbb{Z}_{>0}}$ in some $N \geq M$ such that $N \models \varphi(a_i, a_j)$ if and only if i < j.
- 2. Let *I* be a totally ordered set and $A \coloneqq (a_i)_{i \in I}$ be an indiscernible sequence in some \mathcal{L} -structure *M*. Assume that *A* is not an indiscernible set. Show that there exists a formula $\varphi(x_1, \ldots, x_n)$ and a transposition $\tau = (i \ i + 1)$ such that $M \vDash \varphi(a_1, \ldots, a_n)$ and $M \vDash \neg \varphi(a_{\tau(1)}, \ldots, a_{\tau(n)})$.
- 3. Let A be as above, show that there is a $\mathcal{L}(N)$ -formula with the order property in $N \ge M$.
- 4. T be an \mathcal{L} -theory, show that the following are equivalent:
 - a) There exists $M \models T$ and and indiscernible sequence in M which is not an indiscernible set;
 - b) There exists $M \models T$ and $\varphi(x, y)$ an $\mathcal{L}(M)$ -formula with the order property in M;
 - c) There exists $M \models T$ and $\varphi(x, y)$ an \mathcal{L} -formula with the order property in M;
- 5. Assume that there exists an \mathcal{L} -formula $\varphi(x, y)$ with the order property in M, show that for any total order (I, <), there exists $(a_i)_{i \in I}$ tuples in $N \ge M$ such that $N \models \varphi(a_i, b_j)$ if and only if i < j.
- 6. Let φ and $(a_i)_{i \in I}$ be as in the previous question. Show that there is an injective map from the set of proper cuts of I (i.e. downwards closed strict subsets of I) into $\mathcal{S}_x(\bigcup_{i \in I} a_i)$.
- 7. (This is really much more set theoretic) Let κ be a cardinal and μ be the smallest cardinal such that $\kappa < \kappa^{\mu}$. Let $\kappa^{<\mu}$ be the set of all function from some $\alpha < \mu$ into κ . Order $\kappa^{<\mu}$ lexicographically (i.e. f < g if there exists α that for all $\beta < \alpha$, $f|_{\beta} = g|_{\beta}$ and either $f(\alpha)$ is not defined or $f(\alpha) < g(\alpha)$). Show that $\kappa^{<\mu}$ is a total order of size $\leq \kappa$ with $> \kappa$ many cuts.
- 8. Let T be an \mathcal{L} -theory and assume that there exists $M \models T$ and $\varphi(x, y)$ an \mathcal{L} -formula with the order property in M, show that T is not κ -stable for any cardinal κ .

The converse is also true (this is a theorem of Shelah).