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1. Valued fields

1.1. Definitions

All rings are commutative and unitary.

Definition 1.1.1. Let R be a ring, a valuation on R is a (surjective) map v : R — T', where
(T',+,0,<, ) is an ordered commutative monoid"), such that for every z,y € K:
(a) v(0) #v(1) =0;
(b) v(z +y) > min{v(z),v(y)};
(c) v(zy) =v(z) +v(y).
(d) v(R) ~ {v(0)} c I'is cancellable; z.e. for every z € R, if v(x) + v(2) = v(y) + v(z) and
v(z) #v(0), then v(x) = v(y).

Lemma 1.1.2. Let (R,v) be a valued ring. For every x,y € R:
(1) v(-2) = v(x);
(2) ifv(z) <v(y) thenv(x +y) = v(2)?;
(3) v(z) <v(0);
(4) {x e R:v(z) =v(0)} € Risa (proper) prime ideal.

Proof. (1) If00w(-1), witho e {<, >}, thenv(-1)Ov(-1) +v(-1) = v((-1)?) = v(1) = 0.
Sov(-1) = 08). It follows that v(-2z) = v(~1) + v(z) = v(z).
(2) Assumev(z) <v(y). Sincev(z+y) > min{v(z),v(y)} = v(x) itsuffices to rule out that
v(z+y) > v(x). If not, we would have v(z) = v(z+y-vy) > min{v(z+y),v(y)} > v(x),
a contradiction.
(3) Ifv(z) > v(0), then v(z) = v(x +0) = v(0), a contradiction.
(4) Let z,y € R with v(y) = v(0), then v(zy) = v(z) + v(0) = v(xz-0) = v(0). Also, if
v(x) =v(0), we have v(z + y) > min{v(z),v(y)} = 0 and hence v(z + y) = 0. Finally if
x,y € Raresuch thatv(x) + v(y) = v(zy) = v(0), then v(x) =0 orv(y) = 0. O]

Remark 1.1.3. 1. From now on, we will write oo := v(0), which is both maximal and an-
nihilating.

!That s, < is a total order and for every z,y, z € I':
@) (+y)+z=a+(y+2);
b) z+y=y+mx
(c) z+0=um;
(d) ifr<ythenz+z<y+=2.
2 Equivalently, every triangle is isoceles.
3 : Show that ordered monoids are torsion free.
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1. Valued fields

2. If R s a field, then (d) always holds. Indeed, v(R*) < I is a subgroup, but co = v(0) is
not invertible, so oo ¢ v(R*). In fact, v(R) = v(R*) u {oo}.

3. Let (I', +,0,<,00) = (Ry0,+,1,>,0). Then a valuation |.| : K — Ry is exactly a multi-
plicative norm on K verifying the strong triangular inequality:

|+ y| < max{fa|, [yl} <lz[ +|y]

forevery z,y € K.
Fix (K,v) a valued field.

Definition 1.1.4. We define:
e the value group viK* = v(K*) and its associated monoid vK := v(K) = vK* v {oo};
e the valuation ring O = O, = {z : v(x) > 0} ¢ K, alocal subring;
* its unique maximal ideal m = m,, := {z : v(2) > 0} c O;
e the residue field Kv := O/m and res = res, : O — k the canonical projection.

Proof. We have v(0) = co > 0etv(l) = 0,500,1 € O. Also, for every z,y € O, v(z +y) >
min{v(z),v(y)} > 0and v(zy) = v(z) +v(y) >0+ 0=0. So O ¢ K is a subring. Similarly, if
z,yemyv(z+y) 2 min{v(z),v(y)} >0andifx € Oand y € m, then v(zy) = v(x) +v(y) >0
and hence m ¢ O is a ideal. Note also that z € O is invertible if and only if e O, ie.
—v(z) = v(z™') > 0, or, equivalently, v(z) = 0. So O* = O \ m and m is indeed the unique
maximal ideal in O. [

Proposition 1.1.5. Let R be a ring and K > R be a field. The following are equivalent:
(i) there exists a valuation v on K such that R = O,;
(i7) for some prime ideal p c R, (R, p) is maximal for domination™in K —in particular, R
is local and p is its maximal ideal;
(iii) forall v € K*, eitherx € Rora™ € R;
(iv) principal ideals of R are totally ordered by inclusion and K = R g);
(v) sub-R-modules of K are totally ordered by inclusion;
(vi) the monoid (K |R*,-,1) is totally ordered, wherea < bifbe R-a, and 7 : K - K|R* is
a valuation.

We say that R is a valuation ring if these equivalent conditions hold.

Proof. Note that (vi) trivially implies (i).

(1)=(ii) Letp:=m, = {z € K : v(x) > 0}. and let us assume that (R, p) is dominated by some
(S,q) with S < K. We want to show that S < R. Fix some s € S. If v(s) < 0, then
slep.Sol=ss5"1eS pcq,acontradiction. It follows that v(s) > 0and s € R = O,.
Since R< Ry < Kand Ry -pn R = p, (Ry, Ry - p) dominates (R, p). By maximality,
R = Ry islocal and p is its maximal ideal.

*“If R1, R2 < K are subrings and p; ¢ R; are prime ideals, ( Rz, p2) dominates (R1,p1) whenever Ry < Rz and
p2 N Ry =p1.
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1. Valued fields

(ii)=(iii) Let us first assume that p[z] ¢ R[z] and let m 2 p[z] be some maximal ideal of R[z].
Then m n R is a ideal of R containing p but that does not contain 1. So it is equal to
p and (R[], m) dominates (R,p). By maximality, we have R[x] = R and thus = € R.
Applying this to 27!, we see that, if p[z7'] ¢ R[z7!], then 27! € R. So we may assume
that 1 € p[z] and 1 € p[z~!] to derive a contradiction. Let m and n be minimal such
that ¥, 0z’ = 1 = ¥, bjz™d, for some a;,b; € p. We may assume that m < n.
Since 1 — ag € R, we have ¢; = a;(1 —ag)™! € pand 37 c;z’ = 1 it follows that 1 =
Yin bjx_j + Y ez~ (1), contradicting the minimality of n.

(iii)=(iv) It follows from (iii) that K = Rg). Fixa,b € R. If a™'b € R, then (b) < (a). If not, by

(iii), we must have b~*a € R and thus (a) ¢ (b).

(iy)=(v) Leta, b < K be sub-R-modules and let us assume that there is some a € a \ b. We want

to show that b ¢ a. Let b € b and write a = ag/a; and b = by/by with ag, a1, by, b1 € R.

By (iii) we either have agb; € (bpai), in which case @ € R-b < b, a contradiction, or

boai € (agby), in which case,be R-a < a.

(v)=(vi) The ordered set (K/R*,<) is isomorphic to the set of principal sub-R-modules of K

which is totally ordered by (v). Let us show that it is a monoid order. If b € R - a, then for

everyce K,bce R-ac. Soa < b does indeed imply @ - ¢ < b-C.

Let us now check that 7 is a valuation. We have 7(0) =0 # 1 = n(1). Forevery z,y € K

we have z +y € () n (y), so m(z +y) > min{n(z),7(y)}, and, by definition, 7(zy) =

w(x) 7 (y). ]

The valuation in condition (i) is essentially unique:

Lemma 1.1.6. Let v be a valuation on K, f : K — L a field morphism and w a valuation on L.
The following are equivalent:
(7)) O, < fH(Ow);
(i) 0% < f(0%)
(111) there is a unique morphism g : viK — wL such that:

K —Y>uK

Y

L——>wL
commiutes.

Proof.
(i)=(ii) Let z € O. Then, by (i), 27 € O, ¢ f71(0,) and hence f(z)™! = f(27') € O, in
other words, f(x) € OJ.
(ii)=(i) Letz € O,.Ifx € O}, then, by (i), z € f1(O) € f1(Oy). Ifx ¢ O, then 1 + z € O
and thus 1 + f(z) = f(1 +2) € O} € O, and hence x = O,,.
(ii)=(iii) For the diagram to commute, we must have, for every z € K, g(v(x)) = w(f(x)). There
remains to show that this defines an ordered group morphism. Let z € K be such that
v(z) =0, then z € O} and hence, by (ii), f(x) € Oy,. Sow(f(x)) = 0. It follows that g
is well defined. Indeed let x,y € K be such that v(z) = v(y). If v(z) = v(y) = oo, then
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1. Valued fields

r=y=0and w(f(z)) = co = w(f(y)). Ifv(z) = v(y) # oo, then v(xzy ') = 0 and
hence w(f(zy™")) = 0, Ze. w(f(x)) = w(f(y)).

Checking that g is an ordered monoid morphism is a matter of straighforward verifica-
tion. Forevery z,y € K, g(v(z) +v(y)) = g(v(zy)) = w(f (zy)) = w(f (x)) +w(f(y))
andv(z) > v(y) ifand only if z € O, -y, which, by (i), implies that f(z) € Oy - f(y), z.c.

w(f(x)) > w(f(y))-
(iii)=(i) Letx € O,. Then, by (iii), w(f(x)) = g(v(x)) > 0 and hence f(x) € O,,. L

If f = id g, we say that v and w are dependent.

Corollary 1.1.7. Let v be a valuation on K, f : K — L a field morphism and w a valuation on
L. The following are equivalent:
(Z) O, = f_l(Ow);
(1) OF = f7H(O5);
(7iz) (O, my) dominates (f(Oy), f(my));
(1v) the morphism g : vK — wL of lemma 1.1.6.(ii1) is injective.

We say that f is a valued field embedding.

Proof. Note that (i) and (iii) imply lemma 1.1.6.(i) and (ii) implies lemma 1.1.6.(ii), all three
statements imply lemma 1.1.6.(iii) and the existence of g. Now the morphism g is injective if
and only if, for every z € K
* v(x) > 0ifand only if w(f(z)) > 0,7.e. Oy = f1(Oy);
* v(z) =0ifand only if w(f(z)) = 0,ze. O = fH(OL);
* v(z) > 0ifand only if w(f(x)) > 0,ze f(my) S myn f(Op) Cmy N f(K) S f(my).
Since, by lemma 1.1.6.(i), we have f(O,) ¢ O,, this is equivalent to the domination of
(f(0y), f(my)) by (O, me). O

Corollary 1.1.8. Letv; : K — T, fori = 1,2, be valuations. The following are equivalent:
(l) O’U1 = O’L}Q;
(17) there is a unique isomorphism g : vi K — vo K such that:

v1 UlK

/ A
K g

s Y
UQK

commautes.
We say that v and v are equivalent valuations.
Proof. . ]

Corollary 1.1.9. Let R be a ring, p ¢ R be prime and K > R a field. Then there exists a valuation
ring O ¢ K = O gy with maximal ideal w such that (O, m) dominates (R, p).
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1. Valued fields

Proof. The set of pairs (5,q), where S < K and q c S is prime, ordered by domination is
inductive. Indeed, let (S, q;); be a chain and let S = U; S; < K, a subring, and q = U; q; =
U; S - q; c Sanideal. If, for some a,b € S, ab € g, let i be sufficiently large such that a,b € S;
and ab € q;. Then one of a or bisin q; € q and hence g c S is prime. Moverover, for any 1,
by construction q; € q N .S; and if @ € g n S, then, for some j > 4, a € q; N .S; = g3, 50 (59, q)
dominates (.S;, q;).

By Zorn’s lemma, (R, p) is contained in a maximal element (O, m). By proposition 1.1.5,
O is a valuation ring and m is its maximal ideal. Il

Corollary 1.1.10. Lez (K,v) be a valued field and K < L be a field extension. There exists a
valuation w on L extending v.

Proof. Applying corollary 1.1.9 to (O, m,) in L, we find a valuation ring O ¢ L = Oy, with
maximal ideal m, that dominates (O,, m,). We now conclude with corollary 1.1.7. ]

Lemma 1.1.11. The ring O is integrally closed — that is, for cvery P = X% + ¥ 4 a;7° € O[z]
and ce K = O, if P(c) =0, then c € O.

Proof. Assume v(c) < 0. Then, for every i < d, v(c?) = d-v(c) < v(a;) + iv(c) and hence
v(P(c)) =v(c? + Yiqaic?) =d-v(c) # oo. [

Theorem 1.1.12 (Weak approximation theorem). Let K be a field and (v;)i<p, be valuations on
K that are pairwise not dependent. Then, for every a; € O, then exists a € K withv;(a—a;) > 0.

Proof. Let O; = O,,, R:=; O; and p; := m,, N R.
Claim 1.1.12.1. O; = R,,,.

Proof. We obviously have Ry, ¢ O;. There remains to show that O; € Ry,. Fixa € O;. Let I :=
{7:a€Oj}. Forevery j € I,let f; € Z[x] be amonic polynomial with f;(a) € m; if it exists and
[j = Lotherwise. Letalso f =1+ x[T;e f;. If j € I and f; # 1, we have v;(f(a)) = v;(1) = 0.
If fj = 1, by hypothesis, fj(a) ¢ m; and hence we also have v;(f(a)) = 0. If j ¢ I, then, since f
is monic and v;(a) < 0,vj(f(a)) = deg(f)-v;(a). Sovj(af(a)™) = (1-deg(f))-v;(a) > 0.

Let ¢ = f(a)™!. In both cases, we have v;(c) > 0 and v;(ac) > 0 and hence ¢, ac € R. Also,
v;(c) = 0 and thus ¢ ¢ p;. It follows that a = ac/c € R,,. O

Claim 1.1.12.2. The p; are the maximal ideals of R and they are distinct.

Proof. Let x € R~ U;p;. Then, v;(z) < 0 for every ¢ and thus z'eMO; =R SoR =
(R~ U;p;) 'R and any proper ideal a ¢ R is included in U; p;. Let I be minimal such that
a S Uier pi- If|I] > 1, for every i € I, by minimality, a 0 p; \ U,+jes p; contains some c¢;. Pick
any ig € [ and let a = ¢, + [1;44, ¢i. Since p;, is prime and non of the ¢;, for i # i, are in p;,
it follows that [T,.;, ¢; ¢ Pi,. Since ¢, € pjy, it follows that a ¢ p;,. However, for every i # i,
[Tizi, i € pi and c;, ¢ p; so a ¢ p;. This contradicts that a € a € Ujer ps. So a € p;, for some 4.
Note also that if p; € pj, then O; = Ry, € Ry, = O; and, by hypothesis, i = j. So the p; are
indeed distinct and the maximal ideals of R. O
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1. Valued fields

By the Chinese reminder theorem, the natural map R — [1; R/p; ~ [1; Rp,/piRp, = [1; O:i/m;
is surjective. It follows that we can find a € N; a; + m;. O

1.2. Topology

Definition 1.2.1. Fix z € K and vy € vK. We define:
* the dlosed bﬂl[oﬁ(a:, v):={ye K :v(y-x) >~} of radius v around z;
* the open ball B(x, ) = {y € K : v(y — z) > v} of radius 7 around z.

By convention, K is considered to be the open ball of radius —co. Note that points are closed
balls of radius oco.

Lemma 1.2.2. Letbbea ballin K. Then I, == {x —y : x,y € b} € K is a sub-O-module and
b=x+1I foranyx €b.

Proof. Let us first assume that b = B(c,v(d)) with ¢,d € K, then {z —~c: z € b} = dOisa
sub-O-module of K. Moreover, if x,y € b, thenz —y = (x - ¢) = (y — ¢) € dO and hence
Iyc{z-c:xeb} =dO c I. Similarly, if b = B(c,v(d)), then I, = dm a sub-O-module of K.
By definition b = ¢ + I, is an additive coset of I, and hence b= c+ I, =« + I forany x € b. [

Lemma 1.2.3. Let by, by be balls of K, then at least one of the following holds:
( l) b1 nby = @;
(l'l) b1 € bos
(7iz) bo < by.

Proof. Note that we either have I, € I, or Iy, € I;,. So we may assume that b; N by # & and
Iy, € I,. Let x € by N by, we then have by = x + I, €z + I}, = ba. O

Lemma 1.2.4. Open balls generate a totally dz'sconnected(5)Hozusdorﬁ “freld topology.

In other words, the ideals ym := B(0,7) ¢ O, for v ¢ vKY, form a basis of neighbour-
hoods of 0 and we consider the (unique) additive group topology generated by this basis of
neighbourhoods of 0.

Proof. LetU c K be openand a,b € K be such thata + b € U. Then there exists v € v/K™ such
that U 2 (a +b) + ym = (a +ym) + (b +ym), zZe. (a,b) is in the interior of +~1(U) ¢ K2. So
+ is continuous. Similarly, if —a € U, for some v € vK* we have U 2 —a + ym = —(a + ym),
So — is continuous. Finally, if ab € U, there exists v € vK™, that we may assume larger than
0,withU 2 ab+ym 2 ab+a-dm+b-dm+dm-dm 2 (a+ om) - (b+ dm), provided v <
min{d +v(a),d +v(b),d}.

Moreover, foreverya € K*,v e vK* and x € (max{v(a),y-2-v(a)})m, bylemma1.1.2.(2),
we have v(a+z) = v(a),and thusv((a+z) ' —a™!) =v(za(a+2)™!) =v(z)-2-v(a) > v;
so the inverse map is indeed continuous a a.

SA topology is totally disconnected if the only connected subsets are points. If it is Hausdorff, it is totally discon-
nected if and only if any two distinct points are separated by a clopen set.
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1. Valued fields

The topology is Hausdorff since, for every a, b € K distinct, B(a,v(a-b))nB(b,v(a-b)) =
@. Butsince, forany vy e vK™ and ¢ ¢ B(a,7), B(a,7) nB(c,v) = 2, any open ball is closed in
the topology and hence the topology is totally disconnected. O]

In fact, every non trivial ball is both open and closed in this topology and the topology is also
generated by the non trivial closed balls.

Definition 1.2.5. Fix § a (proper) filter®on K and z € K.
(1) The filter § is Cauchy if for every v € v, there is an open ball of radius y in § — equiv-
alently if there is a ball of radius 7 in §.
(2) The filter § converges to x, and we write lim § = , if for every v € vK™, B(:U, v) €T —
equivalently, if § 2 9,, the neighbourhood filter of z.
(3) The field K is complete if every Cauchy filter on K converges to some z € K.

Definition 1.2.6 (Leading terms). Fix v € vKZ,. We define the multiplicative monoid of -
leading terms RV, = RV, ,, := K/(1 +ym). Letrv, =1v,, : K - RV, denote the canonical
projection.

Remark 1.2.7. 1. It is naturally a multiplicative monoid and we have the following short

exact sequence :
X X X
1—>R,Y—>RV,Y—>UK -0,

where R, = O/ymand RV, := RV, \ {0}. We also denote v the natural map RV, - vK
2. There is also the trace of an additive structure on RV . We will describe it later.
3. We usually simply denote RV as RV and rvg as rv.

Definition 1.2.8. Let
K=K,:= Lln RV,
'yevK;O

as multiplicative monoids, where the transition maps rv, 5 : RV, = RVj, forco > v > 6 > 0,
are the natural maps. We also define:
« v: K - oK byv(z) = v(x,) forany v vK;
e +: K25 K by (z +y)y = rv,(X;), where X, := vz (ze) + 1vz1(y) does not contain
0, for sufficiently large e € vK,. If 0 € X, for all ¢, then define z + y = (0), =: 0.

Proof. Since v = vorvy s, v is indeed well-defined on K. Asfor +,letus fix 2,y € K. Note that
X is the open ball of radius 6 = ¢ + min{v(z),v(y)} around any of its elements. If 0 ¢ X,
then v(X,) is asingleton {7} and rv;_,(X.) is also a singleton. Since the X form a chain, 7 is
independent of e, whereas ¢ increases as € increases. So (x + )5 is well defined. [

Proposition 1.2.9. The valued field (K, +,-,v)is complete.

®Thatis, § € P(K) such that:
(a) K€S>®¢S§
(b) foreveryU,VeF UNV eF;
(c) foreveryU cV c K,ifU e §FthenV ¢ Kj
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1. Valued fields

Proof. The fact the (K, +,) is a field follows more or less directly form the definitions. Let
us check distributivity, for example. Let z,y, 2 € K. Then rvz!(z.)(rvz! (ze) + 1vi(ye)) =
v (ze) rvi (e ) +1rvit(20) - rvo (e ). Since these sets characterise both z(x+%) and zz + 2y,
they must be equal.

As for completeness, for every = € K,andy € vK = vK, B(z,7) = TV;EU(@@w—v(x)) c K.
It follows that a Cauchy filter on K is generated by sets of the form rv; ' (¢y), foreveryy e vk,
and thus converges to ¢ := ((), € K. O

Remark 1.2.10. We have:
e ,: K - K hasdense imagem;
* Op = LiLn(’)/’ymK is the closure of Ok € K;
* mp = Op - mg is the closure of mp ¢ K;
e K = vK;
e Ko~ Ku;
* K/(1+mg) ~ K/(1+mp).

Proof. O

Definition 1.2.11. Fix § afilteron K and z € K.
(1) The filter § is pseudo Cauchy if it is generated by balls.
(2) The filter § accumulates at z, if any open ball around z meets any element of § — equiv-
alently, z € Nuez U = 3.
(3) Thefield K isspherically complete if every pseudo Cauchy filter on K accumulates at some
inxekK.

Remark 1.2.12. * Usually, the accumulation points of a pseudo Cauchy filter are called its
pseudo limits. Since balls are closed, in that case, we have 5= Nuez U.
* The (potential) uniqueness of spherical completions is a much harder question that we’ll
come back to later.

Definition 1.2.13. Let § be a filter on some set X and f : X - Y. We denote by f,§ the filter
generated by { f(U) : U € §} — thatis, the filter {V c Y : f(U) c V, forsome U € F}.

Proof. Let U,V € §. Note that, since U # @, f(U) # @. and since f(UnV) c f(U)n f(V),
theset { f(U) : U € §} has the finite intersection property and thus generates a filter. [
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1. Valued fields

1.3. Examples
1.3.1. Adic valuations

Example 1.3.1. Fix K a field.
1. The map —deg : K(x) - Z U {00}(®) is a valuation.
2. Define vy on K (z) by vo(Xga;iz’) = min{i : a; # 0} € Z U {oo} and vo(P/Q) =
vo(P) —v9(Q). Then vy : K(x) - Z U oo is a valuation. Note that, if f € K(z)*, vo(f)
is the unique n € Z such that f = 2" P/Q where P, Q) are prime to .

* We have O, = {f € K(x) : vo(f) 20} = {P/Q : P,Q € K[x]and Q ¢ ()}
K[z]zyand my, = {f € K(z) : vo(f) > v(x)} = 2Oy,. It follows that Kwvg
K[z](z) /7 = (K[z]/7)) = K. The isomorphism is induced by the map: K[z] —
K sending P to P(0).

* Forevery f € K(x), we have —deg(f) = vo(f(z™')). Indeed, let P,Q € K[X] ~
{0}. Then P(z™') = 2~ 98(") P () where Py (z) = 23 P(z7!) ¢ K[X]~
(X) and hence vo(P(z™")/Q(z7")) = vo(a?& @4y 4 4 (Py(2)Q1(2)) =

—deg(P/Q). Wesay that f ~ f(27")isavalued field isomorphism (K (X), - deg) —

(K(X),v0)

It follows that O_geg = {f € K(x) : deg(f) < 0} = {f(z7") : f € Oy},
M_deg = {f € K(l’) : deg(f) < O} = {f(x_l) : f € mvo}> and K[:E](_deg) =
Kvg ~ K where the isomorphisme is induced by the map O_4cs - K given by
Y aixt) Yo bixt — ay, /b, where b, # 0. Ina (very precise) sense, this is the map

[ f(o0).

Definition 1.3.2. Let R be an integral domain and p € R be prime. For every « € R, define the
p-adic valuation v,(z) = max{n € Zso: x € (p)"} e Zu {oo}.
In particular, it induces a valuation v, : K, := (R/ Ny (p)") 0y = Z U {c0}.

Proof. We have 1 € (p)™ if and only if n = 0 — by convention p° = 1. So v,(1) = 0. And we
have 0 € N30, 0 vp(0) = 00 # 0. Letz,y € R. If z,y € (p)" — ie. vp(x),vp(y) > n —
for some n € Zso, then z + y € (p)" and thus vy(z + y) > n. Taking n = min{v,(x), v,(y)},
we see that vy (x + y) > min{v,(z),v,(y)}, as required. Finally, if z € (p)™ and y € (p)", for
some m,n € Zsq, then 2 € (p)™™. If zy € (p)™*™*L, let zg, yo, 20 € R be such that x = p™a,
y = p™yoand p" " xgyo = xy = pT 2. Tt follows that zgyg € (p) and thus zg € (p), in which
case 7 € (p)™*1, or yo € (p), in which case y € (p)™*!. It follows that v, (zy) = v,(z) + v, (y).
So v, is a valuation on R.

7In fact, K is the unique, up to unique K-isomorphism, complete dense valued field extension of K. It also has
the following universal properties: for every f : K — L with L complete and g : K — F with dense image, we
have:

K

~

$By convention, deg(0) = — deg(0) = oo.
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1. Valued fields

Note that if v(z) = oo, for any y € R, we have v,(y + ) = v,(y), so v, factorises through
the quotient by p = v," () = M, (p)". Moreover, for any 2,y € R, if v(z) < oo or v(y) < oo,
then v(zy) = v(x) + v(y) < co. Thus p € R is prime and R/p is an integral domain. For every
T € R/p and non zero j € R/p, we define v(T/y) = v(x) —v(y) € Z U {oo}.

We have v,,(0) = 0o # 0 = v,(1) and for every Z,7, 7,5 € R/p, with 7,5 non zero, we have
0o T[T+T/5) = vy (T5+T0)/(F5)) = vplrs-+ 1)~y (4) —p(5) > min{ () + 0, (5), v (1) +
0 ()} — 0p(y) - 1) = minfuy () - vy(). 0p(r) — vp(5)} = min{u,(T/7), vp(7/5)} and
op(Z/Y-T/5) = vp((TT)[(YS)) = vp(ar) —vp(ys) = vp(x) — vp(y) + vp(r) —vp(s) = vp(T/Y) +
vp(T/3). O

Example 1.3.3. 1. v, : K[z] > Z U {oo} induces vy : K(X) - Z U {oo}.
2. For every, prime p € Z and = € Q*, v,(z) is the unique n € Z such that z = p"y/z with
Y, 2 € Lz prime to p.

Lemma 1.3.4. Fix R an integral domain and p € R be prime. Then O g, = lim R/(p)".

Proof- O

Example 1.3.5. 1. K, ~ K((2)) := {Xisi, @i’ : a; € K} — the Laurent series field. We
have:
* v(Xisi, a;zt) = min{i : a; # 0}, Yz, a;xt + Yisio cxt = Yisio (@i + c;)x' and
(Zizig 0i%") (3o ¢577) = Lhsigrjo (Tivjmk aicy) .
. Of(vo > K[[z]] = {0 @iz’ : a; € K} — the power series ring.
2. Qp:=Q,,and Z, := Oq, =lim Z/p"Z.

1.3.2. Hahn fields

Fix k a field and I" an ordered abelian group.

Definition 1.3.6 (Hahn Fields). We define £((T")) :={f: T = k:supp(f) ={yeDl: f(vy) #
0} is well ordered}. We also define, for every f, g € k((I')) and y e I':

* (f+9)(n)=f() +9(7)s

* ([ 9)(7) = Levs=y f(£)9(0);

* v(f):=min{yel: f(y)#0} eTu{oo}.

Proof. The sum in the definition of - is finite. Ifitis infinite, we can find an increasing sequence
in the set {¢ : f(e) # 0and g(y — €) # 0}. But then the sequence of v — ¢ is then decreasing,
contradicting the fact that supp(g) is well-ordered. Also supp(f + g) € supp(f) usupp(g) is
well ordered.

There remains to show that any X ¢ supp(f - ¢) has a minimum. Let Y := {y € supp(f) :
forally" e supp(f) and ¢’ € supp(g), 7' + ¢’ € X and v" + ¢’ < (v +supp(g)) N X # @& implies
7" 2 ~v}. Note that the minimal -y such that y+supp(g)nZ # @isin Y and thatforeveryy € Y,
there exists 0 € supp(g) withy+d € X. Let o be minimal such that Y +6n X # @and~g € Y be
such thatyp+dp € X. If X 15, # @, lety1 be minimal such thaty+supp(g) N X<y, +5, # dand
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1. Valued fields

91 € supp(g) be minimal such that~;+6 € X, 15,. Note that, sinceyg € Y and v +J1 < y0+6o,
we have vy < 1. Also, if v/ € supp(f) and §’ € supp(g) are such that ' +§" < 1 + 81 < Yo + o,
then by minimality of 71, v1 <7/, 7.e. 41 € Y. By minimality of §y, we have dy < 01 and hence
Yo + 0o <71 + 61 < Yo + 0o, a contradiction. So Xcqy15, = @ and yg + g is minimal in X.  [J

We usually write elements of k((I")) as formal power series 3. a4t7.

Proposition 1.3.7. The valued field (k((I')), +,-,v) is spherically complete.

Proof. One can easily compute that k((I')) is a ring with 0(y) = 0, 1(0) = 1, 1() = 0 and
(=)(v) ==f(7). Wedohavev(1) = 0,v(0) = oo. Sincesupp(f+g) € supp(f)usupp(g), we
have U(f + g) 2 mln{v(f),v(g)} Finauy: 1f7 < U(f), 6< v(g), then Z—y’+6’:'y+6 f(f)/)g((s) =0
and thus v(f - g) = v(f) +v(g). So (k((I")), +,-,v) is a valued ring.

Let us now show that it is spherically complete. Note that, for every f € k((I')) and y € T,
B(f,7) = {g € k((I")) : for every 0 <, g() = f(0)}. Let B be a pseudo Cauchy filter. If B
is principal, then B # @. So we may assume that it is not principal and therefore generated by
open balls. For every v € I', let f(y) = h(7y), where B(h,7) € B and f(7) = 0if no such ball
exists. Let / € supp( f) be non empty and pick somey € I. Then there is some B(h,v) € Band
supp(f) N (—oo,v] =supp(h) n (=00, ~]. In particular, I n (-o0,~] € supp(h) has a minimal
element. So f € k((I")) and by construction f € B.

There remains to show that k((I")) is a field. Fixany = € k((I")) \ 0 and, for every v € T, let
by={yek((I')) :v(zy-1) >y +v(x)}. Foreveryy € byand e € k((T')), v(z(y +e) - 1) >
v + v(z) if and only if v(e) > 7. So either b, is an open ball of radius + or it is empty. Let
B be the filter generated by the non empty b,. By spherical completeness, we find y € B. If
’U(SL‘y - 1) =&+ U(LE) < 0o, let 2(5) = x(v(aj))_l(:ﬂ-sﬂ)(x):o - Z'y+5:€+v(:p),6<€$(7)y(5)) and
2(7y) = y(v) otherwise. Then v(xz — 1) > ¢ + v(x), so b. + @. However, v(y — z) = &,
contradicting that y € b,. It follows that vy — 1 = 0,7.e. y = z71. Il

Remark 1.3.8. We have:
* vk(()) =T u{oo};
* k((I"))v = k. The isomorphism is induced by the map = ~ z(0).

1.3.3. Witt vectors
We now wish to build mixed characterstic valued fields with prescribed (perfect) residue field.

Fix p a prime.

Definition 1.3.9 (Witt polynomials). For every n € Zsg, let wyn (z) = Y18 p'a? " e Z[x] and
w(z) = (wpr (2))nz0-

Note that wyns1 () = wyn (aP) + p" M apay.

Lemma 1.3.10. Let P(y) € Zly] where y is a tuple. There exists unique P, € Z[z,...,2zn],
where |z;| = |y| such that for every n € Zso, wpn ((Pi(2))i) = P(wpn (2)).
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1. Valued fields

In other terms, w((Pi(2))i) = (P(wyi(2)))i.

Proof. Note thatwyn ((Pi(2))) = p" Pu(2)+wn-1((P;(2)P);). Itfollows that Py = P and that,
by induction on n, there is a unique P,, € Q[z] with the required properties. There remains to
show that P, € Z[z]. We also proceed by induction on n.

Claim 1.3.10.1. Let A be some ring, a € A contain p, a,b € A andn € Zsq such that a = b
mod a”, then a”? = b* mod a™*1,

Proof. We have (a +c)? = a? + Y2 (P)a" ¢’ + cP. For every 0 < i < p, we have (¥) € aand
n+ 1< np. Soif c € a”, we have (a + ¢)? —a? =0 mod a™*!. O

n—i-1

In particular, since, for all i < n, Pj(2P) = P;(2)? mod p, we have P;(2)? = Pi(z)pn_i

mod p™~* and hence:

P"Pu(2) = wpn ((Fi(2))i) = wpn-1 ((Pi(2)")i)
= P(wpn (2)) = wpns ((Bi(2)7)i) -
= P(wpn-1(2P)) = > PP(2)P" mod p"

i<n—1

= w1 (B(P))i) ~ 3 o' PPy mod p"

i<n-—1

=0
It follows that P, (z) € Z[x]. [l

Let Sy, P, € Z[x,y] be the unique polynomials such that w, (S(z,y)) = w(z) + w(y) and
w(P(z,y)) = w(x) w(y).

Definition 1.3.11 (Witt vectors). Forn € Z,o U {0}, , we define the functors Wy» : Ring —
Ring of length n Witt vectors, by Wpn (A) = (A", (Si)i<n, (Pi)icn) and Wpn (f) : Wpyn (A) -
Wy (B) = a = (f(a;))in, for every ring morphism f : A - B.

Furthermore, we have natural morphisms gyn : Wyn(A4) — A" = a = (wyi(a))i<n and
respn pm : Wym (A) = Wpn(A) = a = (a;)in, forevery n <m e Zo U {oo}.

The gp» are usually called the ghost component maps. We will often write W for W e

Proof. Let 0 := (0)icp € Wpn(A), 1 := (Li=0)i<n and M; € Z[x] be such that wyn (M (x)) =
—wpn (x). We can now check that all the required equality for W= (A) to be a ring hold us-

13



1. Valued fields

ing lemma 1.3. 10°). Now, if f : A > Bisa ring morphism. then for any a,b € Wy»(A),
Wi (1)@ +) = Wi (F)((Si(a,5))) = (F(5:(a, ) = (SiC (@), F(B)))s = Wy (1) () +
Wy (f)(b), and similarly for multiplication. So W,n (f) is a ring morphism. The fact that the
gpr and the respyn ,m are morphism is an immediate consequence of their definitions. O

Remark 1.3.12. It seems as if, to compute in the Witt vectors, it suffices to compute ghost
component equalities for polynomials over Z. And indeed, the g5, being bijective over Q[z],
are injective on Z[x ], where x is an arbitrary tuple. Since, for any ring A generated by a tuple a,
there is a natural surjection Z[a] — A, ghost component equalities translate to actual equalities
in Wyn (Z[2]) which are transported functorially to any W (A).

wpr ([2])-wpr ([y]) = 2" -y”" = wyn ([2-y]). Iefollows that [2]-[y] = [z-y] in Wy (Z[z,y])
and, since, for any f : Z[z,y] - A, Wpn(f)([z]) = [f(2)], the equality also holds over any

ring.

Definition 1.3.13. A p-ring is a ring A with a choice of ideal a < A such that its residue ring
A/a is characteristic p, ¢p, : A/a > Afa := x ~ 2P is bijective and A is Hausdorff complete in
its a-adic topology — z.e. A ~ lim | Ala™.

We say that (A4, a) is unramified if a = (p).

Example 1.3.14. Z, is an unramified p-ring.
For every ring R, let m,,(R) € Wy, (R) be the kernel of resg ,, : Wpn(R) - W (R) = R.

Lemma 1.3.15. If Ris a characteristic p ring with ¢, : R — R bijective, then (Wpn (R), my,(R))
is an unramified p-ring with residue ring R.

Proof. The only non-obvious statement is that m,,(R)" = (p*).

Claim 1.3.15.1. Forall ring R and x € W(R), (p-x)o =0 mod p and foreveryn, (p-x)n+1 =

2P mod p.

Proof. Lety = p-x, z; = Lisox? ;. We have wi(y) = p-wi(z) =0 = 29 = wi(z) mod pand

1+n—-i-1

foralln > 0, wyn (2) = ¥ Pis1 25 =p-wyn-1(2P) = p-wpn (x) = wye (y) mod p™H.
It follows, by induction on n, that, if A = Z[z], we have y,, = 2z, mod p. We conclude by
functoriality. 0

In Z[z, y, 2]:

wpn (S(S(2,9),2))
Wpn (S(xv S(ya Z)))
wpn (S(z,0))

wpn (S(z, M(x)))
wpr (P(P(2,y),2))
wpn (P(z, P(y,2)))
wyn (P(z,y))

wpn (P(y,x))

wpn (P(z,1))

wpn (P(S(2,9),2))
wp"’(S(P(mf Z)7P(y7 Z)))

wpn (S(2,y)) + wpn (2) = wpn (x) + wpn (y) + wpn (2)
wpn () + wpn (S(y, 2)) = wpn () + wpn (y) +wpn (2)
wpn () + wpn (0) = wpn () +0 = wyn ()

wpn () + wpn (M (2)) = wpn () —wpn (2) =0

wpn (P(x,y)) - wpn (2) = wpn (x) - wpn (y) - wpn (2)
wpn () - wpr (P (Y, 2)) = wpn (x) - wpn (y) - wpn (2)
wpn () - wpn (Y)

wpn (y) - wpn () = wpn () - wpn (y)

wpn () +wpn (1) = wpn (x) - 1 = wpn ()

wpn (S(2,y)) - wpr (2) = (wpr () + wpn (y)) - wpr (2)
wpn (P(x,2)) +wpn (P(y, 2)) = wpr () - wpn (2) + wpn (y) - wpn (2)
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1. Valued fields

If R is characteristic p, it follows that, for all a € Wyn(a), p-a = (0,4af,...,a?,...). Since
¢p is surjective on R, it follows that any element in m,(R)" is a multiple of p’ and since p =
(]ljzl)j € mn(R), that mn(R)l = (pz). ]

Lemma 1.3.16. Let (A, a) be a p-ring.
1. There is a unique multiplicative section [.] : Aja — A of the projection A -~ A/a.
2. Foreverya € A, we havea € [Alifand onlyifacc=0, AP".

Proof. Fix some a € A/a. For every n, let Uy, = {2 : z/a = ¢," (a)}. Note that, for every
m > n, Uy, € Up. In particular, Uy, /a = Up/a = a and that. By claim 1.3.10.1, the U,, forms a
Cauchy filter for the a-adic topology and let [«] = lim,, Uy,. This defines a section as sets. Note
that, [a] € U,, € AP" and hence [a] € AP”. Conversely, if a € AP” has residue a, let a,, € A be
such thata” = a. Then ¢y (an/a) = aand hence a € Uy. So a = [a].

Now, forevery o, 3 € Afa, [a]-[8] € AP” and hence [ 3] = [a]-[3]. Finally,if f : AJa - A
is another multiplicative section, then, for every o € A, f(«) = f (qb;,”(a)pn) =f (qb;”(a))pn
and hence f(a) € AP”. So f(A) =[A]and f = [.]. O]

Proposition 1.3.17. Let (A, a) be a p-ring and R = Afa. For everyn € Zso U {00}, there is a
unique ring morphism frn, : Wyn (R) - AJa", where a®® = (0), such that

commautes. Moreover:
1. fy issurjective if and only if (A, a) is unramified;
2. fn is bijective if and only if it is surjective and for all i € Zo, and c € A, plcea® implies
c€a—ie. whenn = oo, pisnota zero divisor.

Proof. Let us first assume thatn < co. Let m, : A - A/a" be the natural projection. The map
T 0 Wpn : Wpyn (A) - A/a™ factorises through Wyn (m1) : Wpn (A) = Wy (R). Indeed, since
pea,wy(a)ca” Lethy, : Wpyn (R) - A/a” besuch that by, o Wpn (71) = mp0wy, and f, = hy0
Wyn(¢,"). Note that, Wyn (m1)oWpn ([.]) = Wyn (id) = idand hence, hy, = mp0wnoWpn ([.]).
So, for every x € Wyn(R), fu(z) = ha(Wpn(¢5™)(2)) = hu((@)i) = wa(([(@F )])i) =
Zipi[xf_n]pnfi = Zi[x?_l]pi. In particular, f,(x)/a = [z0]/a = zo. Note also that the f,, form
a projective system and allow us to define foo : Wy (R) = lim Wyn (R) - lim | Ala, ~ A,
which, by construction commutes with reduction to R = W1 (R).

If f,, is surjective, then any a € ais of the form f,,(z) withay = a/a = 0. Soa = Zbo[xfﬂ]p" €
(p). Conversely, ifa = (p), then, by induction on i any element of A/a’ is of the form ¥_; [z T p

and hence f is surjective. Also, since Wy (R) is itself unramified, any element of Wy (R) is of
the form Y, [«? ' Bylemma 1.3.16,if f, : Wyn (R) — A/a™ makes the above diagram com-

mute, forany z € R, f/([x]) = [#] and hence, if n < oo, f1(T;[z} 1p%) = Ti[2? 1p' = fu(2).
If n = oo, then my, o f{, = f,, by uniqueness and hence f/, = &nn frn = foo-
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2. Algebraically closed valued fields

If f,, is bijective, then foreveryce Awithpic = 0,wehavec = f,(z)and f,,(0,...,0, xgi, c) =
p'c =0and hence l‘gl =0=1z0,50 c = fo(x) € (p) = a. Conversely, for every c € Wn (R), with
¢j =0forall j <i<n,if0= fu(c) = p'(Lsilc? 1p"), then ¥js;[c? "JpP " ea. Soc! =0
and hence ¢; = 0. It follows that ¢ = 0. O

Corollary 1.3.18. Let R be a characteristic p ring with bijective @p. Then (Wyn (R), m,(R)) s
the unique, up to unigue isomorphism, unmmzﬁed p-ring where p is not a zero divisor up to power
n — that is, for every i < nand c € Wyn (R) if p'c = 0 then, c € (p).

Proposition 1.3.19. Let k be a characteristic p perfect field. Then W (k) is a complete valuation
ring with associated valuation v: W (k) - Z u {oo} defined by v(a) = min{i : a; # 0}.

Proof. Let us show that v is a valuation. We have v(0) = oo # 0 = v(1). For every z,y €
W(k), let n = min{v(x),v(y)}. Then resyn-1(x +y) = resyn-1(x) +res,n-1(y) = 0 and
hence v(z + y) > n. Also, etz = p*®sand y = p*@t. Since s,t ¢ (p), we have s, to # 0
and hence (st)o = sotg # 0. Since, by claim 1.3.15.1, p’ - u = (]lj;iui-ﬂ_i)j, it follows that
v(zy) = v(z) +v(y).

Completeness follows the fact that the valuation induced by v is exactly the p-adic valuation.
It then follows that any element in 1 + (p) is invertible and hence, since k is a field, so is any
element of valuation 0. So W (k) is the valuation ring associated to v. O

Corollary 1.3.20. Let k be a characteristic p perfect field. Then W (k) oy is the unique (up to
unique isomorphism) complete unramified charactersitic zero valued field with residue field k and
value group 7.

2. Algebraically closed valued fields

Definition 2.0.1. Let Lrv 1 be the three sorted language with:
* asort K with the ring language (+,-,0,-,1);
* asort I' with the ordered group language (+, -, 0, <) and a constant oo;
* asort RV with the ring language;
* amapv:RV - T}
* amaprv: K - RV.

Any valued field (K, v) can be made into a £ry r-structure by interpreting K as the field
K, T as vK — with its ordered moinoid structure, 0 = v(1), co = v(0) and - is interpreted as
the inverse on vK™ and —co = co — and RV as K/(1 + m) — with its multiplicative structure,
0 = 1rv(0), + and — defined as the additive structure on k ¢ RV and 0 elsewhere. The maps v
and rv are interpreted as the canonical projections.

We will usually also write v for v orv : K — T, relying on the context to avoid any con-
fusion. We will denote by k* (respectively k), the definable subset v™*(0) ¢ RV (respectively
v 1({0,00}) cRV).

Definition 2.0.2. Let VF denote the £rv r-theory of valued fields and ACVF denote the
£ryv,r-theory of algebraically closed non trivially valued fields.
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2. Algebraically closed valued fields

Remark 2.0.3. 1. Foralln € Z,g, ACVF £ (Vx : T')(3y : T') ny =  — that s, the group
I :=T \ {oo} is divisible.
2. For every P € Z[xy] where y is a tuple, ACVF & (Vy : k)(3z : k) P(zy) = 0 — thatis,
the residue field k is algebraically closed.
3. Any M = VF embeds into N £ ACVF. If M is not trivially valued, we may assume
K(N) =K(M)?.

In other words, VF = ACVF'y, the set of universal consequences of ACVF.

Proof. 1. Let ¢ € K be such that v(c¢) = z and a € K such that " = c¢. We have nv(a) =
v(a™) =v(c).
2. Let ¢ € O be such that res(c) = y and a € K such that P(c,a) = 0. By lemma 1.1.11,
a € O and we have P(res(c),res(a)) = res(P(c,a)) = 0.
3. If M is trivially valued, then (K(M), v) embeds in (K(M)(x),vo) which is non triv-
ially valued. So we may assume M is not trivially valued. This is then an immediate
consequence of corollary 1.1.10. O

2.1. Elimination of quantifiers

Let us start by recalling the characterisation of 1-types for the residue field (ACF) and the value
group (DOAG):

Fact 2.1.1. Let M,N = ACF, A<M, f: A—> M an L.g-embedding, a € M and P € Alx]its
minimal polynomial over A.

(1) There existsb e N* > N whose minimal polynomial over f(A) is f. P.

(2) f can be extended by sending a tob.

Fact 2.1.2. Let M, N £ DOAG, A< M, f: A —> M an £og-embedding, v € M, n its order in
MJA =11 and C = {ceQ-A:e <~}
(1) There exists 6 € N* > N such thatné = f(a) and, if n = oo, foranye e Q- A, f(e) <dif
and only if e € C.
(2) f can be extended by sending y to 6.

In this section, we work in the language £rv r. Let M = ACVF and A < M. Assume that
K(A) is a field. We now describe various extensions by one K-element.

Proposition 2.1.3 (Purely ramified 1-types). Fix any v € v(RV*(A)). Let n be its order in
I*(A)/v(K*(A)) and c e K(A) be such that ny = v(c) —and c=11ifn = c.
(1) ForeveryQ =Y, c;iz' € K(A)[x] of degree less than n and a e K(M ) with v(a) =7,
* v(Q(a)) = min;(v(c;) + i) and the minimum is attained in exactly once;
e v(Q(a)) = rv(ciy )rv(a)®, where v(ciy ) + oy is minimal.
(2) Assume that k(M) < k(A). There exists a € K(M) with a™ = ™, v(a) = v and
rv(a) € RV(A). Moreover, for any § € RV (M) with £ = rv(c), there exists such an
aeK(M) withrv(a) =¢&.

1OBy convention, ooy = 0.
11By convention a™ = 1.
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2. Algebraically closed valued fields

(3) Such an a is uniquely determined, up to Lrv v (A)-isomorphism, by n, c and & = rv(a):
forany N & ACVF, any Lry r-embedding f : A - N and anyb e K(N), withb™ = f(c)
and rv(b) = f(&), f can be extended by sending a to b.

Proof. (1) We always have v(Q(a)) = v(X;(cia’)) > min; v(c;a’) = min; (v(e;) + 7). If
the inequality were strict, there would exist i < j < n such that v(c;a’) = v(rja?), ie.
(j—i)v(a) =v(c;) —v(cj) € v(K(A)), contradicting the minimality of n. We have also
proved that all the v(c;a") = v(¢;) + i7y are distinct — in particular the minimum iy is
unique. It follows that rv(Q(a)) = rv(c;, ) +iorv(a).

(2) Assume n < oo — otherwise the statement is trivial. For any a with " = ¢, we have

nv(a) = v(c) = ny and hence v(a) = v = v(§), for some £ € RV(A). It follows that
rv(a)ét e k(M) c k(A),and hence rv(a) € rv(A).
Now if we fix £ € RV (M) with " = rv(c), then £" = rv(¢) = rv(a)”™ and hence
¢rv(a)~tis a root of the unit in k*. Write P := 2™ — 1 = [],  — ¢, where the ¢’ ¢ K(M)
are the n-th roots of the unit — they are in O since it is integrally closed. Then z™ -1 =
k. P = []; z - k(e)? and hence, for some 4, & = rv(a)rv(e’) and (ae’)" = c.

(3) Let C be the structure generated by Aa. By (1), the minimal polynomial of a over K(A)
is 2" — c. So we have K(C') = K(A)[a] ~ K(A)[z]/(z" - ¢). Also by (1), RV(C) =
RV(A) and T'(C) = T'(A). Applying (1) to f(7), we see that 2" — f(c) is the mini-
mal polynomial of b over f(K(A)) and hence f|k extends to an £,5-embedding gk :
K(C) - K(N) sending a to b. Let also g|gy = flgy 2and glp = flp-

Forany Q = ¥, iz’ € K(A)[z], by (1), we have g(1v(Q(a))) = f(rv(c;p€™)) =
rv(f(ei))rv(b)® = rv(g(Q(a))), where v(c;,) + ¢y is minimal — and hence so is
v(f(¢cip)) +i0f(7). Sog: C - N isindeed an £ry r-embedding sending a to b. ]

Definition 2.1.4. An exact lift of Q € k(M)[x] is P € O[z] with res, P = Q and deg(P) =
deg(Q).

Proposition 2.1.5 (Purely residual 1-types). Fix any o € k(A). Let P € O(A)[x] be an exact
lift of its minimal polynomial ™ over res(O(A)).
(1) Forevery Q = ¥ cix’ € K(A)[z] of degree less than P and a e K(M), with res(a) = a:
* v(Q(a)) = min; v(¢;) # oo;
* 1v(Q(a)) = rv(ci, )res. Qo(), where v(ci,) s minimal and Q = ¢;, Qo.
(2) There exists a € K(M) withres(a) = aand P(a) = 0.
(3) Such an a is uniquely determined, up to Lry v (A)-isomorphism, by P and o: for any
N & ACVF, any Lrv r-embedding f :+ A - N, and any b e K(N), with f.P(b) = 0
andres(b) = f(), f can be extended by sending a to'b.

Proof. (1) Let iy be such that v(¢;,) is minimal. Let Qg := ci_olQ. Then res, Qo # 0. By
minimality of res, P, res(Qo(a)) = res.Qo(c) # 0 and hence v(Qo(a)) = 0. It follows
thatv(Q(a)) = v(ci,) = min; v(¢;). Also,rv(Q(a)) =rv(ci,)rv(Qo(a)) = res(Qo(a)).

(2) Let P = IT;(x - e;). Since O is integrally closed, cf. lemma 1.1.11, we have e; € O, for
all j. Forany a € res™! (a), res, P(a) = res(P(a)) = [1,res(a) —res(e;) = 0. It follows
that there exists an j such thatres(e;) = res(a) = o

| 12We allow P to be 0; in which case, « is transcendental over res(O(A))
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2. Algebraically closed valued fields

(3) Let C be the structure generated by Aa. By (1), P is the minimal polynomial of a over
K(A). Sowehave K(C) = K(A)[a] ~ K(A)[z]/P. Alsoby (1), RV(C) = RV(A) and
I'(C) =T (A). Applying (1) to 3 := res(b), we see that f, P is the minimal polynomial
of b over K(f(A)) and thus f|x extends to an £,,-embedding g|i : K(C) - K(N)
sending a to b. Let also g|lgy = flgy and glp = flp.

Forany Q = ¥ deg(P) cir’ e K(A)[x], by (1), we have:

g9(rv(Q(a))) = rv(f(cip))res. fxQo(f(B)) = rv(f.Q(b)) = 1v(9(Q(a))),

where v(¢;,) — and hence v(f(¢;,)) — is minimal. So g : C' - N isindeed an £ry -
embedding sending a to b. O

Remark 2.1.6. * Forevery{,¢ e RV, wedefine£@( := {rv(z+y) : rv(z) = {andrv(y) =
¢}. We say that £ @ ( is well-defined if it is a singleton, whose element we denote & + .
The map @ is an hypergroup law (in the sense of Kasner): is associative, commutative,
with neutral element 0...

¢ If P =Y,¢Gzr' e RV[z] — thisisa purely formal notation — and £ € RV, we define
P(&) = @; ;¢ = {rv(Q(a)) : 1v.Q = P and rv(a) = &}. We say that it is well-defined
whenever it is a singleton.
* Both previous lemmas can now be subsumed as follows: fix any { € rv(A). Let P ¢
K (A)[z] have minimal degree such that 0 € rv, P(§).
(1) Forevery@ = ¥; c;z’ e K(A)[x]and everya € K(M), withrv(a) = £, 1v(Q(a)) =
rv,.Q(§) which is well-defined.
(2) There exists a € K(M ) withrv(a) = { and P(a) = 0.
(3) Such an a is uniquely determined, up to £ry r(A)-isomorphism, by P and £: for
any N = ACVF, any £rv r-embedding f : A - N, and any b € K(NV), with
f+P(b) =0and rv(b) = f(&), f can be extended by sending a to b.

To deal with the last type of extension, the immediate ones, we will first need a technical
lemma on the localisation of roots of polynomials with respect to pseudo-Cauchy filters.

Lemma 2.1.7. Let B be a non-principal pseucdo Cauchy filter on K(A) and P € K(A)[x]. Then
one (and only one) of the following holds:

* there is is b € B such that rv o P|, is constant;

* there is a root of P in B and, Jforeveryb e B, vo P|b( A) is non-constant.

Proof. Let P = c[];(z—¢;) and b e Bbeaball of K(A)suchthat{i:e; e B} ={i:e; eb} = I.
Forevery ai,as e band i ¢ I, v(a1 —ag) > v(ai —€;) and thusag —e; = a1 —e; + (a2 —a1) €
a; — e + (a1 —e;)mand rv(a; —¢;) = rv(az — €;). It follows that rv(P(a;))/rv(P(a2)) =
[Ticsrv(ar —e;)/rv(as — ;). In particular, if I = @, rv(P(a1)) = rv(P(a2)).

If I # @letby ¢ by € b be closed balls of K(A), both in ®B. Let also ag € by(A) and
ay € by (A) \ by — such an a; exists because there are elements of b1 (A) whose at distence the
radius of by, thus both cannot be in bg. Then, forall i € I, v(a; — e;) > rad(by) > v(ag — ;)
and hence v(P(a1)) - v(P(a2)) = Yier(v(ar —e;) = v(az —¢€;)) > 0. L

19

14/01

26

27
28
29

30

31
32
33
34
35
36

37

21/01



2. Algebraically closed valued fields

Proposition 2.1.8 (Immediate 1-types). Fixa pseudo Cauchy filter B on K (A). Let P e K(A)[x]
have minimal degree among those polynomials such that 0 € P,*B.
(1) For every Q € K(A)[x] with degree smaller than P, there exists U € B with rvo Q|
constant, equal to an element of rv(K(A)).
(2) If P + 0, there exist a € K(M) with a € B and P(a) = 0.
(3) Such an a is uniquely determined, up to Lrv 1 (A)-isomorphism, by B and P : for every
N & ACVF, embedding f : A — N and b e K(N), with f.P(b) =0and be f.B, f can
be extended by sending a to b.

Proof. (1) By minimality of P, 0 ¢ Q.%B, and thus, by lemma 2.1.7, rv o () is constant on
some U € B. Since we may assume that U is a ball of K(A), U(A) # @ and hence
rv(Q(U)) exv(K(4)).

(2) If there is no root of P in 9B, then, by lemma 2.1.7, rv o P is eventually constant on B.
Since 0 € P,B, we must have that P is eventually equal to 0 on B. If P # 0, ‘B contains
the finite set of roots of P; in particular, B contains a singleton from K(A).

(3) Let C be the structure generated by Aa. By (1), P is the minimal polynomial of a over
K(A). So we have K(C') = K(A)[a] ~ K(A)[z]/P. Also, by (1), we have RV (C') =
RV (A) andT'(C) = T'(A). By lemma 2.1.7, f. P is minimal with 0 € f, P.8. By (1),
the minimal polynomial of b over K(f(A)) is f. P, so f|k extends to a ring embedding
gk : K(C) - K(N) sending a to b. Let also g|lgy = flgy and glp = flp-

For any Q € K(A)[x] with degree smaller than P, by (1), we find U € B such that
rv o Q| and v o f. Q) ;1) are constant equal to some rv(c), respectively rv(f(c)) for
any ¢ € U(A). It follows that g(rv(Q(a))) = f(rv(c)) = rv(f(c)) = rv(f.Q(D)) =
1v(g(Q(a))). Sog: C - N isindeed an £Lryv r-embedding sending a to b. O

We will need one last case of the embedding lemma:

Proposition 2.1.9. Fix any v € T(A). Let n be its order in T™(A)[v(RV*(A)) and ¢ €
RV (A) be such that ny = v(¢) — and ¢ = 1ifn = oo.
(1) Foreverya e RV(A),0<i<nandé e RV(M) withv(€) =7, v(a&') = 0 if and only if
i=0andaek(A).
(2) There exists € € RV (M) with&™ = Cand v(&) =;
(3) Such a & is uniquely determined, up to Lrv v (A)-isomorphism, by ~, n and (: for every
N = ACVF, any embedding f :+ A - N and anyn € K(N), with n™ = f(() and
v(n) = f(7), [ can be extended by sending & ron.

Proof. (1) Wehavev(ag’) = v(a) +iv(€) = 0ifand only iv(¢) = —v(a) e v(RV*(A)). By
minimality of n, we must have ¢ = 0 and hence v(a) = 0.
(2) Letce K(M) besuch thatrv(x) = (. If n < oo,leta € K(M) be such thata™ = ¢. Then
rv(a)™ = (and nv(a) = v(¢) = nyand hence v(a) = 7. If n = oo any §£ e RV (M) with
v(&) =~y will work.
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(3) By(1),¢isorderninRV*(M)/RV*(A). By (1),nisalsoordernin RV*(N)/RV*(f(A)).s

So flgy extends to a multiplicative group embedding gl : RV (A) - ¢Z - K (V) send-
ing € to 7. Let C be the structure generated by A¢. Note that, by (1) again, RV (A) - ¢Z
is closed under + and -, so RV (C) = RV (A) -£Z and gl is an £,5-embedding. Let also
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2. Algebraically closed valued fields

glr = flp and gl = flk- Since v is multiplicative, it is preserved by g which is indeed
an £rv r-embedding sending & to n. O

Proposition 2.1.10 (ACVF embedding lemma). Let M, N &£ ACVF, A< M and f: A - N.
There exists an elementary map h: N — N* and an embedding g : M — N such that:

M2 N+

&

A——N
f
commautes.

Proof. The family of pairs of embeddings (g,h), withg : C - N*,C < M andh: N - N*
elementary, is inductive — where (g1, h1) is smaller than (g2, h2) if C1 < C and there exists
i: N7 - Ny elementary such that

g2 *
Cy —Z5 N3

IR
(3
*
Cl T Nl T N
commutes — and contains (f,id). By Zorn’s lemma, it contains a maximal element (g, )

larger than (f,id). There remains to show that M = C. We proceed by proving a series of
inclusions.

I'(C) =[C'(M) Forany~ e k(M),byfact2.1.1, g|p extends to gg : I'(C)y - I'(N*), forsome N* > N.

k(C) =

Then gu go : Cy > N™* is an embedding. By maximality, v € T'(C).

k(M) Forany o € k(M), by fact 2.1.1, g|, extends to go : k(C)aw - k(N*), for some N* >
N. We define g1 : RV(C)a - RV(N™) by g1({P(a)) = 9(§)g0(P(v)), for every
€ € RV(C)and P € k(C)[x]. This is well defined, indeed, if £P(«) = 1,and £ # 0
then ¢! = P(a) # 0and hence € € k(C), so f(£)go(P(a)) = go(éP(a)) = 1. Itis
obviously multiplicative. Since v(§P(«)) € kif and only if v(§) € k, it follows that it is
also additive. Then gu g1 : Cav > N™* is an embedding. By maximality, a € k(C').

v(RV(C)) =[l'(M) Fixany v € I'(M) = I'(C) and let n be its order in I'(C') /v(RV(C)) and ( € RV (C)

RV(C)=R

K(C)=K

be such that 4" = v(¢). By proposition 2.1.9.(2), there exists £ € RV (M) such that
" = Cand v(§) = v, and p € RV(N) such that p” = ¢(¢) and v(p) = g(v). By
proposition 2.1.9.(3), g extends by sending & to p. By maximality, £ e RV (C') and hence
7= v(£) e V(RV(C)).

V(M) Forany ¢ e RV*(C), v(§) e I'(M) = v(RV(C)) and hence there is some ¢ € RV (C)
such that v(¢) = v(¢). Then £¢! e k(M) = k(C) and hence ¢ € ¢k(C) c RV(C).

C)(0y By the universal property of localisation, gly has a (unique) extension go to K(C') gy U
k(C)uT(C). Indeed, go is a ring morphism on the sorts K and it is equal to g on RV
and I. For any ¢ € K(C) and non zero d € K(C), go(rv(c/d)) = g(xv(e)rv(d)™t) =
1v(g(c))rv(g(d))™ = rv(go(c/d)). So go is an £ry r-embedding. By maximality of g,

K(C) isafield.
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res(K(C)) 1

v(K(C)) -

K(C) =

k(C)

r'(C)

K(M)

2. Algebraically closed valued fields

Pick any a € k(C). Let P € O(C)[x] be an exact lift of its minimal polynomial over
res(O(C)). By proposition 2.1.5.(2), we can also find a € K(M) and b € K(N™*) such
that P(a) = 0 = g. P(b), res(a) = cvand res(b) = g(a). Applying proposition 2.1.5.(3),
we find a pair (go, h) larger than (g, ) with gy defined at a. By maximality, a € K(C)
and hence a € res(K(C)).
Pick any v € T (C'). Let n be its order in I'*(C) /v(K*(C)) and ¢ € K(C) such that
n-vy =v(c) — with ¢ = 1if n = co. By proposition 2.1.3.(2), we find a € K(M) such
thata™ = cand v(a) = v,and b e K(IN*) such that b" = g(c) and v(b) = g(7y). Applying
proposition 2.1.3.(3), we find a pair (go, k) larger than (g, k) with gy defined at a. By
maximality, a € K(C') and hence a € v(K(C)).
We start by proving that any pseudo Cauchy filter B over K(C') thataccumulates at some
a € K(M) also accumulates at some ¢ € K(C'). Let P € K(C)[«] have minimal degree
such that 0 € P,®B. If P # 0, by proposition 2.1.8.(2), there exists ¢ € K(M) such that
P(c)=0and c e B. If P = 0, c := a satisfies those same requirements. By compactness
(corollary B.0.13) and proposition 2.1.8.(2), we also find i : N* - NTand b ¢ K(NT)
with b € ¢, and g(P)(b) = 0 — if P # 0, some root of g(P) in N* works and we can
take ¢ = id; if P = 0, the set of balls in g.*B is finitely satisfiable in N since it is a filter.
Applying proposition 2.1.8.(3), we find a pair (go, 0 h) larger than (g, h) with g defined
at ¢. By maximality, ¢ € K(C') and, by construction, we do have ¢ € B.
Now fix a € K(M) and let B be the maximal pseudo Cauchy filter over K(C') that
accumulates at a — ze. the filter generated by the balls of K(C') containing a. By ??, B
accumulates at some ¢ € K(C'). Let us assume that a # c. By ??, there is some d € K(C')
such that v(a - ¢) = v(d) € T*(M). Then (a - ¢)/d € O and, by ??, there is some
e € O*(C) such thatres((a - ¢)/d) = res(e); equivalently (a — ¢)/d - e € m and hence
a € c+de+dm =: b, the open ball of radius v(d) around c+de. By construction, b € B, but
v(ct+de—c) =v(d)+v(e) =v(d),soc ¢b,acontradiction. It follows thata = c e K(C),
and hence K(M) = K(C).

O

Theorem 2.1.11 (Robinson, 1956). The Lry r-theory ACVF eliminates quantifiers.

Proof. By proposition B.0.15, this is an immediate consequence of proposition 2.1.10. O

Corollary 2.1.12. The class of existentially closed models of VF coincides with ACVF.

Proof. By remark 2.0.3.3, any model of VF embeds in a model of ACVF, so it suffices to check
that embeddings between models of ACVF are existentially closed. But this is an immediate
consequence of elimination of quantifiers, ¢f. theorem 2.1.11. O

Corollary 2.1.13. The completions of ACVF are the theories ACVF), 4, with p, q prime or zero,
of non trivially valued algebraically closed valued of characteristic p and residue characteristic q.

Note thatif p > 0, then ¢ = p.
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2. Algebraically closed valued fields

Proof. By proposition B.0.15, it suffices to find a common substructure to any two models of
ACVF, . If g = p > 0, the trivially valued field F;, embeds (uniquely) in any model of ACVF), ..
If ¢ = p = 0, the trivially valued field Q embeds (uniquely) in any model of ACVF . Finally,
the field Q with the p-adic valuation embeds (uniquely) in every model of ACVFy,,. O

Definition 2.1.14. Let £4;, be the language with a single sort K with the ringlanguage (+,-,0,-,1) s

and a predicate |.

Any valued field (K, v) can be made into a £4;y-structure by interpreting albas v(a) < v(b).
Corollary 2.1.15. The Lqiy-theory ACVF eliminates quantifiers.
Proof- O

Definition 2.1.16. Let £y r be the three sorted language with:
¢ asort K with the ring language (+,-,0,-,1);
¢ asort I' with the ordered group language (+, -, 0, <) and a constant oo;
¢ asort k with the ring language;
* amapv:RV - T}
. amapp:K2—>k.

Any valued field (K, v) can be made into a £ry r-structure by interpreting p(a, b) = k(a/b)
ifv(a) > v(b) and 0 otherwise.

Corollary 2.1.17. The £y p-theory ACVF eliminates quantifiers.

Proof- O
Corollary 2.1.18. Let (K,v) be a valued field, L be a normal extension and wi ,wo be two val-
uations on L extending v, then there exists o € aut(L]/K) such that w o o is equivalent to w.

Proof. Let L; be the gy r-structure associated to (L, w;). By hypothesis, the identity on K
is an £rv r-embedding from L; to L. By remark 2.0.3.3, L; < M; £ ACVF. By elimination
of quantifiers (theorem 2.1.11), there exists an Lrv (K )-embedding o : Ly — Mj. Since L is
normal, 0(L1) = L. So we do have o € aut(L/K') and wy o o is equivalent to w;. [

2.2. Properties of definable sets

We now give a complete description of types concentrating on K over algebraically closed sub-
sets of K in ACVF. Fix M = ACVF and A = A* <K(M).

Definition 2.2.1. Let B be a pseudo Cauchy filter over A. An element a € K(M) is said to be
generic in B over A if, for every ball b of A:

acbifand onlyifb e B.

We write 73| 4 for the — a priori partial — type of generics of B over A.
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2. Algebraically closed valued fields

Proposition 2.2.2. Let a € K(M). Let B be generated by {b ball in A : a € b}. Then:

18l = tp(a/A).
In particular 79| 4 is a complete type over A.

Proof. Note that, by construction, a = 73| 4. Let us first assume that 9B is generated by some
closed ball by = B(c,v(d)), with ¢,d € A. If d = 0, then ng|4(x) & = = c which generates a
complete type. Otherwise, let a’ = np|, and o’ = res((a’ - ¢)/d). If & e res(A)* = res(A) —
by proposition 2.1.5.(2) — then we find e € K(A) withres(e) = &/, z.e. v(a’'—(c+de)) > v(d),
soa’ € B(c+ de,v(d),), a contradiction to a’ £ 7p|,. So o ¢ res(A)* and, by 2.1.5.(3),
(a'=¢)/d=4 (a-c)/d,and hence a’ =4 a.

Let us now assume that 9B is not principal — Ze. it is not generated by a single ball — and
that B n A = @. If the minimal P such that 0 € P,B is not 0, by 2.1.8.(2), BnA=BnA* =+ g,
a contradiction. So P = 0 and, since any a = 1p| 4 is in B, by 2.1.8.(3), we have a’ =4 a.

Let us now deal with the remaining case. We may therefore assume that 98 is not generated
a single closed ball and that there exists some ¢ € B n A. Let a’ & np| 4. For every v € v(A), we
have v(a’ - ¢) > v if and only if B(c,~) € 9B, which is equivalent, since B is not generated by
B(c,7), o B(¢,7) € B, ie. v(a' - ¢) > 7. It follows that v(a’ - ¢) ¢ v(A) = Q- v(A) — the
equality follows from proposition 2.1.3.(2) — and that, by proposition 2.1.3.(3), (a' - ¢) =4
(a-c).Soa' =4 a. [l

Remark 2.2.3. We sce from the proof that there is a correspondence between the descriptions
of the types over A concentrating on K in algebraic terms and in terms of generics of pseudo
Cauchy filters:
* generics of closed balls correspond, up to translation and scaling, to residual extensions;
* generics of open balls correspond, up to translation, to ramified extensions where the cut
is of the form 775
* generics of non principal pseudo Cauchy filters with an accumulation point in A corre-
spond, up to translation, to the other ramified extensions;
* generics of non principal pseudo Cauchy filters without accumulation points in A cor-
respond to immediate extensions.

Proposition 2.2.2 states, among other thing that types in K are entirely determined by their
restriction to the Boolean algebra generated by balls. By some abstract non-sense, every defin-
able subset of K is, up to equivalence, in said algebra.

Definition 2.2.4. * An A-Swiss cheese is a set of the form b \ U, b; where bis aball in A
and the b; c b are (disjoint) subbealls, in A.
* A Swiss cheese b\ U; b; is nested inside some other Swiss cheese d \ U d; if there exists a
j such that b = d;.

Theorem 2.2.5 (Holly, 1995). Any £rv r(A)-definable subset of K has a unique decomposition
as a finite disjoint union of non-nested A-Swiss cheeses.

Proof. Let A(z) be the set of finite unions of A-Swiss cheeses.
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2. Algebraically closed valued fields

Claim 2.2.5.1. A(xz) is stable under Boolean combinations.

Proof. It suffices to show that the intersection of two A-Swiss cheeses is an A-Swiss cheese and
that the complement of an A-Swiss cheese is a finite union of A-Swiss cheese. Let B = b\ U; b;
and D = d \ U, d; be two Swiss cheeses. We have Bn D = (bnd) ~ (U;(dnb;)) ulU;(bndy))
where some of the intersections might be empty. Similarly K\ B = (K \ b) u U, b;. O

Proposition 2.2.2 implies that for all p € S;(A), p|, := pn A E p. In other terms, for any
Lrv,r(A)-formula p(x),a € p(M)and c e K(M),if ¢ = tpa(a), then M E ¢(c). By B.0.14,
any £rv 1 (A)-definable subset of K is equivalent to a formula in A(x), that is a finite union
of A-Swiss cheeses. Since the union of two non disjoint A-Swiss cheeses is an A-Swiss cheese:
(ONUibi)u(d~U;ds) = b~ (Ui(bi ~ d) ulU; j(bi ndj)), where d € b; and the union of two
nested swiss cheeses is a swiss cheese : b\ U; b;u (d\U; d;) = b\ (Uj»0 bs uUj d;), where d = bo;
we may assume that it is a disjoint union of non-nested A-Swiss cheeses.

Uniqueness now follows from:

Claim 2.2.5.2. Let (D;)i<n be disjoint non nested Swiss cheeses and B be some Swiss cheese such
that B € \U; D;, then there is some i such that B € D;.

Proof. We may assume that the D; form a minimal cover. In particular, we then have that, for
every i, Bn D; #+ @. If n = 1 then the claim is proved. So, let us assume thatn > 2.

Let us first assume that the D; and B are balls. Pick ¢; € B n D;. Let b be the smallest ball
containing all the ¢;. It is a closed ball of radius 7 := min;.; v(c; - ¢j). Wehave b ¢ B ¢ U; D;.
If b ¢ D;, for some i, then every ¢; is in b € Dj, contradicting that D; n D; = &. So we
must have that, for every i, D; c b. Let d; := ]f%(ci, ), it is the maximal strict subbal of b
containing ¢;, in particular D; € d;. So b € U; d;. Let d be some maximal open subball of b,
then d intersects some d; and by maximality d = d;. It follows that R;, := {d c b : maximal open
subball} = {c¢ +~ym : c € b} is finite. However, if we choose a e band e € v (), c+ (c-a)/e
is a bijection b - O sending elements of Ry, to elements of k which is infinite; a contradiction.

Let us now come back to the general case B = b\ U, bj, D; = d; \ Uy d; ¢, where the d; ¢ are
disjoint. Since B ¢ U; D;, we have b ¢ U; d; u U, b;. It might happen that the d; and b; are not
disjoint, but a subset of them is and covers b. So, by the previous case, and since b; c b, there is
some 7 such that b ¢ d;. If bn d; ; = @, for all 4, we indeed have B ¢ D; and that concludes the
proof. So we may assume that there is some £ such thatbnd; o # @. If b € d; 4, then Bn D; = ;
a contradiction. Hence d; c b. It follows that d; N\ Uj € Bnd;y € Uy D; nd; ¢ € Uprs; Dy,
since D;nd; ¢ = @. In other words, d; o € Uyr+; dir uU; b;. So, by the case for balls proved above,
either d; 4 € b, for some j, or d; ¢ € dyr, for some i’ # 4. In the latter case, since D; n D] = &,
d; ¢ Up d; ¢ and hence it is covered by one of the d; /. Recall that the d; ¢ are disjoint and
d;¢ndy # @ and hence d; ¢ = dyr, contradicting that the assumption that the D; are not nested.
It follows that any d; ¢ that intersects b is contained in some b;, thatis B ¢ D;. O

Uniqueness of the decomposition follows from the fact that whenever a Swiss cheese is in-
cluded in a finite disjoint union of non-nested Swiss cheeses, then it is included in one of those
Swiss cheeses. OJ
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2. Algebraically closed valued fields

We will now describe the structure induced on the residue field and the value group.

Definition 2.2.6. Let T" be an £-theory and D be a £-definable set. We say that D is stably
embedded if for every M = T and every £(M )-definable X ¢ D", X is £(D(M))-definable.

Definition 2.2.7. Let T be an £-theory and D be some £'-structure interpretable(13)in T. We
say that D is a pure £'-structure if any £-definable X ¢ D" is £'-definable.

In particular, if D is also stably embedded, any £( M )-definable subset of D™ is £'(D(M))-
definable.
Fix M = ACVF and A< M.

Proposition 2.2.8. If X ¢ k" is Srv v (A)-definable, then it is £.5(k(A))-definable. In par-
ticular, the residue field k is a stably embedded pure ring.

Proof. By elimination of quantifiers (theorem 2.1.11), and since £, (k(A))-definable sets are
closed under Boolean combinations, it suffices to consider atomic formulas. So we may assume
X isdefined by R(z, p(P(a),Q(a)),a) = 0where z,y, z are tuples, R € Z[z,y, 2], P,Q € Z[t]
are y-tuples, a € K(A)" and o € k(A)* is a tuple. Since p(P(a),Q(a)) € k(A), this is indeed
an £,4(k(A))-formula. U

Proposition 2.2.9. If X c I is £rv 1 (A)-definable, then it is £,,(T'(A))-definable. In par-
ticular, the value group T is a stably embedded pure ordered monoid.

Proof. As above, it suffices to consider atomic formulas. So we may assume X is defined by
L(z,v(P(a)),v) < 0 where L is a Z-linear function, P € Z[t] is a tuple, a € K(M)" and
v € T'(M) is a tuple. This is indeed an £,4(T'(A))-formula. O

Definition 2.2.10. Let T be a £-theory, two £-definable sets Dy and D5 are orthogonal if for
every M & T, any £(M )-definable set X ¢ D" x DJ? is a finite union of boxes of the form
Y1 x Y where Y; € D' is £( M )-definable.

Proposition 2.2.11. The value group I and the residue field k are orthogonal.

Proof. Since finite unions of boxes are closed under Boolean combinations, it suffices to con-
sider atomic formulas. But variables from I' and k cannot both occur in the same atomic
Lrv r-formula. So subsets of I'" xk™ defined by atomic formulas are either of the form I'" x Y5
for some Y5 € k™ or Y7 x k™ for some Y; € I'". ]

We continue by describing the algebraic closure in ACVF:

Proposition 2.2.12. We have acl(A) = K(A)*uC-k(C)*uQ-T(A), where C is the divisible
bull of the group generated by RV (A).

3 That is for every sort X of £ a choice of an £-definable set X7 for every function symbol f : X — Y of £,
an £-definable function f7 : []; X{ — Y7 and for every relation symbol R ¢ X of £, an £-definable subset of
I, X7
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3. Henselian fields

Proof. Fixy e I (M) and let n be its order in I (M) /T (A). Then, if n # oo, since I (M)
is torsion free, v € dcl(A) ¢ acl(A4). If n = oo, by fact 2.1.2, there is an £(A)-elementary
embedding sending v to any 6 € M™ > M realising the same cut. So v ¢ acl(A). It follows that
I'(acl(A)) =Q-T'(A).

Note that the n-torsion subgroup of RV™ is exactly the group i, (k) of n-th root of the
unit. It follows that C' ¢ acl(A). Fix a € k(M) and let P be its minimal polynomial over
k(C). Then, either P # 0, in which case, since P has finitely many roots, o € acl(A), or
P =0, in which case, by fact 2.1.1, there is an £(A)-elementary embedding sending « to any
B € M* > M transcendental over k(A) and hence « ¢ acl(A). So k(acl(A)) =k(C)?.

In particular, C-k(C)* < RV (acl(A)). Conversely,if £ e RV (acl(A)), thev(€) e I'(acl(A4)) =

Q-T'(A) =v(C), by proposition 2.1.9.(2). Then & € ¢ - k(acl(A)) ¢ C - k(C)?, forany ¢ € C
with v(¢) = v(§).

Now, fix a € K(M). By proposition 2.2.2, tp(a/K(A)?) is the generic of some pseudo
Cauchy filter 8. Since non trivial balls are infinite, such a generic is algebraic if and only if B
contains a singleton, in which case a € K(A4)*. So acl(K(A)) = K(A4)*

Claim 2.2.12.1. Forevery( e RV(M)uT'(M), E := K(acl(K(A)()) c K(A4)™

Proof. Let us first assume that ¢ € RV (M). Since rv ™' (¢) is infinite, there exists ¢ € M* >
M transcendental over E, with rv(¢) = (. If ( € T*(M), we find such a ¢ with v(¢) =
¢. In both cases, we have ¢ € acl(K(A)c) and hence E ¢ K(acl(K(4)c)) = K(A)(c)>.
Now 1 = trdeg(K(A)(c)/K(A)) = trdeg(E(c)/K(A)) = trdeg(E/K(A)) + trdeg(c/E) =
trdeg(E/K(A)) +1,s0 Ec K(A)* O

It follows, by induction on an enumeration of RV (A) uT'(A), that K(acl(A)) = K(A)®.
]

Corollary 2.2.13. Any Lrv v (M )-definable function f : k" x T — K has finite image.
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Proof. LetY = f(k"xI'™). Then, forevery elementary h: M — M*,h, Y (M™*) € acl(K(h(M))u

k(M*)uT'(M*)) = K(h(M)), by proposition 2.2.12. If Y is infinite, then, by compactness
(corollary B.0.13) there exists an elementary i : M — M* such thath, Y (M*)\K(h(M)) # 2.
It follows that Y is finite. O

Corollary 2.2.14. Let K < L be some algebraic extension and v, vy valuations on L extend a
common valuation v of K. Then v\ and vy are not dependent (unless they are equivalent).

Proof. If there are dependent, by lemma 1.1.6, we may assume that there is an ordered monoid
embedding g : v1 L — vaL. Let A = ker(g). Itis a convex subgroup of v1 L ¢ Q - vK, that last
inclusion follows from proposition 2.2.12. In particular, A ¢ Q- (A nvK). However, since
U] = v = V|, AnvK = {0} and hence A = 0 and the v; are equivalent. O]
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3. Henselian fields

3. Henselian fields

3.1. Definably closed fields

Let us now describe the definable closure in the field sort. Let M = ACVF and A < K(M) be
a subfield.

Remark 3.1.1. Let Rbe any ring P = ¥, a;z° € R[x], then write P(z +y) = ¥ ai(z +y)" =
200 2 (;) atyl = Y% (;)aixi)yj = ¥; Pj(z)y’. Note that j!- P;(z) = PU)(z), the j-th
derivative of P. In particular, P; = P and, in characteristic zero, P; = Pi/j\.

Lemma 3.1.2. Let b a non trivial ball of M and P € K(M)[x]. The following are equivalent:
(2) forall x,y € b, rv(P(y) - P(z)) =rv(y - x)rv(P'(2));
(i7) forevery x € b, xv((P(z) — P(y))/(x - y)) is constant on b~ {z};

(ii1)
(v)

rv((P(x) - P(y))/(x —y)) is constant for x + y € b;
rv(P'(x)) is constant on b and if it is zero then P is constant;

Proof. The implication (iii) =(ii) is obvious.

= (iii)

()=(iv) For every z,y € b, we have rv(P'(z)) = rv((P(z) - P(y))/(z - y)) = rv(P'(y)). If

rv(P'(z)) = 0, then for every y € b, rv(P(y) - P(z)) = rv(y — «)rv(P'(z)) = 0 and
hence P is constant.

We may assume that P is monic non constant and hence rv(P’(a)) # 0 forany a € b. Let
P(z)-P(a) = [1;(z - a;) with ag = a. If a; is a multiple root of P, then P’(a;) = 0 and
hence a; ¢ b. It follows that the a; € b are distinct. For any « distinct from the a;, we have
rv(P'(2)/(P(z) - P(a))) = tv(E; [jui (2 - a;)/ T1; (2 - aj)) = 1v(Ti(2 - a;) 7). Ifw
is closest to a unique a;, tv(P'(z)/(P(z) - P(a))) = rv(z —a;) " and hence rv(P(z) -
P(a)) =rv(x - a;)rv(P'(x)).

So there only remains to show that a = ag is the only a; € b. Assume not. Let 7q,2q;¢b =
v(ai—a;)and I besuch thatforalli # j € I,v(a;—a;) = yandforall # I,v(a;—-as) <.
Forevery i € I, fix e; € b \ a; which is closest to a; than to any other a;. By the above
rv(P(e;) - P(a)) = rv(I1;(e; — a;)) = rv(e; — a;)rv(P'(e;)) and hence rv(P'(a)) =
rv(P'(e;)) = [1jz1v(ei — aj) = [z rv(a; — a;). Since for every iy,ip € I and j ¢ I,
rv(a;, —a;) = 1v(a;, —a;), it follows that [ e7. ;3 rv(a; — a;) does not depend onii € 1.
Fixig € I andlet ¢; = (a; — a4, )/c, where v(c) = v. We have that the [T¢/. ;3 1v(ci—¢j) =
[Tjero iy res(ci—c;) = Q' (k(c;)) are equal, where @ := [T;; (v -res(c;)). So Q- Q'(0)

is a degree |I| - 1 > 0 polynomial with |I| roots. This is a contradiction and (ii) is proved.

i) We have P(z +¢) = P(z) + eP'(2) + e2Q(x,¢), with Q = ¥, Q;(x)e’ € K[x,e]. For

any e sufficiently close to 0, v(eQ(z,e)) > min;{v(Q;(x)) + (i + 1)v(e)} > ~, for any
v € vK. Itfollows thatif y is sufficiently close to  and P'(x) # 0, v((P(y) - P(x))/(y -
z) - P'(z)) =v((y - 2)Q(x,y — x)) is arbitrarily large. Since v(P(y) - P(z)/(y - x))
is constant, we must have P'(z) # 0 and hence, v((P(y) - P(z))/(y - x) — P'(z)) =
o((y - 2)Qry - 2)) > (P (), . 1v(P(y) - P(@)(y - 2)) = rv(P'()). By (i),
this equality holds for any y € b. O
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3. Henselian fields

For any field K, let K® denote its separable closure — that is its maximal separable extension
inside K®. Let also KP ~ denote its perfect hull — If the characteristic p of K is positive,
KP™ = U0 K7 . otherwise K~ = K. We have K* ~ K5 @ KP .

Proposition 3.1.3. The following are equivalent:
(i) A=dcl(A)n A%

(iz) dcl(A) = AP~

(i1i) forevery a € A* tpg, (a/A) - tpeg, (a/A);

(iv) the valuation v|, has a unique extension to A* (up to equivalence);

(v) the valuation V|, bhas a unique extension to A (up to equivalence);

(vi) forevery P = X%+ ¥ ga; X' with ag_y € O(A)* and a; e m(A), fori < d— 1, there exists
a (necessarily unigue) c € O(A)* with P(c) = 0;

(vii) forevery P e O(A)[x], withres(P)(0) = 0 and res(P")(0) # 0, there exists a (necessarily
unique) c € m(A) such that P(c) = 0;

(viii) forevery P e O(A)[x]and a € O(A), withv(P(a)) > 2-v(P'(a)), there exists a (neces-
sarily unique) ¢ € Awithv(c—a) >v(P'(a)) and P(c) = 0;

(ix) forevery P € Alx), a € A, v € v(A) such that v(P(a)) > v(P'(a)) + v and, for every
distinctx,y € B(a,7), tv((P(z) - P(y))/(z-y)) = rv(P'(z)), there exists a (necessarily
unigue) c € Awithv(c—a) >~ and P(c) = 0.

(x) for every irreducible P € O(A)[x], there exists v € k(A) and Q € k(A)[x] irreducible
such that res(P) = a orres(P) = o - Qes(P)/ dee(@),

(xi) for every P e O(A)[x] and Qo,Ro € k(A)[x] such that res(P) = Qo - Ry # 0 and
ged(Qo, Ro) = 1, there exists Q, R € O(A)[x] with P = Q- R, Q is an exact lift of Qo and

res(R) = Ry.

Proof-

(h=(ix) Let P = cIl;(z - ¢;) and b := B(a, 7). If, for every i, e; ¢ b, then v(P'(a)/P(a)) =

(viii

v(Zi(a—-e)™t) 2 min; —v(a —¢;) > -, ie. v(P(a)) < v(P'(a)) + . It follows that
some root ¢ of P isin b. Since v(P(a)) > v(P'(a)) + v, rv(P'(a)) =rv(P'(c)) + 0 —
the second equality follows from lemma 3.1.2. So ¢ is a simple root of P and hence of its
minimal polynomial over 4, and ¢ € A%. Moreover, if ¢, ¢’ € bare distinct roots of P, then
0=rv((P(c)-P())/(c-c")) =rv(P'(c)), a contradiction. So ¢ € dcl(A) n A® = A.
=>(viii) Since P'(z) = P'(a) + (z - a) - R(z,a) with R(z,y) € O(A)[z,y], for every = «
B(a,v(P'(a))),v(P'(z)-P'(a)) = v((z—a)R(z,a)) > v(P'(a)) and hencerv(P'(z))
rv(P’(a)). Note also that P(y) = P(z) + (y - z) - P'(z) + (y - ) - Q(x,y), where
Q € O(A)[z,y]. So, for every z,y € B(a,v(P'(a))), since v((y - x) - Q(z,y)) >
v(P'(a)) = v(P'(2)), rv((P(x) - P(y))/(z = y)) = rv(P'(z))"*). By (ix), we find
a (unique) ¢ such that P(¢) =0and v(c-a) > v(P'(a)).
= (vii) We have v(P(0)) >0=2-v(P'(0)), so, by (viii), there is a (unique) ¢ with P(c) = 0 and

v(c) >v(P'(0)) =0.

I YWe could use lemma 3.1.2 to deduce that, but it is very much overkill.
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(Viil):>(vi)

(v)=(iv)

(iv)=(iii)

(ii )=>(ii)

(i)=(i)
(ii))=(x)

(x)=(xi)

3. Henselian fields

LetQ(z) = P(x—aq_1). Thenres(Q) = (z—a+a)(x - o) where a = res(aq_1) # 0.
So res(Q(0)) = 0 and res(Q’(0)) = res(Q)’(0) = (-a)?! # 0. By (vii), there exists
¢ € m(A) such that P(c - a4-1) = Q(¢) = 0. Note that res(¢c — ag_1) = —a # 0, so
c—aqg-1 € O(A)".

Let A < F < A°® be finite Galois. It suffices to show that v|, extends to F' uniquely.
Let D := {0 € aut(A®/A) : v o o is equivalent to v} and L := FP. Note that, by the
conjugation theorem (corollary 2.1.18), there are at most [ /' : A] extensions of v| 4 to F,
up to equivalence. Let us denote them (v;) i<, Where vg = v. Note that, if v;|; is equiv-
alent to v, by the conjugation theorem (corollary 2.1.18) there exists o € aut(F'/L) = D
such that v; is equivalent to v o ¢, which is equivalent, by definition of D to v. So no
v;|;, is equivalent — or dependent by corollary 2.2.14 — to v. The weak approximation
theorem (theorem 1.1.12) now allows us to find b € O(L)* such that, for every ¢ > 0,
UZ(b) > 0.

Let (bj)j<a € F be the set of A-conjugates of b = by. For every j > 0, there is some
o € aut(F/A) \ D such that 6(b) = b;. Since o ¢ D, v o ¢ is equivalent to some v,
with i > 0, and hence v(b;) = v(c (b)) > 0. Let P = ¥,_; a;z* be the minimal (monic)
polynomial of b over A. Then v(ag-1) = v(X;b;) = v(bo) = Oand, fori < d -1,
v(a;) = v(X jea)gj=i [1jes b5) > 0. By (vi), the unique root b of P in O* isin A. Itfollows
that there are no v; that are not equivalent to v which is thus the unique extension of v|,
to F.

Since A* = U, (A%)P"", the valuation of any ¢ € A? is uniquely determined by that of any
cP" € A5, So the unique extension of v|, to A® uniquely extends to A®.

For every o € aut(A*/A), v o o extends v|, and hence, by (iv), is equivalent to v. In
other words, o induces an £ryv, r-automorphism of A%, which is elementary (from M to
N) by elimination of quantifiers, theorem 2.1.11. Since any two elements of A* with the
same £,4(A)-type have the same minimal polynomial over A and are thus aut(A*/A)-
conjugate, (iii) follows.

Since dcl(A) ¢ acl(A) ¢ A%, (iii) implies that a € dcl(A) if and only if a is the unique
solution to its minimal polynomial over A4, z.c. a € AP,

We have dcl(A) n A% = AP"" 0 A% = A.

It follows from (iii) that either all the roots of P = ¢[];.4(x — €;) are in O or none are
in O. If none are in O, then, for every n < d, 0 > v(II; ;) < V(X 1cq,|1j-n [Tier €:) and
hence the only coefficient of P with minimal valuation is the constant one and res(P)
is constant. Otherwise, let @ be the minimal polynomial of some res(e;) over k(A). By
(iii), @ is the minimal polynomial of any res(e;) over k(A). Sores(IT(z —e;)) is a power
of Q of degree d, and res(P) = res(c)Q% 8@,

We have P = []; P; where the P; € O(A)[x]areirreducible. By (x), Qo-Ro = [1;res(F;) =
[1; @S], where o; € k(A)* and S; € O(A)[x] is irreducible, or 1. Reordering, we may
assume there is a £ such that ged(S;, Qo) # 1 if and only if ¢ < . Since ged(Qo, Ro) =
1, we then have Qo = 1, S;", where 5 € k(A)*. Let Q = bnigz(ai)_lPi, where
res(a;) = o and res(b) = B,and R = b [I,c;a; [1;5¢ Pi. Then Q- R = P, res(Q) =
BT o ;S = Qo # 0 and hence res(R) = Ry. Since m; deg(S;) = deg(P;) for every
i < ¢, we also have deg(Q) = ¥; deg(P;) = ¥, m; deg(S;) = deg(Qo).
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3. Henselian fields

(xi)=(vi) Since k(P) = (X +a)X %! where a = res(ag_1) # 0, by (xi), there exists an exact lift

bX —a € A[z] of X + a which divides P. So P(a/b) = 0, res(b) = 1,res(a) = —a and
hence a/b e O*. [

Definition 3.1.4 (Henselian fields). A valued field (K, v) is said to be henselian if it the equiv-
alent conditions of proposition 3.1.3 hold.

Proposition 3.1.5 (Hensel’s lemma). Ler (K, v) be some valued field. Assume either that:
(a) K is spherically complete;
(b) vK <R and K is complete.

Then (K, v) is benselian.

Proof. Letus fix P € O(K)[z] and a € O(K) such that res(P(a)) = 0 and res(P’(a)) = 0.
For every z € a + m(K), let b, := B(z,v(P(x))). Note that for every x € a + m, res(P(z)) =
res(P(a)). Thusv(P(z)) >0and b, € a +m.

Claim 3.1.5.1. Foreveryz,y € a+m(K), b, nb, # @.

Proof. We have P(y) = P(x) + (y — z)P'(z) + (y — 2)*Q(z,y), with @ € O(K)[z,y]. So
v(y-x) = v((y-2)P'(2) + (y-2)°Q(z,9)) = v(P(y) - P(x)) > min{v(P(2)),v(P(y))}-
Ifv(P(z)) > v(P(y)), then x € by, otherwise y € b,. O

Claim 3.1.5.2. Forevery x € a + m(K), there exists y € K such that v(y — x) = v(P(x)) and
v(P(y)) 2 2-v(P(x)).

Proof. Takey = x — P(x)/P'(x). Then v(y - ) = v(-P(x)) - v(P'(z)) = v(P(x)) and
v(P(y)) = v((-P(z)/P'(2))*Q(z,y)) > 2-v(P(x)). 0

If K is spherically complete, the pseudo Cauchy filter B generated by the b, has an accumu-
lation point ¢ € K. If vK < R, it follows from claim 3.1.5.2, that the b, can have arbitrarily
large radiuses in v/, so, B is a Cauchy filter and, if K is complete, B converges to some ¢ € K.
In either cases, by claim 3.1.5.2, we find e € b, such that v(e - ¢) = v(P(c)) and v(P(e)) >
2-v(P(c)). By hypothesis, c € b, and hence v(P(c)) = v(e-c) > v(P(e)) > 2-v(P(c)). Since
v(P(c)) > 0, we must have P(c) = 0. [

Definition 3.1.6. Let (K, v) be some valued field. We define K := dcl(K ) n K*, the henselian
closure of K — inside some fixed model of ACVF containing K.

Remark 3.1.7. Let D := {0 € aut(K®/K) : v oo ~ v}, for some extension v to K®. Then
K" = (K®)P.

Proposition 3.1.8 (Universal property of K®). Let (K, v) be a valued field, (L, w) be henselian
and f : K — L. Then there is a unique morphism g : K® - L such that:
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3. Henselian fields

commutes.

Proof. Let K h'< M e ACVFand L < N = ACVF. By elimination of quantifiers, theo-
rem 2.1.11, there exists g : K — N. Since K" = dcl(K) n K® and L = dcl(L) n L%, g(K™) =
del(f(K)) n f(K)® c L. If ¢’ is another such map, then ¢'(K") = dcl(f(K)) n f(K)® =
g(K")and g7! o ¢’ € aut( K"/ K) < aut(dcl(K)/K) is the identity. O]

We now want to describe v K and K. But we will first need to construct spherically com-
plete maximal extensions.

Lemma 3.1.9. Let M & ACVF and A <K(M). The following are equivalent:
(1) Ais spherically complete in M : any pseudo Cauchy filter B over K(M ) with an accumun-
lation point in M has one in A;
(1) A is maximally complete in M : any immediate intermediary extension A < F < K(M)
is trivial.

Proof-

()=(ii) Fix some ¢ € F and let B be maximal pseudo Cauchy filter over A that accumulates at
c. By (i) it accumulates at some a € A. If ¢ # a, then there exists e € A* such that
rv(e) = rv(c—a). Sov(c-a-e) > v(e)and ¢ € b := B(a + e,v(e),€)B. Sov(e) =
v(a-(a+e))>wv(e),acontradiction. It follows that c = a € A.

(1)=(i) Let B be some pseudo Cauchy filter over A that accumulates at some ¢ € M and let
P ¢ A[x] be minimal such that 0 € P,%B. By proposition 2.1.8.(2) there exists some
e € B n M such that P(e) = 0 — if P = 0, take e = c. By proposition 2.1.8.(1), the
extension A < A[e] is immediate and e € A. O

Note that (i) =(ii) holds even when M # ACVF.

Corollary 3.1.10. Let K be a valued field. The following are equivalent:
() K is spherically complete;

(1) K is maximally complete: any immediate extension K < L is trivial.

Proof. By compactness (theorem B.0.9) and the fact that every valued field embeds in a model
of ACVF, K is spherically (respectively maximally) complete if and only if it is in any model of
ACVF., O

Corollary 3.1.11. Let (K, v) be spherically complete with algebraically closed residue field and
divisible valued group. Then K is algebraically closed.

Proof. Since vK?® = Q- vK = vK an K*v = (Kv)* = Kv, the extension K < K?* is immediate
and hence trivial. ]

Example 3.1.12. For every k £ ACF, and I" = DOAG, k((I')) = ACVF), .. There are also
examples of maximally complete models of ACVF ), but they are more complicated to build.
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3. Henselian fields

Proposition 3.1.13. Let M, N = ACVF, k(M)uT'(M) c A< Mand f: A— N. IfNis
spherically complete, then there exists an embedding g : M — N such that:

M

/ :

‘g

N
N

A

commutes.

Proof, cf. proposition 2.1.10. Let C < Aand g : C' - N be maximal such that g extends f.
By proposition 2.1.5, k(M) < res(K(C')) and by proposition 2.1.3, T'(M) < v(K(C)). So
K(C) < K(M) is immediate, but, by proposition 2.1.8, K(C) is spherically closed in M. It
follows, by lemma 3.1.9, that C' = M. O

Proposition 3.1.14. Let (K, v) bea valued field. There exists an embedding f - (K,v) - (L, w)
with L spherically complete and f(K) < L immediate. If, moreover, vK is divisible and K is
algebraically closed, it is unique up to isomorphism.

Proof. Let M = ACVF be |K|*-saturated of the same characteristic and residue characteristic
as K. By proposition 2.1.10, the embedding of the prime field of K into M extends to an
embedding f : K — M. Let f(K) < L < K(M) be a maximal immediate extension of K.
Then L is spherically complete in M. However, any pseudo Cauchy filter over L is generated
by as set of cardinal at most [vL| = [vK| < |K|*, so it has an accumulation pointin M. So L is
spherically complete.

Now, if v trivial, then L = K is indeed unique. Otherwise, if vK is divisible and Kwv is
algebraically closed, by corollary 3.1.11, L = ACVF and, given any g : K — F with F spheri-
cally complete and g(K) < F' immediate, by proposition 3.1.13, we find h : F' - L such that
hog = f. But we have rv(L) = rv(f(K)) = rv(h o g(F))and hence h o g(F') < L being
immediate, it is trivial. O

Corollary 3.1.15. Let (K,v) be a valued field. The extension K < K" is immediate.

Proof. By proposition 3.1.14, K admits a spherically complete immediate extension L. By
proposition 3.1.5, L is henselian and hence, by proposition 3.1.8, K b embeds into L. It fol-
lows that v(K) < rv(K") <rv(L) = rv(K). O

3.2. Elimination of quantifiers in characteristic zero

Definition 3.2.1. Let £ry be the language with:
* asort K with the ring language (+,-,0,-,1);
* for every n € Zq, a sort RV,, with two constants 0, 1, a binary function - and a ternary
predicate &;
e foreveryn >0,amaprv, : K - RV,;
e for every m,n > 0 with n|m, a map rv, , : RV,, > RV,,.
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3. Henselian fields

Any valued field (K, v) can be made into a £rv-structure by interpreting K as the field
K, RV, as the multiplicative monoid K /1 + nm, the maps rv,, and rv,, ;;, as the canonical
projections, 0 as 1v,,(0) and & as the trace of the graph of addition on RV,.

Definition 3.2.2. Let VF denote the £ry-theory of valued fields, Heng that of characteristic
zero henselian fields and Henyg o that of residue characteristic zero henselian fields.

Remark 3.2.3. Let M = VF with residue characteristic p and n|m be positive integers. If p = 0
or ged(p, m/n) = 1, then m/n € O* and rvy, , is an isomorphism. In particular, If p = 0 all
the RV, are canonically isomorphic to RV = RV . If p > 0, then every RV, is canonically
isomorphic to RV oy

Notation 3.2.4. Let M = VF and (;)i<n € RV(M). We denote by @, ¢; = {rv(X; 25) :
rv(z;) = G} If @icy, G is a singleton {£}, we say that @,, (; is well defined and we write
@icn G =E IfFP =Y, a;2° e K(M)[z] and ¢ e RV?, we write rv(P)(¢) = @®; rv(a; ).

Lemma 3.2.5. Let M = VF and ((;)icn € RV(M) and v = min; v((;). Then one (and only
one) of the following holds:

* @icn G ={{ RV :v () >7);

* Bicn Gi = §and v(§) = .

Proof. Let us first assume that there are some z; with rv(z;) = ¢; and v(X; ;) = 7. Then for
everym; € m, v(Y;(zi(1+m;)) =X, xi) = v(X; xim;) > min; v(x;) = v = v(X; z;). It follows
that rv (¥, (z;(1+ m;))) =1v(3¥; x;) and hence ®; ¢; = 1v(3; ;).

On the other hand, if v(X; ;) > v = v(z4, ), then foreverym € ym, n := (m-Y; z;) /i, € m
and Y., i + x4, (1 + n) = mand hence @; ; = rv(ym). ]

Lemma 3.2.6. Let M = Heng o, P e K(M)[x] and o € RV (M ). The following are equivalent:
(i) there exists n € Lo, withn < deg(P), such that 0 € rv(P™)(a);
(i7) thereexistsn € Lsq, withn < deg(P) and a € K(M) such that P (a) = 0andrv(a) = a.

Proof. Since rv(P(a)) € rv(P)(rv(a)), (i) follows from (ii). So let us assume (i) and let a €
K (M) such that rv(a) = o. Let n be maximal such that 0 € rv(P™)(a). Replacing P =
5, ciz’ by PV, we may assume that n = 0. By lemma 3.2.5 and maximality of n, v(P’(a)) =
v(Tisoicia’™) = min; v(ic;a™™') = min; v(¢;) + (i — 1)v(a). By lemma 3.2.5, we also have
v(P(a)) > min{v(¢;) +iv(a)} =min{v(cy),v(P'(a)) +v(a)}. If v(cy) < v(P'(a)) + v(a),
then v(P(a)) = v(cp) = min;(v(¢;) + iv(a)), a contradiction. It follows that v(P(a)) >
v(P'(a))+v(a). Since,rv(P’(z)) isconstantonrv™ ! (a) = B(a, v(a)) and K (M) is henselian,
by lemma 3.1.2 and proposition 3.1.3.(ix), we may assume that P(a) = 0. O]

Corollary 3.2.7. Let M & Heng, P € K(M)[z] and B a pseudo Cauchy filter over K(M).
Then one of the following holds:

o there exists 0 < n < deg(P) and a root of P™) in B — in which case 0 € Py,
* rv o P is eventually constant on B.
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3. Henselian fields

Proof. Let X be the set of roots of the P in M. Since P(e8(P)-1) js linear, X # @. If
X n%B = @, then there is some b € B such that bn X = @. Let a € X be such that v := v(b - a)
is maximal. We may assume that b is an open ball of radius 7. Then b = rv™!(a) + a for some
a e RV(M). Let Q = P(x - a). Since no QM = P(" (2 - a) has aroot in rv=!(a) n M, by
lemmas 3.2.5 and 3.2.6, 1v o Q is constant on rv~* (). So rv(P) is constant on b. O]

Proposition 3.2.8. Let M = Heng g, A< M a field, « e RV(A) = RV (M) and P ¢ K(A)[x]
have minimal degree such that 0 € rv(P)(c).
(1) For every Q € K(A)[x] of degree smaller than P and every a € v '(a), rv(Q(a)) =
rv(Q)(a).
(2) There exists a € K(M) withrv(a) = aand P(a) = 0.
(3) Such an a is uniquely determined, up to Cry (A)-isomorphism, by P and o: for every N &
Heng o, every embedding f : A - N, every a e K(M) and b e K(N), if:
* P(a)=0andrv(a) = a;
* f.P(b)=0andrv(b) = f(a);
then f can be extended by sending a to b.

Proof. (1) Since, by minimality, 0 ¢ 1v(Q) (), rv(Q)(a) = rv(Q(a)), forany a € v~ (),
is well-defined.
(2) Bylemma3.2.6, P hasarootinrv™!(a)nK (M), forsomen < deg(P). By minimality
of P,n=0.
(3) By (i) applied to b, f. P is the minimal polynomial of b over f(A). So f|k extends to
9|k sending a to b. Let g|gy = flgy- Forevery Q € K(A)[z] of degree smaller than
P, g(rv(Q(a))) = g(rv(Q)(a)) = rv(f.Q)(B) = rv(f(Q(D))). The second equality
(and the fact that the third is well-defined) can be checked by computing the partial sums
using the binary @. So g is an £rv-embedding extending f and sending a to b. Il

Proposition 3.2.9. Let M = Hengo, A < M a field, B be a pseudo Cauchy filter K(A) and
P ¢ K(A)[z] have minimal degree such that 0 € P,B.
(1) Forevery Q € K(A)[x] of degree smaller than P, rv o Q is eventually constant on B — in
particular is equal to an element of v(K(A));
(2) If P + 0, there exists a € B with P(a) = 0;
(3) Such an a is uniquely determined, up to Lry (A)-isomorphism, by B and P : for every
N = ACVF, embedding f : A > N, a e K(M) and b e K(N), if:
* P(a) =0andaeB;
e f(P)(b)=0andbe f.B;
then f can be extended by sending a to b.

Proof. (1) By minimality of P and corollary 3.2.7, rv o ) is eventually constant on B.
(2) If there is not root of P in 9B, since there are none of its derivatives either, by corol-
lary 3.2.7, rv o P is eventually constant — and hence equal to 0 — on B. If P # 0,
then B contains a singleton {a} and P = z - a.
(3) This follows immediately from (the proof of) proposition 2.1.8.(3). By (1) applied at b,
[P is the minimal polynomial of bover f(A). Solet g|k extend f|k andsend a to b. Let
also glgy = flry- Forevery Q € K(A)[z] of degree smaller than P, let b € B be a ball of
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3. Henselian fields

K(A) such thatrvo @ is constant on band rvo f,Q is constant on f(b) andletc € b(A).

Then g(rv(Q(a))) = f(xv(Q(c))) = rv(f.(Q)(f(c))) = rv(£iQ(D)) = rv(9(Q(a))).

So g is an Lrv-embedding extending f and sending a to b. Il

Proposition 3.2.10. Let M, N = Hengo, RV(M) € A< M and f : A - N. There exists an
embedding h: N — N, which is elementary for any choice of structure on N, and an embedding
g: M — N such that:

M2 N+

&

A——N
f
commautes. If N is spherically complete, we can choose h = id : N - N.

Proof. Let ASC <Mandg:C - N*and h: N > N* elementary (for any given choice of
structure on N') be maximal (as in proposition 2.1.10). If N is spherically complete, we restrict
ourselves to considering tuples with & = id. First, note that, since RV(M) < RV(A) and rv is
multiplicative, g has a unique extension to K(C') gy U RV (M). So K(C) is a field.

Claim 3.2.10.1. RV(M) =rv(K(C))

Proof. Fix some o € RV(M). Let P € K(C)[x] be minimal such that 0 € rv(P)(a). By
proposition 3.2.8.(2), there exists a € K(M) and b € K(N*) such that P(a) = 0, rv(a) =
rv(a), g« P(b) = 0and rv(b) = g(a). By proposition 3.2.8.(3), g can be extended by sending a
to b. By maximality, a € C. O

Claim 3.2.10.2. K(C) #s spherically complete in K(M).

Proof. Let B be some pseudo Cauchy filter over K(C') with an accumulation point in ¢ €
K(M). Let P € K(C)[] be minimal such that 0 € P,8. If P = 0, set a := ¢ and by com-
pactness, we can find i : N* - NTand b e (i 0 g).®B. If N is spherically complete, we can find
be g.Bn N and we can take N = N* = Nand i = id. If P # 0, proposition 3.2.9.(2), there
exists @ € K(M) and b e K(N*) such that P(a) = 0,a € B, g, P(b) = 0and b € g, B — so we
can also take NT = N* and i = id. In both cases, by proposition 3.2.9.(3), i o g can be extended
by sending a to b,soa € C. O

By claim 3.2.10.1, the extension K(C') < K(M ) isimmediate, By claim 3.2.10.2and lemma 3.1.

itis trivial. So C' = M and the proposition is proved. O

We now wish to extend that result in mixed characteristic. But first we need to introduce
coarsened valuations.
Let (K, v) be a valued field and A < vK™ be a convex subgroup.

Definition 3.2.11. The coarsened valuation associated to A is w : K — v K /A.

Let 7 : vK — vK /A denote the canonical projection.
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3. Henselian fields

Proof. Let us check that w is a valuation. We have w(0) = 7(v(0)) = {v(0)} # A = 7w (v(1)) =
w(1l). Also for every z,y € K, w(zy) = n(v(zy)) = m(v(z)) + 7(v(y)) = w(z) + w(y)
and w(z +y) = 7(v(z +y)) > min{r(v(x)),r(v(y))} = min{w(x),w(y)} since 7 is non
decreasing. O

Remark 3.2.12. 1. We have my, = My (g)en amy €My € Op < Uy(a)en a0y = O
2. In particular, O,/m,, < Kw is a valuation ring. We also denote by v : Kw — A the
associated valuation. Note that, if ¢ € O, v(c) = v(resy,(c)) and that we have res, o
res,, = res, once Kww is canonically identified to Kv.
3. If wis not trivial, equivalently A < vK™, the valuations v and w induce the same topol-

ogy.

Lemma 3.2.13. Let (K,v) be a valued field and A < vIK™ be a convex subgroup.
(1) (K,v) is henselian if and only if (K, w) and (Kw,v) are.
(2) If (K,v) is spherically complete if and only if (K, w) and (Kw,v) are.

Proof. (1) Let us first assume that (K, v) is henselian. Let P = 2% + ¥, g a;2" with ag_; €
O and a; € my, € my, fori < d-1. Let Q = a? | P(x/ag1) = al [ (v/ag_1)? +
Yica @l jai(zfag-1)' =2+ 2+ ¥ 4 1 ;a1 2t So we may assume thatag_; = 1 €

O,. By proposition 3.1.3.(vi), there is ¢ € O, ¢ Oy, with P(c) = 0.
Let now P € O, /my,[x] such that v(P(0)) > 0 = v(P’'(0)) and let Q € O,[x] such that
res, (@) = P. Wehavev(Q(0)) > 0 = v(Q’(0)) and thus, by proposition 3.1.3.item (vii),
thereisc € K such thatv(c) > 0and Q(c) = 0. Sores,, (c) € Kwissuch thatv(res,(c)) >
0 and P(resy(c)) = 0.
Conversely, let us assume that (K, w) and (Kw,v) are henselian and let P € O,[x] be
such that v(P(0)) > 0 = v(P’(0)). Then v(res,(P)(0)) > 0 = v(res, (P)’(0)) and, by
proposition 3.1.3.(vii), we find ¢ € m, /m,, with res,,(P)(c) = 0. Let a € m, be such that
resy(a) = ¢. Then res,, (P(a)) = resy,(P)(c) = 0 # res,(P)(0) = res,(P’(a)). So
w(P(a)) >0 =w(P'(a))and, by proposition 3.1.3.(viii), we find d € m,, with P(d) = 0.
(2) Let us first assume that (K, v) is spherically complete. Let 9B be a non principal pseudo
Cauchy filter over (K, w). Since open balls in (K, w) are intersections of open balls in
(K,v), B is also pseudo Cauchy over (K, v) and hence has an accumulation pointin K.
If B is a pseudo Cauchy filter over (Kw, v), then, since the preimage by res,, of a ball of
(Kw,v) is a ball of (K,v), the set {res' (U) : U € B} generates a pseudo Cauchy filter
§ over (K, v) which thus has an accumulation point ¢ € O,, € §. Then res,,(c) € B.
Conversely, let us assume that (K, w) and (Kw, v) are spherically complete and let B be
a non principal pseudo Cauchy filter over (F,v). Then the set of balls of (X, w) in B
generate a pseudo Cauchy filter § over (K, w) which accumulates at some ¢ € K. If § =
B, then ¢ € B. If § + B, since between any two open balls of (K, v) whose radius have
distinct classes modulo A, there is a closed ball of (K, w), § is generated by some closed
ball b. Translating and scaling, we my assume that b = O,,. Then (res,,).B is a pseudo
Cauchy filter on (Kw, v) which accumulates at some d € Kw. Since res;' (d) ¢ § € B,
we have B 2 res; ! (d) + @. O]
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3. Henselian fields

Notation 3.2.14. Let (K, v) be a characteristic zero field. We define:
* A <vK the convex subgroup generated by v(Z);
* Voo : K > vK Ay the coarsened valuation.

Remark 3.2.15. 1. The valuation v is the least residue characteristic zero coarsening of v.

2. Wehave mgo :=my = Npez, M EME O < Ooo := Oy,

3. There is a natural embedding f : RV := K/(1 + ms ) — lim  RV,. It is an embed-
ding of monoids that sends 0 to 0. Moreover, for every £,v,( € RV, ¢ € £ ® v if and
only if, for some z,y,2 € K, 1V (2) = ( = 1Veo (Z + y), IVeo () = { and 1veo (y) = v, if
and only if veo (z + Y — 2) > Veo(2), if and only if v(z + y — 2) > v(2) + v(n), for every
n € Zso, if and only if 1v, 66 (¢) € 11,00 (£) ® TV 00 (V).

4. If K is spherically complete or ®;-saturated then f is surjective.

Proposition 3.2.16. Let M, N = Heng, U, RV,,(M) € A< M and f : A -~ N. There exists
an embedding h : N — N*, which is elementary (for any choice of additional structure on N),
and an embedding g : M — N such that:

M2~ N*
A

h

— > N

f
commautes. If N is spherically complete, we can choose h = id : N - N.

Proof. Let £ the enrichment of £ry by a copy of itself Cry ., that shares the K sort — we will
be indexing the new symbols by by co to distinguish them from the old symbols — and new
symbols 1V, o : RV o = RV, for every n € Z,(. Note that, writing rv,, as vy, e © I'Veo, this is
an RV ,,-enrichment of £ry...

Let Mo, denote the £-structure associated to (K (M), Voo, v). Bylemma3.2.13, (Mw, Voo ) E
Heng . Let Ao := AURV (M). Let hg : N - N* be elementary with N* ®y-saturated and
define foo : Aso = N, by extending hg o f with foo‘RVoo RV (M) — LiLnn RV, (M) -
lim | RV, (N*) ~ RV (N™*);if N is spherically complete, we may take o =id : N - N.

By construction, f is an £ morphism, fo, commutes with 1ve, and vy, o, foo |Rvoo is a mul-
tiplicative morphism sending 0 to 0 and commuting with —. Note also that for every &, v,( €
RV, (e @vifand only if 1v, o (() € 1Vp 00 (£) @ 1V 0o (V) for every n € Zsg. So foo is an
£-morphism.

By proposition 3.2.10, there exists h1 : N5, — NI which is elementary for any structure on
N, — in particular, its £-structure — and goo : Moo — N, such that hy o foo = gool A N
is spherically complete, so is N3, = N, by lemma 3.2.13, and we can also choose NV, T = Ne.

Letg:= goolgy, * M ~ NT:= Noolgp, and h = hi|g o ho. Thenho f = g|,. U

Note that there is something non trivial going on. In N, T, we might have Uy,ez., nO ¢ Ox
and v might not be the least residue characteristic zero coarsening of v. However, rv,, o fac-
torises through the standard map LiLnn RV, - RV,,.

Let £ be a language and S be a set of £-sorts. An S-enrichment of £is £’ 2 £ such that the
symbols in £’ \ £ only involve the sorts in S — and potential new sorts of £'.
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3. Henselian fields

Theorem 3.2.17 (Basarab, 1990, ...). The Lrv-theory Heng resplendently eliminates field quan-
tifiers: any formula in an (RV y,),-enrichment £ of Lry is equivalent (modulo Heng) to an
L-formula without quantifiers on the sort K.

Proof. Let £ be some (RV,),,-enrichment of £gy and £’ be a further enrichment by a predi-
cate R, () for each formula ¢ (x) without field variables (free or quantified). Let 7" := Heng U
{Vaz Ry(z) < p(z)}. Itsuffices to prove that T' eliminates quantifiers. By proposition B.0.15,
it suffices to show that given M, N = T and and £'-embedding f : A < M — N, there exists an
£'-elementary h: N - N* and an £'-embedding g : M — N* such thatho f = g| ,.

Let ¢ enumerate all of M ~ K(M) and let p = gf-tpg/(c/A). Any field quantifier free £-
formula p(za) with a € K(A) is equivalent to some formula ¢ (x, rv,(P(a))) where ¢ (zy)
is an £-formula without field variables and P € Z[z] is a tuple. If ¢(za) € p, then M &

Jzp(arvy,(P(a)))andhence M = R3gy (rvy, (P(a))), whichimplies N & R,y (rvin (P(f(a)))) »

and thus N £ Jzp(x f(a)). Since any quantifier free £'-formula is equivalent (modulo T') to a
field quantifier free £-formula, we have that f, pis finitely satisfiable in N. Itis therefore realised
in some elementary extension N* of N.

So we may assume that U,, RV,,(M) ¢ M N\ K (M) c A. By proposition 3.2.16, there exists
gk : K(M) - K(N*) where N* is some £'-elementary extension of N, such that Al o f|k =
g\K(A) and gl induces f|gy,, on RV,. Then g = glg u f: M - N* isan £'-embedding
since none of the new symbols involve the sort K and we indeed have ho f = g| 4. O

Corollary 3.2.18. Ler M, N = Heng and f: A< M — N be an Lry-embedding. Then

[ is Lrv-elementary < f |Un RV, 5 SRV|Un Ry, “clementary.
In particular,

M = N as Sry-structures < | JRV,, (M) = [ JRV (M) as Lrvl, gy, structures.
n n

Proof. . ]

3.3. Angular components

Definition 3.3.1. Let (K, v) be a valued field.
* Letn € Zso. An n-th angular component is a multiplicative morphism ac,, : K* - R, =
O [nm extending res,, on O*.
* A system of n-th angular component maps ac, : K* — R,, is said to be compatible if
for every n|m € Zso, ac, = resp, o acy, where res, ,n : R, - Ry, is the canonical
projection.

Remark 3.3.2. Let (K, v) be a field.
* Any n-th angular component map ac,, factorises through rv,, and gives rise to a section
Sp 1V (2) m acy(z) of R > RV ).
¢ Conversely any section s,, : RV, — R, of the short exact sequence 1 - R}, - RV} —
I’ — 0 gives rise to an n-th angular component s,, o rvy,.
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3. Henselian fields

* Similarly compatible system of n-th angular component maps ac,, correspond to com-
patible system of sections s, : RV} — R with resy, ;; 0 spy = S, 0 1Vy, m, for every 2
n|m € Z>0. 3

Proof. Let us first prove that given an n-th angular component map ac,,, the map rv,,(z) = 4
acy(x) is well defined. Forevery z € K and y € n i, acy(z(1 +y)) = acy(x) -acy,(1+y) =
acp(z) -resy (1 +y) = acp(z). Also, for every x € O, s, (resp()) = acy(x) = resy(z). So 6
sn|R; is the identity map. Conversely, s, o rv,, : K* — R is a multiplicative morphism and ~ ;

for every z € O%, 5, (rvp(x)) = sp(resp(z)) = res, (). 8
Finally, for every « € K and every n|m € Zy, 0
acp(x) = sp(1vp(z)) = Sp(EVpm(rvim(x)))

resy m(acm(z)) resy m (Sm (tvm(x)))
So acy, = resy m 0 acy, it and only if resy, ;0 sy, = 5y 0 TV . O

Any valued field can be endowed with a compatible system of angular components, provided 1«
we go to some elementary extension. To prove this fact, we need to introduce pure embeddings:

Lemma 3.3.3. Let f : A - B be an Abelian group morphism. The following are equivalent: 14

(i) f isinjective and for everya € Aandn eZ, if f(a) en- B, thenaen - A; 15

(i7) for every finitely generated A < C < B, there exists: C -~ Awithro f =id; 16

(112) for every m = (M ;)icn j<t € Z and a = (a;)i<n € A, if max = f(a) bas a solution in Bt

then, mz = a has a solution in A%; 18

(1v) for every Ry-saturated Abelian group C and group morphism g : A — C, there existsa v

group morphism h: B — C such that ho f = g; 2

(v) there exists an elementary embedding g : A -~ A* and a map h : B — A" such that

ho f =g 22
25/02

Proof. 23

~~

)=(ii) By the structure theory of finitely generated modules over principal ideal domains (e.g.
[Bou-A7]), C/f(A) = ®icn Z-ci] f(A). If ¢;/ f(A) is order n < oo, then, n-¢; € f(A).
By (i), there exists a € A such thatn - f(a) =n-c¢;and hencen - (¢; - f(a)) =0. Sowe =
may assume thatn - ¢; = 0. Then 7 : C' - C/f(A) induces an isomorphism Y, Z - ¢; > =
C/f(A),and hence B = f(A) ® (X;Z - ¢;), yielding the required retraction, since fis 2

injective. 2
(iij=(iii) Let b € B be such that mb = f(a) and C be generated by Ab. By (ii), we find a retraction s
r:C - A. Thenm-r(b) =r(f(a)) = a. 7
(iif)=(iv) By Zorn’slemma, let h : D — C be maximal such thatho f = g, f(A) < D < Bandthe =
latter verifies (iii). »

Claim 3.3.3.1. Foranyb € B, there exists D < E < B such that b € E, E|D is countable
and E < B verifies (1i7). 5

Proof. By downwards Lowenhein-Skolem, proposition B.0.7, we find D < E < Bsuch s
that, /D € E/D < B/D is elementary and E/D is countable. Let now m € Z", e e E" 4
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3. Henselian fields

and b € Bf such that mb = e. So B/D & 3z mx = e/D and hence there is some ¢ € E
such that mec—e =d e D. Som(b-c¢) = e—e—d e D and by (iii) for D < B, we find
a € D* with ma = d and hence m(c - a) = e, where c —a € E. O

Let e enumerate a countable set of generators of E over D. Let A(x) be the set of all
formulas mz = d, where m € Z is an almost everywhere zero tuple and d € D, such
that me = d. Note that these formulas involve at most countably many elements of D.
By (iii), in D < B, A(x) is finitely satisfiable in D and hence h, A is finitely satisfiable in
C. By saturation. we find ¢ € C such that C' & h,A(c). The natural map hg : E - C
extending h by e ~ c s such that hg o f = g. By maximality, D = B.

)=(v) Applying (iv) to an elementary embedding g : A - A* where A* is R;-saturated yields
(v).

v)=(i) Sincei =ho f,being elementary, is injective, f alsois. If a € A, b € B and n € Z are such

that f(a) =n-b,theni(a) = h(f(a)) =n-h(b). So A* £ 3z i(a) = n- x and hence, by

elementarity, a e n - A. ]

Definition 3.3.4. An Abelian group morphism f : A - B is said to be pure when the above
equivalent conditions hold.

Corollary 3.3.5. Let f : A — B be a pure Abelian group morphism definable in some structure
M. There exists an elementary h : M — M™ and a retraction v : B(M*) - A(M*) of f :
A(M™*) - B(M™).

Note that r is not assumed to be definable — and there is no reason it should be.

Proof. Leth : M — M* be elementary with M* ®;-saturated. Then A(M™) is R;-saturated
(as a group) and, by lemma 3.3.3.(iv), we find r : B(M*) - A(M™*) withr o f =id. O

Corollary 3.3.6. Any M = V¥ bas an elementary extension which admits a compatible system
of n-th angular component maps for all n.

Proof. The inclusion O* < K* is pure. Indeed, if a € O*(M) is equal to ¢" for some ¢ €
K*(M), nv(c) = v(a) = 0 and hence ¢ € O*. By corollary 3.3.5, we find an elementary
extension h : M — M* of K and r : K*(M*) - O*(M*) a retraction of the inclusion
O*(M*) < K*(M™). For every x € K*(M™), let ac,(x) = res,(r(x)). This is a mul-
tiplicative map and for every x € O*(M*), we have ac,(z) = res,(r(z)) = res,(x). So
acy, is an angular component. Moreover, for every m|n and z € K*(M), resy, n(ac,(x)) =
resy, pn(res, (r(z))) =respy(r(x)) = acp (). [

Definition 3.3.7. Let £, be the language with:
¢ asort K with the ring language (+,-,0,-,1);
¢ asort I' with the ordered group language (+, -, 0, <) and a constant oo;
* forevery n € Zsq, a sort R,, with the ring language;
*amapv: K - T}

e foreveryn > 0,amapac, : K - Ry;

41

20

21

22

25/02

23

24

25

27
28
29
30

31

32
33
34
35
36

37



3. Henselian fields

e forevery m,n > 0 with n|m, a map res,, ,,, : Ry, = Ry;
* foreveryn € Zsg,amaps, : I' > R,.

Any valued field (K, v) with a (compatible) system of angular components ac,, can be made
into a £,.-structure by interpreting K as the field K, I" as the ordered monoid v K’ — with — the
inverse on v K™ and —oo = 0o = v(0) —, R,, as the ring O/nm, the map v as the valuation v, the
maps acy, as the n-th angular component map ac,,, the maps res, ,,, as the canonical projections
and the maps s,, : v(z) + res, () - ac, (x) " which is well defined. Note that s,, is a section of
the map induced by the valuation on R,,.

Definition 3.3.8. We denote Henf® the £,.-theory of characteristic zero henselian valued fields
with a compatible system of angular components.

LetR:=U, R,.

Proposition 3.3.9. Let M,N = Hend, T(M)uUR(M) ¢ A< Mand f : A - N. There
exists an embedding h : N — N*, which is elementary for any structure on N, and an embedding
g: M — N such that:

M2 N~

&

A——=N
f
commautes. If N is spherically complete, we can choose h = id : N - N.

Proof. Let £ be the enrichment of Lryv U £ac by traces of the valuation v : RV,, - I" and
v : R, — T, the residue map res,, : RV,, > R,, injections i,, : R} — RV, traces of the
angular components ac,, : RV,, - R}, and ac,, : R,, = R}, and sections s,, : I' - RV,.
Let M, (respectively N,,) denote the £-structure associated to M (respectively V), where
sn(v(z)) = 1vy(z)ac, (x) 7. This is well-defined since, for every z € O%, rv,,(x)ac,(z) ! =
res, (z)res, (z)™ = 1. Let Ay = AuU, RV, (M) < My, and fry : Ary — Ny extend f by
fiv (&) = facn(€))sn(f(v(E))), forevery n € Z,g and { € RV, (M).

Claim 3.3.9.1. fy i5s an £-morphism.

Proof. By construction fiy is an £ac-morphism and fiy|gy is a multiplicative morphism pre-
serving 0. Also, for every x € K(M), v € I'(M) and £ € RV, (M), we have

Sv(tvn(@)) = f(acn(z))sn(f(v(2))) = acn(f(2))sn(v(f(2))) = 1vn(frv(2))
fv(sn (7)) = flaca(sn(7)))sn(f(v(sn(7)))) = F(1)sn(f (7)) =sn(fiv(7))
acn(fiv(€)) = acn(f(acn(§)))acn(sn(f(v(£)))) = f(acn(§)) -1 = f(acn(§))
v(fiv(§)) = v(f(aca(§))) +v(sn(f(v(£)))) =0+ f(v(E))
frv(=€) = flacn(=8))sn(f(v(=£))) =resn(-1) - f(acn(§))sn(f(v(€))) = —fiv(§)
Sv(tvmn(€)) = f(resmpn(acn(§)))sm(f(v(€))) = resmn(acn(fiv(£)))sm(v(fiv(£)))
= 1Vimn(acn (fiv(§)))1Vmn (50 (v(fiv (£)))) = 1vimn(frv (§))

Moreover, for every a € R, (M), ac, () € R}, and v(a) € T are uniquely determined by
a = acy(@)sn(v(@)). Since f(a) = f(aca(@))sn(f(v(@))) = acn(f(a))sn(v(f(a))) and
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3. Henselian fields

flacy(a)) € R, we have f(v(a)) = v(f(«)) and f(ac,(@)) = ac,(f(a)). Also, if a # 0,
for every £ € RV ,(M), res,(§) = aifand only if v(§) = v(«) and ac, (&) = acp(«). And
res, (§) = 0ifand only if v(&) > v(n). Sores, (&) = aif and only if res,, (f(£)) = f(«).
There remains to check that fy preserves @. Let {,v,( € RV, (M). If v(§) + v(n) <v(v),
then ¢ € £ @ vifand only if ( = &, if and only if fiv(¢) = fv(§) if and only if fiy(C) €
fiv(€) @ fiv(v). So, up to permutations, we may thus assume that v(§) = v(v) < v(¢) <
v(§) + v(n). Diving by &, we may further assume that £,v € R};. We have ¢ € { ® v if and
only if res,, ({) = £ + v, if and only if, v(¢) = v(£§ + v) and ac,(¢) = ac,(£ + v), if and
only if, v(f(¢)) = f(v(€)) = f(v(§ +v)) = v(f(£) + f(v)) and ac,(f(()) = f(aca(()) =
f(acn(§+v)) =acn(f(§) + f(v)), if and onlyif f(¢) € £ & f(v). 0
By proposition 3.2.16, we find Ay, : Nyy — N}, which is elementary for any structure on
N, and gy : Myy — N, such that hyy o fiy = grv[ 45 and if V is spherically complete, we can
choose hyy =id : Nyy = Nyy. The £-morphism g, thus has the required properties. O

Theorem 3.3.10. The £,c-theory Henl resplendently eliminates field quantifiers : any formula
inaT'UR-enrichment £ of £ isequivalent (modulo Henf®) to an L-formula without quantifiers
on the sort K.

Proof. We proceed as in the proof of theorem 3.2.17. It suffices, given an I' u R-enrichment
£ of Lryv and T an £-theory such that every £-formula without field quantifiers is equivalent
to a quantifier free one, M, N & T and an £-embedding f : A < M — N, to extend it to an
£-embedding g : M - N* with ho f = g|,, where h : N - N* is £-elementary.

Let ¢ enumerate all of M ~ K(M). By hypothesis, f.qf-tpg(c/A) is finitely satisfiable in N
and hence, enlarging IV, we may assume that I'(M) u U, R,(M) ¢ A. Then we extend f by
proposition 3.3.9. O

Corollary 3.3.11. Ler M, N & Heng® and f: A<M — N bean £,.-embedding. Then
[ is Lac-elementary < flp g 75 Laclpur-clementary.
In particular,
M = N as Lac-structures < T (M) UR(M) =T(M) UR(M) as Lac|p g-structures.

Proof. This follows from theorem 3.3.10 and the fact that any £,.-formulas without field quan-
tifiers is of the form ¢ (ac,(P(x)), v(Q(z)),y) where x is a tuple of K-variables, P, Q € Z[x]
are tuples, and ¢ is an £,¢|p g-formula. The second statement is exactly the first statement
applied to f : @ < M — N — note that for every n € Z.o and m € Zsq, resp,(n) = nand v(n)
is the unique element of T' such that 5,2 () € nR/,. L

3.4. The Ax-Kochen-Ershov principle
Proposition 3.4.1. Let K and L be henselian fields of residue characteristic p. Then:

K=l { vK =vL as ordered monoids with a constant for v(p);

R(K)=R(L) asprojective systems of rings.
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3. Henselian fields

Proof. Note thatif K = L, then we must have vK™ = vL* and R(K') = R(L). So let us prove
the converse and assume that vK™ = vL* and R(K) = R(L). By the Keisler—Shelah theorem,
theorem B.0.18, and proposition B.0.19, we can find & -saturated M = K and N = L such that
I'(M) ~ T'(N) — and that isomorphism induces an isomorphism I'(M) /A ~ T'(M) /A
—and R(M) = R(IN) — which induces an isomorphism res.,(O(M)) = lim R, (M) ~
lim Ry (N) = rese (0). It follows that (M, v ) and (N, Voo ) have isomorphic value groups
and residue fields — even naming res« (O0) < Reo.

By corollary 3.3.6, (M, Vo) and (V, Voo ) can be endowed with an angular component ace,
and, by lemma 3.2.13, they are both henselian. In equicharacteristic zero, the s,, maps are triv-
ially determined: they send 0 to 1 and everything else to 0; and so are the valuation and angular
component on Z. So, by theorem 3.3.10, M = N as £, -structure with res(0) < R
named. Since O = res;!(rese(0)), K = M = N = L as valued fields for the initial valua-
tion. L

Definition 3.4.2. A valued field (K, v) is said to be:
* finitely ramified if, for every n € Z.q, (0,v(n)) is finite — equivalently, for every prime
p € Z, (0,v(p)) is finite;
* unramified if, for every prime p € Z, (0,v(p)) = @.

A finitely ramified ramified valued of positive characteristic is trivially valued.

Theorem 3.4.3 (Ax—Kochen, 1965 — Ershov, 1965, ...). Let (K,v) and (L, w) be two unram-
tfied henselian fields with perfect residue fields. Then:

vK* =wL*  asordered groups;

K = L as valued fields < { Ko = Lw as felds.

Proof. If K (and hence L) has residue characteristic zero, then all the R,, are isomorphic to Ry
and this is the same statement as proposition 3.4.1. So we may assume that K (and hence L)
has residue characteristic p > 0. Fix some i <n > 0 and c € K. If p'c e m", then iv(p) + v(c) >
nv(p) and hence v(c) > (n —1) - v(p) > 0, so ¢ € m. It follows, by corollary 1.3.18, that
R~ (K) is canonically isomorphic to Wy» (Kv); in fact R(K) is canonically isomorphic to
the projective system of the W,» (Kv), which is interpretable in Kv. Since the same holds
of L, we have R(K) = R(L) if and only if Kv = Lw and the statement now follows from
proposition 3.4.1. O

Corollary 3.4.4. Let 3\ be a non principal ultrafilter on the set of primes then:
[TQ = TF((1).

p—4 p—>4U

Proof. We since Q, and F((t)) are complete valued fields with value group Z, and hence are
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henselian, it follows that I, Qp, IT,-y Fp((t)) £ Henand that T'(T],4 Q) = ZL(TTpoy Fp((2))).

Moreover, R1 (1,4 Qp) = [Tpmu Fp = R1(ITpu Fp((%))) is a characteristic zero field. So the-
orem 3.4.3 applies. O
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3. Henselian fields

One motivation behind Ax and Kochen’s work was to answer a conjecture of Artin:

Conjecture 3.4.5. Any homogenous polynomial over Q,, of degree dinn > d* variables bas a non
trivial zero in Qy,.

This conjecture is known to be false. However, it holds in F,,((¢)):

Theorem 3.4.6 (Lang, 1952). Let (f;)i<n be homogeneous polynomials over Fy((t)) in n >
Y deg(fi)? variables. Then the f; have a non trivial common zero in Fp((t)).

Corollary 3.4.7. Forevery d € Zsq, there exists a finite set A(d,n) of primes such that for every
p ¢ A(d,n), any (f:)i<n € Qp[x] homogenous of degree at most d with |x| > nd* have a common
non trivial zero in Qp.

Proof. There is a sentence ¢ in the language of rings that expresses that any family of n polyno-
mial of degree at most d in nd? + 1 many variables has a common zero. We have F,((t)) £ ¢
and hence, for any non principal £, [T, 4 Qp = [T,y Fp((2)) & . If A(d,n) := {p: Q, ¥ »}
is infinite, there exists a non principal U with A(d,n) € t and we would have [T, Q, # ¢, a
contradiction. It follows that A(d, n) is finite.

The result for |z| > nd? is an immediate consequence (setting some variables to 1) of the one
for || = nd? + 1. [l

3.5. Properties of definable sets

Lemma 3.5.1. Let M = Heng, P € K(M)[z] and C := {c e K(M) : PW(c) = 0, for some
i <deg(P)}. Foreveryce C, x e K(M) such that v(x — c) is maximal and n € L, there exists
an m € Lo such that vy, vV (Pe) (1 (x - €))) is well-defined, where P.(z) := P(x + c).

Proof. 10 € 1voo (P:) (1veo ( — ¢)), by lemma 3.2.6, there exists, i € Zso and e € K(M) such
that PO (e+¢) = Pc(i)(e) =0andrve(e) =rve(z—c). Soe+ce Candv(z-e—c) > v(z—c),a
contradiction. It follows that 1ve. () (1veo (2 — ¢) ) is well-defined. By compactness, it follows
that, for every n € Zso, there exists an m € Z,q such that rvy, ,, (rv,, (P:) (rvi (2 - ¢))) is a
singleton. O

Let £ be an RV-enrichment of £grv, M &= Heng an £-structure and A < M.

Lemma 3.5.2. If X ¢ RV is £(A)-definable, then it is £(A)|gy-definable. In particular,
Un RV, is a pure stably embedded L] gy -structure.

Proof. This is an immediate consequence of field quantifier elimination, theorem 3.2.17. [

For any ball band n € Zs, let b[n] := {z + n"*(y — x) : x,y € b}. Itis a ball containing b of
radius rad(b) — v(n), which is open if and on if b is.

Proposition 3.5.3. Let X ¢ K be £(A)-definable. Then there exists a finite C ¢ K(A)* n M
and n € Lso such that for any ball b of M with b[n] n C + @, we either havebn X = @orbc X.

In other words, 1,cx factorises through rv(z — C') = (rvp (2 - €))cec-
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3. Henselian fields

Proof. By theorem 3.2.17, any £(A)-formula ¢(x) is equivalent, modulo Heny to a formula
of the form ¢ (rv,,(P(z))), where P ¢ K(A)[z] is a tuple and ¢ is an £(A)]y formula.
By lemma 3.5.1, making n bigger we may assume that ¢ is of the form ¢ (rv,(z — C')) where

C cK(A)*n M is the set of roots of the non constant Pi(j).

Let now b be an ball of M such that b[n] n C # @, and z,y € b(M). For every c € C, if
b is open, we have v(z - ¢) < rad(b) - v(n) < v(z —y) - v(n) and if b is closed, we have
v(z - ¢) <rad(b) —v(n) < v(z —y) - v(n). So, in either case, rv,(z — ¢) = rv,(y — ¢) and
M E p(z) ifand only if M E p(y). O

Proposition 3.5.4. Assume that K(A)* n M ¢ A. Let c e K(M) and B be the filter generated
by {bVeo-ball of K(A) : c € b}.
1. IfBnA =@, thentp(c|A) = Boo — in particular, it is the intersection of v-balls of K (A).
2 IfaeBnAza, thentp(tve(c—a)/RV(A)) E tp(c/A); and rv(c - a) ¢ rv(K(A)).

Proof. For every for every e € K(A) N\ Boo and d € B, veo(c - €) < Voo(c — d) and hence
IVeo (€ =€) = Voo (d — €). It follows that, if B n A = @, by lemma 3.5.1, for any £(A)-definable
X,d e Xifandonlyif c € X andhencetp(d/A) = tp(c/A). Notealso that B is not principal in
that case and hence it is generated by open v, -balls that are themselves intersections of v-balls.

Letusnowfixa € BnA # @. Letd € K(INV), N > M besuch that tp(rve, (d-a) /RV o (A)) =
tp(rves (¢ — a)/RV o (A). For every p(z) € tp(d/A) and n € Z,g, Jzp(x) Arvy(z - a) =
&n is equivalent to an £(A)|gy ¥(&n) with ¥ € tp(1vee(d — a)/ RV (A)) = tp(rve(c -
a)/RV & (A),so M & Jxp(z) Arvy(z—a) = 1v,(c—a). By compactness, we find d’ € K such
that1ve (d' - a) = 1veo (¢ —a) and tp(d'/A) = tp(d/A). So we may assume that rve, (d - a) =
I'Veo(C—a).

Foranyee B nAanddEn

,if veo(c—a) > vao(a —€), then d €

Let us now assume that B n A # @. For anye € BNA,ifve (c—€) > Ve (d-e), then forall
N € Z505 bov(a—e)+v(n) € B and hence veo (d - €) > Voo (d — €)

Ifthenforanye € BnA, ¢ ¢ B(a, veo(a—e)) and thus ve (c—a) < veo (a—e), 6. TVeo (c—€) =
I'Veo (€= a).

Note that if b is a v-ball of K(A) containing ¢, then U,, b[n] € B and hence a € b[n] for
some a. Sov(c —a) > rad(b) - v(n). Sincerv,(c - a) = rv,,(c — d), it follows that v(c - d) >
v(c—a) +v(n) > rad(b) and d € b. By symmetry, d € b if and only if ¢ € b. In particular
the filter generated by {b veo-ball of K(A) : d € b} is also B. So for every e € K(A), we have
Voo (C—€) = Voo (d—e) if e ¢ B and 1veo (€ =€) = I'Voo (¢ — @) = I'Voo (d — a) = Voo (d — €)
otherwise. As earlier, we conclude that tp(d/A) = tp(c/A).

Note that if rv(c — a) = rv(e) € RV(A), then rv(c - (a + €)) > rv(c — a) and hence
a¢B(c,v(c-a)) =B(a+e,v(c—a)) € B,acontradiction. [l

Corollary 3.5.5. We have acl(A) = K(A)* uacl(RV (A)).

Proof. If a € RV (acl(A)), then, by lemma 3.5.2, a € acl(RV(4)). Now, fix ¢ € K(acl(4))
and let B be the maximal pseudo Cauchy v -filter over K(A)* concentrating at c. If B n
K(A)* = @, then, by proposition 3.5.4, B n N is finite for any NV > M and hence B contains a
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3. Henselian fields

singleton; z.e. c € K(A)®. Ifa e BnK(A)* # &, then thesetof ¢’ € N > M withrve (' —a) =
rv(c—a)isfinite. Sorv(c—-a) =0and c=a e K(A4)*. U

Definition 3.5.6. Let £, ¢ be the language £, without the s, functions and with a constant
7 € I and constants 7, € R,,, for every n € Z

Any finitely ramified field with angular components can be made into an £, g-structure
by interpreting 7 has the smallest positive element of T' if it exists and 1 otherwise and 7, as
sn(m) = ac,(x) forany x e K with v(z) = .

Theorem 3.5.7 (Pas, 1989). The £, g-theory Hemgc’fr of finitely ramified henselian valued fields
of characteristic zero resplendently eliminates field quantifiers : any formula in a T'UR-enrichment
£ of Lac 1s equivalent to an L-formula without quantifiers on the sort K.

Proof. This follows immediately from theorem 3.3.10 and the fact that, in finitely ramified
fields, v(R,,) id finite and only contains multiples of 7 and hence s, is entirely determined (by
a finite disjunction on the possible values) by s,, (7). It follows that any (field quantifier free)
formula involving s,, can be rewritten as disjunction of (field quantifier free) formulas that do
not involve the the s,,. O

Corollary 3.5.8. Let £ beaT-enrichment of a R-enrichment of £, . Any L-formula o(x,~, o),
where x is a tuple of K-variables, v a tuple of T-variables and o a tuple of R-variables, is equiv-

f
alent, modulo Hengc’ " to:

Vi(v(P(2)),7) A xi(acn (P(2)), ),

where p; is an L|p-formula, x; is an Llg-formula and P € Z[x] is a tuple.
Equivalently, for any L-structures M, N = Hengc’fr and Lo p-embedding f: A< M - N,

we have:
[l #s Llp-elementary

fis S—demenm}’y = { f|R s 2|R-c‘lementﬂ}'y

Proof. Since there are no symbols involving both I' and R, any atomic formula is an £|p-
formula or an £|-formula (possibly applied to terms from K). The statement follows. [

Corollary 3.5.9. In the theory of finitely ramified characteristic zero henselian fields:
1. T isa pure stably embedded ordered monoid;
2. R =U, Ry, isa pure stably embedded projective system of rings;
3. T and R are orthogonal.

Proof. Let M be any finitely ramified characteristic zero henselian field, X ¢ I'" x R™ be M-
definable. By corollary 3.3.6, we find M > M that admits a compatible system of angular com-
ponents. Then, by corollary 3.5.8, X (M") = V; ¥;(7', M") A xi(a', M"), where v € T'(M"),
a € R(M"), 1; are ordered monoid formulas and ; are projective system of rings formulas. By
elementarity, we find v € T'(M), o € R(M) such that X (M) = V; (v, M) A xi(a, M). All
three statements follow. [

47

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35



3. Henselian fields

Corollary 3.5.10. In the theory of unramified henselian fields of characteristic zero with perfect
residue field, every R, for n € Zso, is a pure stably embedded ring.

Proof. Any definable X ¢ R is, by corollary 3.5.9, of the form res; ,,(Y") where Y ¢ R is
definable with parameters from R,,. But R, is interpretable in Ry (as a ring) — by the Witt
vector construction, or by natural isomorphism in residue characteristic zero — and hence, X
is definable in the ring R;.

Since R,, also interprets(ls) R — quotienting by its maximal ideal — any definable subset
of R} is thus also definable in the ring R.,. O

3.6. Fields of p-adic numbers
Fix p a prime.

Definition 3.6.1. A valued field (K, v) is said to be p-adically closed of ramification degree e
and residual degree f if:

* it is henselian of mixed characteristic (0, p);

* v K™ has a smallest element v(7) and v(p) = e-v(7);

* [VK*:vK*"] =n;

* [Kv:F,]=f.

Example 3.6.2. Let Q, < F be a finite extension. Then F is p-adically closed of ramification
degree [vF : vQ,] and residual degree [ Fv : I ].

Lemma 3.6.3. Let (K,v) be a p-adically closed of ramification degree e and residual degree f.
1. Let q > 1 be prime top. We have v(x) > 0 if and only if 1 + ma? e K*9:= {y?:y e K*}.
2. Letm,ce O(K) besuch that v(p) = e-v(w) and Fp[res(c)] = F,s. Then, forall n € Zo,
Ry (K) = Yice jeg L-vesy(n'c?). In particular, it is finite.

3. Anyp"-th angular component map factorises through K> — K* | K*™, wherem := R, (K)|.

4. ZLlm,c] » K*|K*™ is surjective. In particular, K | K*™ is finite.

Proof. 1. Ifv(z) < —v(m) <0, then v(mz?) = v(7w) + ¢-v(z) <0=wv(l)and v(1 + wa?) €
v(m) + ¢qI' # ¢I". Conversely, if v(x) > 0, then res(X? - 1 + mz?) = X7 - 1 has a simple
zero at 1 = res(1 + mx?). By henselianity, 1 + 72 € K9.

N
<

24
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27

2. We prove by induction, thatany element of R, /(") is of the form Yice i< fhen T€Sn (") phs

where ¢; € Z[c]. The statement follows.

3. For any element o € R (K'), we have o = 1 and hence, for any z € K*, ac,(z™) =
acp(x)™ = 1.

4. Note that, by minimality of v(7), none of the v(7"), 0 < i < m are multiples of m. So
there exists y € K*m and i such thatv(z) = i-v(7) +m-v(y). Let z = 2y ™71~ We have
v(2) = 0. Let a € Z[c, 7] be such that res,2(a) = res,2(a) and P(X) = X™ - za™L.
We have res,,2(P(1)) = 0,s0 v(P(1)) > 2-v(m) = 2-v(P'(1)). By henselianity, there
exists t € K such that t™ = za™! and hence = = zy™ran’y™t™. [

B1n fact, we are really using bi-interpretations here: each structure interprets the other one and the isomorphism
between double interpretations is definable.
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3. Henselian fields

Definition 3.6.4. Let £y1ac be the language with one sort K with the ring language and unary
predicates Py, for all n € Z.o.

Any field K can be made into an £yjac-structure by interpreting the Py, as K. Let pCF, ¢
denote the £uiac (7, ¢) theory of p-adically closed fields with v(p) = e-v(7) and Fp[res(c)] =

F,s.

Theorem 3.6.5 (Macintyre, ? — Prestel-Roquette, ?). The Cytac(m, ¢)-theory pCF. ¢ elimi-
nates quantifers.

Proof. By lemma 3.6.3, in any M & pCF, f, we have v(z) < v(y) if and only if v(yz ™) > 0
if and only if 1 + w277 ¢ K*9, if and only if 27 + 7y? € K*9. Also, acyn(x) = resyn(a)
where a € Z[r, ¢] — with coefficients at most p" — is such that v(a) = 0 and za 17 € K*™,
uniformly defines compatible angular component maps.

It follows that any Lyr.c-embedding f : A < M — N, where N = pCF, ; induces an £, f-
embedding. Note that R(M) = R(A) =R(f(A)) = R(V) and hence f|g is elementary.

Claim 3.6.5.1. Pressburger arithmetic, the theory of ordered abelian groups G with a minimal
positive element and such that [G : nG| = n eliminates quantifiers in the language of ordered
groups with predicates for n - G and a constant 1 for the minimal positive element.

Proof. Let f : A< G — H be a maximal embedding. Fix v € G and let n be its order in G/ A.
If n < oo, then, for every o € A iy < aif and only if iny < novand iy + @ € mG if and only if
iny + na € nmG. So the isomorphism type of v over A is entirely determined by § = ny € A.
Since ¢ € nG, we also have f(d) € nG and we find € € H such that ne = f(§). We can extend f
by sending 7 to € and hence, by maximality, v € A. So A is relatively divisible in M.

If n = oo, the isomorphism type of v of over A is determined by {«v € A: v < o} and i, € Z
such thaty - i,, e mG. Indeed, mvy > awif and only if, since my ¢ a + Z € A, my > a+i = mf3,
for some 5 € A, if and only if v > §; and jy + @ € mG if and only if ki), + @ € mG. By
compactness, f extends by sending v into some H* > H. By maximality, v € A and hence

A=G. 0

It follows that f| is elementary. Note that every element in R(A/) = R(N) is named by
a constant, so, being an isomorphism, f|g is elementary. So, by corollary 3.5.8, f is £ac fi-
elementary — in particular, it is £1ac (7, ¢)-elementary. O

Corollary 3.6.6. The class pCF . s is model complete in £.,.

Proof. Let F' < K both models of pCF,  and 7, ¢ € F such that v(p) = ev(7) and k(K) =
k(F') = Fp[res(c)]. Note also that, as seen in the proof of lemma 3.6.3, for every n € Zs,
K*|K*" = Rp2 (K)[RZ(K) x w2/ ~ R2(F)[REZ(F) x n%/a™ ~ F*|F*". So F is an
Luac-substructure of K and, by theorem 3.6.5, F' > K — as £yac (7, ¢)-structures, and hence
as £,g-structures. ]

Corollary 3.6.7. Let K be p-adically closed and F = F* ndcl(F) ¢ K. Then F < K (as rings).
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4. The independence property

Proof. Since Reo (K) is a p-ring, by proposition 1.3.17, @, = W(F,) < W(F,) < Roo (K). In
fact, as seen in lemma 3.6.3, this extension is finite. Let a = rese (@) € Roo (K') generate it and
P € Zp[x] its minimal polynomial. We have P'(«) # 0,z.¢e. v(P’(a)) < nv(p) forsomen € Z.
Let @ € Z[x] besuch thatres 2n (Q) = res,2n (P). Thenres,2n (Q(a)) = res,2n (P)(a) = 0and
respn (Q'(a)) = respn (P)(a) # 0. So v(Q(a)) > 2v(Q’'(a)) and, by henselianity, there exists
c € Q*ndcl(Q) < F such thatresyn(c) = resyn(a). So Rpyn(K) = Rpn(F) and F' = pCF 4.
By corollary 3.6.6, F < K. L]

Corollary 3.6.8. Any two p-adically closed fields K, F' of arbitrary ramification and residual
degree are elementary equivalent if and only if K 0 Q* ~ F n Q™

Proof. If K = F, then, by compactness, K N Q* embeds in F'nQ®* which embeds in K nQ?, so
they are isomorphic. Conversely, if K nQ* ~ F'nQ?, by corollary 3.6.7, we have K = K nQ* ~
FnQ*=F. 0

Remark 3.6.9. Any p-adically closed field is elementarily equivalent to a finite extension of
(Q,v,)™ which is elementarily equivalent to its completion — a finite extension of Q.

Corollary 3.6.10. Let K = pCF, s and F < K. Then dcl(F') = acl(F) = F*n K < K.

Proof. By corollary 3.6.7, F* ndcl(F') < K. Sodcl(F'), F*n K c acl(F) ¢ F*ndcl(F') and
the statement follows. O

15

16

17

Corollary 3.6.11. Thetheory pC F, s hasdefinable Skolem functions: for every Sntac(, c)-definables

Jamily (Xy)yey of non empty sets, there exists an Syac (7, ¢)-definable function f : Y — Uyey Xy
such that for everyy € Y, f(y) € Xy.

Proof. For every N > M and y € Y(N), by corollary 3.6.10, dcl(y) < N and hence there
exists an Lyac (7, ¢)-definable f such that f(y) € X. By compactness, there exists Ln1ac (7, €)-
definable (f;)i<n such that for every y € Y, f;(y) € X, for some i. The X; = {y : fi(y) €
X A fi(y) ¢ X forall j < i} aredisjointand f := U; fily, has the required properties. O

4. The independence property

Let £ be a language, T be an £-theory.

Definition 4.0.1. Let (/, <) be totally ordered. A sequence (a;)icr € M some £-structure is
said to be £-indiscernible if for every tuple i, j € I with i zgf jthena; =¢ a;.

Lemma 4.0.2. Let M be an £-structure and for every n € Zsg and (a;)ez., € M*. Then for any
total order (1, <), there exists M* > M and (¢;)icr € M* L-indiscernible such that, if; for every
increasing g :n — Lso, M & ©(agy(n)), then, for any increasing f :n — I, M* &= p(cg(y)) -

Proof. Let 7, be the common (partial) type of the a,(,,) and let us consider the set of formulas:

E((@idier) = U mlzrm)u U w(zpm)) < o(@hm))-

fn—Iinc. f,gn—1 inc.
)
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4. The independence property

—~~

4 o )
 NIP ) NTP, M Q
S W(F,) H Qp
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C((®)) [ .
> o (F (t)a7 90 I v )
R (K®,v) | p-u g m
d Stable Simple NSOP
Hu(FZ7 Sop)
p—)
o H F PAC w-libre
K il
N J J J

Figure 1: The universe

Claim 4.0.2.1 (Ramsey). For any o((xi)i<n) and m € Lo, there exists J € ZLq of size m such
that, for any increasing f,g:n — J, M & o(azm)) < ©(agm))-

So ¥ is finitely satisfiable and the lemma holds. O
For every £-formula ¢, we define ¢! = p and ¢° := .

Lemma 4.0.3. Let p(x;y) be an £-formula. The following are equivalent:
(1) for everyn € Zso, there exists M & T, (a;)i<n and, for every J € n, by € MY such that,
M = @(a;,by) if and only ifi € J.

(i7) forevery sets R C I x J, there exists M = T, (a;)er and (bj) jey with M & p(ai, bj) if and
only if (i,j) € R, foreveryic Il and j e J;

(117) there exists M & T, A < M® infinite and, for every B ¢ A, bp € MY such that, M &
o(A,bg)={aec A: M = ¢(a,bg)} = B;

(1v) for every total order (I,<) without a largest element, there exists M & T, (a;)ier € M”
C-indiscernible and b € MY such that both Jy := {i € I : M & ¢'(a;,b)}, for £ = 0,1 are
cofinal in I;

(v) there exists M = T, (a;)icz,, € M® L-indiscernible and b € MY such that M = ¢(a;,b) if
and only if i is even.

(vi) altr(p(x,y)) = oo, where for every n € Lo, altr(p(z,y)) > n if there exists M = T,
(ai)ier € M* L-indiscernible, b e MY and f : n+1 — I increasing such that p(az(;),b) <
—p(ag(s1y,b)s foreveryi <n;

Proof. Note that (iv) =(v) =(vi) are immediate.
)=(ii) By (i), the set of formulas X ((z;)iez, (y;)jes) = { @ @DR (z;,y;) 1i € 1,5 € J} is finitely
satisfaible and hence, by compactness, satisfiable in some model of T'.
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4. The independence property

=(iii) Consider R = {(i,]) € Zso x B(Zso) : i € I}. Then (i) applied to R yields A := {a; :
i > 0} and, for every B = {a; : j € J} € A, bp := by such that, for every a = a; € A,
M e ¢(a,bp) ifand only if (i,J) € R, i.e. i € J.

(iif)=(iv) Let g : Zsp — A be some injection. By lemma 4.0.2, there exists M* > M and (c¢;)ser €

—~
.

(M*)* which is £-indiscernible and such that, for any increasing f : n — I, ay(;,) realises
the common partial type of the tuple g(h(n)), where h : n — Zyq is increasing. In
particular, for any J € n, M* & 3y A<, ¢ (ag(;),y)- By compactness. forany J € I,
we find b € MT > M* such that M" = ¢(a;,b) if and only if i € J. By induction, we can
build J ¢ I cofinal such that I \ J is also cofinal.

i)=(i) Fix some n. By (v), we find (a;)ie; € M® £-indiscernible, b € MY and f : 2n+1 - I

increasing such that 9 (as@;),b) < —@(as@w1),b), for every i < 2n. In particular, for
every J ¢ n, there exists g : n — I increasing such that M' = ¢(ay(;),b) if and only
if i € J. Since (a;)ier is £-indiscernible, for any increasing g : n — I, we have M E
3z Uicn Sojljd(ag(i)vx)' O

Definition 4.0.4. Let ¢(z;y) be an £-formula. We say that:

* phastheindependence property (in T) if it verifies the equivalent conditions of lemma 4.0.3.

* T does not have the independence property — is dependent, is NIP — if no £-formula
has the independence property in T'.
* An g-structure M is NIP if Th(M) is.

Lemma 4.0.5. If the £-formulas (pi(x,y))i<n are NIP in T, then so are any boolean combina-
tions.

Proof. For any £-formulas (¢;(z,y))i<n and 7 boolean combination of the ;, alt7(v) <
> altp(¢;), where 1 is any boolean combination of the ;. Indeed if ¢;(a1,b) < @;(az,b),
for every i < n, then ¢ (a1,b) < ¥ (az,b). [

Lemma 4.0.6. The theory T is NIP if and only if no £-formula o(x,y) with x| = 1 has the
independence property in T.

Proof. Let us assume that no £-formula ¢(x,y) with || = 1 — and hence, by lemma 4.0.3, no
£-formula ¢(x,y) with |y| = 1 — has the independence property in 7T'.

Claim 4.0.6.1. Let M = T and (a;)iconrr € M be S-indiscernible and b € MY with [y| = 1.
Then (a;); is eventually £(b)-indiscernible.

Proof. Any 1((2;)i<w,y) is NIP in T" and hence, by lemma 4.0.3, there exists ¢, < |T* and
¢ € {0,1} such that, for every i > ig M & 1*((a;,;) j<w,b). Since |T|" is regular, we may assume
that iy, = 49 does not depend on 1 and hence, (a;);5(0,4,) is £(b)-indiscernible. O

By induction, for any tuple b € M, (a;); is eventually £(b)-indiscernible — z.e. (a;b); is £-
indiscernible. Indeed, for every c € M, by claim 4.0.6.1, (a;b); is eventually £(c)-indiscernible
— ze (a;)izi, is £(bc)-indiscernible. So for any £-formula ¢(x,y), the truth value of ¢ (a;, b)
is eventually constant. So the negation of lemma 4.0.3.(iv) holds. [
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4. The independence property

Example 4.0.7. * Any stable theory is NIP : a formula ¢(z,y) is unstable if there exists
(@i)iew, (D) jew such that = ¢(a;,b;) if and only if ¢ < j. This is a particular case of
lemma 4.0.3.(ii).

* Inany order, the formula x < y is NIP. Indeed you cannot have a; < bgyy < az < bygy <
a1. In fact, any o-minimal theory is NIP.

Theorem 4.0.8 (Gurevitch-Schmidt, ?). The £o4-theory of ordered abelian groups is NIP.

Theorem 4.0.9. The theory ACVF is NIP

Proof. Bylemma4.0.6and theorem 2.2.5, it suffices to prove that p(z, yz) := v(z—y) > v(y-z)
and ¥ (z,yz) :==v(x—y) > v(y — 2) are NIP. But since these sets define balls, this follows from
the following observation: given three points (a;)i<3, if ag, a1 are in some ball b not containing
as, then any ball containing a; and as also contains ag. O

Theorem 4.0.10. Let M be a finitely ramified henselian field. Then
M #sNIP < R(M) is NIP.

Proof. Let us assume that R(M) (and T'(M)) is NIP. Let (a;)ier € M” be indiscernible.

Claim 4.0.10.1. Increasing a;, we may assume that each a; enumerates an elementary substruc-
ture of M.

Proof. Leta; € M; < M and b; enumerate M;. By lemma 4.0.2, We find (b}); indiscernible
realising the common type of the b; (in some elementary extension). In particular, (a}); = (ai)i,
where a; € b corresponds to a; € b;. By compactness, we can assume that b} contains a;. 0

Let D be @-definable, stably embedded, with an NIP induced structure.

Claim 4.0.10.2. For any tuple d € D(M) the truth value of any formula p(xd) is eventually
constant on (a;);.

Proof. If not, let p(xd) alternate along (a;);. Since D is stably embedded, there exists ¢; €
D(M)?*and aformulav(zy) such that ¢(a; M) = 1¥(c; M). Since a; enumerates an elementary
substructure of M, we can assume that ¢; € a;. In particular, (¢;);er is indiscernible and ¢ (2d)
alternates along this sequence. This contradicts that the induced structure on D is NIP. 0

If|I| > R is regular and the a; and d are at most countable, then it follows form claim 4.0.10.2
that tp(a;/d) is eventually constant. Let us now assume that I = w and, by contradiction, let
c € M and ¢ be a formula such that M & ¢(a;c) if and only if ¢ is even.

Claim 4.0.10.3. For every i € w, let dy; € D(M) be such that (azida;)icw and (a2ia2i+1)iew are
c-indiscernible. Then, we can find d;; and o such that ab,dh; = a2;dai, (a4;,1)i<w =c (a2i+1)icws
the sequence (as;a%; )i 15 c-indiscernible and the sequence (a}d;); is indiscernible.
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S. Perspectives

Proof. Applying lemma 4.0.2, we find (a5, ;09,1 ;d5; ;) (j.i)ex; xwo Which is c-indiscernible and
realises the common type of (ag;azi+1d2;); over c. In particular, (a;- )jex: xw is indiscernible,
(ah;,055,14) (i) =c (a2ia2i+1); and (ah; ;d5; ;) (i) = (a2ida;)i- By compactness, we can as-
sume that a{)’ida,i = a2id2i, forall i < w. Let agy = (agi)i<w and dgw = (d2i)i<w and con-
sider bj = (@}, ;)i<w- Then (b;); is £(az)-indiscernible, e (bjaz.); is L-indiscernible. By
claim 4.0.10.2, tp(bjagw/da. ) is eventually constant so there exists jo such that (a5 0. E
agjo 41 By compactness, we find dy;  ; such that (a2jy,id2jy,i)i Sasdae (2jo+1,id5;41)i- 1 we
setag;,q = ;o 4 we have (agidaiad; dy;y )icw = (agdp 055, ;d55, ;)i<w and hence (aidy);
is indiscernible. O

By lemma 4.0.2, we may assume that (a2;a2i+1)i<w is c-indiscernible. For every ¢ < w, let bo;
enumerate I'(dcl(ag;c) ) and do; enumerate R(dcl(a;c)). By the claim 4.0.10.3, changing ag;+1
but preserving the alternation, we find bo;1 and dg;+1 such that (a;b;d; ) i<, is indiscernible. By
section 4, we find (a; ); indiscernible that each enumerate an elementary substructures con-
taining a;b;d;. Iterating this construction, we find (a;”);«. indiscernible that each enumerates
a countable elementary substructures N; containing a; and such that Na; < No;(¢) is immedi-
ate. Again, we can extend this sequence (preserving the alternation) to be indexed by ;.

Let by be a ball in Ny and b; be the corresponding ball in N;. Three cases are possible. Either
all the b; are disjoint and ¢ can only be in one of them. Or they form an increasing sequence
and if c is in one of them, it is in all the later ones. Or they form a decreasing sequence and if ¢
is not in one of them it is not in any of the later ones. In all three cases, c is either eventually in
b; or outside of b;. It follows, that the maximal pseudo Cauchy filters over each N; accumulat-
ing at ¢ eventually correspond via the isomorphism a;’ — a; and hence, by proposition 3.5.4,
eventually a;c = a;11¢, contradicting the alternation. O

Corollary 4.0.11 (Delon, ...). Let M be an unramified henselian field with perfect residue field.
Then
M #s NIP < k(M) is NIP.

Proof. This follows from theorem 4.0.10 and the fact that R is interpretable in k. O

Example 4.0.12. * p-adically closed fields are NIP.
* C((t)) and R((t)) are NIP.
* [1,-uQp is not NIP, where £l is a non principal ultrafilter on the set of primes.

5. Perspectives

5.1. Imaginaries

We wish to consider three related questions:
* What do quotients by definable equivalence relations look like?
* Do definable families admit moduli spaces — z.e. a definable set whose points are in de-
finable bijection with the definable sets that appear in the family?
* Do definable set have a smallest set of definition?
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S. Perspectives

But first, let us set up some background. Let £ be some language, M be an £-structure and
X € M?* be £(M )-definable.

Proposition 5.1.1 (Poizat, 1983). Let T be a theory such that for every finite tuples of sorts X and
Y, there exists a finite tuple of sorts Z and L-definable injective maps x : X - Zand vy Y - Z
with disjoint images'%. The following are equivalent:
() T eliminates imaginaries: for every M & T and £(M)-definable X set X ¢ MY, there
exists an £-formula (zy) and a € MY such that, for all c € MY, (M, c) = X if and only
if ¢ = a — we say that a is a canonical parameter of X via 1;

(i7) T uniformly eliminates imaginaries : for every £-definable V¢ X x'Y, there exists an
L-definable W ¢ X x Z such that for every M & T and a € Y (M), there exists a unique
ce Z(M) suchthat Vg :={x e X :xzaeV} =W,

(111) Any interpretable set is represented, in T, by a definable set: for every M =T, A < M and
L(A)-definable equivalence relation E ¢ X x X, there exists and £(A)-definable map
[+ X = Zsuch that for all 1,29 € X, x1Exo if and only if f(x1) = f(x2).

Sketch of proof.

(i)=(ii) This follows form compactness.

(ii)=(iii) Applying (ii) to E' ¢ X x X, we define f(z) to be the unique z such that £, = W.
(iii)=(i) Applying (iii) to the equivalence relation y; Ey» defined by YV, o(x, 1) < ¢(z,y2), we

define ¢(x, 2) := 3y f(y) = 2 7 o(z,9). O

Note that if a is a canonical parameter of X, via some ¢, then dcl(a) does not depend on the
choice of  and is the smallest dcl-closed set of definition of X.

Theorem 5.1.2 (Poizat, 1983). The £.4-theory ACF (uniformly) eliminates imaginaries.

Sketch of proof. Let K = ACF and X ¢ K" be £,4(K')-definable. Let p be the generic type of
an irreducible components of the Zariski closure X" c K™ The type p is entirely determined
by I(p) := {P € K[z] : p & P = 0} = UgVa(p), where Vy(p) := {P € K[z] : pE P =
0and deg(P) < d} < K™ is a sub-K-vector space of dimension r4. Note that A" V(p) <
A4K™d ~ K™ is dimension 1 — it is therefore an element ag € P(K"4) which can be £-
definably identified with a subset of K"a*1.

Note that since X is consistent with p, by quantifier elimination, p £ X and, if X is a class
of an £-definable equivalence relation, it is £(aq)-definable for a sufficiently large d. Note that
the orbit of p under aut x (M) := {0 € aut(M) : 0(X) = X} is contained in the set of generic
types of irreducible components of the Zariski closure X’ ¢ K™, which is finite. Thus so is the
orbit C':= {¢; : i < n} of ag. Note that X is £(c;)-definable for any choice of 4.

Let P(z,y) = [li(z — ¥;ci;Y7) and d be the tuple of its coefficients. Then C'is £(d)-
definable, and d is fixed by aut x (M) — z.e. d is a canonical parameter of X. O]

Definition 5.1.3. Let £ be the language with:
* asort K with the ring language;
* sorts S, forall n € Z.g;

"In other words, the category of definable sets has finite coproducts.
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S. Perspectives

*amaps,: K" Sns

* sorts T,,, forall n € Z.g;
2

*amapt,: K" - T,.

Any valued field can be made into an £g-structure by interpreting K as the field, S,, as
GL, (K)/GL,(0O), which is the moduli space of rank n free sub-O-modules of K", s,, as the
canonical projection, T}, as | |seg,, s/ms and t,, as the map sending a matrix m € GL,,(K) to the
coset of s, (m) /ms,, (m) given by the first vector.

Theorem 5.1.4 (Haskell-Hrushovksi—-Macpherson, 2006). The £g-theory ACVF eliminates
imaginaries.

Sketch of proof. Let K £ ACVF and X ¢ K" be £(K)-definable. A type p € S,(K) is said
to be £(K')-definable if, for every formula p(zy), there exists (y) such that, for all @ € K,
pE@(x,a)ifand only if K = 6(a).

Claim 5.1.4.1. There exists an £g(K )-definable type p € Sx (K) with a finite aut x (K )-orbit.

Proof. Assume first that X ¢ K. Then, by theorem 2.2.5, X has a unique decomposition
Ui<n bi \ b; j of disjoint non nested Swiss cheeses. Then p := ny, has the required properties. If
X ¢ K", by induction, we find an £g(K)-definable ¢ € S, (x(K) with a finite aut y (K)-
orbit, where 7 : K™ - K" is the projection on the first n coordinates. Leta € K* > K
realise g. By the dimension 1 case, we find an £5(K')-definable r, € Sx, (K™) with a finite
aut x, (K*)-orbit. Let ¢ & g, then tp(ac/K) has the required properties. O

Let V' be a K-vector space. A valuation on Visamap v : V — X, where (%, <) is ordered
and vK acts (increasingly) on ¥ and such that v(0) is maximal, for all z,y € V, v(z + y) >
min{v(z),v(y)} and for all a € K, v(ax) = v(a) + v(x). We say that a valuation v on K" is
definable if v(z) < v(y) is. For very d € Zs, let vy be the (definable) valuation on K™ such
that v4(P) < v4(Q) if and only if p(z) &= v(P(z)) < v(Q(z)). By quantifier elimination, the
vq characterise p.

Claim 5.1.4.2. There exists a basis (P;)icm, of K™ such that for all a; € K, v(¥;a;P;) =
min; v(a;) +v(B;). Moreover, the P; can be chosen such that v(P;) is fixed by aut (K [p) and for
all i, j, if there exists a € VKX such that v(P;) +v(a) < v(Pj) then v(P;) + vIK™* <v(P;).

Fix some . Let W; 4 be the K-vector subspace generated by the P; with v(P;) > v(FP;) +vK™
and Sg; be the free O-submodule generated by the P; with v(P;) > v(P;) = v(a) for some
a € K*. Notethatthe Ry; := {a € K™ :v(X; a;P;) > v(P;)} = Sqi+Wa, characterise vg and
that Rg, NSy is the preimage of Rq, NS4 ;/mS, ;. Using external powers and projective spaces
we can then associate a tuple of K-points to Wy ; and a tuple of T,-points to Ry, N .Sg;/mSy;.

It then remains to show that finite sets of tuples in the geometric sorts have canonical param-
eters — which is far from trivial. O
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A. The localisation of a ring

5.2. A classification of NIP fields

Conjecture 5.2.1. Every infinite NIP field either:
o is separably closed;
* s real closed;
o admits a non trivial bhenselian valuation.

Remark 5.2.2. 1. In other terms every NIP field is elementarily equivalent (as a field) to a
non trivially valued henselian field.
2. The henselian valuation (when it exists) can be assumed to be definable.
3. This conjecture implies the stable fields conjecture : every stable is separably closed.

A. The localisation of a ring

Definition A.0.1. Fix Raringand S ¢ R.
(1) The subset S is multiplicative if 1 € S and for every z,y € S, zy € S.
(2) We then define the equivalence relation (z,s) ~5 (y,t) on R x S to hold if there exists
z € Rsuch that zzt = zys.
(3) We also define the ring SR := R x §/~g, localised at S, where:
* (z,3) + (y,t) = (xt +ys, st);
* (ajv 8) ’ (yvt) = (xyu St)'
(4) Letalsoi: R - S™' R be the ring morphism z ~ (x,1).

Definition A.0.2. If Risaringand p is a prime ideal, we define the localisation of R at p to be
(R~ p) ' R. Itis usually denoted by R,,.

Proposition A.0.3. Let Rbearingand S < R be multiplicative. The ring S™* R hasthe following
universal property: given and ring A and ring morphism f : R — A such that for every s € S,
f(8) € A%, there exists a unique g : ST R — A such that:

SR

/N

commutes.

Proposition A.0.4. Let R be a ring and S € R be multiplicative. The map q —~ ST R-qisa
bijection between prime ideals q € R with g0 S = @ and prime ideals of S R.
In particular, if p € R is prime, the ring Ry, is local and its maximal ideal is Ry, - p.

Remark A.0.5. If Risanintegral ring, Rq) is its fraction field and 7 is injective. Itis the smallest
field (up to unique R-isomorphism) containing R.
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B. A multi-sorted model theory primer

B. A multi-sorted model theory primer

Definition B.0.1. A language £ is:
* aset X — sorts of £;
e for every tuple of sorts X = (X;)i<n, a set R(X) — predicates on [T; X;;
e for every tuple of sorts X = (X;);n, and sort Y, aset f(X,Y) — functions []; X; - Y

Let us fix a language £ and disjoint sets U (X'), for every sort X — the variables of sort X.

Definition B.0.2. Let z = (2; )<, be a tuple of variables and Y be a sort. We define by induc-
tion:
* theset t(x,Y) — terms in variables x to the sort Y:
- lf.’BZ € ‘II(XZ), xT; € f(x,Xi);
— Iftjet(z, Z;), forj <m,and f € §(Z,Y), then f(t) e t(z,Y);
* the set §(x) — formulas in variables z:
- LeF(x);
- ifp, P eF(2), ¢ > Y e F(x);
iftl, ty € t(x, Z), t1 =19 € 3(1’),
Ift; e t(x, Z;), for j < m,and R € R(Z), then R(t) € §(x);
— If ¢ € §(yx), where y is a single variable, Jyp € F(z).

Definition B.0.3. An £-structure M is:
e for every sort X, aset X (M);
* forevery f € f(X,Y),afunction fM : X (M) := [T, X;(M) - Y/(M);
* forevery R € R(X),asubset R(M) ¢ X (M).

Definition B.0.4. Let M be an £-structure, = be a tuple variables of sort X — thatis, z; € V.
We define by induction:
* foreverytet(z,Y), tV : X(M) - Y(M):
- (@) :am a;
FOMa e P (),
* forevery p € §(z), p(M) € X(M):
- 1(M) =g
(o= )M i= {a € X(M) : a e (M) implies a € p(M)} = (X(M) ~ o(M)) U
Y(M);
- R(t)(M):={aeX(M):tM(a) e R(M)};
— (Jyp) (M) the projection of ¢ (M) into X (M).

If a € (M), we usually write M £ ¢(a). More generally, if ® ¢ F(x), we write M = ®(a)
if a € Nypea 9(M).

Definition B.0.5 (Morphisms). Let M and N be £-structures, A € M and f : A - N — that
is, for every sort X, we have X (A) ¢ X(M)and f: X(A) - X(N).
(1) Aisan £-substructure of M, and we write A < M, if for every function symbol¢: X — Y
anda e X(A) = [1; Xi(A), tM(a) e Y (A).
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(2) fisan £-embedding if for every quantifier free formula ¢ () and a € A%, it M £ ¢(a)
then N = ¢o(f(a)).

(3) fisan L-existentially closed embedding if for every existential formula p(z) = Iy (zy),
where 1 is quantifier free and y is a tuple, and a € A%, if N = ¢(f(a)) then M = ¢(a).

(4) fisan £-elementary embedding if for every formula ¢ () and a € A%, if M & ¢(a) then

N & ¢(f(a)).

Note that the implication in (2) and (4) are, in fact, equivalences. Also, any (respectively
existentially closed, elementary) embedding f : A — N uniquely extends to an (respectively
existentially closed, elementary) embedding of the structure generated by A.

It is often useful to specify not only the domain of definition A of the embedding f but also
its domain of interpretation M. We will denote that situation by f: A< M — N.

Remark B.0.6. If A < M, for f : A - N to be an embedding it suffices that:
(a) fisinjective;
(b) for every function symbolt: X - Y and a € X(A), f(t(a)) =t(f(a));
(c) forevery relation symbole R ¢ X anda € X(A), M = R(a) if and only if N = R(A).

Proposition B.0.7 (Lowenheim-Skolem, ?). Let M be some L-structure and r > |£| some cardi-
nal.

1. If Ac M and |A| < k < |M]|, there exists A€ N < M with |N| = k.

2. If|M| < K, there exists N > M with |N| = k.

Let A(x) ¢ §(«) be closed under finite conjonctions and disjonctions. For every ®, ¥ ¢

§(x), wewrite @ & W if for every £-structure M, ®(M) = Nyea (M) € U (M) = Nypew Y(M).

20

21

Definition B.0.8 (Types). (1) A partial A-typer(z)isafilter on the semi-lattice (A, £, A, 1)17) .

(2) A partial A-type 7 is complete if there exists ¢ € M some £-structure such that 7 =
tph () = {p e A(x) : M & p(c)}.

When A(z) = §(x), we usually talk about partial types and complete types in . A complete
(A-)type is often referred to simply as a (A-)type. Partial F(*)-types, z.e. partial types without
variables, are usually called theories and complete §(* )-types are usually called complete theo-
ries.

Theorem B.0.9 (Compactness). (1) Every partial A-type is contained in a complete A-type;
equivalently, for every partial type w(x), there exists an L-structure M and a € M® such
that M = 7(a) — that is, for every p € m, M & p(a).

(2) Forevery ® C §F(z) and ) € F(x) with ® & 1, there exists a finite o € ® such that Dg & .
(3) The topological space SA — whose points are complete A-types and whose closed sets are gen-
erated by the [¢] := {p € Sa : ¢ € p}, for ¢ € A — is compact.

Y Thatis, 7 € A such that:
(a) L¢m
(b) forevery g, €T, p At em;
(c) forevery p e mand v € A, if ¢ = 1) thenyp e .
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The space Sa s, in fact, spectral(lx). If A is closed under negation, it is Hausdorft and totally
disconnected.

Corollary B.0.10. Let w be a partial A-type. The following are equivalent:

(z)

 is complete;

(i7) forevery o, € A such that ¢ v 1 € m, we have ¢ € 7w or € .

Proof-

]

Notation B.0.11 (Theories and diagrams). Let M be an £-structure, a € M*, A ¢ M. We
define:

the set of quantifier free formulas 4! () ¢ F(x);

the quantifier free type of a in M, qf-tp(a) = tpgar(y)(a);

the theory of M The(M) = tph (%) = {p e F(») : M & ¢}

the quantifier free theory of M qf-The (M) = qf-tpA (x) = {p e FU(*) : M & ¢}

the language £(A) which is £ with a new constant ¢, : X, for every a € X (A) — M has
a natural £(A)-structure by setting ¢ := a;

the diagram of A in M, DY (A) := qf-The(ay(M);

the elementary diagram of A in M, el-®{ (A) := The 4y (M).

Lemma B.0.12. Let M, N be £-structures and A ¢ M. We have:
* N e Th(M) ifand onlyif f : @ € M — N isan elementary embedding;
* N e of-Th(M) if and onlyif f : @ € M — N is an embedding.
If'N is enriched to an £(A)-structure:
* NeD(A) ifand only if a v & isan embedding f : Ac M — N;
* N & el-®(A) ifand only if a v cX is an elementary embedding f - A< M — N.

Corollary B.0.13. Let M be an L-structure and w(x) be a finitely satisfrable set of £(M )-formulas

in variables x — that is, for every (©;)icn € T, there exists a € M® such that M = N, ¢i(a).
Then, there exists an L-elementary embedding f : M — N and a € N* such that N = 7 (a).

Proposition B.0.14. Fix T an L-theory and A(x) a set of formulas in the tuple of variables ,
closed under conjonction and disjonction — up to equivalence in T — and ¢(x) an £-formula.
The following are equivalent:

1

there exists ) € A such that T = Vx p(x) < ¢ (x);

2. forevery M,N T, a € p(M) and b e N* such that tpa (a) € tpa (), then N & p(b).

This is a translation of the fact that if X is a quasi compact subset of some topological space,

the closure of X is the closure of its points: X = Upex P

Proposition B.0.15 (Criterion for elimination of quantifiers). Let T' be an L-theory. The fol-

lowing are equivalent:
(i) Any formula ¢ € §(x) is equivalent, modulo T, to a quantifier free formula ) € §(x);

B¢ s compact, Kolmogorov, sober — closed irreducible subsets are the closure of a single point — and compact
open subsets are closed under finite intersection and generated the open sets; equivalently it is homeomorphic to

the spectrum of a ring
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C. Projective and inductive limits

(i7) forevery M,N & T, any L-embedding f : A< M — N is existentially closed;

(117) for every M,N & T, any L-embedding f : A ¢ M — N and b € M, there exists an
L-clementary embedding h : N — N* and an L-embedding g : Ab ¢ M — N* with
hof=gls

(1v) forevery M,N & T and any L-embedding f : A € M — N, there exists an L-elementary
embedding h: N - N* and an L-embedding g: M — N* withho f = g|

(v) forevery M,N & T, any £-embedding f : A< M — N is L-elementary;

(vi) forevery M =T and A € M, the theory generated by T U D (A) is complete.

We say that 7" eliminates quantifiers when these equivalent conditions hold.

Lemma B.0.16. Let M be some L-structure A € M, a € M and p = tp(a/A). The following are
equivalent:
(1) there exists an £(A)-formula p(z) such that (M) is finite and M = ¢(a);
(i7) forevery M* > M, p(M*) < M;
(171) for every M* > M, p(M™) is finite;
(1v) forevery M* > M, aut(M*[A) - a is finite;

We say that a is algebraic over A, and we write a € acl(A).

Lemma B.0.17. Let M be some L-structure A € M, a € M and p := tp(a/A). The following are
equivalent:

(1) there exists an £(A)-formula p(z) such that (M) = {a};

(17) there exists £-definable function on some X and c € X (A) such that a = f(c);
(177) forevery M* > M, p(M*) = {a};
(1v) forevery M* > M, aut(M*[A)-a = {a};

We say that a is definable over A, and we write a € dcl(A).

Theorem B.0.18 (Keisler-Shelah,?). Forany cardinal k, there exists an ultrafilter 3 (on some set

X) such that for any language £ of cardinality at most k and any L-structures M and N, M = N
if and only if M™ ~ N¥.

Proposition B.0.19. Let 1 be some non principal ultrafilter (on some set X ) and M be an £-
structure. Then M is Ry -saturated.

C. Projective and inductive limits

Fix £ some language.

Definition C.0.1. Let (/, <) be a preorder, and forevery i < j € I, a homomorphism(w) of £-
structures f; j : M; — M; such that,if i < j <k € I, fi , = fij o fjr. We define the £-structure
M :=lim_ M; by X (M) = {a € TT; X (M;) :foralli < j, f; j(a;) = a;}. Any function symbol
t: X - Y isinterpreted by t(a) = (t(a;)):, where a € X (M), and for any function symbol
R c X, M = R(a) if and only if, for all ¢, M = R(a;). We also define the £-homomorphism
fi: M - M;bya~ a;.

P f: M — N is said to be an £-homomorphism if for every function symbol ¢ : X — Y and a € X (M), f(t(a)) =
t(f(a)) and, for every predicate symbol R ¢ A, if M = R(a) then N = R(f(a)).
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Forevery i < j € I, we have f; j o f; = fi.

Proposition C.0.2. The £-structure lﬂﬂz M; has the following universal property: given N and
gi: N = M; with f; j o gj = g, forall i < j € I, there exists a unique h: N — Linl M; such that

h M;

%

N

commutes, for all i € I.
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