Solutions to homework 9

Problem 1:

Let \mathcal{L}_1 and \mathcal{L}_2 be two languages, T_1 an \mathcal{L}_1 -theory and T_2 an \mathcal{L}_2 -theory. Let $\mathcal{L} \coloneqq \mathcal{L}_1 \cap \mathcal{L}_2$. Let $T = \{\varphi \ \mathcal{L}$ -sentence $: T_1 \vDash \varphi\}$. Let us assume that both T_1 and T_2 are satisfiable.

1. Let $M \models T$, show that there exists $A \models T_1$ such that $M \leq A|_{\mathcal{L}}$.

Solution: Let $\Sigma := \mathcal{D}_{\mathcal{L}}^{\text{el}}(M) \cup T_1$. We have to show that Σ is satisfiable. Let us assume that $\Sigma_0 \subseteq \Sigma$ is finite and not satisfiable. We have finitely many \mathcal{L} -formulas $\varphi_i(x)$ and tuples $m_i \in M^{x_i}$ such that $\varphi_i(m_i) \in \mathcal{D}_{\mathcal{L}}^{\text{el}}(M)$ and $\Sigma_0 \subseteq \{\varphi_i(M) : i \leq k\} \cup T_1$. Let $\theta(x) := \bigwedge_i \varphi_i(x_i)$. Since Σ_0 is not satisfiable, it follows that $T_1 \models \neg \theta(m)$. Since the constants m do not appear in T_1 , it follows that $T_1 \models \forall x \neg \theta(x)$. In particular $\forall x \theta(x) \in T$ and $M \models \forall x \theta(x)$. But this contradicts the fact that $M \models \theta(m)$. We conclude by compactness.

2. Let \mathcal{L}' be any language containing \mathcal{L} , A be an \mathcal{L}' -structure and M be an \mathcal{L} -structure such that $A|_{\mathcal{L}} \leq M$. Show that there exists an \mathcal{L}' -structure B such that $A \leq B$ and $M \leq B|_{\mathcal{L}}$.

Solution: Let $\Sigma := \mathcal{D}^{\text{el}}(A) \cup \mathcal{D}_{\mathcal{L}}^{\text{el}}(M)$. Here the constants for A are identified with those for $A \subseteq M$. We have to show that Σ is satisfiable. Let us assume that $\Sigma_0 \subseteq \Sigma$ is finite and not satisfiable. There exists finitely many $\mathcal{L}(A)$ -formulas $\varphi_i(x_i)$ and tuples $m_i \in M \setminus A$ such that $\varphi_i(m_i) \in \mathcal{D}_{\mathcal{L}}^{\text{el}}(M)$ and $\Sigma_0 \subseteq \mathcal{D}^{\text{el}}(A) \cup \{\varphi_i(m_i)\}$. Let $\theta(x) := \bigwedge_i \varphi_i(x_i)$. Since Σ_0 is not satisfiable, it follows that $\mathcal{D}^{\text{el}}(A) \models \neg \theta(m)$. Since the constants m do not appear in $\mathcal{L}'(A)$, $\mathcal{D}^{\text{el}}(A) \models \forall x \neg \theta(x)$. In particular, $A \models \forall x \neg \theta(x)$. Since $A|_{\mathcal{L}} \leq M$, we also have $M \models \forall x \neg \theta(x)$, contradicting the fact that $M \models \theta(m)$. We conclude by compactness.

3. Assume that $T \cup T_2$ is satisfiable. Show that $T_1 \cup T_2$ is satisfiable.

Solution: For all $i \in \omega$, we build, by induction, $A_i \models T_2$, $B_i \models T_1$ such that $A_i|_{\mathcal{L}} \leq B_i|_{\mathcal{L}} \leq A_{i+1}|_{\mathcal{L}}$, $A_i \leq A_{i+1}$ and $B_i \leq B_{i+1}$. Let A_0 be any model of $T \cup T_2$. By Question 1, we get B_0 . The other induction steps follow from Question 2.

Let $M := \bigcup_i A_i = \bigcup_i B_i$. Then M can be made into both an \mathcal{L}_1 -structure and an \mathcal{L}_2 -structure. Note that the \mathcal{L} -structure induced by these two chains coincide and hence M can be made into an $\mathcal{L}_1 \cup \mathcal{L}_2$ -structure. We have $M \ge A_0 \models T_2$ and $M \ge B_0 \models T_1$, so $M \models T_1 \cup T_2$.

4. Let φ be an \mathcal{L}_1 -sentence and ψ be an \mathcal{L}_2 -sentence. Assume that $\varphi \models \psi$ (i.e. any $\mathcal{L}_1 \cup \mathcal{L}_2$ -structure which is a model of φ is also a model of ψ). Show that there exists an \mathcal{L} -sentence θ such that $\varphi \models \theta$ and $\theta \models \psi$.

Solution: We have that $\{\varphi\} \cup \{\neg\psi\}$ is not a satisfiable $\mathcal{L}_1 \cup \mathcal{L}_2$ -theory. Let $T = \{\theta \ \mathcal{L}$ -theory : $\varphi \models \theta\}$. By the previous question, $T \cup \{\neg\psi\}$ is not satisfiable. By compactness, there exists finitely many $\theta_i \in T$ such that $\{\theta_i : i \leq k\} \cup \{\neg\psi\}$ is not satisfiable. Let $\theta \coloneqq \bigwedge_i \theta_i \in T$. Then $\theta \models \psi$ and, by definition of $T, \varphi \models \theta$.

Problem 2:

Let $\mathcal{L}_0 \subseteq \mathcal{L}$ be two languages, T an \mathcal{L} -theory and $\varphi(x)$ an \mathcal{L} -formula whoses variables are in \mathcal{L}_0 -sorts. Assume that for all M, $N \models T$. If $M|_{\mathcal{L}_0} = N|_{\mathcal{L}_0}$ then $\varphi(M) = \varphi(N)$. Let \mathcal{L}' be a copy of \mathcal{L} such that $\mathcal{L} \cap \mathcal{L}' = \mathcal{L}_0$. When ψ is an \mathcal{L} formula, let ψ' denote the \mathcal{L}' -formula obtained by changing the \mathcal{L} -symbols of ψ into the corresponding \mathcal{L}' -symbols. Let $T' := \{\psi' : \psi \in T\}$.

1. Show that $T \cup T' \vDash \forall x \varphi(x) \rightarrow \varphi'(x)$.

Solution: Let $M \models T \cup T'$. Let N be $M|_{\mathcal{L}'}$ considered as an \mathcal{L} -structure. Then $N|_{\mathcal{L}_0} = M|_{\mathcal{L}_0}$. By our hypothesis, $\varphi'(M) = \varphi(N) = \varphi(M)$ and hence $M \models \forall x \varphi(x) \rightarrow \varphi'(x)$.

2. Show that there exists an \mathcal{L} -sentence θ such that in every $\mathcal{L} \cup \mathcal{L}'$ -structure M, we have $M \vDash \forall x (\theta \land \varphi(x)) \rightarrow (\theta' \rightarrow \varphi'(x))$.

Solution: By compactness, we can find $\theta \in T$ such that $\theta \wedge \theta' \models \forall x \varphi(x) \to \varphi'(x)$. Let M be an $\mathcal{L} \cup \mathcal{L}'$ -structure and pick $m \in M^x$. Assume that $M \models \theta \cup \varphi(m)$ and $M \models \theta'$, then we have $M \models \forall x \varphi(x) \to \varphi'(x)$ and hence $M \models \varphi'(m)$.

3. Show that there exists an \mathcal{L}_0 -formula $\psi(x)$ such that $T \models \forall x \varphi(x) \leftrightarrow \psi(x)$.

Hint: Use the last question of the previous problem.

Solution: Let c be a new tuple of constants sorted as x. By the previous question, we have that $\theta \land \varphi(c) \vDash \theta' \to \varphi'(c)$. By Question 2.4, there exists an $\mathcal{L}_0(c)$ -formula χ such that $\theta \land \varphi(c) \vDash \chi$ and $\chi \vDash \theta' \to \varphi'(c)$. Let $\psi(x)$ be an \mathcal{L}_0 -formula such that $\chi = \psi(c)$. We have that $T \vDash \forall x \varphi(x) \to \psi(x)$. Also $T' \vDash \forall x \psi(x) \to \varphi'(x)$. By definition of T', it follows that $T \vDash \forall x \psi(x) \to \varphi(x)$ and thus, $T \vDash \forall x \psi(x) \leftrightarrow \varphi(x)$.

Problem 3:

Let M be an \mathcal{L} -structure, $A \subseteq B \subseteq M$ and \mathfrak{U} be a non principal ultrafilter on A. We define

$$\operatorname{Av}(\mathfrak{U}/B) \coloneqq \{\varphi(x) \ \mathcal{L}(B) \text{-formula} \colon \{a \in A : M \vDash \varphi(a)\} \in \mathfrak{U}\}.$$

1. Show that $\operatorname{Av}(\mathfrak{U}/B)$ is a complete $\mathcal{L}(B)$ -type.

Solution: Let us first prove that $\operatorname{Av}(\mathfrak{U}/B)$ is finitely satisfiable. Let $phi_i(x)$ be finitely many formulas in $\operatorname{Av}(\mathfrak{U}/B)$. Let $A_i := \{a \in A : M \models \varphi_i(a)\} \in \mathfrak{U}$. Since \mathfrak{U} is a filter, $\bigcap_i A_i$ is in \mathfrak{U} and is therefore non empty. Moreover, since \mathfrak{U} is an ultrafilter, if $\{a \in A : M \models \varphi(a)\} \notin \mathfrak{U}$, then its complement $\{a \in A : M \models \neg\varphi(a)\}$ is in \mathfrak{U} and $\neg\varphi\operatorname{Av}(\mathfrak{U}/B)$. So $\operatorname{Av}(\mathfrak{U}/B)$ is a complete type.

2. Assume M is $|A|^+$ -saturated. For all $i \in \mathbb{Z}_{\geq 0}$, pick by induction $b_{i+1} \models \operatorname{Av}(\mathfrak{U}/A \cup \{b_j : j < i\})$. Show that $(b_i)_{i \in \mathbb{Z}_{\geq 0}}$ is a sequence which is indiscernible over A.

Solution: Let us first prove that if c_1 and c_2 are tuples in B with the same type over A and $\varphi(x, y)$ be an \mathcal{L} -formula, then $\varphi(x, c_1) \in \operatorname{Av}(\mathfrak{U}/B)$ if and only if $\varphi(x, c_2) \in \operatorname{Av}(\mathfrak{U}/B)$. Indeed, since c_1 and c_2 have the same type over A, $\{a \in A : \varphi(a, c_1)\} = \{a \in A : \varphi(a, c_2)\}$. Also note that if $B \subseteq C$, then $\operatorname{Av}(\mathfrak{U}/B) \subseteq \operatorname{Av}(\mathfrak{U}/C)$.

We now prove by induction on n that for all $i_1 < \ldots < i_n, b_{i_1}, \ldots, b_{i_n}$ has the same type over A as b_1, \ldots, b_n . If b_{i_1}, \ldots, b_{i_n} has the same type over A as b_1, \ldots, b_n , then, by our first remark, $b_{i_1}, \ldots, b_{i_n}, b_{i_{n+1}}$ has the same type over A as $b_1, \ldots, b_n, b_{i_{n+1}}$. By our second remark, $b_{i_{n+1}}$ has the same type as b_{n+1} over $Ab_1 \ldots b_n$. It follows that $b_{i_1}, \ldots, b_{i_n}, b_{i_{n+1}}$ has the same type over A as b_1, \ldots, b_n . It follows that $b_{i_1}, \ldots, b_{i_n}, b_{i_{n+1}}$ has the same type over A as $b_1, \ldots, b_n, b_{n+1}$.