Homework 10

Problem 1:

Let \mathcal{L} be a countable language. A complete \mathcal{L}-theory T is almost strongly minimal if there exists $M \vDash T \aleph_{0}$-saturated, $A \subseteq M$ finite and $\varphi(x)$ an $\mathcal{L}(A)$-formula such that φ is strongly minimal and $M=\operatorname{acl}(\varphi(M) \cup A)$.

1. Show that there exists an $\mathcal{L}(A)$-formula $\psi(x, y)$ such that for all $a \in \varphi(M)^{y}$, $|\psi(M, a)|<\infty$ and $M=\bigcup_{a \in \varphi(M)^{y}} \psi(M, a)$.
2. Show that T is ω-stable.
3. Let $N \geqslant M$ and χ be a strongly minimal $\mathcal{L}(N)$-formula. Let $B \subseteq M$ such that φ and χ are B-definable, $\left(a_{i}\right)_{i \in I}$ and $\left(b_{i}\right)_{i \in I}$ be sequences in $\varphi(N) \cup \chi(N)$ such that, for all $i, a_{i} \in \varphi(N)$ if and only if $b_{i} \in \varphi(N), a_{i} \notin \operatorname{acl}\left(B a_{<i}\right)$ and $b_{i} \notin \operatorname{acl}\left(B b_{<i}\right)$. Show that the map sending a_{i} to b_{i}, for all i, and fixing B is a partial elementary embedding.
4. Let $N \geqslant M$ and χ be a strongly minimal $\mathcal{L}(N)$-formula. Show that there exists $A \subseteq B \subseteq N$ finite such that χ is an $\mathcal{L}(B)$-formula and for all $b \in \chi(N) \backslash \operatorname{acl}(B)$, there exists $c \in \varphi(N)$ such that $\operatorname{acl}(B \cup c)=\operatorname{acl}(B \cup b)$.
5. Let $M \leqslant M_{1} \leqslant N_{1}$ where M_{1} and N_{1} are \aleph_{0}-saturated. Let θ be an $\mathcal{L}\left(M_{1}\right)$-formula such that $\theta\left(M_{1}\right)=\theta\left(N_{1}\right)$ is infinite. Show that there exists a strongly minimal $\mathcal{L}\left(M_{1}\right)$-formula χ such that $\chi\left(M_{1}\right)=\chi\left(N_{1}\right)$.
6. Notations as above, show that any $b \in \varphi\left(N_{1}\right) \backslash \varphi\left(M_{1}\right)$ is in $\operatorname{acl}(B c)$ for some finite $B \subseteq M_{1}$ and $c \in \chi\left(N_{1}\right)$. Conclude that $N_{1}=M_{1}$.
7. Show that T is κ-categorical for all uncountable cardinal κ.
8. Show that there exists a tuple $b \in M$ such that $\operatorname{tp}(b)$ is isolated, χ a strongly minimal $\mathcal{L}(b)$-formula and $B \subseteq M$ finite such that $M=\operatorname{acl}(\chi(M) \cup B)$.
9. Show that there exists a tuple $b \in M$ such that $\operatorname{tp}(b)$ is isolated and χ a strongly minimal $\mathcal{L}(b)$-formula such that $M=\operatorname{acl}(\chi(M) \cup b)$.
10. Let \mathcal{L} be the language with two sorts X and Y and functions $f_{i}: X \rightarrow Y$ for $1 \leqslant i \leqslant n$. Let T be the theory stating that $\forall y_{1} \ldots \forall y_{n} \exists^{=1} x \wedge_{i} f_{i}(x)=y_{i}$ and Y is infinite. Show that T eliminates quantifiers, Y is strongly minimal, T is almost strongly minimal and T is κ-categorical for all infinite cardinals κ (not just the uncountable ones).
