Homework 9

Problem 1:

Let \mathcal{L}_1 and \mathcal{L}_2 be two languages, T_1 an \mathcal{L}_1 -theory and T_2 an \mathcal{L}_2 -theory. Let $\mathcal{L} \coloneqq \mathcal{L}_1 \cap \mathcal{L}_2$. Let $T = \{\varphi \ \mathcal{L}$ -sentence $: T_1 \vDash \varphi\}$. Let us assume that both T_1 and T_2 are satisfiable.

- 1. Let $M \models T$, show that there exists $A \models T_1$ such that $M \leq A|_{\mathcal{L}}$.
- 2. Let \mathcal{L}' be any language containing \mathcal{L} , A be an \mathcal{L}' -structure and M be an \mathcal{L} -structure such that $A|_{\mathcal{L}} \leq M$. Show that there exists an \mathcal{L}' -structure B such that $A \leq B$ and $M \leq B|_{\mathcal{L}}$.
- 3. Assume that $T \cup T_2$ is satisfiable. Show that $T_1 \cup T_2$ is satisfiable.
- 4. Let φ be an \mathcal{L}_1 -sentence and ψ be an \mathcal{L}_2 -sentence. Assume that $\varphi \vDash \psi$ (i.e. any $\mathcal{L}_1 \cup \mathcal{L}_2$ -structure which is a model of φ is also a model of ψ). Show that there exists an \mathcal{L} -sentence θ such that $\varphi \vDash \theta$ and $\theta \vDash \psi$.

Problem 2:

Let $\mathcal{L}_0 \subseteq \mathcal{L}$ be two languages, T an \mathcal{L} -theory and $\varphi(x)$ an \mathcal{L} -formula whoses variables are in \mathcal{L}_0 -sorts. Assume that for all M, $N \models T$. If $M|_{\mathcal{L}_0} = N|_{\mathcal{L}_0}$ then $\varphi(M) = \varphi(N)$. Let \mathcal{L}' be a copy of \mathcal{L} such that $\mathcal{L} \cap \mathcal{L}' = \mathcal{L}_0$. When ψ is an \mathcal{L} formula, let ψ' denote the \mathcal{L}' -formula obtained by changing the \mathcal{L} -symbols of ψ into the corresponding \mathcal{L}' -symbols. Let $T' := \{\psi' : \psi \in T\}$.

- 1. Show that $T \cup T' \vDash \forall x \varphi(x) \rightarrow \varphi'(x)$.
- 2. Show that there exists an \mathcal{L} -sentence θ such that in every $\mathcal{L} \cup \mathcal{L}'$ -structure M, we have $M \models \forall x (\theta \land \varphi(x)) \rightarrow (\theta' \rightarrow \varphi'(x))$.
- 3. Show that there exists an \mathcal{L}_0 -formula $\psi(x)$ such that $T \models \forall x \varphi(x) \leftrightarrow \psi(x)$.

Hint: Use the last question of the previous problem.

Problem 3:

Let M be an \mathcal{L} -structure, $A \subseteq B \subseteq M$ and \mathfrak{U} be a non principal ultrafilter on A. We define

$$\operatorname{Av}(\mathfrak{U}/B) \coloneqq \{\varphi(x) \ \mathcal{L}(B) \text{-formula} \colon \{a \in A : M \vDash \varphi(a)\} \in \mathfrak{U}\}.$$

- 1. Show that $\operatorname{Av}(\mathfrak{U}/B)$ is a complete $\mathcal{L}(B)$ -type.
- 2. Assume *M* is $|A|^+$ -saturated. For all $i \in \mathbb{Z}_{\geq 0}$, pick by induction $b_{i+1} \models \operatorname{Av}(\mathfrak{U}/A \cup \{b_j : j < i\})$. Show that $(b_i)_{i \in \mathbb{Z}_{\geq 0}}$ is an indiscernible sequence.