Silvain Rideau 1091 Evans

Homework 11

Problem 1:

Let M be an \mathcal{L} -structure, $\mathcal{L}_0 \subseteq \mathcal{L}$. We denote by MR (respectively MR₀) the Morley rank computed in models of M (respectively $M|_{\mathcal{L}_0}$). Let φ be an $\mathcal{L}_0(M)$ -formula.

- 1. Show that $MR_0(\varphi) \leq MR(\varphi)$.
- 2. Assume that $\operatorname{Th}(M)$ is strongly minimal. Show that $\operatorname{MR}_0(\varphi) = \operatorname{MR}(\varphi)$.

Problem 2:

Let $M_0 \leq M$ be some structures and $f: D \rightarrow E$ be M_0 -definable in M. Assume that M_0 is \aleph_0 -saturated and that M is $|M_0|^+$ -saturated.

- 1. Assume that for all $e \in E$, $MR(f^{-1}(e)) \leq 0$, show that $MR(D) \leq MR(E)$.
- 2. Pick $e \in E$ and assume that $MR(D) > \gamma + MR(f^{-1}(e))$ for some ordinal γ . Show that there exists an M_0 -definable $D' \subseteq D$ such that $MR(D') > \gamma$ and $f^{-1}(e) \cap D'$ is finite or empty.

Hint: Proceed by induction on $MR(f^{-1}(e))$.

3. Assume that for all $e \in E$, $MR(f^{-1}(e)) \leq \alpha$ for some ordinal $\alpha > 0$, that $MR(E) < \infty$ and that MD(E) = 1. Show that $MR(D) \leq \alpha(MR(E) + 1)$.

Hint: Proceed by induction on MR(E).

4. Assume that for all $e \in E$, $MR(f^{-1}(e)) \leq \alpha$ for some ordinal $\alpha > 0$ and that $MR(E) < \infty$. Show that $MR(D) \leq \alpha(MR(E) + 1)$.

If ordinal arithmetics is a mystery to you, just assume that all the ordinal involved are integers.

Problem 3:

Let $A \subseteq M \models T$ totally transcendental and $p \in S_x(A)$. Let I be some total order and $(a_i)_{i \in I}$ be a sequence of elements from M^x . We say that $(a_i)_{i \in I}$ is a Morley sequence of p if there exists $q \in S_x(M)$ non forking extension of p such that, for all $i \in I$, $a_i \models q|_{A \cup \{a_i: i \leq i\}}$.

- 1. Assume p is stationary and let $(a_i)_{i \in I}$ be a Morley sequence of p. Show that $(a_i)_{i \in I}$ is $\mathcal{L}(A)$ -indiscernible (i.e. it is an indiscernible sequence in M viewed as an $\mathcal{L}(A)$ -structure).
- 2. Let $J \subseteq I$ be an initial segment of I without a greatest element and $(a_i)_{i \in I}$ be an $\mathcal{L}(A)$ -indiscernible sequence. Pick any $i \in I \setminus J$, tuple a from $(a_j)_{j < i}$ and $\mathcal{L}(A)$ formula $\varphi(x, y)$. Assume that $M \models \varphi(a_i, a)$. Show that there exists a tuple c from $(a_j)_{j \in J}$ such that $\mathrm{MR}(\varphi(x, c)) = \mathrm{MR}(\varphi(x, a))$ and $M \models \varphi(a_i, c)$.
- 3. Let J and $(a_i)_{i \in I}$ be as above and let $p = \operatorname{tp}(a_i/A \cup \{a_j : j \in J\})$ for any $i \in I \setminus J$. Show that $(a_i)_{i \in I \setminus J}$ is a Morley sequence of p.

Problem 4:

Let M be \aleph_1 -saturated, $\varphi(x, y)$ be some formula and $a \in M^y$. We say that $\varphi(M, a)$ is weakly normal if for all $(a_i)_{i \in \omega} \in M^y$ such that $\operatorname{tp}(a_i) = \operatorname{tp}(a)$ and if $i \neq j$, $\varphi(M, a_i) \neq \varphi(M, a_j)$, then $\bigcap_{i \in \omega} \varphi(M, a_i) = \emptyset$.

- 1. Show that if $\varphi(M, a)$ is not weakly normal, then, for all cardinal κ , there exists $N \ge M$ and $(a_i)_{i \in \kappa} \in N^y$, such that for all $i \in \kappa$, $\operatorname{tp}(a_i) = \operatorname{tp}(a)$, for all $i \neq j$, $\varphi(N, a_i) \neq \varphi(N, a_j)$ and $\bigcap_{i \in \kappa} \varphi(N, a_i) \neq \emptyset$.
- 2. Show that $\varphi(M, a)$ is weakly normal if and only if, for all $b \in \varphi(M, a)$, $\varphi(M, a) \subseteq \operatorname{acl}^{\operatorname{eq}}(b)$.