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Theorem1.1 (Downwards Löwenheim-Skolem):

Let M be a structure and A b M . Then, there exists M0 l M containing A such

that SM0S D SAS � SLS.

Proof . Let κ � SAS � SLS. We de�ne �Aj�j>ZE0 by induction. Let A0 �� A. Let us now
assume Aj has been built. Let �ϕi�xi, yi�, ai� � i > κ� be an enumeration of all formulas

ϕ�x, y� and tuples a > Ayj . Let I0 �� �i > κ � M à �§xiϕi��ai��. For all i > I0, pick any
ci >M

x such that M à ϕi�ci, ai�. Let Aj�1 �� Aj 8 �ci � i > I0�.
Let M0 �� �j Aj . By construction, SAj S D κ, so SM0S D κ � recall that, by de�nition,
SLS E ¯0.

Claim1.2: For all formula ϕ�x, y� and M0-assignment δ, if M à �§x ϕ��δ� then there

exists c >M0 such that M à ϕ�δ, x� c�.

Proof . Since δ�y� is �nite, there exists j such that a �� δ�y� > Aj . Since M à �§xϕ��a�,
by construction, there exists c > Aj�1 bM0 such that M à ϕ�c, a�. Æ

By Tarski-Vaught, M0 lM . Ì

De�nition 1.3:

Let L0 b L be two languages and let M be an L-structure. We de�ne M S
L0

to be the

L0-structure whose sorts are the same as M and where the L0-symbols are interpreted as

in M .

If M0 is an L0-structure, an L-enrichment of M0 is an L-structure M such that M S
L0

�

M0.
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1. Semantic and syntax

Let M be an structure and let A b M . We de�ne L�A� �� L 8 �ca � a > A�, where ca
is a new constant sorted as a. We de�ne MA to be the natural L�A�-enrichment of M
de�ned by cMa � a, for all a > A.

De�nition 1.4 (Diagrams):
Let M be an structure and let A bM . We de�ne:

(i) the quanti�er free diagram of A in M to be

∆M�A� �� �ϕ quanti�er free L�A�-sentence �MA à ϕ�;

(ii) the elementary diagram of A in M to be

D
el
M�A� �� Th�MA� � �ϕ L�A�-sentence �MA à ϕ�.

Proposition 1.5:

Let M and N be structures and let A DM .

(i) There exists an L�A�-enrichment NA of N such that NA à ∆M�A� if and only if

there exists an embedding θ � A� N .

(ii) There exists an L�M�-enrichment NM of N such that NM à D
el
M�M� if and only

if there exists an elementary embedding θ �M � N .

Proof .

(i) Let us �rst assume that there exists an L�A�-enrichment NA of N such that NA à

∆M�A�. Let θ�a� �� cNA
a . Let us show that θ is an embedding.

� Pick any a1 x a2 > A. Then MA à ca1 x ca2 which is a quanti�er free L�A�-
formula and hence NA à ca1 x ca2 , i.e. θ�a1� � cNA

a1 x cNA
a2 � θ�a2�. So θ is

injective.

� If c is a constant and A D M , cM � cA and MA à c � ccA , a quanti�er free
L�A�-formula. It follows that NA à c � ccA , i.e. c

N � cNA � cNA

cA
� θ�cA�.

� If f > FX and ai > Xi�A�, since A D M , MA à cfA�a� � f�ca�, where ca is

the tuple �cai�i. We therefore have NA à cfA�a� � f�ca�, that is, θ�f
A�a�� �

cNA

fA�a�
� fN�cNA

a � � fn�θ�a��.

� If P > RX and ai > Xi�A�, since A D M , a > RA if and only if MA à R�ca�,

which is equivalent to NA à R�ca�, i.e. c
NA
a � θ�a� > RN .

Conversely, assume that θ � A� N is a embedding. We de�ne an L�A�-enrichment
of N by cNA

a �� θ�A�. For all quanti�er free L-formula ϕ�x� and a > Ax, we have:

MA à ϕ�ca� 
� M à ϕ�a�


� A à ϕ�a�


� N à ϕ�θ�a��


� NA à ϕ�ca�.

So NA à∆M�A�.
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1. Semantic and syntax

(ii) Let us �rst assume that there exists an L�M�-enrichment of N of N such that
NM à D

el
M�M�. Let θ �M � N be de�ned by θ�a� �� cNM

a . In (i), we proved that
θ was an embedding, let us prove that it is elementary. Pick any L�M�-formula
ϕ�x� and a >Mx. We have:

M à ϕ�a� 
� MM à ϕ�ca�


� NM à ϕ�ca�


� N à ϕ�θ�a��.

So θ is elementary.

Conversely assume that there exists an elementary embedding θ � M � N . Let
us de�ne an L�M�-enrichment NM of N by cNM

a �� θ�a�, for all a > M . For all
L-formula ϕ�x� and a >Mx, we have:

MM à ϕ�ca� 
� M à ϕ�a�


� N à ϕ�θ�a��


� NM à ϕ�ca�.

So NM à D
el
M�M�.

Ì

If N à ∆M�A�, we may, at the cost of renaming points of N , assume that A b N and
that, for all a > A, cNa � a. In particular, if N à Del

M�M�, by renaming points in N , we
may assume that M l N .

Theorem1.6 (Upwards Löwenheim-Skolem):

Let M be an in�nite structure and κ E SM S � SLS. Then there exists N m M with

SN S � κ.

Proof . Let X be a sort such that X�M� is in�nite and let T be the L 8 �ci � i > κ�-
theory Del

M�M� 8 �ci x cj � i x j > κ�, where the ci are new X-constants. Then T is
�nitely satis�able. Indeed, let T0 b T be �nite. Then there exists I0 b κ �nite such
that T0 b Del

M�M� 8 �ci x cj � i x j > I0�. Since X�M� is in�nite, we can �nd distinct
�ai�i>I0 > X�M� and interpreting ci as ai we get an enrichment of M which is a model
of T0.
Let NàT . We may assume that M l N S

L
. By downwards Löwenheim-Skolem (cf.

Theorem (1.1)), applied to M b N , we may assume that SN S D SL 8 �ci � i > κ�S � SM S � κ.
Note that since all the cNi are distinct, SN S � κ. Ì

Corollary 1.7:

Let T be a theory with in�nite models, then T has a model of every cardinality κ E SLS.

Proof . Let M à T be �nite. If κ E SM S, applying upwards Löwenheim-Skolem (cf. Theo-
rem (1.6)), we �nd N mM such that SN S � κ. In particular, N à T . If κ D SM S, pick any
A0 b M with SA0S � κ. By downwards Löwenheim-Skolem (cf. Theorem (1.1)), we �nd
N lM containing A with SN S D SAS � SLS � κ. But since κ � SAS D SN S, SN S � κ. Ì

09/05
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2. Types

2. Types

2.1. De�nitions

De�nition 2.1:

Let M be a structure. A set X bMx is said to be de�nable if there exists a formula ϕ�x�
such that X � ϕ�M� �� �a >Mx �M à ϕ�a��.
A function is said to be de�nable if its graph is de�nable.

If θi �M � N is an elementary embedding and ϕ is a formula, then ϕ�M� � θ�1�ϕ�N��.
It follows that de�nable sets should be considered as functors from the category of models
of Th�M�, with elementary embeddings, to the category of sets. Equivalently, they can
be considered as an equivalence class of formulas (under equivalence in Th�M�).
If A bM , we say that X bMx is A-de�nable if it is de�nable in the L�A�-structure MA,
i.e. there exists a formula ϕ�x, y� and a > Ay such that X � ϕ�M,a�.

De�nition 2.2:

Let T be a theory and π�x� a set of formulas. We say

De�nition 2.3:

Let π�x� a set of formulas.

(i) let M be a structure. We say that π is satis�able in M , if there exists a >Mx such

that for all ϕ > π, M à ϕ�a�. Dually, we say that a realizes π in M . We write

M à π�a�.

(ii) Let T be a theory. The set π is said to be a partial x-type of T if for all �nite

π0 b π, π0 is satis�able in some model T . We say that π is �nitely satis�able in

models of T .

(iii) An x-type p is a partial x-type that is maximal for inclusion.

We sometimes refer to types as complete types to distinguish them from partial types.
Partial types are �lters on the Boolean algebra of de�nable sets and types are ultra�lters
on that algebra.

Remark 2.4:

Let T be a complete theory. A set of formulas π�x� is a partial type of T if and only if
for all M à T , π is satis�able in M .

Proof . Assume that π is a partial type and �x M à T and π0 b π �nite. By de�nition,
there exits N à T such that N à §x�ϕ>π0 ϕ�x�. Since T is complete, it follows that we
also have M à §x�ϕ>π0 ϕ�x�. The converse is obvious. Ì

Notation 2.5:

(i) If A bM , a (partial) type of M over A is a (partial) type of Del
M�A�.
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2. Types

(ii) We denote by Sx�T � the set of x-types of T and by SMx �A�, the set of x-types of
M over A.

If A bM l N , then, for all x, SMx �A� � SMx �A� � in fact, it su�ce that à Del
M�A�.

Example 2.6:

1. Let T be a theory, M à T and a > Mx. Then tpM�a� �� �ϕ�x� formula � M à

ϕ�a�� > Sx�T �.

If A bM , tpM�a~A� �� �ϕ�x� L�A� � formula �M à ϕ�a�� > SMx �A�.

2. If you consider the empty tuple of variables: Sg�T � is the set of completions of T
and SMg �A� � �Del

M�A��.

3. Let L@ be the one sorted language with a binary symbol @. Let M � �Q;@� and
A � Z. Then �x A n � n > Z� is a partial type. We will see later that it is in fact a
type.

Remark 2.7:

A partial type π�x� of some satis�able theory T is complete if and only if for every
formula ϕ�x�, ϕ > π or  ϕ > π.

Proof . Let us assume π is a type and ϕ ¶ π. Since π is maximal for inclusion, π 8 �ϕ� is
not �nitely satis�able, so we can �nd π0 b π �nite such that for all M à T and a >Mx,
if M à π0�a� then M à ϕ�a�, i.e. M à  ϕ�a�. Now pick any π1 b π �nite. By the above,
π1 8 � ϕ� is satis�able in any model of T by a realization of π1 8 π0. It follows that
π 8 � ϕ� is �nitely satis�able and hence, by maximality,  ϕ > π.
Conversely, if for every formula ϕ�x�, ϕ > π or  ϕ > π, then π is maximal since the �nite
set �ϕ, ϕ� is not satis�able in any model of T . Ì

Proposition 2.8:

(i) Let π�x� be a partial type of T . Then there exists M à T realizing π.

(ii) Let A b M some structure, and π a partial type of M over A. Then there exist

N mM realizing π.

Proof .

(i) Let c be a new tuple of constants sorted like x. Then the L 8 �c�-theory T 8 π�c�
is �nitely satis�able by de�nition of partial types. So, by compactness, we �nd an
L 8 �c�-structure Mc à T 8 π�c�, i.e. M S

L
à T and M à π�cM �.

(ii) Note that π is �nitely satis�able in M à D
el
M�A�, so π is also a partial type in

D
el
M�M�. We can now apply (i) to conclude.
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2. Types

Ì

Corollary 2.9:

Every partial type π�x� is included in a complete type.

We can prove this directly using Zorn, but let us use what we have done so far:

Proof . Since π is a partial type, then by Proposition (2.8).(i), we �ndM à T and a >Mx

realizing π. Then tpM�a� is a complete type containing π. Ì

De�nition 2.10:

Let T be a theory and x a tuple of variables. We de�ne a topology on Sx�T � whose basis

of open sets is given by sets of the form `ϕe �� �p > Sx�T � � ϕ > p� for all formula ϕ�x�.

The `ϕe do form a basis of open sets since `ϕe9 `ψe � `ϕ,ψe and `ϕe8 `ψe � `ϕ-ψe. A
general closed set of Sx�T � is of the form `πe �� �ϕ>π`ϕe � �p > Sx�T �� � π b p� where π is
a partial x-type of T . Note also that the complement of `ϕe is ` ϕe which is also open.
So `ϕe is both open and closed � i.e. clopen � and Sx�T � is totally disconnected. In
particular, it is Hausdor�.

TheoremA:

For all theory T and tuple of variables x, the space Sx�T � is compact.

Proof . Assume Sx�T � � �i>I Vi where the Vi are open. Without loss of generality, we
may assume that Vi � `ϕie for some formula ϕi�x�. Let π �� � ϕi � i > I�. If π is �nitely
satis�able in models of T , then, by Corollary (2.9) we can �nd a complete type p c π.
Then p ¶ `ϕie for all i, contradicting the fact that Sx�T � � �i>I`ϕie.
It follows that there exists I0 b I �nite such that for all M à T , M à ¦x �i>I0  ϕi and
thus Sx�T � � �i>I0`ϕie. Ì

Corollary 2.11:

If U b Sx�T � is clopen, then there exists a formula ϕ such that U � `ϕe.

Proof . Since U is open, U � �i>I`ϕie for some formulas ϕi�x�. Since U is closed it is
compact and there exists I0 b I �nite such that U � �i>I0`ϕie � `�i>I0 ϕie. Ì

2.2. Saturation

De�nition 2.12:

Let M be a structure and κ be an in�nite cardinal.

(i) We say that M is κ-saturated if for every A bM such that SAS @ κ and p > Sx�A�,
p is realized in M .

(ii) We say that M is saturated if it SM S-saturated.
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2. Types

Remark 2.13:

If M is κ-saturated, then SM S E κ. Indeed, for any sort X, the partial type �x x a � a >

X�M�� cannot be realized in M so SX�M�S E κ.

Remark 2.14:

The structureM is κ-saturated if and only if for all A bM such that SAS @ κ and p > Sx�A�
where x is a single variable, p is realized in M

Proof . Let us assume that the second statement holds � the converse is obvious. We
show by induction on SxS that, for all A b M with SAS @ κ, any p > Sx�A� is realized
in A. If SxS � 1, that is our hypothesis. Let us now assume x � �y, z� where z is a
single variable. Let q �� �ϕ�y� � ϕ > p� > Sy�A�. By induction we �nd c > Mx such that
M à q�c�. Let p�c, z� � �ϕ�c, z� � ϕ > p� > Sz�A 8 c�. By hypothesis we can �nd d > M
such that M à p�c, d�, i.e. p is realized in M . Ì

09/06

Proposition 2.15:

Let M be an L-structure, SM S E SLS. We can �nd N m M which is SM S�-saturated and

such that SN S D 2SM S.

2.3. Homogeneity
09/18

Proposition 2.16:

Let M,N be homogeneous with SM S � SN S. Assume that:

(�) for every A b M , SAS @ SM S and partial elementary embedding f � M � N with

domain A, any p > Sx�A� is realized in M if and only if f�p is realized in N .

Then M � N .

Remark 2.17:

Assumption (�) is equivalent to:

(��) for all potentially in�nite tuple of variables x with SxS @ κ, M and N realize the
same types in Sx�T �, where T � Th�M� � Th�N�.

Proposition 2.18:

Let M be a structure and κ E SLS a cardinal. The following are equivalent:

(i) M is κ-saturated.

(ii) M is weakly κ-homogeneous and κ�-universal.

Proof .

7



2. Types

(ii)�(i) Pick any A b M with SAS @ κ and any p > SMx �A�. We know that there exists
N à Del

M�A� containing c à p. By downwards Löwenheim-Skolem, we may assume
that SN S � SAS � SLS D κ. By κ�-universality, there exists an elementary embedding
f � N � M . The map g � f�AN� � A de�ned by g�f�aN�� � a is a partial
elementary embedding so, by κ-homogeneity, it extends to f�c�. For all formula
ϕ�x, a� > p, we have that N à ϕ�c, aN�. It follows that M à ϕ�f�c�, f�aN�� and
hence M à ϕ�g�f�c��, g�f�aN���, i.e. M à ϕ�g�f�c��, a�. So g�f�c�� à p.

09/19

(i)�(ii) Let f � M � N be a partial elementary embedding with domain A, SAS @ κ, and
a > M . Let p �� tpM�a~A�. By κ-saturation, f�p is realized by some c > M .
Extending f by a ( c, we get an elementary embedding. Now consider N � M
with λ �� SN S D κ. Enumerate N as �ai � i > λ�. We build, by induction on i > κ,
a partial elementary embedding fi � N � M with domain �aj � j D i� and such
that fi extends fj whenever i D j. Assuming that fj is build for every j @ i, let
g � �j@i fj . It is an partial elementary embedding with domain Ai �� �ai � i @ j�.
Let p � tp�ai~Ai�. By κ-saturation, f�p is realized by some c >M . Setting fi�ai� � c
will provide us with the required extension of g. We may now de�ne f � �jDλ which
is indeed an elementary embedding from N to M .

Ì

Corollary 2.19:

Let M � N be saturated with SM S � SN S. Then M � N .

Proof . By Proposition (2.18), M and N are homogeneous. Moreover, for every A b M
with SAS @ SM S and partial elementary f � M � N with domain A, any p > Sx�A� is
realized in M by saturation and so is f�p. So, by Proposition (2.16), M � N . Ì

Proposition 2.20:

Let M be a structure and κ be an in�nite cardinal. Then there exists N m M which is

κ�-saturated and strongly κ�-homogeneous.

Proof . By upwards Löwenheim-Skolem, we may assume SM S � κ E L. We build by in-
duction, using Proposition (2.15), structures �Mi�i@κ� such that M0 �M , Mi�1 is SMiS

�-
saturated andMi lMj whenever i @ j. Let N � �i@κ� . Then, by Tarski's union theorem,
N mM .
Let A b M have cardinality strictly smaller than κ�. By regularity of κ�, there exists
i @ κ� such that A bMi. By construction, any type over A is realized in Mi�1 l N .
Now let f � N � N be a partial elementary embedding on some domain A b N with
SAS @ κ�. Then, by regularity, there exists an i @ κ� such that f is a partial elementary
embedding from Mi � Mi. We build, by induction on j @ ω, elementary embeddings
fj � Mi�2j � Mi�2j�1 and gj � Mi�2j�1 � Mi�2j�2 such that fi�1 extends g�1i and gi
extends f�1i . By convention, we set g�1 � f

�1.
Assume gj is build, note that g

�1
j is a partial elementary embedding from Mi�2j�2 into

Mi�2j�1 l Mi�2j�3. By the same proof that κ-saturation implies κ�-universality, we
extend g�1j to a map from Mi�2j�2 to Mi�2j�3. The inverse of this extension is fj�1. We

8



3. Quanti�er elimination

build gj out of fj is a similar way. Then h � �j@ω fj � �j@ω gj is an automorphism of
Mi�ω.
The set of automorphisms of some Mi extending f is therefore non empty�where Mκ�

denote N . It is not hard to see that chains of such automorphisms have an upper bound
(namely the union of these automorphisms which is an automorphism of the union of
the domains). By Zorn, there is a maximal g �Mi �Mi extending f . But we have just
shown above that if i @ κ, we can extend g to an automorphism of Mi�ω. So g must be
an automorphism of N . Ì

3. Quanti�er elimination

3.1. De�nition and consequences

De�nition 3.1 (Elimination of quanti�ers):
A theory T is said to eliminate quanti�ers if for every formula ϕ�x�, there exists a

quanti�er free formula ψ�x� such that T à ¦x �ϕ�x�� ψ�x��.

Remark 3.2:

1. Due to the fact that the empty structure is not always considered a structure
and issues with sentences when there are no constants, the de�nition of quanti�er
elimination might vary slightly.

2. If L has no constants, there are no quanti�er free sentences, so we add a new
form of atomic formula � which never holds. With that convention, elimination of
quanti�ers in a language without constants implies completeness.

Example 3.3:

1. k-vector spaces for a �xed k in the language with one sort V , constant 0 � V ,
function symbols � � V 2

� V , � � V � V and λx � V � V for all x > k.

2. In�nite sets without structure in the language with one sort and no symbols.

3. Algebraically closed �elds in the ring language.

4. Dense linear orders with no endpoints: Q,@, R,@.

5. Divisible Abelian groups: Q,�, R,�.

6. Divisible ordered Abelian group: Q,�,@, R,�,@.

7. The random graph in the language with one sort G and a predicate E � G2 for the
edge relation.

8. The theory of Z in the ring language does not eliminate quanti�ers.

9



3. Quanti�er elimination

We will prove most of these quanti�er elimination results later, when we have a more
tools at our disposal.

Proposition 3.4:

Let T be a theory . We de�ne L� �� `8e�Rϕ b Li Sxi � ϕ�x� L-formula� and T � ��

T 8 �¦x Rϕ�x� � ϕ�x��. Then any model of T has a unique enrichment to a model

of T �, every L�-formula is equivalent, modulo T �, to an L-formula and T � eliminates

quanti�ers.

Proof . The �rst assertion is obvious since T � speci�es how Rϕ should be interpreted. The
second assertion is proved by induction on formulas. The atomic case is the de�nition of
T � and the rest of the induction is obvious. The third fact is then a easy consequence of
the second one. Ì

We have just seen that without changing the de�nable sets, we can make T have quanti�er
elimination. So one might wonder what use is quanti�er elimination. But in the previous
construction we changed the quanti�er free de�nable sets, which are the only ones we
really understand. This is therefore a very useful abstract construction, but it serves no
purpose as far as understanding what de�nable sets in a given structure look like.

De�nition 3.5:

Let M , N be structures. A partial embedding from M to N is a map f � A �M , where

A b M such that for all quanti�er free formula ϕ�x� and all a > Ax, M à ϕ�a� if and

only if N à ϕ�f�a��.

Remark 3.6:

If A D M , a partial embedding from M to N with domain A is exactly an embedding
A � N . Moreover, any partial embedding extends uniquely to the structure generated
by its domain.

Lemma3.7:

Let M,N be structure and A bM . The following are equivalent:

� there is a partial embedding f �M � N with domain A;

� there exists an L�A�-enrichment NA of N with NA à∆M�A�.

Proposition 3.8:

Let T eliminate quanti�ers, M,N à T and f �M � N be a partial embedding. Then f is

elementary.

Proof . Pick any formula ϕ�x� and a > Mx. By quanti�er elimination, there exists a
quanti�er free formula ψ�x� such that T à ¦x �ϕ�x� � ψ�x��. Then, since M à T ,
M à ϕ�a� if and only if M à ψ�a�. Because f is a partial embedding, this equivalent to
N à ϕ�f�a��. Since N à T , this last statement is equivalent to N à ϕ�f�a��. So we do
have M à ϕ�a� if and only if N à ϕ�f�a�� Ì

Quanti�er elimination therefore allows us to prove that certain embeddings are elemen-
tary by just checking that they are embeddings, which is much easier. This can be used
to determine completions of theories, describe types...
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3. Quanti�er elimination

3.2. Criterion's for elimination of quanti�ers

De�nition 3.9:

Let M,N be structures, A set I of partial embedding from M to N is said to have the

back and forth if:

(i) I x g;

(ii) for all f > I and a >M , there exists g > I extending f which i de�ned at a;

(iii) for all f > I and b > N , there exists g > I extending f whose image contains b.

Proposition 3.10:

Let M,N be structure and I a set of partial embeddings from M to N with the back and

forth. Then M � N . Moreover, any f > I is elementary.

Proof .We �rst prove by induction on ϕ�x�, that for any f > I and tuple a in the domain
of f , M à ϕ�a� if and only if N à ϕ�f�a��. The case of atomic formulas follows from
the fact that f is a partial embedding. The Boolean combinations are easy to deal with.
There remains to consider existential quanti�cation. Assume M à §x ϕ�x, a�, then we
can �nd some c > M such that M à ϕ�c, a�. By the back and forth, we can extend f
to some g > I de�ned on c. Then N à ϕ�g�c�, g�a�� and hence N à §x ϕ�x, f�a��. The
converse is proved similarly. Ì

Proposition 3.11:

Let M,N be ¯0-saturated. The following are equivalent:

(i) M � N ;

(ii) the set I of partial elementary embeddings with �nite domain from M to N has the

back and forth.

Proof . It is proved in Proposition (3.10) that (ii) always implies (i). There remains to
prove that (i) implies (ii). Let us assume that M � N holds. Then the map g � N
is a partial elementary embedding (since the domain is empty, we only have to check
sentences). Now, pick any partial elementary embedding f �M � N with �nite domain
A and any a >M . Let p �� tp�a~A�. Then f�p > SN�f�A�� is realized by some c > N , by
¯0-saturation, and f can be extended to a partial elementary embedding by sending a
to c. The reverse direction is proved similarly. Ì

Remark 3.12:

1. If M,N are structure, SM S � SN S and the set I of all partial elementary embeddings
from M to N , with domain strictly smaller than SM S, has the back and forth, then
any f > I extends to an isomorphism from M to N .

2. If M and N are countable, they are isomorphic if and only if there exists a family
of partial embeddings with the back and forth.

11



4. Omission of types

3.3. Examples

4. Omission of types
09/29

4.1. Isolated types

Theorem4.1 (Omitting types):

Assume SLS � ¯0. Let T be a theory and �πi�xi��i>ω a collection of non isolated

(partial) types. Then, there exists M à T countable such that none of the πi are
realized in M .

4.2. Prime and atomic models

Lemma4.2: 10/02
Let M,N be structures, f � M � N a partial elementary embedding with �nite domain

A and c > M . Assume M is atomic, then f can be extended to a partial elementary

embedding de�ned at c.

Proof . Choose an enumeration A � �ai � i D n�. Since M is atomic, tp�ac� is isolated by
some formula ϕ�x, y�. We have M à §y ϕ�a, y� and thus N à §y ϕ�f�a�, y�. Let d > Ny

be such that N à ϕ�f�a�, d�. Since ϕ isolates tp�ac�, it follows that tp�f�a�d� � tp�ac�,
so, extending f by c( d, we get the required partial elementary embedding. Ì

Corollary 4.3:

Let M be an atomic structure, then M is ¯0-homogeneous.

Corollary 4.4:

Assume SLS � ¯0. Let T be complete theory and M à T . The following are equivalent:

(i) M is prime;

(ii) M is atomic and countable.

Corollary 4.5:

Assume SLS � ¯0. Prime models, of some theory T , are unique up to isomorphism.

Proposition 4.6:

Assume SLS � ¯0. Let T be a complete theory. The following are equivalent:

(i) T has a prime model;

(ii) T has an atomic model;

(iii) For all �nite tuple of variable x, isolated types are dense in Sx�T �.

12



4. Omission of types

Remark 4.7:

Condition (iii) is equivalent to: for all formula ϕ�x� such that T à §x ϕ�x�, there exists
p > `ϕe b Sx�T � which is isolated.

Proposition 4.8:

Assume SLS � ¯0. Let T be a theory. Assume that for all �nite x, SSx�T �S @ 2¯0, then T
has a prime model.

The converse is not true, cf. �Q,@�.

Remark 4.9:

A similar proof shows that if SSx�T �S A ¯0, then SSx�T �S � 2¯0

4.3. ω-categorical theories
10/03

Recall that a theory is ω-categorical if it has a unique countable model up to isomorphism.
The following theorem characterizes ω-categorical by properties of their space of types
or their automorphism group. For all �nite tuple of variables x and structure M , the
action of Aut�M� on Mx is given by σ � a � σ�a�. A subset X > Mx is said to be
Aut�M�-invariant if for all σ > Aut�M�, σ�X� �X.

13



4. Omission of types

Theorem4.10 (Engeler,Ryll�Nardzewski,Svenonius):

Assume SLS � ¯0. Let T be a complete theory with in�nite models. The following are

equivalent:

(i) T is ω-categorical;

(ii) for every �nite x, any p > Sx�T � is isolated;

(ii') for every �nite x, SSx�T �S @ª;

(ii�) for every �nite x, there are only �nitely many �-classes of formulas ϕ�x�,
where ϕ�x� � ψ�x� if T à ¦x ϕ�x�� ψ�x�;

(iii) Any countable M à T is saturated.

(iv) for any countable M à T and any �nite x, the action of Aut�M� on Mx has

�nitely many orbits.

(iv') there exists a countableM à T such that, for all �nite x, the action of Aut�M�
on Mx has �nitely many orbits.

(v) for any countable M à T and X b Mx, if X is Aut�M�-invariant, X is

g-de�nable.

(v') there exists a countable M à T such that any Aut�M�-invariant X b Mx is

g-de�nable.

(vi) there exists a countable M à T realizing only �nitely many types in Sx�T �, for
any �nite x.

An action with �nitely many orbits on any Cartesian power (as in (iv)), is called an
oligomorphic action.

Proof .

(i)�(ii) If there exists p > Sx�T � non-isolated, then, by compactness (and downwards
Löwenheim-Skolem), we �nd M à T countable realizing p. By the omitting type
theorem (cf. ??), we also �nd N à T countable omitting p. The structures M and
N cannot be isomorphic and hence T is not ω-categorical.

(ii)�(ii') By (ii) Sx�T � � �p>Sx�T ��p� is an open cover. By compactness, Sx�T � is covered
by �nitely many of these open, i.e. it is �nite.

(ii')�(ii) Finite Hausdor� topological spaces are discrete. Indeed, for every p x q > Sx�T �,
there exits an open Up,q such that p > Up,q but q ¶ Up,q. Then �p� � �qxpUp,q is
open.

(ii')�(ii�) We have that ϕ � ψ if and only if `ϕe � `ψe b Sx�T �. It follows that 2SSx�T �S is a
bound on the set of �-classes.

14



4. Omission of types

(ii�)�(ii') If ϕ � ψ, then for any p > Sx�T �, ϕ > p if and only if ψ > p. It follows that
2S�ϕ~� �ϕ�x� formula�S is a bound on SSx�T �S.

(ii)�(iii) By (ii) every model of T is atomic. We saw (cf. ??) that atomic models are ¯0-
homogeneous and hence countable models of T are homogeneous. Let M à T , a >
My, for some �nite y, and p > Sx�a�. Let q�x, y� � �ϕ�x, y� � ϕ�x, a� > p� > Sx,y�T �.
By (ii), q is isolated by some formula ϕ�x, y�. Since p is �nitely satis�able and
ϕ�x, a� > p by de�nition of q, we can �nd c >Mx such that M à ϕ�c, a�. But then
tp�ac� � q and, by de�nition of q, tp�c~a� � p.

(iii)�(i) By ??, countable saturated models of T are isomorphic.

(iii),(ii')�(iv) Let M à T . Since M is saturated � and hence homogeneous �, any a, c >Mx are
in the same orbit of Aut�M� if and only if they have the same type. So SSx�T �S
bounds the number of orbits.

(iv)�(iv') This is obvious.

(iii),(iv)�(v) As stated above, each orbit of Aut�M� is the set of realization of some p > Sx�T �.
Since p is isolated, there exists ϕ�x� such that a > Mx realizes p if and only if
M à ϕ�a�. Every orbit is, therefore, a de�nable set. Since an invariant X b Mx

is a union of orbits and there at most �nitely many orbits in that union, X is
g-de�nable.

(v)�(v') This is obvious.

(iv')�(vi) Let M be as in iv�. Since all the tuples in an orbit of Aut�M� on Mx have the
same type, the number of orbits bounds the number of types realized in M .

(v')�(vi) Let M à T and let us assume that there exists distinct types �pi�i>ω > Sx�T � all
realized in M . For every Y b ω, let X � �a à pi � i > Y �. Since the sets of
realizations of pi are Aut�M�-invariant, X is Aut�M�-invariant. It follows that
there are 2¯0 distinct Aut�M�-invariant subsets of Mx. But there are only ¯0

formulas ϕ�x�, so they cannot all be de�nable.

(vi)�(ii') Let M be as in (vi). The set R � �p � §a > Mx M à p�a�� b Sx�M� is dense in
Sx�T �. Indeed any formula ϕ such that T à §x ϕ�x� has a realization in M . Since
SX�T � is Hausdor�, singletons are closed and hence R is closed. So SX�T � � R is
�nite. Ì

Example 4.11:

1. The theory DLO is ω-categorical. There is one 1-type and three 2-types.

2. In�nite sets without structure are ω-categorical.

3. If k is �nite, k �VS are ω-categorical. If k is �nite, they are not. There are ω non
isomorphic countable models.
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5. Elimination of imaginaries

De�nition 4.12:

Let M be a structure, A bM and c >M . We say that c is algebraic over A if there exists

a formula ϕ�x, y� and a > Ay such that Sϕ�M,a�S @ ª and M à ϕ�c, a�. We de�ne the

algebraic closure of A to be acl�A� �� �c >M � c algebraic over A�.

Proposition 4.13:

Let T be ω-categorical. Then, for all �nite x and variable y, there exist m > ZE0 such

that for all M à T and a >Mx, Sacl�a�y S Dm.

Proof . Fix a tuple x, a variable y. By ??, r � SSyx�T �S @ ª and every type in Syx�T �.
For every p > Sy�T � let mp be the minimal, if it exists � otherwise let mp � 0�, such
that there exists ϕ�y, x� with ¦y0 . . . ymp �iϕ�yi, x�� �ixj yi � yj in p. Let m �� Ppmp.
Pick any a >Mx and b > acl�a�y and let p � tp�ba�. Then mp A 0 and there are at most
mp b

� such that tp�b�a� � p. It follows that Sacl�a�y S Dm. Ì

Corollary 4.14:

Let K be an in�nite �eld. Then, in any language containing the ring language, Th�K�
is not ω-categorical.

Proof . By compactness, there exists t > N m K transcendent over the prime �eld. Then
`te contains (an isomorphic copy of) the ring of polynomials over the prime �eld, which
is not �nite. Ì

There is a very weak converse to ??:

Proposition 4.15:

Assume L is a �nite language . Let T be a complete theory that eliminates quanti�ers.

Assume that for all �nite tuple n > ZE0, there exist m > ZE0 such that for all M à T and

A bM with SAS D n, S`AeS Dm. Then, T is ω-categorical.

Proof . Since T elimiates quanti�ers, the type of a tuple a is entirely determined by the
L�a�-isomorphism type of `ae. Since the language is �nite there are is �nite number km,x
of L�c�-structures of size m where c is a new tuple of constants sorted as x. Fix a �nite
tuple of variables x, then, by hypothesis, the structure generated by any tuple sorted
as x has size bounded by some m. There are, therefore, at most PrDm kr,x elements in
Sx�T �. Ì

5. Elimination of imaginaries
10/04

6. Morley rank
11/14

Proposition 6.1:

Let ϕ�x, y� be a formula and a > My, b > My be such that tp�a� � tp�b�. Then

MR�ϕ�x, a�� � MR�ϕ�x, b��.

Proof . Ì
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6. Morley rank

Remark 6.2:

If M is ¯0-saturated, then we can compute the Morley rank of any L�M�-formula using
onky parameters from M .

De�nition 6.3:

Let α be an ordinal. We say that an L�M�-formula ϕ is α-strongly minimal if for all

N mM and L�N�-formula ψ�x�, MR�ϕ , ψ� @ α or MR�ϕ ,  ψ� @ α.

De�nition 6.4:

Let α be an ordinal and let ϕ�x� and ψ�x� be L�M�-formulas. We write ϕ�x� �α ψ�x�
(and we say ϕ and ψ are α-equivalent) if MR�ϕ∆ψ� @ α, where ϕ∆ψ � ϕ-ψ,� �ϕ,ψ��.

Proposition 6.5:

Let M be ¯0-saturated and ϕ be an L�M�-formula. Assume that MR�ϕ�x�� � α @ ª.

Then

(i) there exists pairwise inconsistent L�M�-formulas ϕi�x� for 0 D i @ n such that ϕi
is α-strongly minimal and M à ¦x �ϕ� �iϕi�;

(ii) Moreover, if there are pairewise inconsistent L�M�-formulas ψj�x� for 0 D j @ m
such that ψj is α-strongly minimal and M à ¦x �ϕ� �j ϕj�, then m � n and up

to permutation of the ψi, we have that ψi �α ϕi.

The integer n is called the Morley degree of ϕ. We write MD�ϕ� � n and MRD�ϕ� �

�α,n�

Proof . Ì

Lemma6.6:

Let ϕ and ψ be L�M�-formulas.

(i) If MR�ϕ� @ MR�ψ� @ª, then MD�ϕ - ψ� � MD�ψ�;

(ii) If MR�ϕ� � MR�ψ� @ ª and they are inconsistent, then MD�ϕ - ψ� � MD�ϕ� �
MD�ψ�

Proof . Ì

6.1. Morley rank is strongly minimal theories
11/17

Proposition 6.7:

Let A bM , and a, b >M be tuples.

1. If b > acl�Aa�, then MR�a~A� E MR�b~A�;

2. MR�ab~A� E MR�a�.

Proof .We prove Ì
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A. Set theoretic preliminaries

A. Set theoretic preliminaries

We will need a few set theoretical notions in the beginning. Here is what you should
know.

A.1. Ordinals

A well-order is a total order in which every subset has a minimal element. An initial
segment of an ordered set �X,@� is a set Y b X such that for all y > Y and x > X, if
x D y, then x > Y .
The class of ordinals is a class of representative for the isomorphism classes of well-ordered
set. It does not really matter how we build them. We say that an ordinal α is smaller
than an ordinal β if α is isomorphic to an initial segment of β. This is a well-order1. If
α is an ordinal α�1 is the ordinal isomorphic to α8��� where � is a new element larger
than all the elements in α. It is smallest ordinal strictly above α. If �αi�i>I is a chain of
ordinals � i.e. I is totally ordered and, for all i D j > I, αi D αj , then �i>I αi denotes the
smallest upper bound of the set �αi � i > I�.
There is an induction principle on ordinals. If for all ordinal α some property (or construc-
tion) holding for all β @ α implies that it holds for α, then that property (or construction)
holds for all ordinal. In particular, since any ordinal is either successor � of the form
α� 1 � or limit � the smallest upper bound of all strictly smaller ordinals �, to prove
that a property holds of all ordinals, it su�ces to show that if it holds at α then it holds
at α� 1 and if it holds on all ordinals strictly smaller than some limit α, then it holds at
α.
The smallest in�nite ordinal is denoted ω, it is isomorphic ZE0.

A.2. Cardinals

The cardinals are all the ordinals that are not in bijection with any of their initial
segments. By the axiom of choice, any set X can be well-ordered and hence is in bijection
with a unique cardinal κ �� SX S. Any cardinal κ has a cardinal successor � the smallest
cardinal λ such that λ A κ � denoted κ�. Note that unless κ is �nite, κ � 1, the ordinal
successor of κ is not a cardinal and hence κ� is not κ � 1. Similarly given a chain of
cardinals �κi�i>I , their upper bound �i κi is a cardinal.
Given cardinals κ and λ, κ � λ denotes the cardinal of their disjoint union, with is also
the cardinal of their product, which is equal to their maximum. Also, 2κ denotes the
cardinal of the power set of κ. We know that κ @ 2κ and the generalized continuum
hypothesis states that 2κ � κ� for all cardinal κ.
We de�ne, by induction, the following function from ordinals to in�nite cardinals which is
strictly increasing and onto: ¯0 � ω, for all α, ¯α�1 � ¯

�

α and for all limit β, ¯β � �α@β ¯α.

1To be precise, this is not a set, it is only a class, but we can safely ignore that distinction here.
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B. General topology

A.3. Co�nality

Let f � X � Y be a function into some ordered set Y . We say that f is co�nal in Y if
for all y > Y , there exists x >X such that f�x� E y. The co�nality of an ordered set X is
the largest ordinal α such that there is a co�nal map from α into X. The co�nality of
X is a cardinal denoted cof�X�.
A cardinal κ is said to be regular if κ � cof�κ�. Every successor cardinal is regular.

B. General topology

De�nitionB.1:

A topological space is a set X with a collection of O of subsets of X such that X,g > O

and O is closed �nite intersections and arbitrary unions.

Subsets of O are called open sets and complement of subsets of O are called closed sets.

De�nitionB.2:

A basis of open sets is a collection of B of subsets of X which is closed under �nite union

and �nite intersection.

Given a basis of open sets B we can consider the topology on X whose open sets are

arbitrary unions of elements of B � it is called the topology generated by B.

For example the usual topology on R is the topology whose basis of open sets is the open
intervals.

De�nitionB.3:

Let X be a topological space.

(i) X is Hausdor� if for all x, y >X, there are open sets U and V such that U 9V � g,

x > U and y > V .

(ii) X is compact if whenever X � �i>I Ui where the Ui are open, there exists a �nite

I0 b I such that X � �i>I0 Ui.

(iii) A Hausdor� compact topological space X is totally disconnected if for all x, y >X,

there exists a clopen set U such that x ¶ U and y ¶ U .

De�nitionB.4:

Let X and Y be two topological spaces, a map f � X � Y is continuous if for any open

U b Y , f�1�U� bX is open.
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