Homework 10

Problem 1:

Let \mathcal{L} be a countable language. A complete \mathcal{L} -theory T is almost strongly minimal if there exists $M \models T \aleph_0$ -saturated, $A \subseteq M$ finite and $\varphi(x)$ an $\mathcal{L}(A)$ -formula such that φ is strongly minimal and $M = \operatorname{acl}(\varphi(M) \cup A)$.

- 1. Show that there exists an $\mathcal{L}(A)$ -formula $\psi(x, y)$ such that for all $a \in \varphi(M)^y$, $|\psi(M, a)| < \infty$ and $M = \bigcup_{a \in \varphi(M)^y} \psi(M, a)$.
- 2. Show that T is ω -stable.
- 3. Let $N \ge M$ and χ be a strongly minimal $\mathcal{L}(N)$ -formula. Let $B \subseteq M$ such that φ and χ are *B*-definable, $(a_i)_{i \in I}$ and $(b_i)_{i \in I}$ be sequences in $\varphi(N) \cup \chi(N)$ such that, for all $i, a_i \in \varphi(N)$ if and only if $b_i \in \varphi(N), a_i \notin \operatorname{acl}(Ba_{< i})$ and $b_i \notin \operatorname{acl}(Bb_{< i})$. Show that the map sending a_i to b_i , for all i, and fixing B is a partial elementary embedding.
- 4. Let $N \ge M$ and χ be a strongly minimal $\mathcal{L}(N)$ -formula. Show that there exists $A \subseteq B \subseteq N$ finite such that χ is an $\mathcal{L}(B)$ -formula and for all $b \in \chi(N) \setminus \operatorname{acl}(B)$, there exists $c \in \varphi(N)$ such that $\operatorname{acl}(B \cup c) = \operatorname{acl}(B \cup b)$.
- 5. Let $M \leq M_1 \leq N_1$ where M_1 and N_1 are \aleph_0 -saturated. Let θ be an $\mathcal{L}(M_1)$ -formula such that $\theta(M_1) = \theta(N_1)$ is infinite. Show that there exists a strongly minimal $\mathcal{L}(M_1)$ -formula χ such that $\chi(M_1) = \chi(N_1)$.
- 6. Notations as above, show that any $b \in \varphi(N_1) \setminus \varphi(M_1)$ is in $\operatorname{acl}(Bc)$ for some finite $B \subseteq M_1$ and $c \in \chi(N_1)$. Conclude that $N_1 = M_1$.
- 7. Show that T is κ -categorical for all uncountable cardinal κ .
- 8. Show that there exists a tuple $b \in M$ such that tp(b) is isolated, χ a strongly minimal $\mathcal{L}(b)$ -formula and $B \subseteq M$ finite such that $M = acl(\chi(M) \cup B)$.
- 9. Show that there exists a tuple $b \in M$ such that $\operatorname{tp}(b)$ is isolated and χ a strongly minimal $\mathcal{L}(b)$ -formula such that $M = \operatorname{acl}(\chi(M) \cup b)$.
- 10. Let \mathcal{L} be the language with two sorts X and Y and functions $f_i : X \to Y$ for $1 \leq i \leq n$. Let T be the theory stating that $\forall y_1 \dots \forall y_n \exists^{=1} x \land_i f_i(x) = y_i$ and Y is infinite. Show that T eliminates quantifiers, Y is strongly minimal, T is almost strongly minimal and T is κ -categorical for all infinite cardinals κ (not just the uncountable ones).