Homework 11

Problem 1:

Let M be an \mathcal{L}-structure, $\mathcal{L}_{0} \subseteq \mathcal{L}$. We denote by MR (respectively MR_{0}) the Morley rank computed in models of M (respectively $\left.M\right|_{\mathcal{L}_{0}}$). Let φ be an $\mathcal{L}_{0}(M)$-formula.

1. Show that $\operatorname{MR}_{0}(\varphi) \leqslant \operatorname{MR}(\varphi)$.
2. Assume that $\operatorname{Th}(M)$ is strongly minimal. Show that $\operatorname{MR}_{0}(\varphi)=\operatorname{MR}(\varphi)$.

Problem 2:

Let $M_{0} \leqslant M$ be some structures and $f: D \rightarrow E$ be M_{0}-definable in M. Assume that M_{0} is \aleph_{0}-saturated and that M is $\left|M_{0}\right|^{+}$-saturated.

1. Assume that for all $e \in E, \operatorname{MR}\left(f^{-1}(e)\right) \leqslant 0$, show that $\operatorname{MR}(D) \leqslant \operatorname{MR}(E)$.
2. Pick $e \in E$ and assume that $\operatorname{MR}(D)>\gamma+\operatorname{MR}\left(f^{-1}(e)\right)$ for some ordinal γ. Show that there exists an M_{0}-definable $D^{\prime} \subseteq D$ such that $\operatorname{MR}\left(D^{\prime}\right)>\gamma$ and $f^{-1}(e) \cap D^{\prime}$ is finite or empty.

Hint: Proceed by induction on $\operatorname{MR}\left(f^{-1}(e)\right)$.
3. Assume that for all $e \in E, \operatorname{MR}\left(f^{-1}(e)\right) \leqslant \alpha$ for some ordinal $\alpha>0$, that $\operatorname{MR}(E)<\infty$ and that $\operatorname{MD}(E)=1$. Show that $\operatorname{MR}(D) \leqslant \alpha(\operatorname{MR}(E)+1)$.

Hint: Proceed by induction on $\operatorname{MR}(E)$.
4. Assume that for all $e \in E, \operatorname{MR}\left(f^{-1}(e)\right) \leqslant \alpha$ for some ordinal $\alpha>0$ and that $\operatorname{MR}(E)<\infty$. Show that $\operatorname{MR}(D) \leqslant \alpha(\operatorname{MR}(E)+1)$.

If ordinal arithmetics is a mystery to you, just assume that all the ordinal involved are integers.

Problem 3 :

Let $A \subseteq M \vDash T$ totally transcendental and $p \in S_{x}(A)$. Let I be some total order and $\left(a_{i}\right)_{i \in I}$ be a sequence of elements from M^{x}. We say that $\left(a_{i}\right)_{i \in I}$ is a Morley sequence of p if there exists $q \in S_{x}(M)$ non forking extension of p such that, for all $i \in I,\left.a_{i} \vDash q\right|_{A \cup\left\{a_{j}: j<i\right\}}$.

1. Assume p is stationary and let $\left(a_{i}\right)_{i \in I}$ be a Morley sequence of p. Show that $\left(a_{i}\right)_{i \in I}$ is $\mathcal{L}(A)$-indiscernible (i.e. it is an indiscernible sequence in M viewed as an $\mathcal{L}(A)$ structure).
2. Let $J \subseteq I$ be an initial segment of I without a greatest element and $\left(a_{i}\right)_{i \in I}$ be an $\mathcal{L}(A)$-indiscernible sequence. Pick any $i \in I \backslash J$, tuple a from $\left(a_{j}\right)_{j<i}$ and $\mathcal{L}(A)$ formula $\varphi(x, y)$. Assume that $M \vDash \varphi\left(a_{i}, a\right)$. Show that there exists a tuple c from $\left(a_{j}\right)_{j \in J}$ such that $\operatorname{MR}(\varphi(x, c))=\operatorname{MR}(\varphi(x, a))$ and $M \vDash \varphi\left(a_{i}, c\right)$.
3. Let J and $\left(a_{i}\right)_{i \in I}$ be as above and let $p=\operatorname{tp}\left(a_{i} / A \cup\left\{a_{j}: j \in J\right\}\right)$ for any $i \in I \backslash J$. Show that $\left(a_{i}\right)_{i \in I \backslash J}$ is a Morley sequence of p.

Problem 4:

Let M be κ_{1}-saturated, $\varphi(x, y)$ be some formula and $a \in M^{y}$. We say that $\varphi(M, a)$ is weakly normal if for all $\left(a_{i}\right)_{i \in \omega} \in M^{y}$ such that $\operatorname{tp}\left(a_{i}\right)=\operatorname{tp}(a)$ and if $i \neq j, \varphi\left(M, a_{i}\right) \neq$ $\varphi\left(M, a_{j}\right)$, then $\cap_{i \epsilon \omega} \varphi\left(M, a_{i}\right)=\varnothing$.

1. Show that if $\varphi(M, a)$ is not weakly normal, then, for all cardinal κ, there exists $N \geqslant M$ and $\left(a_{i}\right)_{i \epsilon \kappa} \in N^{y}$, such that for all $i \in \kappa, \operatorname{tp}\left(a_{i}\right)=\operatorname{tp}(a)$, for all $i \neq j$, $\varphi\left(N, a_{i}\right) \neq \varphi\left(N, a_{j}\right)$ and $\bigcap_{i \epsilon \kappa} \varphi\left(N, a_{i}\right) \neq \varnothing$.
2. Show that $\varphi(M, a)$ is weakly normal if and only if, for all $b \in \varphi(M, a),{ }^{\ulcorner } \varphi(M, a)^{`} \subseteq$ $\operatorname{acl}^{\mathrm{eq}}(b)$.
