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Introduction
Since the work of Ax, Kochen and Eršov on valued fields (e.g. [AK65]) and their proof that the
theory of a Henselian valued field is essentially controlled (in equicharacteristic zero) by the
theory of the residue field and the value group, model theory of Henselian valued fields has
been very active and productive. Among later developments onemay noteMacintyre’s result
in [Mac76] of elimination of quantifiers for p-adic fields and the proof by Pas of valued fields
quantifier elimination for equicharacteristic zero Henselian fields with angular components
in [Pas89], which implies the Ax-Kochen-Eršov principle. Another notable result is the one
by Basarab and Kuhlmann (see [Bas91; BK92; Kuh94]) of valued field quantifier elimination
forHenselian valued fields with amc-congruences, a language that does notmake the class of
definable sets grow (whereas angular components might). Another result in the Ax-Kochen-
Eršov spirit is the proof by Delon in [Del81]— extended by Bélair in [Bél99]— thatHenselian
valued fields do not have the independence property if and only if their residue field does not
have it (their value group never has the independence property by [GS84].)
*Partially supported by ANRMODIG (ANR-09-BLAN-0047) and ValCoMo (ANR-13-BS01-0006)
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Introduction

Butmodel theorists have not limited themselves to giving an increasingly refined description
of the model theory of Henselian valued fields. There have also been attempts at extend-
ing those results to valued fields with more structure. The two most notable enrichments
that have been studied are, on the one hand, analytic structures as initiated by [DD88] and
studied thereafter by a great number of people (among many others [Dri92; DHM99; LR00;
LR05; CLR06; CL11]) and, on the other hand, D-structures (a generalization of both differ-
ence and differential structures), first for derivations and certain isometries in [Sca00] but
also for greater classes of isometries in [Sca03; BMS07; AD10] and then for automorphisms
that might not be isometries [Azg10; Pal12; Hru; GP10; DO]. Themodel theory of valued dif-
ferential fields is also quite central to themodel theoretic study of transseries (see for example
[ADH13]) but the techniques and results in this last field seem quite orthogonal to those in
other references given above and to our work here.
The goal of the present paper is to study valued fields with both an analytic structure and an
automorphism. The main result of this paper is TheoremA, which states that σ-Henselian
(cf. Definition (4.10)) valued fieldswith analytic structure and any automorphismσ eliminate
field quantifiers resplendently in the leading term language (cf. Definition (1.1)). We then
deduce various Ax-Kochen-Eršov type results for analytic difference valued fields (both with
respect to the theory and the independence property). We also try to give a systematic and
comprehensive approach to quantifier elimination in (enriched) valued fields through some
more abstract considerations (mainly found in the appendix).
In [Sca06], Scanlon already attempted to study analytic difference valued fields in the case of
an isometry, but the definition of σ-Henselianity given there is too weak to actually work,
although some incorrect computations hide this fact. The axiomatization and all the proofs
had to be redone entirely but, as stated earlier, this paper does not only contain a corrected
version of the results in [Sca06], it also generalizes these results from the isometric case to
the case of any valued field automorphism.
Some ideas from [Sca06] could be salvaged though, among them the fact that Weierstrass
preparation (see Definition (3.22)) allows us to be close enough to the polynomial case to
adapt the proofs from the purely valued difference setting. Nevertheless this adaptation is
not as straightforward as one would hope, essentially because Weierstrass preparation only
holds in one variable, but one variable in the difference world actually gives rise tomany vari-
ables in the non difference world. The main ingredient to overcome this obstacle is a careful
study of differentiability of terms in many variables (see Definition (4.4)) that allows us to
give a new definition of σ-Henselianity in (4.10). These techniques can probably be used to
prove results in greater generality, for example: valued fields with both analytic structure and
D-structure.
Our interest in the model theory of valued fields with both analytic structure and difference
structure is not simply awish to seeAx-Kochen-Eršov type results extended tomore andmore
complicated structures and in particular to the combination of two structures where things
are known to work well. It is also motivated by possible applications to diophantine and
number theoretic problems. In particular, it is the right model-theoretic setting in which to
understand Buium’s p-differential geometry. More precisely any p-differential function over
W(Fp

alg) is definable in W(Fp
alg) equipped with the lifting of the Frobenius and symbols
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1. Languages of valued fields

for all p-adic analytic functions∑aIxI where val(aI)→∞ as ∣I ∣→∞. See [Sca06, Section 4]
for an example of how a good model theoretic understanding of this structure can help to
show uniformity of certain diophantine results.
The organization of this text is as follows. Section 1 is a description of valued field languages,
with either angular components orRV-structure. In Section 2, we show that it is possible to
transfer elimination of quantifier results from equicharacteristic zero tomixed characteristic
(using the theoretical framework of Appendix B). Sections 3 and 4 describe the class of ana-
lytic difference valued fields wewill be studying. Section 5 is concernedwith purely analytical
matters, it describes the link between analytic 1-types and the underlying algebraic 1-type.
In Section 6 we prove the main result of this paper, TheoremA, a field quantifier elimination
result for σ-Henselian analytic difference valued fields. We also prove an Ax-Kochen-Eršov
principle for these fields. Finally Section 7 shows how this quantifier elimination result also
allows us to give conditions on the residue field and the value group for such fields to have
(or not have) the independence property. The appendix contains an account of the more
abstract model theory at work in the rest of the paper to help smooth out the arguments.
Appendix B, in particular, sets up a general setting for transfer of elimination of quantifier
results.
I would like to thank Élisabeth Bouscaren and Tom Scanlon for our numerous discussions.
Without them none of the mathematics presented here would be understandable, correct or
even exist. I also want to thank Raf Cluckers for having so readily answered all my questions
about analytic structures as I was discovering them. Finally, I would like to thank Koushik
Pal for taking the time to discuss the non-isometric case with me. Our discussions led to the
generalization of the proofs to the non-isometric case.

1. Languages of valued fields
We will be considering valued fields of characteristic zero. They will mainly be considered
in two kinds of languages. On the one hand, the language with leading terms, also known
in the work of Basarab and Kuhlmann (cf. [Bas91; BK92; Kuh94]) as amc-congruences and
in later work as RV-sorts (e.g. [HK06]) and on the other hand the language with angular
components, also known as the Denef-Pas language.

Definition 1.1 (LRV, the leading term language):
The language LRV has the following sorts: a sort K and a family of sorts (RVn)n∈N>0 . On the
sort K, the language consists of the ring language. The language also contains functions rvn ∶
K→RVn for all n ∈N>0 and rvm,n ∶RVn →RVm for allm∣n.

Any valued field can be considered as an LRV-structure by interpreting K as the field and
RVn as (K⋆/1 + nM) ∪ {0} whereM is the maximal ideal of the valuation ring O. We will
writeRV⋆n for (K⋆/1+nM) =RVn∖{0}. Then rvn is interpreted as the canonical surjection
K⋆ →RV⋆n and it sends 0 to 0; rvn,m is interpreted likewise. Note that the sortsRVn have a
rich structure given by the following commutative diagram (whereRn ∶= O/nM, Γ denotes
the value group and all the lines are exact):
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1. Languages of valued fields
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We will denote the LRV-theory of characteristic zero valued fields by Tvf . If we need to
specify the residual characteristic, we will write Tvf,0,0 or Tvf,0,p. LetRV ∶= ⋃nRVn. These
sorts are closed in LRV (see Definition (A.7)). In order to eliminate K-quantifiers, we will
have to add some structure on theRV sorts.

Definition 1.2:
The languageLRV+ is the enrichment ofLRV with, on eachRVn, the language of (multiplicative)
groups {1n, ⋅n}, a symbol 0n and a binary predicate ∣n, and functions +m,n ∶RV2

n →RVm for all
m∣n.

The multiplicative structure on RVn is interpreted as its multiplicative (semi-)group struc-
ture, i.e. the group structure ofRV⋆n and 0n ⋅nx = x⋅n0n = 0n. The relationx∣ny is interpreted
as valn(x) ⩽ valn(y). For all x, y ∈ K such that val(x + y) ⩽ min{val(x),val(y)} + val(n) −
val(m), rvn(x)+m,nrvn(y) is interpreted as rvm(x+y) and 0n otherwise. This iswell defined.
We will denote by THen the theory of characteristic zero Henselian valued fields in LRV+ .

Remark 1.3:
1. IfK has equicharacteristic zero, then for allm∣n, rvm,n is an isomorphism. Hence if we

are working in equicharacteristic zero, we will only need to considerRV1. In that case
we also have that R1 = R⋆1 ∪ {0} ⊆ RV⋆1 ∪ {0} = RV1. The additive structure is also
simpler: we only need to consider the +1,1 function on RV1. It extends the additive
structure ofR1 and makes every fiber of val1 into anR1-vector space of dimension 1
(if we consider 01 to be the zero of every fiber).

2. IfK has mixed characteristic p, then wheneverm∣n and val(n) = val(m) (i.e. when p
does not divide n/m) rvm,n is an isomorphism. In particular for all n ∈ N>0, rvn,pval(n)
is an isomorphism (where we identify val(p) and 1).

3. One could wonder then why consider all theRVn when the only relevant ones are the
RVpn in mixed characteristic p andRV1 in equicharacteristic zero. The main reason is
thatwewant enoughuniformity to be able to talk ofTvf without specifying the residual
characteristic or adding a constant for the characteristic exponent (in particular if one
wishes to consider ultraproducts of valued fields with growing residual characteristic,
although we will not do so here).

The use of this language is mainlymotivated by the following result that originates in [Bas91;
BK92], although the phrasing in terms of resplendence first appears in [Sca97]. By resplen-
dent quantifier elimination relative toRV, we mean that quantifiers on the sorts other than
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1. Languages of valued fields

those inRV can be eliminated (namely the field quantifiers here) and that this result is true
for any enrichment on theRV-sorts (see Appendix A for precise definitions).

Theorem 1.4:
The theory THen eliminatesK-quantifiers resplendently relatively toRV.

Later, we will add analytic and difference structures, hence we will consider an enrichment
of LRV by new terms onK and predicates and terms onRV (although none on bothK and
RV; this is what we call in Appendix A anRV-enrichment of aK-term enrichment ofLRV).
LetL be such a language and letΣRV denote the new sorts coming from theRV-enrichment.

Remark 1.5:
Any quantifier free L-formula φ(x, y) where x are K-variables and y are RV-variables, is
equivalent moduloTvf to a formula of the form ψ(rvn(u(x)), y)where ψ is a quantifier free
L∣RV∪ΣRV

-formula and u are L∣K-terms. Indeed the only predicate involvingK is the equal-
ity and t(x) = s(x) is equivalent to rv1(t(x)−s(x)) = 0. The statement follows immediately.

Here is an easy corollary that will be very helpful later on to uniformize certain results.

Corollary 1.6:
Let T be anL-theory that eliminatesK-quantifiers,M ⊧ T ,C ⩽M (i.e. C is a substructure ofM )
and x, y ∈K(M) be such that for all L∣K(C)-terms u, and all n ∈N>0, rvn(u(x)) = rvn(u(y)).
Then x and y have the same L(C)-type.

Proof . Let f ∶ M → M be the identity on RV ∪ ΣRV(M) and send u(x) to u(y) for all
L∣K(C)-term u. By Remark (1.5), f is a partial LRV−Mor-isomorphism. But K-quantifiers
elimination implies that f is in fact elementary. ∎

The other kind of valued field language, the one with angular components, essentially boils
down to giving oneself a section of the short sequences defining theRVn. That statement is
made explicit in (1.8).

Definition 1.7 (Lac, the angular component language):
The language Lac has the following sorts: K, Γ∞ and (Rn)n∈N>0 . The sorts K and Rn come
with the ring language and the sort Γ∞ comes with the language of ordered (additive) groups
and a constant ∞. The language also contains a function val ∶ K → Γ∞, for all n, functions
acn ∶K → Rn, resn ∶K → Rn, valR,n ∶ Rn → Γ∞, sR,n ∶ Γ∞ → Rn and for allm∣n, functions
resm,n ∶Rn →Rm and tR,m,n ∶Rn →Rm.

As one might guess, the Rn are interpreted as the residue rings O/nM. As with RV, we
will write R ∶= ⋃nRn. The resn and resm,n denote the canonical surjections O → Rn and
Rn → Rm, extended by zero outside their domains. The function acn denotes an angular
component, i.e a multiplicative homomorphismK⋆ →R⋆n which extends the canonical sur-
jection on O⋆ and sends 0 to 0n. Moreover, the system of the acn should be consistent, i.e.
resm,n○acn = acm. The function valR,n is interpreted as the function induced by val onRn∖
{0} and sending 0n to∞. The function sR,n is defined by sR,n(val(x)) = resn(x)acn(x)−1
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1. Languages of valued fields

and sR,n(∞) = 0n. Finally, the function tR,m,n is defined by tR,m,n(resn(x)) = acm(x)when
val(x) ⩽ val(n) − val(m) and 0m otherwise (this is well-defined).
It should be noted that any valued field that is sufficiently saturated can be endowed with
angular components (cf. [Pas90, Corollary 1.6]).
The following pages, up to Definition (1.10) contain a (very technical) account of how to de-
duce quantifier elimination results in the angular component language from results in the
leading term language. Although they are essential to prove Ax-Kochen-Eršov type results,
angular components only appear again in Sections 6.3 and 7, and a reader mostly interested
in the broader picture can safely skip those pages.
Let LRVs

be the enrichment of LRV+ obtained by adding a sort Γ∞, equipped with the lan-
guage of ordered (additive) groups, a family of sorts Rn, equipped with the ring language,
symbols valn ∶RVn → Γ∞ for the functions induced by the valuation, symbols in ∶Rn →RVn

for the injection of R⋆n → RVn extended by 0 outside R⋆n, symbols resRV,n ∶ RVn → Rn

for the map sending a(1 + nM) to a + nM, sn ∶ Γ∞ → RVn for a coherent system of
sections of valn compatible with the rvm,n and symbols tn ∶ RVn → Rn interpreted as
tn(x) = in

−1(xsn(valn(x))−1). Let Ts
vf be the LRVs

-theory of characteristic zero valued
fields and Tac

vf the L
ac-theory of characteristic zero valued fields.

Let Ls,e be an RV-enrichment (with potentially new sorts ΣRV) of a K-enrichment (with
potentially new sorts ΣK) of LRVs

and T e be an Ls,e-theory extending LRVs
. We define

Lac,e to be the language containing:

1. Lac ∪ Ls,e∣K∪ΣK
;

2. The new sorts ΣRV;

3. For each new function symbol f ∶∏Si →RVn, two functions symbols fR ∶∏Ti →Rn

and fΓ ∶∏Ti → Γ∞ where Ti =Rm ×Γ∞ whenever Si =RVm and Ti = Si otherwise;

4. For each new function symbol f ∶ ∏Si → S, where S ≠ RVn, the same symbol f but
with domain∏Ti as above;

5. For each new predicate R ⊆ ∏Si, the same symbol R but as a predicate in∏Ti for Ti
as above.

We also define Tac,e to be the theory containing:

1. Tac
vf ;

2. For all new function symbol f , whenever f or fR and fΓ (depending on the case) is
applied to an argument (corresponding to an RVn-variable of f ) outside of R⋆n × Γ ∪
{0,∞}, then f has the same value as if f were applied to (0,∞) instead;

3. For all new symbol f with imageRVn, Im(fR, fΓ) ⊆R⋆n ×Γ ∪ (0,∞);

4. For all new predicateR,R applied to an argument outside ofR⋆n ×Γ∪{0,∞} is equiv-
alent toR applied to (0,∞) instead;

5. The theory T e translated in Lac,e as explained in the following proposition.
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1. Languages of valued fields

In the following proposition, Str(T ) denote the category of substructures ofmodels of T , i.e.
models of T∀. See Appendix B, for precise definitions.

Proposition 1.8:
There exist functors F ∶ Str(Tac,e) → Str(T e) and G ∶ Str(T e) → Str(Tac,e) that respect
models, cardinality and elementary submodels and induce an equivalence of categories between
Str(Tac,e) and Str(T e). MoreoverG sendsR ∪Γ∞ toRV ∪R ∪Γ∞.

Proof . Let C be an Lac,e-substructure (inside someM ⊧ Tac,e), we define F (C) to have the
same underlying sets for all sorts common to Lac,e and Ls,e and RVn(F (C)) = (R⋆n(C) ×
(Γ∞(C) ∖ {∞})) ∪ {(0n,∞)}. All the structure on the sorts common to Ls,e and Lac,e is
inherited from C . We define rvn(x) = (acn(x),val(x)) and rvm,n(x, γ) = (resm,n(x), γ).
The (semi-)group structure on RVn is the product (semi-)group structure, 0n is interpreted
as (0n,∞). We set (x, γ)∣n(y, δ) to hold if and only if γ ⩽ δ and we define (x, γ) +m,n (y, δ)
as (resm,n(x), γ) if γ < δ, (resm,n(y), δ) if δ < γ and (tR,m,n(x + y), γ + valR,n(x + y))
if δ = γ. The functions valn are interpreted as the right projections and the functions tn
as the left projections. Finally, define in(x) = (x,0) on R⋆n and in(x) = (0,∞) otherwise,
resRV,n(x, γ) = xsR,n(γ), sn(γ) = (1, γ) if γ ≠ ∞ and sn(∞) = (0,∞). For each function
f ∶ ∏Si → RVn for some n, define u ∶ ∏Si → ∏Ti to be such that ui(x) = xi if Si ≠ RVm

and ui(x) = (tm(xi),valm(xi)) if Si = RVm. Then fF (C)(x) = (fCR(u(x)), fCΓ (u(x))).
If f ∶ ∏Si → S where S ≠ RVn for any n, then define fF (C)(x) = fC(u(x)) and finally
F (C) ⊧ R(x) if and only if C ⊧ R(u(x)).
If f ∶ C1 → C2 is an Lac,e-isomorphism, we define F (f) to be f on all sorts common to Lac,e
andLs,e andF (f)(x, γ) = (f(x), f(γ)). It is easy to check thatF (f) is anLs,e-isomorphism.
Let D be an Ls,e-structure (inside some N ⊧ T e), define G(D) to be the restriction of D to
all Lac,e-sorts enriched with val = valn ○ rv1, resn = resRV,n ○ rvn, acn = tn ○ rvn. Moreover,
for any function f ∶∏Si →RVn for some n, let v ∶∏Ti →∏Si to be such that vi(x) = xi if
Si ≠RVm for anym and vi(x) = im(yi)sm(γi) where xi = (yi, γi), if Si =RVm. Then define
f
G(D)
R (x) = tn(fD(v(x))) and fG(D)Γ (x) = valn(fD(v(x))). If f ∶∏Si → S where S ≠RVn

for any n, then fG(D)(x) = fD(v(x)) and finally G(D) ⊧ R(x) if and only ifD ⊧ R(v(x)).
If f ∶ D1 → D2 is an Ls,e-isomorphism, it is easy to show that the restriction of f to the
Lac,e-sorts is an Lac,e-isomorphism.
Now, one can check that for any Ls,e-formula φ(x) there exists an Lac,e-formula φac,e(y)
such that for any C ∈ Str(Tac,e) and c ∈ C , C ⊧ φ(c) if and only if F (C) ⊧ φac,e(u(c))
where u is as above (for the sorts corresponding to x). Similarly, to any Lac,e-formula ψ(x)
we can associate an Ls,e-formula ψs,e(x) such that for any D ∈ Str(T ) and d ∈ D, D ⊧
ψ(d) if and only if G(D) ⊧ ψs,e(d). One can also check that for all Ls,e-formula φ, T ⊧
(φac,e)s,e(u(x)) ⇐⇒ φ(x) and for all Lac,e-formula ψ, Tac,e ⊧ (ψs,e)ac,e ⇐⇒ ψ. The rest
of the proposition follows. ∎

Remark 1.9:
1. The functions tR,m,n are actually not needed, if we Morleyize onR ∪ Γ∞, as they are

definable using only quantification in theRn.

2. As with the leading terms structure, in equicharacteristic zero, the angular component
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2. Coarsening

structure is a lot simpler. We only need val and ac1 (and none of the valn, sR,n or
tR,m,n).

3. In mixed characteristic with finite ramification (i.e. Γ has a smallest positive element 1
and val(p) = k ⋅1 for some k ∈N>0) the structure is also simpler. The functions valR,n,
sR,n and tR,m,n can be redefined (without K-quantifiers) knowing only sR,n(1). Let
Lac,fr be the language (Lac ∖ {valR,n, sR,n, tR,m,n ∶ m,n ∈ N>0}) ∪ {cn} where cn
will be interpreted as sR,n(1) — i.e. as resn(x)acn(x)−1 for x with minimal positive
valuation. This is the language in which finitely ramified mixed characteristic fields
with angular components are usually considered — and eliminate field quantifiers.

To finish this section let us define balls and Swiss cheeses.

Definition 1.10 (Balls and Swiss cheeses):
Let (K,v) be a valued field, γ ∈ val(K) and a ∈K . Write B̊γ(a) ∶= {x ∈K(M) ∶ val(x−a) > γ}
for the open ball of center a and radius γ, and Bγ(a) ∶= {x ∈ K(M) ∶ val(x − a) ⩾ γ} for the
closed ball of center a and radius γ.
A Swiss cheese is a set of the form b ∖ (⋃i=1,...,n bi) where b and the bi are open or closed balls.

We allow closed balls to have radius∞— i.e. singletons are balls — and we allow open balls
to have radius −∞— i.e. K itself is an open ball.

Definition 1.11 (Ldiv):
The language Ldiv has a unique sortK equipped with the ring language and a binary predicate ∣.

In a valued field (K,val), the predicate x∣y will denote val(x) ⩽ val(y). If C ⊆ K , we will
denote by SC(C), the set of all quantifier free Ldiv(C)-definable sets in one variable. Note
that all those sets are finite unions of swiss cheeses.
Note that later on, our valued fields may be endowed with more than one valuation. In
that case, we will write B̊Oγ (a) or SCO(C) to specify that we are considering the valua-
tion associated to O. For a tuple a ∈ K, we will extend the notation for balls by writing
B̊γ(a) ∶= {b ∶ val(b−a) > γ} and Bγ(a) ∶= {b ∶ val(b−a) ⩾ γ}where val(a) ∶=mini{val(ai)}.

2. Coarsening
The goal of this section is to provide the necessary tools for the reduction to the equichar-
acteristic zero case. This is a classical method , which underlies most existing proofs of K-
quantifier elimination for enriched mixed characteristic Henselian fields. We present it here
on its own, as a general transfer principle which we will then be able to invoke directly, in
order, hopefully, to make the proofs clearer.

Definition 2.1 (Coarsening valuations):
Let (K,val) be a valued field, ∆ ⊆ Γ(K) a convex subgroup and π ∶ Γ(K) → Γ(K)/∆ the
canonical projection. Let val∆ ∶= π ○ val, extended to 0 by val∆(0) =∞.
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2. Coarsening

Remark 2.2:
The valuation val∆ is a valuation coarser than val. Its valuation ring is O∆ ∶= {x ∈ K ∶ ∃δ ∈
∆, δ < val(x)} ⊇ O(K) and its maximal ideal isM∆ ∶= {x ∈ K ∶ val(x) > ∆} ⊆M(K). Its
residue fieldR∆

1 is in fact a valued field for the valuation ṽal
∆
defined by ṽal

∆(x +M∆) ∶=
val(x) for all x ∈ O∆ ∖M∆ and ṽal

∆(M∆) = ∞. Then ṽal
∆(R∆

1 ) = ∆∞ = ∆ ∪ {∞}. The
valuation ring of R∆

1 is Õ∆ ∶= O/M∆, its maximal ideal is M/M∆ and its residue field is
R1. Moreover, if rv∆n ∶ K → K⋆/(1 + nM∆) ∪ {0} =∶ RV∆

n is the canonical projection, rvn
factorizes through rv∆n ; i.e. there is a function πn ∶RV∆

n →RVn such that rvn = πn ○ rv∆n .
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(RV∆
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00
00
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val∆
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00RVn valn // Γ∞

π
����
��
��
��

RV∆
n

valn
∆

//

πn���

AA���

(Γ/∆)∞

Before we go on let us explain the link between open balls for the coarsened valuations and
open balls for the original valuation.

Proposition 2.3:
Let (K,val) be a valued field and∆ a convex subgroup of its valuation group. LetS be anO-Swiss
cheese, b an O∆-ball, c, d ∈ K such that b = B̊O∆

val∆(d)(c). If b ⊆ S, there exists d
′ ∈ K such that

val∆(d′) = val∆(d) and b ⊆ B̊Oval(d′)(c) ⊆ S.

Proof . Let (gα) be a cofinal (ordinal indexed) sequence in ∆. We have b = ⋂α B̊Oval(dgα)(c).
Indeed, val∆(dgα) = val∆(d) and hence b = B̊O∆

val∆(dgα)
(c) ⊆ B̊Oval(dgα)(c). Conversely, if

x ∈ ⋂α B̊Oval(dgα)(c), then val((x − c)/d) > val(gα) for all α, hence (x − c)/d ∈M∆.

Let b′ be any O-ball, then b = ⋂α B̊Oval(dgα)(c) ⊆ b
′ if and only if there exists α0 such that

B̊Oval(dgα0)
(c) ⊆ b′ and b ∩ b′ = ⋂α B̊Oval(dgα)(c) ∩ b

′ = ∅ if and only if there exists α0 such that

B̊Oval(dgα0)
(c) ∩ b′ = ∅. These statements still hold for Boolean combinations of balls hence

there is some α0 such that B̊Oval(dgα0)
(c) ⊆ S. ∎

When (K,val) is a mixed characteristic valued field, the coarsened valuation we are inter-
ested in is the one associated to∆p the convex group generated by val(p) as (K,val∆p) has
equicharacteristic zero. We will write val∞ ∶= val∆p , R∞ ∶= R

∆p

1 , O∞ ∶= O∆p = Op−1 and

M∞ ∶=M∆p = ⋂n∈N p
nM. As the coarsened field has equicharacteristic zero, allRV∆p

n are
the same and we will writeRV∞ ∶=K⋆/(1 +M∞) ∪ {0} =RV

∆p

1 .
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2. Coarsening

Remark 2.4:
We can — and we will — identify RV∞ (canonically) with a subgroup of lim←ÐRVn and the
canonical projection K → RV∞ then coincides with lim←Ð rvn ∶ K → lim←ÐRVn, in particular,

RV∞ = (lim←Ð rvn)(K). Similarly, Õ∆p can be identified with a subring of lim←ÐRn andR∞ =
Frac(Õ∆p) ⊆ Frac(lim←ÐRn) = (lim←ÐRn)[rv∞(p)−1]. The inclusions are equalities if K is
ℵ1-saturated. In particular, lim←Ð rvn is surjective.

K

rvm

||xx
xx
xx
xx
x
rvn

��
lim←Ð rvn
III

I

$$II
I

rv∞ // RV∞� _

��
RVm rvm,n

// RVn lim←ÐRVnπn
oo

πm

ff

Hence (K,val∞) is prodefinable — i.e. a prolimit of definable sets — in (K,val) with its
LRV-structure.
LetL be anRV-enrichment of aK-enrichment ofLRV with new sortsΣK andΣRV respec-
tively. Somewhat abusing notation, when writingKwewill meanK∪ΣK and when writing
RVwewillmean⋃nRVn∪ΣRV (and rely on the context for it tomake sense). LetT ⊇ Tvf,0,p

be an L-theory. Let LRV∞ be a copy of LRV (as LRV∞ will only be used in equicharacteristic
zero, we will only need itsRV1, which we will denoteRV∞ to avoid confusion with the orig-
inalRV1). Let L∞ be LRV∞ ∪ L∣K∪ΣK

∪ L∣RV∪ΣRV
∪ {πn ∶ n ∈ N>0} where πn is a function

symbolRV∞ →RVn. Let T∞ be the theory containing:

• T∞vf,0,0, i.e. the theory of equicharacteristic zero valued fields in L
RV∞ ;

• The translation of T into L∞ by replacing rvn by πn ○ rv∞.

Recall that Str(T ) is the category of substructures of models of T and that whenever F ∶
Str(T1) → Str(T2) is a functor and κ a cardinal, we denote by StrF,κ(T2) the full subcat-
egory of Str(T2) of structures that embed into some F (M) for M ⊧ T1 κ-saturated. See
Appendix B for precise definitions.
The main goal of the following proposition is to show that quantifier elimination results
in equicharacteristic zero can be transferred to mixed characteristic using result from Ap-
pendix B.

Proposition 2.5 (Reduction to equicharacteristic zero):
We can define functors C∞ ∶ Str(T ) → Str(T∞) and UC∞ ∶ Str(T∞) → Str(T ) which respect
cardinality up to ℵ0 and induce an equivalence of categories between Str(T ) and StrC∞,ℵ1(T∞).
Moreover, C∞ respects ℵ1-saturated models and UC∞ respects models and elementary submodels
and sendsRV toRV ∪RV∞ (which are closed).

Proof . Let C ⩽M ⊧ T be L-structures. Then C∞(C) has underlying sets K(C∞(C)) =
K(C), RV∞(C∞(C)) = lim←ÐRVn(C) and RV(C∞(C)) = RV(C), keeping the same struc-
ture onK andRV, defining rv∞ to be lim←Ð rvn and πn to be the canonical projectionRV∞ →
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3. Analytic structure

RVn. Now, if f ∶ C1 → C2 is an L-embedding, let us write f∞ ∶= lim←Ð f ∣RVn
. By def-

inition, we have πn ○ f∞ = f ∣RVn
○ πn and by immediate diagrammatic considerations,

rv∞ ○ f ∣K = f∞ ○ rv∞ and f∞ is injective. Then, let C∞(f) be f ∣K ∪ f∞ ∪ f ∣RV. As f is
an L-embedding, f ∣K respects the structure onK, f ∣RV respects the structure onRV and,
as we have already seen, C∞(f) respects rv∞ and πn. Hence C∞(f) is an L∞-embedding.
IfM ⊧ T is ℵ1-saturated, it follows from Remark (2.4) that C∞(M) ⊧ T∞. Beware though
that C∞(M) is never ℵ0-saturated because if it were, we would find x ≠ y ∈ RV∞(M1) such
that for all n ∈ N>0, πn(x) = πn(y), contradicting the fact thatRV∞(M1) = lim←ÐRVn(M1).
Let C be a substructure ofM . We will denote i the injection. Then C∞(i) is an embedding
of C∞(C) into C∞(M) and C∞ is indeed a functor to Str(T ).
The functorUC∞ is defined as the restriction functor that restrictsL∞-structures to the sorts
K andRV. It is clear that if C is an L-structure in some model of T , then UC∞ ○ C∞(C) is
trivially isomorphic toC . Now ifD is in Str(T∞) there will be three leading term structures
(and hence valuations) on D: the one associated with the LRV∞-structure of C (which is
definable), whose valuation ring is O, the one given by rvn = πn ○ rv∞ (which is definable),
whose valuation ring isO∞, and the one given by lim←Ð rvn (which is only prodefinable), whose
valuation ring is Op−1 . In general, we have O ⊂ Op−1 ⊂ O∞, but if D = C∞(C) — or D
embeds in some C∞(C)— Op−1 = O∞ and lim←Ð rvn(D) = rv∞(D). Hence, if C embeds in
some C∞(M) then C∞ ○ UC∞(C) is (naturally) isomorphic to C .
Functoriality of all the previous constructions is a (tedious but) easy verification ∎

3. Analytic structure
In [CL11], Cluckers and Lipshitz study valued fields with analytic structure. Let us recall some
of their results. From now on, A will be a Noetherian ring separated and complete for its I-
adic topology for some ideal I . Let A⟨X⟩ be the ring of power series with coefficients in A
whose coefficients I-adically converge to 0. Let us also define Am,n ∶= A⟨X⟩[[Y ]] where
∣X ∣ =m and ∣Y ∣ = n andA ∶= ⋃m,nAm,n. Note thatA is a separatedWeierstrass system over
(A, I) as defined in [CL11, Example 4.4.(1)]. The main example to keep in mind here will be
W[Fp

alg]⟨X⟩[[Y ]] which is a separated Weierstrass system over (W[Fp
alg], pW[Fp

alg]).

Definition 3.1 (Q):
We will extensively use a quotient symbolQ ∶K2 →K that is interpreted asQ(x, y) = x/y, when
y ≠ 0 andQ(x,0) = 0.

Definition 3.2 (R):
LetR be a valuation ring ofK included in O, letN be its maximal ideal and valR its valuation.
We haveM ⊆ N ⊆R ⊆ O. Also, note that 1 + nM ⊆ 1 + nN ⊆R⋆ and hence the valuation valR

corresponding toR factors through rvn, i.e. there is some function fn such that valR = fn ○ rvn.
We will also be using a new predicate x∣R1 y onRV1 interpreted by f1(x) ⩽ f1(y).

Note that O is the coarsening of R associated to the convex subgroup O⋆/R⋆ of K⋆/R⋆.
Note also that R is then definable by the (quantifier free) formula, rv1(1)∣R1 rv1(x). In fact
the whole leading term structure associated toR is interpretable in LRV ∪ {∣R1 }.
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3. Analytic structure

Definition 3.3 (Fields with separated analyticA-structure):
Let LA be the language LRV+ enriched with a symbol for each element in A (we will identify the
elements in A and the corresponding symbols). For each E ∈ A⋆m,n let also Ek ∶ RVm+n

k → RVk

be a new symbol and LA,Q ∶= LA ∪ {∣R1 ,Q} ∪ {Ek ∶ E ∈ A⋆m,n, m, n, k ∈ N}. The theory TA of
fields with separated analyticA-structure consists of the following:

(i) Tvf ;

(ii) Q is interpreted as in Definition (3.1);

(iii) ∣R1 comes from a valuation subringR ⊆ O with fraction fieldK;

(iv) Each symbol f ∈ Am,n is interpreted as a function Rm × Nn → R (the symbols will be
interpreted as 0 outsideRm ×Nn);

(v) The interpretations im,n ∶ Am,n →RR
m×Nn

are morphisms of the inductive system of rings
⋃m,nAm,n to ⋃m,nRR

m×Nn
, where the inclusions are the obvious ones.

(vi) i0,0(I) ⊆N;

(vii) im,n(Xi) is the i-th coordinate function and im,n(Yj) is the (m+j)-th coordinate function;

(viii) For every E ∈ A⋆m,n, Ek is interpreted as the function induced by E on RVk when it is
well-defined (we will see shortly, in Corollary (3.9), that it is, in fact, always well-defined).

To specify the characteristic we will write TA,0,0 or TA,0,p.

Remark 3.4:
1. These axioms imply a certain number of properties that it seems reasonable to require.

First (iv) implies that every constant in A = A0,0 is interpreted in R. By (v) and (vii)
polynomials in A are interpreted as polynomials. And (v) implies that any ring equal-
ity between functions inAm,n for somem and n are also true in models of TA. Using
Weierstrass division (see Proposition (3.12)) one can also show that compositional iden-
tities inA are also true in models of TA.

2. We allow the analytic structure to be over a smaller valuation ring in order to be able
to coarsen the valuation while staying in our setting of analytic structures.

From now on, we will write ⟨C⟩ ∶= ⟨C⟩LA,Q and C⟨c⟩ ∶= C⟨c⟩LA,Q for the LA,Q-structures
generated by C and Cc (cf. Definition (A.12)).
We could be working in a larger context here. What we really need in the proof is not that
A is a separated Weierstrass system, as in [CL11], but the consequences of this fact, namely:
Henselianity, (uniform) Weierstrass preparation, differentiability of the new function sym-
bols and extension of the analytic structure to algebraic extensions. One could give an ax-
iomatic treatment along those lines, but to simplify the exposition, we restrict to a more
concrete case.
Also note that ifA is not countable we may now be working in an uncountable language
Let us now describe all the nice properties of models of TA.
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3. Analytic structure

Proposition 3.5:
LetM ⊧ TA, thenM is Henselian.

Proof . If O = R, this is proved exactly as in [LR99, Lemma 3.3]. The case R ≠ O follows as
coarsening preserves Henselianity. ∎

Remark 3.6:
AsTA impliesTHen, by resplendent elimination of quantifiers inTHen (cf. Theorem (1.4)), as
LA,Q∖(A∪{Q}) is anRV-enrichment ofLRV+ , anyLA,Q∖(A∪{Q})-formula is equivalent
modulo TA to aK-quantifier free formula.

Let us now show that functions fromA have nice differential properties.

Definition 3.7:
LetK be a valued field and f ∶ Kn → K . We say that f is differentiable at a ∈ Kn if there exists
d ∈Kn and ξ and γ ∈ val(K⋆) such that for all ε ∈ B̊ξ(a),

val(f(a + ε) − f(a) − d ⋅ ε) ⩾ 2val(ε) + γ.

There is a unique such d = (di) and we will denote it dfa. The di are usually called the
derivatives of f at a. We will denote them ∂f/∂xi(a).

Proposition 3.8:
LetM ⊧ TA and f ∈ Am,n for somem and n. Then for all i <m+ n there is gi ∈ Am,n such that
for all a ∈Km+n, f is differentiable at a and ∂f/∂xi(a) = gi(a).

Proof . If a ∉ Rm ×Nn then f is equal to 0 on B̊0(a) and the statement is trivial. If not, as
f ∈ A⟨X⟩[[Y ]], it has a (formal) Taylor development:

f(X0 +X,Y0 + Y ) = f(X0, Y0) +∑
i

gi(X0, Y0)Xi +∑
j

gm+j(X0, Y0)Yj + h(X0, Y0,X,Y )

where h is a sum of terms each divisible by some quadratic monomial in X and Y . As the
interpretation morphisms are ring morphisms, this immediately implies that the interpreta-
tion of f is differentiable inK(M) at a and that the derivatives are given by the gi. ∎

Corollary 3.9:
LetM ⊧ TA, E(x) ∈ Am,n and S ⊆ K(M)m+n. If, for all x ∈ S, val(E(x)) = 0 then, for all
x ∈ S, rvn(E(x)) only depends on resn(x).

In particular if E ∈ A⋆m,n, then for all x ∈ Rm ×Nn, valR(E(x)) = 0 and hence val(E(x)) =
0 and thus rvn(E(x)) is a function of resn(x) which is a function of rvn(x). Outside of
Rm ×Nn, rvn(E(x)) is constant equal to 0 and hence it is also a function of rvn(x). Hence,
as announced earlier, E does induce a well-defined function onRVk for any k.

Proof (Corollary (3.9)). Any element with the same resn residue as x is of the form x+nm for
somem ∈M. By Proposition (3.8),E(x+nm) = E(x)+G(x)⋅(nm)+H(x,nm)whereG(x) ∈
R ⊆ O and val(H(x,nm)) ⩾ 2val(nm) > val(n), hence resn(E(x + nm)) = resn(E(x)). As
for all z ∈ S, val(E(z)) = 0, rvn(E(z)) = resn(E(z)) and we have the expected result. ∎
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3. Analytic structure

Let us now (re)prove a well-known result from papers by Cluckers, Lipshitz and Robinson.
There are twomain reasons for which to reprove this result. The first reason is that although
the proof given here is very close to the classical Denef-van den Dries proof as explained
in [LR05, Theorem4.2], the proof there only shows quantifier elimination for algebraically
closed fields with analytic structures over (Z,0). The second reason is to make sure that
O ≠R does not interfere.

Theorem 3.10:
TA eliminatesK-quantifiers resplendently.

The proof of this theorem will need many definitions and properties that will only be used
here and that will be introduced now.
For allm, n ∈ N, we define Jm,n to be the ideal {∑µ,ν aµ,νX

µ
Y

ν ∈ Am,n ∶ aµ,ν ∈ I} ofAm,n.
Most of the time we will only write J and rely on context for the indices. We will also write
X≠n for the tupleX without its n-th component.
Note that in the definition below and in most of this proof, elements ofAwill be considered
as formal series (and not as their interpretation in some LA,Q-structure) and hence infinite
sums as the one below do make sense.

Definition 3.11 (Regularity):
Let f ∈ Am0,n0 ,m <m0, n < n0. We say that:

(i) f = ∑i ai(X≠m, Y )Xi
m is regular inXm of degree d if f is congruent to amonic polynomial

inXm of degree dmodulo J + (Y );

(ii) f = ∑i ai(X,Y ≠n)Y i
n is regular in Yn of degree d if f is congruent to Y d

n modulo J +
(Y ≠n) + (Y d+1

n ).

If we do not want to specify the degree, we will just say that f is regular inXm (resp. Yn).

Proposition 3.12 (Weierstrass division and preparation):
Let f, g ∈ Am0,n0 and suppose f is regular inXm (resp. in Yn) of degree d, then there exists unique
q ∈ Am,n and r ∈ A⟨X≠m⟩[[Y ]][Xm] (resp. r ∈ A⟨X⟩[[Y ≠n]][Yn]) of degree strictly lower than
d such that g = qf + r.
Moreover, there exists unique P ∈ A⟨X≠m⟩[[Y ]][Xm] (resp. P ∈ A⟨X⟩[[Y ≠n]][Yn]) regular in
Xm (resp. in Yn) of degree at most d and u ∈ A⋆m,n such that f = uP .

Proof . See [LR05, Corollary 3.3]. ∎
We will be ordering multi-indices µ of the same length by lexicographic order and we write
∣µ∣ = ∑i µi.

Definition 3.13 (Preregularity):
Let f = ∑µ,ν fµ,ν(X2, Y 2)X

µ
1Y

ν
1 ∈ Am1+m2,n1+n2 . We say that f is preregular in (X1, Y 1) of

degree (µ0, ν0, d) when:

(i) fµ0,ν0 = 1;

(ii) For all µ and ν such that ∣µ∣ + ∣ν∣ ⩾ d, fµ,ν ∈ J + (Y 2);
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3. Analytic structure

(iii) For all ν < ν0 and for all µ, fµ,ν ∈ J + (Y 2);

(iv) For all µ > µ0, fµ,ν0 ∈ J + (Y 2).

Remark 3.14:
Note that if f = ∑ν fν(X)Y

ν
is preregular in (X,Y ) of degree (µ0, ν0, d) then fν0 is prereg-

ular inX of degree (µ0,0, d).

Let Td(X) ∶= (X0 + Xdm−1
m−1 , . . . ,Xi + Xdm−1−i

m−1 , . . . ,Xm−2 + Xd
m−1,Xm−1) where m = ∣X ∣.

We call Td a Weierstrass change of variables. Note that Weierstrass changes of variables are
bijective.

Proposition 3.15:
Let f = ∑µ,ν fµ,ν(X2, Y 2)X

µ
1Y

ν
1 ∈ Am1+m2,n1+n2 . Then:

(i) If f is preregular in (X1, Y 1) of degree (µ0,0, d) then f(Td(X1),X2, Y ) is regular in
X1,m1−1.

(ii) If f is preregular in (X1, Y 1) of degree (0, ν0, d) then f(X,Td(Y 1), Y 2) is regular in
Y1,n1−1.

Proof . Let m = m1 − 1 and n = n1 − 1. First assume f is preregular in (X1, Y 1) of degree
(µ0,0, d), then

f ≡ ∑
µ<µ0,∣µ∣<d

fµ,0X
µ
1 mod J + (Y2) + (Y1).

Furthermore,Td(X1)µ = (∏m−1
i=0 (X1,i+Xdm−i

1,m )µi)Xµm

1,m is a sumofmonomialswhose highest
degreemonomial only contains the variableX1,m and has degree∑m

i=0 d
m−iµi. It now suffices

to show that this degree is maximal when µ = µ0, but that is exactly what is shown in the
following claim.

Claim 3.16: Let µ and ν be two multi-indices such that µ < ν and ∣µ∣ < d then

m

∑
i=0
dm−iµi <

m

∑
i=0
dm−iνi.

Proof . Let i0 be minimal such that µi < νi. Then for all j < i0, µj = νj . Moreover,

m

∑
i=i0+1

dm−iµi ⩽
m

∑
i=i0+1

dm−i(d − 1)

= dm−i0 − 1

< dm−i0 ,
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3. Analytic structure

hence

m

∑
i=0
dm−iµi <

i0−1
∑
i=0

dm−iµi + dm−i0µi0 + d
m−i0

⩽
i0−1
∑
i=0

dm−iµi + dm−i0νi0

⩽
m

∑
i=0
dm−iνi

and we have proved our claim. ⧫

Let us now suppose that f is preregular in (X1, Y 1) of degree (0, ν0, d). Then

f ≡ Y ν0
1 + ∑

ν>ν0,µ
fµ,νX

µ
1Y

ν
1 mod J + (Y2).

Now,

Td(Y 1)ν = (
n−1
∏
i=0
(Y1,i + Y dn−i

1,n )νi)Y νn
1,n ≡ Y

∑n
i=0 d

n−iνi
1,n mod J + (Y2) + (Y1≠n)

and we conclude again by Claim (3.16). ∎

Proposition 3.17 (Bound on the degree of preregularity):
Let

f =∑
µ,ν

fµ,ν(X2, Y 2)X
µ
1Y

ν
1 ∈ Am1+m2,n1+n2 .

There existsd such that for any (µ, ν)with ∣µ∣+∣ν∣ < d, there exists gµ,ν ∈ Am1+m3,n1+n3 preregular
in (X1, Y 1) of degree (µ, ν, d) and LA,Q∣K-terms uµ,ν and sµ,ν such that for allM ⊧ TA and
every a ∈ R(M) and b ∈ N(M), if f(X1, a, Y 1, b) is not the zero function, then there exists
(µ0, ν0) with ∣µ0∣ + ∣ν0∣ ⩽ d and

f(X1, a, Y 1, b) = fµ0,ν0(a, b)gµ0,ν0(X1, uµ0,ν0(a, b), Y 1, sµ0,ν0(a, b)).

Proof . This follows, as in [LR05, Corollary 3.8], from the strong Noetherian property [CL11,
Theorem4.2.15 and Remark 4.2.16]. ∎

As R and N are not sorts in LA,Q, there is no way in this language to have a variable that
ranges uniquely over one or the other. Hence we introduce the notion of well-formed for-
mula that essentially simulates that sorted behaviour.
AK-quantifier free LA-formula φ(X,Y ,Z,R) will be said to be well-formed ifX , Y , Z are
K-variables and R areRV-variables, symbols of functions fromA are never applied to any-
thing but variables and φ(X,Y ,Z,R) implies that ⋀i val

R(Xi) ⩾ 0, ⋀i val
R(Zi) ⩾ 0 and

⋀i val
R(Yi) > 0. The (X,Y )-rank of φ is the tuple (∣X ∣, ∣Y ∣). We order ranks lexicographi-

cally.
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3. Analytic structure

Lemma 3.18:
Letφ(X,Y ,Z,R) be a well-formedK-quantifier freeLA-formula. Then there exists a finite set of
well-formed K-quantifier free LA-formulas φi(Xi, Y i, Zi,R) of (Xi, Y i)-rank strictly smaller
than the (X,Y )-rank of φ and LA,Q∣K-terms ui(Z) such that

TA ⊧ ∀Z∀R (∃X∃Y φ ⇐⇒ ⋁
i

∃Xi∃Y iφi(Xi, Y i, ui(Z),R)).

Proof . Letm ∶= ∣X ∣ and n ∶= ∣Y ∣. As polynomials with variables inR are in fact elements of
A andA is closed under composition (for theR-variables), we may assumes that any LA∣K-
term appearing in φ is an element of A. Let fi(X,Y ,Z) be the LA∣K-terms appearing in
φ. Splitting φ into different cases, we may assume that whenever a variable S appears as an
N-variable of an fi then φ implies that valR(S) > 0 (in the part of the disjunction where
valR(S) ⩽ 0 we replace this fi by zero).
If anXi appears as anN variable in an fi, thenφ implies that valR(Xi) > 0 and hence we can
safely rename thisXi as Yn and we obtain an equivalent formula of lower rank. If Yi appears
as an R-variable in an fi, we can change this fi so that Yi appears as an N-variable. Thus
we may assume that the Xi only appear as R-variables and the Yi as N-variables. Similarly
adding new Zj variables, we may assume that each Zj appears only once (and in the end we
can put the old variables back in) and that φ implies that valR(Zj) > 0 if it is anN-variable.
Applying Proposition (3.17) to each of the fi(X,Y ,Z) = ∑µ,ν fµ,ν(Z)X

ν
Y

µ
, we find d, gi,µ,ν

and ui,µ,ν(Z) such that gi,µ,ν is preregular in (X,Y ) of degree (µ, ν, d) and for everyM ⊧
TA and a ∈ M , if fi(X,Y , a) is not the zero function, then there exists (µ, ν) such that
∣µ∣ + ∣ν∣ < d and fi(X,Y , a) = fi,µ,ν(a)gi,µ,ν(X,Y ,ui,µ,ν(a)). Splitting the formula into the
different cases, we may assume that for each i, there are µi and νi such that fi(X,Y , a) =
fi,µi,νi(a)gi,µi,νi(X,Y ,ui(a)) (in the case where no such µi and νi exist, we can replace fi by
0). Let us now introduce a new variable Tj to replace any argument of a gi,µ,ν that is not inX
orY ; and for each of these newTj , we add to the formula valR(Tj) ⩾ 0 ifTj is anR-argument
of gi,ν,µ or valR(Tj) > 0 if it is an N-argument. Let us write gi,µi,νi = ∑ν gi,νY

ν
. Note that

gi,νi is preregular inX of degree (µi,0, d). We can split the formula somemore (and still call
it φ) so that for each i, one of the the two conditions valR(gi,νi) > 0 or val

R(gi,νi) = 0 holds.
If a condition valR(gi,νi) > 0 occurs, let us add val

R(Yn) > 0∧gi,νi−Yn = 0 to the formula. By
Proposition (3.15), after aWeierstrass change of variable on theX , wemay assume that gi,νi −
Yn is regular inXm−1. By Weierstrass division, we can replace every fj by a term polynomial
in Xm−1 and by Weierstrass preparation we can replace the equality gi,νi − Yn = 0 by the
equality of a term polynomial inXm−1 to 0. In the resulting formula, no f ∈ A is ever applied
to a term containingXm−1 andwe can apply Remark (3.6) to the formula where every f ∈ A is
replaced by a new variable Sf to obtain aK-quantifier free formula ψ(X≠m−1, Y ,Z, T ,S,R)
such that

TA ⊧ ∃Xm−1φ ⇐⇒ ψ(X≠m−1, Y ,Z, u(Z), f(X≠m−1, Y ,Z),R)

and ψ(X≠m−1, Y ,Z, T , f(X≠m−1, Y ,Z),R) is well-formed of (X,Y )-rank (m − 1, n + 1).
If for all i we have valR(gi,νi) = 0, we add valR(Xm) ⩾ 0 ∧Xm∏i gi,νi − 1 = 0 to the for-
mula. As every gi,νi is preregular in X of degree (µi,0, d), g = Xm∏i gi,νi − 1 is preregu-
lar in X of degree (µ,0, d′) for some µ and d′. After a Weierstrass change of variables in
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X , we may assume that g and each gi,νi are in fact regular in Xm. Hence by Weierstrass
preparation we may replace g in g = 0 by a term polynomial in Xm. Furthermore, by Re-
mark (1.5) the fi appear as rvni(fi) for some ni in the formula. Replacing fi by fµi,νigi,µi,νi ,
we only have to show that rvni(gi,µi,νi) can be replaced by a term polynomial in Yn−1 (and
Xm). Let hi = XM(∏j≠i gj,νj)gi,νi,µi = ∑ν hi,νY

ν . Then hi,νi = XM ∏i gi,νi = 1 and if ν < νi,
hi,ν =XM(∏j≠i gj,νj)gi,ν ≡ 0 mod J+(Zj ∶ Zj is anN-argument). Hence hi is preregular in
(X,Y ) of degree (0, νi, d). After a Weierstrass change of variables of the Y , we may assume
that hi is in fact regular in Yn−1.
Note that rvni(gi,νi,µi) = rvni(Xm)−1∏j≠i rvni(gi,νi)−1rvni(hi). ByWeierstrass preparation
we can replacehi by theproduct of a unit and pi a polynomial inYn−1. Aswehave included the
trace of units on theRVn in our language, the unit is taken care of and byWeierstrass division
by g, we can replace each coefficients in the pi and each of the gi,νi by a term polynomial
in Xm. Note that because we allow quantification on RV, although the language does not
contain the inverse onRV, the inverses can be taken care of by quantifying overRV. Hence
we obtain a formula whereXm and Yn−1 only occur polynomially and we can proceed as in
the previous case to eliminate them. ∎

Corollary 3.19:
Let φ(X,Y ,Z,R) be a well-formed K-quantifier free LA-formula. Then there exists an LA,Q-
formula ψ(Z,R) such that TA ⊧ ∃X∃Y φ ⇐⇒ ψ.

Proof . This follows from Lemma (3.18) and an immediate induction. ∎

Proof (Theorem (3.10)). Resplendence comes for free (see Proposition (A.9)). Hence, it suffices
to show that if φ(X,Z) is a quantifier free LA,Q-formula, then there exists a quantifier free
LA,Q-formula ψ(Z) such that TA ⊧ ∃Xφ ⇐⇒ ψ. First, splitting the formula φ, we can
assume that for any of its variables S, φ implies either valR(S) ⩾ 0 or valR(S) < 0, in the
second case replacing S by S−1 we also have valR(S) > 0. We also add one variableXi (resp.
Yi) perR-argument (resp. N-argument) of any f ∈ A applied to somenon variable termu and
we add the corresponding equalityXi = u (resp. Yi = u) and the corresponding inequalities
valR(Xi) ⩾ 0 (resp. valR(Yi) > 0) and quantify existentially over this variable. Splitting
the formula further — whether denominators in occurrences ofQ are zero or not — we can
transform φ such that it contains noQ. Now ∃Xφ is equivalent to a disjunction of formulas
∃X∃Y ψ where ψ is well-formed and we conclude by applying Corollary (3.19).
This concludes the proof of Theorem (3.10). ∎

Recall that we denote by SCR(C) the set of all quantifier free Ldiv(C)-definable sets.

Definition 3.20 (Strong unit):
LetM ⊧ TA, C = K(⟨C⟩) and S ∈ SCR(C). We say that an LA,Q∣K(C)-term E ∶ K → K

is a strong unit on S if for any open O-ball b ∶= B̊Oval(d)(c) ⊆ S, there exists a, e ∈ C⟨cd⟩ and
F (t, z) ∈ A such that e ≠ 0 and for all x ∈ b,

val(F ((x − c)/d, a)) = 0

18
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and
E(x) = eF ((x − c)/d, a).

Note that ifM is taken saturated saturated — i.e. at least (∣A∣ + ∣C ∣)+-saturated — if E is
a strong unit on S then, by compactness, there exist a tuple a(y, z) of LA,Q∣K(C)-terms,
a finite number of LA,Q∣K(C)-terms ei(y, z) and Fi[t, u] ∈ A such that for all balls b =
B̊val(d)(c) ⊆ S, there is an i such that for all x ∈ b,

E(x) = ei(c, d)Fi((x − c)/d, a(c, d))

and
Fi((x − c)/d, a(c, d)) ∈ O⋆.

Hence if E is a strong unit on S there is an LA,Q(C)-formula that witnesses it. If E and S
are defined using some parameters y and for all y in some definable set Y ,E = Ey is a strong
unit on S = Sy then we can choose this formula uniformly in y.
We will say thatE is anR-strong unit on S if it verifies all the requirements of a strong unit,
where all references to O are replaced by references to R (and references to R remain the
same).

Proposition 3.21:
If E is anR-strong unit on S then it is also a strong unit on S.

Proof . If b ⊆ S is an O-ball, then by Proposition (2.3) there exists d and c such that b =
B̊Oval(d)(c) ⊆ B̊

R
valR(d)(c) ⊆ S. But E being a strong unit on S forR, it has the expected form

on B̊R
valR(d)(c) and hence also on B̊

O
val(d)(c). ∎

Definition 3.22 (Weierstrass preparation for terms):
Let M be an LA,Q-structure, C = K(⟨C⟩) ⊆ M , t ∶ K → K an LA,Q∣K(C)-term and S ∈
SCR(C). We say that t has a Weierstrass preparation on S if there exists an LA,Q∣K(C)-termE

that is a strong unit on S and a rational function R ∈ C(X) with no poles in S(K(M)
alg
) such

that for all x ∈ S, t(x) = E(x)R(x).
The structureM has a Weierstrass preparation if for any C = K(⟨C⟩) and LA,Q∣K(C)-terms t
and u ∶R→K we have:

(i) There exists a finite number of Si ∈ SCR(C) that cover R such that t has a Weierstrass
preparation on each of the Si.

(ii) If t and u have a Weierstrass preparation on some open ball b, and for all x ∈ b, val(t(x)) ⩾
val(u(x)), then t + u also has a Weierstrass preparation on b.

Remark 3.23:
1. An immediate consequence of Weierstrass preparation is that all LA,Q∣K(M)-terms

in one variable have only finitely many isolated zeros. Indeed a zero of t is the zero of
one of the Ri appearing in its Weierstrass preparation. That zero is isolated if Ri is
non-zero or the corresponding Si is discrete, i.e. is a finite set. In particular, letm be
the parameters of t, then any isolated zero of t is in the algebraic closure (inACVF) of
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K(⟨m⟩). As the algebraic closure inACVF coincides with the field theoretic algebraic
closure, any isolated zero of t is in fact also the zero of a polynomial (with coefficients
inK(⟨m⟩)).

2. As for strong units, for each choice of term ty (with parameters y), there is anLA,Q(y)-
formula that states that (i) holds for ty in M and we can choose this formula to be
uniform in y. For each choice of terms t, u and formula defining S, there also is a
(uniform) formula saying that (ii) holds for t, u and b inM .

Proposition 3.24:
AnyM ⊧ TA has Weierstrass preparation.

Proof . IfR = O, then the proposition is shown in [CL11, Theorem 5.5.3] and (ii)— called from
now on invariance under addition — is clear from the proof given there. The one difference
in theWeierstrass preparation is that in [CL11], there is a finite set of points algebraic over the
parameters where the behavior of the term is unknown. But this finite set can be replaced
by discrete Si and as these exceptional points are common zeros of terms u and v such that
Q(u, v) is a subterm of t, it suffices to replaceQ(u, v) by 0 and apply the theorem to the new
term to obtain the Weierstrass preparation also on the discrete Si. The fact that the strong
units in [CL11] have the proper form on open balls follows, for example, from the proof of
[CL11, Lemma6.3.12].
IfR ≠ O, the proposition follows from theO =R case and Proposition (3.21). ∎

Remark 3.25:
1. Let ty be an LA,Q∣K-term with parameters y. As shown in Remark 3.23.2, there is an
LA,Q-formula θ that states that Weierstrass preparation holds for ty in models of T .
More explicitly, there are finitely many choices of Sk

i , E
k
i and Rk

i (with parameters
u(y) where u are LA,Q∣K-terms) such that for each y there is a k such that the Sk

i , E
k
i

andRk
i work for ty . As TA eliminatesK-quantifiers, for each k there is aK-quantifier

freeLA,Q formula θk(y) that is true when the k-th choice works for t (and not the ones
before). Hence takingSi,k to beSk

i ∧θk, we could suppose thatWeierstrass preparation
for terms is uniform, but we will not be using that fact.

2. Conversely, the proof of Proposition (5.3) can be adapted to show that uniformWeier-
strass preparation for terms impliesK-quantifier elimination. This is exactly the proof
of quantifier elimination given in [CL11], although its authors did not see at the time
that they were relying on a more uniform version of Weierstrass preparation for terms
thanwhat they had actually shown. Hence it would be interesting to know if one could
prove uniformWeierstrass preparation for terms without usingK-quantifier elimina-
tion to recover their proof (see [CL] for more on this subject).

Proposition 3.26:
LetM ⊧ TA, then theLA,Q-structure ofM can be extended (uniquely) to any algebraic extension
ofK(M), so that it remains a model of TA. Moreover, if C ⩽M and a ∈K(M) is algebraic over
K(C), thenK(C⟨a⟩) =K(C)[a].
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3. Analytic structure

Proof . The case R = O is proved in [CLR06, Theorem2.18]. The same proof applies when
R ≠ O. ∎

To conclude this section, let us show that under certain circumstances analytic terms have a
linear behavior.

Proposition 3.27:
LetM ⊧ TA and suppose thatK(M) is algebraically closed. Let t ∶K→K be anLA,Q(M)-term
and b be an open ball inM with radius ξ ≠∞. Suppose that t has aWeierstrass preparation on b—
hence t is differentiable at any a ∈ b— and rv(dtx) is constant on b. Also assume that val(t(x))
is constant on b or t(x) is polynomial. Then for all a, e ∈ b, rv(t(a)− t(e)) = rv(dta) ⋅ rv(a− e).
Moreover, if v(t(x)) is constant on b then val(t(a)) ⩽ val(dta) + ξ.

Proof . If val(t(x)) is constant on b, then val(t(x)) − val(t(a)) ⩾ 0 and by invariance under
addition, t(x)−t(a) has aWeierstrass preparation on b. If t(x) is polynomial this is also clear.
Hence there is Fa ∈ A (with other parameters inK(M)), Pa, Qa ∈ K(M)[X] such that for
all x ∈ b,

t(x) − t(a) = Fa (
x − a
g
) Pa(x)
Qa(x)

where val(Fa(y)) = 0 for all y ∈ M and val(g) = ξ. If t is constant on b, i.e. Pa = 0, then
the proposition follows easily. If not, Pa has only finitely many zeros. Let ai be the zeros of
Pa inK(M)— recall thatM is assumed algebraically closed— andmi be the multiplicity of
ai. Let cj be the zeros of Qa and nj be their multiplicities. Note that every zero of Qa(x) is
outside b, hence for all j, val(cj−a) ⩽ ξ. For all e ∈ b, note that t(x)−t(a) is also differentiable
at e with differential dte and hence, if e is distinct from all ai, then:

rv( dta
t(e) − t(a)

) = rv( dte
t(e) − t(a)

)

= rv
⎛
⎜
⎝

∂ (Fa (x−ag )) /∂xx(e)

Fa ( e−ag )
+
d(Pa)e
Pa(e)

+
d(Qa)e
Qa(e)

⎞
⎟
⎠

= rv
⎛
⎜
⎝

d(Fa) e−a
g

gFa ( e−ag )
+∑

i

mi

e − ai
+∑

j

nj

e − cj

⎞
⎟
⎠
.

For any y ∈ M, val(d(Fa)y) ⩾ 0 = val(Fa(y)), hence val(d(Fa)y/(gFa(y))) ⩾ −val(g) >
−val(e − a). We also have that for all j, val(1/(e − cj)) = −val(e − cj) > −val(e − a). Finally,
suppose that there is a unique ai0 such that val(e − ai0) is maximal, then, for all i ≠ i0,
val(1/(e−ai)) > val(1/(e−ai0)) and hence rv(mi0)rv(e−ai0)−1 = rv(dta)rv(t(e)−t(a))−1,
i.e. rv(t(e) − t(a)) = rv(dtam−1i0 (e − ai1)).
As t(e) ≠ t(a), this immediately implies that dta ≠ 0. Let us now show that if ai ∈ b it cannot
be a multiple zero. If it were

dtai = d(Fa((x − a)/c)/Qa(x))aiPa(ai) + P ′a(ai)Fa((ai − a)/c)/Qa(ai) = 0
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4. σ-Henselian fields

which is absurd. Hence for all ai ∈ b,mi = 1 and if we could show that there is a unique ai ∈ b
— namely a itself — we would be done.
Suppose there are more that one ai in b and let γ ∶= min{val(ai − aj) ∶ ai, aj ∈ b ∧ i ≠ j}. We
may assume val(a0 − a1) = γ. Let us also assume the ai have been numbered so that there
exists i0 such that for all i ⩽ i0, val(ai−a0) = γ and for all i > i0, val(ai−a0) < γ. In particular,
for all i ≠ j ⩽ i0, val(ai − aj) = γ. For each i ⩽ i0, let ei be such that val(ei − ai) > γ. Then we
can apply the previous computation to ei andwe get that rv(t(ei)−t(a)) = rv(dta)rv(ei−ai).
But

rv(t(ei) − t(a)) = rv(Fa (
ei − xα0+1

g
))rv(p)∏

k

(rv(ei − ak))mkrv(q)−1∏
j

(rv(ei − cj))−nj

where p and q are the dominant coefficients of respectively Pa andQa and hence

rv(dta) = rv(Fa (
ei − xα0+1

g
))rv(p)∏

k≠i
(rv(ei − ak))mkrv(q)−1∏

j

(rv(ei − cj))−nj .

As rv(Fa((ei − xα0+1)/g)), rv(ei − ak) for all k > i0 and rv(ei − cj) do not depend on i, and
for all k ⩽ i0, k ≠ i, rv(ei − ak) = rv(ai − ak), we obtain that for all i, j ⩽ i0:

∏
i≠k⩽i0

rv(ai − ak) = ∏
j≠k⩽i0

rv(aj − ak).

Replacing ai by (ai − a0)/g where val(g) = γ, we obtain the same equalities but we may
assume that for all i ⩽ i0, ai ∈ O and for all i ≠ j, ai − aj ∈ O⋆. The equations can now
be rewritten as ∏i≠k res(ai − ak) = ∏i≠k(res(ai) − res(ak)) = c for some c ∈ R(M). Let
P = ∏k(X − res(ak)) then our equations state that P ′(res(ai)) − c = 0 for all i ⩽ i0. But
P ′ − c is a degree i0 polynomial, it cannot have i0 + 1 roots.
Finally, if val(t(x)) is constant on b, then, for all a and e ∈ b, val(t(a)) ⩽ val(t(a) − t(e)) =
val(dta) + val(a − e). As this holds for any e, we must have val(t(a)) ⩽ val(dta) + ζ . ∎

Remark 3.28:
The conclusion of Proposition (3.27) seems very close to the Jacobian property (e.g. [CL11,
Definition 6.3.5]). In fact, this lemma is very similar (both in its hypothesis and its conclusion)
to [CL11, Lemma6.3.9].

4. σ-Henselian fields
Definition 4.1 (Analytic field with an automorphism):
Let us suppose that each Am,n is given with an automorphism of the inductive system t ↦ tσ ∶
Am,n → Am,n. An analytic fieldM with an automorphism is a model ofTA with a distinguished
LRV ∪ {∣R1 }-automorphism σ such that for symbols t ∈ Am,n and x ∈ K(M)m+n, σ(t(x)) =
tσ(σ(x)).

Let LA,Q,σ ∶= LA,Q ∪ {σ} ∪ {σn ∶ n ∈ N}. An analytic fieldM with an automorphism τ can
be made into an LA,Q,σ-structure by interpreting σ as τ ∣K and σn as τ ∣RVn

. Note that σ also
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induces a ring automorphism on every Rn and an ordered group automorphism σΓ on Γ.
We will write TA,σ for the LA,Q,σ-theory of analytic fields with an automorphism. We will
most often write σ instead of σn as there should not be any confusion.
IfK is a field with an automorphism σ (also referred to as a difference field in this text), we
will write Fix(K) ∶= {x ∈ K ∶ σ(x) = x} for its fixed field. For all x ∈ K , we will write σ(x)
for the tuple x,σ(x), . . . , σn(x) where the n should be explicit from the context.

Remark 4.2:
In fact σ induces an action on all LA,Q∣K-terms and we have TA,σ ⊧ σ(t(x)) = tσ(σ(x)).
It follows immediately that for any LA,Q,σ ∣K-term t there is an LA,Q∣K-term u such that
TA,σ ⊧ t(x) = u(σ(x)).

Definition 4.3 (Linearly closed difference field):
A difference field (K,σ) is linearly closed if every equation of the form ∑n

i=0 aiσ
i(x) = b, where

an ≠ 0, has a solution.

Definition 4.4 (Linear approximation):
LetK be a valued field with an automorphism σ, f ∶Kn →Kn a (partial) function and d ∈Kn.

(i) Let b be a tuple of open balls inM . We say that d linearly approximates f on b if for all a
and c ∈ b we have:

val(f(c) − f(a) − d ⋅ (c − a)) >min
i
{val(di) + val(ci − ai)}.

(ii) Let b be an open ball ofM . We say that d linearly approximates f at prolongations on b if
for all a, c ∈ b we have:

val(f(σ(c)) − f(σ(a)) − d ⋅ σ(c − a)) >min
i
{val(di) + val(σi(c − a))}.

Remark 4.5:
1. LetM ⊧ TA,σ . Suppose that σ is an isometry, i.e. σΓ = id. Let t be an LA∣K(O(M))-

term and a ∈ O(M), we can show that dta linearly approximates t on B̊γ(a) where
γ =mini{val(∂f/∂xi(a))}.

2. We allow a slight abuse of notation by saying that terms constant on a ball are linearly
approximated (at prolongations) by the zero tuple, even though the required inequality
does not hold as∞ />∞.

Let us first prove that it suffices to show linear approximation variable by variable to obtain
linear approximation for the whole function. Wewill write (a≠i, xi) for the tuple awhere the
i-th component is replaced by xi (with a slight abuse of notation as the xi does not appear in
the right place) and a⩽i for the tuple a where the j-th components for j > i are replaced by
zeros.

Proposition 4.6:
Let (K,val) be a valued field, f ∶Kn →K , d ∈Kn and b a tuple of balls. If for all a ∈ b and j < n,
dj linearly approximates f(a≠j , xj) on bj , then d linearly approximates f on b.
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Proof . Let a and e ∈ b and ε = e − a. Then, we have

val(f(a + ε) − f(a) − d ⋅ ε) = val(∑
j

f(a + ε⩽j) − f(a + ε⩽j−1) − djεj)

⩾ min
j
{f(a + ε⩽j) − f(a + ε⩽j−1) − djεj}

> min
j
{val(dj) + val(εj)}.

And that concludes the proof. ∎

Although linear approximation (at prolongations) looks like differentiability, one must be
aware that linear approximations are not uniquely determined, because, among other rea-
sons, we are only looking at tuples that are prolongations but also because the error term is
only linear. But when σ is an isometry, we can recover some uniqueness, and give an alterna-
tive definition (perhaps of amore geometric flavor) of linear approximation at prolongations.

Definition 4.7 (R1,γ ):
Let (K,val) be a valued field and γ ∈ val(K⋆). We define R1,γ ∶= Bγ(0)/B̊γ(0) and let res1,γ
denote the canonical projection Bγ(0) → R1,γ . Note that R1,γ can be identified (canonically)
with val1−1(γ) ∪ {0} ⊆RV1.

Proposition 4.8:
Let (K,val) be a valued field with an isometry σ and a linearly closed residue field. Let f ∶Kn →
K , d be a linear approximation of f at prolongations on some open ball b with radius ξ, e ∈ Kn,
δ ∶= val(d) and η ∶= val(e). The following are equivalent:

(i) e is a linear approximation of f at prolongations on b;

(ii) val(d − e) >min{δ, η};

(iii) η = δ and res1,δ(d) = res1,δ(e).

Proof .

(i)⇒(ii) Supposed ≠ e. Let εbe such thatval(ε) > ξ and let g ∈K be such thatval(g) = val(d−
e). Then P (σ(x)) ∶= ∑i(di − ei)σi(ε)g−1ε−1σi(x) is a linear difference polynomial
with a non zero residue. As K is residually linearly closed, the residue of P cannot
always be zero and hence there exists c ∈ O⋆ such that val(P (σ(c))) = 0, i.e. val((d −
e) ⋅ σ(εc)) = val(g) + val(ε). But then, for all a ∈ b:

val(g) + val(ε) = val((d − e) ⋅ σ(εc))
= val(f(σ(a + εc)) − f(σ(a)) − e ⋅ σ(εb))

−f(σ(a + εc)) + f(σ(a)) + d ⋅ σ(εb)
> val(ε) +min{δ, η}

i.e. val(d − e) >min{δ, η}.
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(ii)⇒(iii) First, suppose that δ < η, then if val(di) is minimal, val(di) = δ < η ⩽ val(ei) and
hence val(di − ei) = val(di) = δ = min{δ, η} contradicting our previous inequality.
Hence we must have, by symmetry, δ = η. Now inequality (ii) can be rewritten val(d −
e) > δ which exactly means that res1,δ(d) = res1,δ(e).

(iii)⇒(i) For all ε such that val(ε) > ξ, as val(d − e) > δ, we have:

val(f(σ(a + ε)) − f(σ(a)) − e ⋅ σ(ε))
= val(f(σ(a + ε)) − f(σ(a)) − d ⋅ σ(ε) + (d − e) ⋅ σ(ε))
> δ + val(ε)
= η + val(ε).

This concludes the proof. ∎

∎

Remark 4.9:
1. In the isometry case, linear approximations describe the trace of a given function on

RV1. More precisely, a function f is linearly approximated at prolongations on some
open ball b with radius ξ if and only if there exists δ ∈ val(K) and d ∈ R1,δ(K) such
that for all γ > ξ and a ∈ b, the function res1,γ(ε) ↦ res1,γ+δ(f(σ(a + ε)) − f(σ(a))) ∶
R1,γ →R1,γ+δ is well defined and coincides with the function x↦ d ⋅ σ(x) (where the
sum is given by +1,1).

2. If we are working in a valued field with a linearly closed residue field, it follows from
Proposition (4.8), that δ and d from 4.9.1 are actually uniquely defined.

Definition 4.10 (σ-Henselianity):
LetM ⊧ TA,σ , t be an LA,Q∣K(M)-term, d ∈ K(M), a ∈ K(M) and ξ ∈ Γ(M). We say that
(t, a, d, ξ) is inσ-Hensel configuration if d linearly approximates t at prolongations on B̊ξ(a) and:

val(t(σ(a))) >min
i
{val(di) + σi(ξ)}.

We say thatM isσ-Henselian if for all (t, a, d, ξ) inσ-Hensel configuration, there exists c ∈K(M)
such that t(σ(c)) = 0 and val(c − a) ⩾maxi{val(σ−i(t(σ(a))d−1i ))}.

Remark 4.11:
By Remark 4.5.1, when σ is an isometry, this form of the σ-Hensel lemma is equivalent to
classical forms for difference polynomials — i.e without any analytic structure— as stated in
[Sca00; Sca03; AD10] for example. In particular, it implies Hensel’s lemma (for polynomials).

Definition 4.12 (Pseudo-convergence):
LetM ⊧ TA,σ .

(i) A sequence (xα)α∈β of (distinct) points inK(M) indexed by an ordinal is said to be pseudo-
convergent if for all α, γ, δ ∈ β such that α < γ < δ we have val(xα − xδ) < val(xγ − xδ);
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4. σ-Henselian fields

(ii) We say that a ∈ K(M) is a pseudo-limit of the pseudo-convergent sequence (xα)— and
we write xα↝a— if for all α < γ < β, val(xα − a) < val(xγ − a);

(iii) A pseudo-convergent sequence of elements of C ⊆ K(M) is said to be maximal (over C) if
it has no pseudo-limit in C;

(iv) We say that a sequence (xα) of tuples pseudo-solves an LA,Q∣K(M)-term t if t = 0 or for
α≫ 0— i.e. for α in a final segment — t(xα)↝0.

(v) We say that a sequence (xα) σ-pseudo-solves an LA,Q∣K(M)-term t if (σ(xα)) pseudo-
solves t.

(vi) We say thatM is maximally complete if any pseudo-convergent sequence inM (indexed by
a limit ordinal) has a pseudo-limit inM ;

(vii) We sayM is σ-algebraically maximally complete if any pseudo-sequence (xα) fromM (in-
dexed by a limit ordinal) σ-pseudo-solving an LA,Q∣K(M)-term t ≠ 0 has a pseudo-limit
inM .

Remark 4.13:
1. Let (xα) be a pseudo-convergent sequence, then for all α0 < α1, val(xα0 − xα1) =

val(xα0 − xα0+1) =∶ γα0 . The γα form a strictly increasing sequence. If xα↝a then
val(a−xα0) = γα0 and if b is such that for all α, val(b−a) > γα then we also have xα↝b.

2. As, in any valued field, balls with a non infinite radius always havemore than one point,
if (xα) is a maximal pseudo-convergent sequence over K then either γα is cofinal in
val(K⋆) and (xα) is indexed by the successor of a limit ordinal or (xα) is indexed by a
limit ordinal.

Proposition 4.14:
IfM is σ-algebraically maximally complete andR1(M) is linearly closed thenM is σ-Henselian.

Proof . First an easy claim:

Claim4.15: Let (t, a, d, ξ) be in σ-Hensel configuration, then

max
i
{val(σ−i(t(σ(a))d−1i ))} > ξ.

Proof . As (t, a, d, ξ) is in σ-Hensel configuration, there exists i0 such that val(t(σ(a))) >
val(di0) + σi0(ξ) and hence val(σ−i0(t(σ(a))d−1i0 )) = σ

−i0(val(t(σ(a))) − val(di0)) > ξ. ⧫

And now, two lemmas about finding better approximations to zeros of terms.

Lemma4.16:
Let (t, a, d, ξ) be in σ-Hensel configuration such that t(σ(a)) ≠ 0. Then there exists c such that
val(c − a) =maxi{val(σ−i(t(σ(a))d−1i ))}, val(t(σ(c))) > val(t(σ(a))) and (t, c, d, ξ) is also
in σ-Hensel configuration.
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4. σ-Henselian fields

Proof . Choose any ε ∈ K(M) with val(ε) = maxi{val(σ−i(t(σ(a))d−1i ))}. By Claim (4.15),
val(ε) > ξ. For all x ∈ O, letR(a, ε, x) ∶= t(σ(a) + σ(εx)) − t(σ(a)) − d ⋅ σ(εx) and

u(x) ∶= t(σ(a) + σ(εx))
t(σ(a))

= 1 +∑
i

diσ
i(ε)

t(σ(a))
σi(x) + R(a, ε, x)

t(σ(a))
.

For all i,

val( diσ
i(ε)

t(σ(a))
) ⩾ val(di) + val(t(a)) − val(di) − val(t(a)) = 0

and for any i0 such that val(ε) = val(σ−i0(t(σ(a))d−1i0 )) it is an equality. As d linearly ap-
proximates t at prolongations on B̊ξ(a), we also have

val(R(a, ε, x)) >min
i
{val(σi(ε)) + val(di)} ⩾ val(t(σ(a)))

and res1(u(x)) = 0 is a non trivial linear equation in the residue field. AsR1(M) is linearly
closed, this equation has a solution res1(e). Note that we must have res1(e) ≠ 0.
Let c = a + εe. It is clear that val(c − a) = val(ε) =maxi{val(σ−i(t(σ(a))d−1i ))} > ξ and that
val(t(σ(c))) = val(t(σ(a))u(e)) > val(t(σ(a))) >mini{val(di) + σi(ξ)}. ⧫

Lemma4.17:
Let (xα) be a pseudo-convergent sequence (indexed by a limit ordinal). Assume that for all α,
(t, xα, d, ξ) is in σ-Hensel configuration, val(xα+1 − xα) ⩾maxi{val(σ−i(t(σ(xα))d−1i ))} and
t(σ(xα))↝0. If c is such that xα↝c, then (t, c, d, ξ) is in σ-Hensel configuration and for all α,
val(t(σ(c))) > val(t(σ(xα))).

Proof . First of all, as (t, x0, d, ξ) is in σ-Hensel configuration, d continuously linearly ap-
proximates t at prolongations on B̊ξ(x0). By Claim (4.15), val(c − x0) = val(x1 − x0) > ξ.
Moreover, letR(x, c) ∶= t(σ(c)) − t(σ(x)) − d ⋅ σ(c − x). Then for all α,

val(t(σ(c))) = val(t(σ(xα)) + d(σ(xα)) ⋅ σ(c − xα) +R(xα, c))
⩾ min

i
{val(t(σ(xα))),val(di) + val(σi(c − xα))}

⩾ val(t(σ(xα))).

Finally, as val(t(σ(c))) ⩾ val(t(σ(x0))) > mini{val(di) + σi(ξ)}, (t, c, d, ξ) is also in σ-
Hensel configuration. ⧫

Let (t, a, d, ξ) be in σ-Hensel configuration. If t = 0, we are done, if not let (xα)α∈β be a
maximal sequence (with respect to the length) such that x0 = a and for all α, (t, xα, d, ξ) is in
σ-Hensel configuration, val(xα+1 − xα) ⩾ maxi{val(σ−i(t(σ(xα))d−1i ))} and t(σ(xα))↝0.
If α is a limit ordinal, as M is σ-algebraically maximally complete, and t ≠ 0, (xα) has a
pseudo-limitxβ . By Lemma (4.17), the sequence (xα)α∈β+1 stillmeets the same requirements,
contradicting the maximality of (xα)α∈β . It follows that β = γ + 1. If t(σ(xγ)) ≠ 0, then
applying Lemma (4.16), to (t, xγ), we obtain an element xβ such that (xα)α∈β+1 still meets
the same requirements, contradiction themaximality of (xα)α∈β once again. Hencewemust
have that t(σ(xγ)) = 0 and c = xγ is a solution to the σ-Hensel configuration (t, a, d, ξ). ∎
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4. σ-Henselian fields

Definition 4.18 (TA,σ−Hen):
LetTA,σ−Hen be the LA,Q,σ-theory of analytic fields with an automorphism that are σ-Henselian
and have a non-trivial valuation group. To specify the characteristic we will writeTA,σ−Hen,0,0 or
TA,σ−Hen,0,p.

Proposition 4.19:
LetA ∶= ⋃X,Y W[Fp

alg]⟨X⟩[[Y ]] andWp be the LA,Q,σ-structure with base setW(Fp
alg), the

obvious valued field structure and analytic structure and interpreting σ as the lifting toW(Fp
alg)

of the Frobenius automorphism on Fp
alg

. ThenWp ⊧ TA,σ−Hen,0,p.

Proof . It is clear that Wp ⊧ TA. As W(Fp
alg) is complete with a discrete valuation it is

maximally complete. It follows from Proposition (4.14) that it is σ-Henselian. ∎

In the definition of TA,σ−Hen, we have not required the residue field to be linearly closed,
since it comes for free:

Proposition 4.20:
LetM ⊧ TA,σ−Hen, thenK(M) is linearly closed.

Proof . Let c ∈K(M) and P (x) = ∑i aixi be a non zero linear polynomial. Let ε ∈K(M) be
such that val(ε) < val(c) − val(a0). Then P (σ(εx)) = ∑aiσi(ε)σi(x) and

min
i
{val(aiσi(ε))} ⩽ val(a0) + val(ε) < val(c).

Thus, we may assume thatmini{val(ai)} < val(c) = val(P (σ(0)) − c). But, as P is linear, a
linearly approximates P at prolongations onM and (P − c,0, a,0) is in σ-Hensel configura-
tion. AsM is σ-Henselian, there exists e ∈K(M) such that P (σ(e)) = c. ∎

To conclude this section, let us show that TA,σ−Hen behaves well with respect to coarsening.
The following results will mainly be used in Section 6.3 to transfer quantifier results form
equicharacteristic zero to mixed characteristic.
Let L be an RV-enrichment of LA,Q,σ and T be an L-theory containing TA,σ−Hen,0,p Mor-
leyized on RV (cf. Definition (A.3)). By Section 2 we can find an RV∞-enrichment L∞ of
LRV∞ — the ∞ in LRV∞ is there to recall that the leading term structure is given by RV∞
and not theRVn, although, to add to the general confusion, theRVn are indeed present in
the enrichment — an L∞-theory T∞1 ⊇ T∞vf,0,0 and two functors C∞1 ∶ Str(T ) → Str(T∞1 )
and UC∞1 ∶ Str(T∞1 )→ Str(T ). For any C in Str(T ) we enrich C∞1 (C) by defining:

• ⋅∞ and 1∞ to be the multiplicative group structure ofRV∞;

• 0∞ to be (0n)n∈N>0 ;

• x∣∞y to hold if for some n, π1(x)∣1rv1(p−n)π1(y) holds;

• x+∞,∞y to be (πmn(x)+mn,mπmn(y))m∈N>0 if there existsn ∈N>0 such thatπn(x)+n,1
πn(y) ≠ 01 and 0∞ otherwise;

• x∣R∞y to hold if π1(x)∣R1 π1(y) holds;
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4. σ-Henselian fields

• E∞(x) to be (Ek(x))k∈N>0 for all E in someA⋆m,n;

• σ∞ to be (σn(x))n∈N>0 ;

and we obtain a new functor C∞2 ∶ Str(T ) → Str(T∞2) where T∞2 ∶= T∞1 ∪ T∞A,σ,0,0. One
can check that we still have an equivalence of categories induced by C∞2 and UC∞1 and that
C∞2 also respects cardinality up to ℵ0 and ℵ1-saturated models. Finally, by Corollary (B.4),
as T is Morleyized on RV, we obtain functors C∞3 ∶ Str(T ) → Str(T (RV∞∪RV)−Mor

2 ) and
UC∞3 ∶ Str(T (RV∞∪RV)−Mor

2 ) → Str(T ). Note that in this case, because we only enrich by
predicates, the full subcategory F of Str(T ) is not actually needed.
Let us now show that for allM ⊧ T , C∞3 (M) ⊧ T∞A,σ−Hen,0,0.

Proposition 4.21:
LetM ⊧ T and t ∶Kn →K be an LA,Q∣K(M)-term, d ∈K(M) and b an openO∞-ball. Then
if, in C∞3 (M), d linearly approximates t at prolongations on b, then for any openO-ball b′ ⊆ b, d
also linearly approximates t at prolongations on b′ inM .

Proof . For all a and e ∈ b′ ⊆ b, we have

val∞(t(σ(a)) − t(σ(e)) − d ⋅ σ(a − e)) >min
i
{val∞(di) + val∞(σi(a − e))}.

Let i0 be such that val∞(di0) + val∞(σi0(a − e)) is minimal, then we have val(t(σ(a)) −
t(σ(e)) − d ⋅ σ(a − e)) > val(di0) + val(σi0(a − e)) ⩾mini{val(di) + val(σi(a − e))}. ∎

Proposition 4.22:
LetM ⊧ T , then C∞3 (M) is σ-Henselian (for the valuation val∞).

Proof . Let (t, a, d, ξ) be in σ-Hensel configuration inC∞3 (M). Let i0 be such that val∞(di0)+
σi0(ξ) is minimal. As (t, a, d, ξ) is in σ-Hensel configuration, val(t(σ(a))) > val∞(di0) +
σi0(ξ). Let r = σ−i0(t(σ(a))d−1i0 p

−1). Then

val(t(σ(a))) > val(di0) + val(σi0(r)) ⩾min
i
{val(di) + val(σi(r))}.

Moreover,
val∞(σi0(r)) = val∞(t(a)) − val∞(di0) > σ

i0(ξ),

i.e. val∞(r) > ξ. It follows that B̊Oval(r)(a) ⊆ B̊
O∞
ξ (a) and hence, by Proposition (4.21), d lin-

early approximates t at prolongations on B̊Oval(r)(a) and (t, a, d,val(r)) is in σ-Hensel con-
figuration.
By σ-Henselianity of M , we can find c ∈ K(M) such that t(σ(c)) = 0 and val(c − a) ⩾
maxi{val(σ−i(t(σ(a))d−1i ))}, and hence val∞(c − a) ⩾ val∞(σ−i(t(σ(a))d−1i )) for all i. ∎

It follows from those two propositions that we can further enrich T (RV∞∪RV)−Mor
2 so that it

is anRV-enrichment of T∞A,σ−Hen,0,0. Hence we have proved:
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Proposition 4.23:
LetL be anRV-enrichment ofLA,Q,σ and T be anL-theory containingTA,σ−Hen,0,p Morleyized
on RV. There exists an RV∞-enrichment L∞ of L∞A,Q,σ — with new sorts RV = ⋃nRVn —
and an L∞-theory T∞ ⊇ T∞A,σ−Hen,0,0 Morleyized onRV∞ ∪RV, and functors C∞ ∶ Str(T ) →
Str(T∞) and UC∞ ∶ Str(T∞) → Str(T ) that respect cardinality up to ℵ0 and induce an equiv-
alence of categories between Str(T ) and StrC∞,(∣L∣ℵ1)+(T∞) and such that UC∞ respects models
and elementary submodels and sends RV∞ ∪ RV to RV and C∞ respects (∣A∣ℵ1)+-saturated
models.

Similarly, we can prove the existence of these functors in the analytic and in the algebraic
setting, and these functors are actually induced by those in the analytic difference case.

Proposition 4.24:
Let Lan be any RV-extension of LA,Q contained in L and Lalg be any RV-extension of LRV+

contained in Lan. Define Tan ∶= T ∣Lan
, and Talg ∶= T ∣Lalg

. Assume that both Tan and Talg are
Morleyized onRV.

(i) There exists anRV∞-enrichmentL∞an ofL∞A,Q and anL∞an-theoryT∞an ⊇ T∞A,0,0 Morleyized
onRV∞∪RV, and functorsC∞an ∶ Str(Tan)→ Str(T∞an) andUC∞an ∶ Str(Tan)→ Str(Tan)
with the same properties as in Proposition (4.23).

Moreover C∞an( ⋅ ∣Lan
) = C∞(⋅)∣L∞an and similarly for UC∞an.

(ii) There exists anRV∞-enrichment L∞alg of L
RV∞+ and an L∞alg-theory T

∞
alg ⊇ T

∞
Hen,0,0 Mor-

leyized onRV∞∪RV, and functorsC∞alg ∶ Str(Talg)→ Str(T∞alg) andUC
∞
alg ∶ Str(T∞alg)→

Str(Talg) with the same properties as in Proposition (4.23).

Moreover C∞alg( ⋅ ∣Lalg
) = C∞an( ⋅ ∣Lan

)∣L∞
alg

= C∞(⋅)∣L∞
alg

and similarly for UC∞alg.

5. Reduction to the algebraic case
In the following section, let Lan be anRV-enrichment of LA,Q and let Tan be an Lan-theory
containing TA, Morleyized on RV. We define Lalg ∶= Lan ∖ (A ∪ {Q}) — it is an RV-
enrichment of LRV+ — and Talg = Tan∣Lalg

. As previously, if there are new sorts ΣRV, we
writeRV forRV ∪ΣRV.

Remark 5.1:
LetM1 andM2 ⊧ Tan, Ci ⊆Mi and f ∶ C1 → C2 an Lan-isomorphism. Obviously, f extends
uniquely to ⟨C1⟩. AsLan containsQ,K(⟨C1⟩) is a field. Hence any partialLan-isomorphism
with domain C has a unique extension to Frac(K(C)).

Although it is well-known, the algebraic case (i.e. in Lalg) is a bit more complicated because
we do not haveQ in Lalg.

Proposition 5.2:
Let M1 and M2 ⊧ Talg be two Lalg-structures, Ci ⊆ Mi and f ∶ C1 → C2 be an LRV+-
isomorphism. If rv(Frac(K(C1))) ⊆RV(C1) then f has a unique extension to Frac(K(C1)).
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Proof . Let f ′∣K be the unique extension of f ∣K to Frac(K(C1)). It is a ring morphism. By
Lemma (A.13), it suffices to show that f ′∣K ∪ f ∣RV respects the rvn. As rv(Frac(K(C1))) ⊆
RV(C1), f ∣RV commutes with the inverse on any rvn and hence

rvn(f ′(a/b)) = rvn(f(a)f(b)−1) = f(rvn(a))f(rvn(b)−1) = f(rvn(a/b)).

This concludes the proof. ∎

In the following proposition we will be working in equicharacteristic zero, hence, to avoid
needlessly cluttered notation, we will writeR, res,RV and rv forR1, res1,RV1 and rv1.

Proposition 5.3 (Reduction to the algebraic case):
Suppose Tan ⊇ TA,0,0. LetM1 andM2 ⊧ Tan, f ∶M1 →M2 be a partial Lan-isomorphism with
domain C1 ⩽M1 and a1 ∈ M1. If f can be extended to an Lalg-isomorphism f ′ whose domain
contains a1, then f can be extended to an Lan-isomorphism sending a1 to f ′(a1).

Proof . First, because Talg∣RV
= Tan∣RV, Talg is also Morleyized on RV. By Lemma (A.11),

we can extend f ′ onRV and we may assume thatRV(C1⟨a1⟩) ⊆ RV(C1). Moreover, as f ′

respects ∣R1 , f ′ respectsR and by Remark (5.1) and Proposition (5.2), replacing, if need be, a1
by its inverse, we can assume that a1 ∈R.
Let a2 = f ′(a1) and let us define f ′′ on K(⟨C1⟩a1) by f ′′(t(a1)) = tf(a2), where tf is the
term obtained by applying f to the parameters of t. This morphism f ′′ clearly coinciding
with f ′ on K(C1)[a1] and it is well defined. Indeed, it suffices to check that if t(a1) = 0
then tf(a2) = 0. But, by Weierstrass preparation, there exists S ∈ SCR(C1), an LA,Q∣K(C1)
term E (a strong unit on S) and P , Q ∈ K(C1)[X] such that Q does not have any zero in

S(K(C1)
alg
), a1 ∈ S and for all x ∈ S, t(x) = E(x)P (x)/Q(x). As t(a1) = 0 and E(x) ≠ 0,

we must have P (a1) = 0. As f ′ is a partial Lalg-isomorphism, we have a2 ∈ Sf and P f(a2) =
0. As f is an Lan-isomorphism, by Theorem (3.10) it is in fact an elementary partial Lan-
isomorphism and we also have that for all x ∈ Sf , tf(x) = Ef(x)P f(x)/Qf(x) and Ef is a
strong unit on Sf . Hence, tf(a2) = Ef(a2)P f(a2)/Qf(a2) = 0.
Let us show that f ′′ ∪ f ∣RV is an LA,Q-isomorphism. By Lemma (A.13), it suffices to show
that for all LA,Q∣K(C1)-terms t, rv(tf(a2)) = f(rv(t(a1))). By Remark (1.5), S is defined by
a formula of the form θ(rv(R(x)))where θ is an Lalg∣RV

-formula and theRi are polynomials
inK(C1)[X]. By [CL07, proof of Theorem7.5], there exists an Lalg(C1)-definable function
g ∶ K → ∏iRVni such that every fiber is an open O-ball and for any polynomial T equal to
P , Q or one of the Ri, rv(T (x)) is constant on any fiber of g. It follows immediately that
every fiber of g is either in S or in its complement. Let α = g(a1) and β = rv(t(a1)). AsE is a
strong unit, on g−1(α) = B̊val(d)(c) it is of the form eF ((x−c)/d)with val(F ((x−c)/d)) = 0.
As res((x−c)/d) = 0 on all of g−1(α), by Corollary (3.9), rv(E(x)) is constant on g−1(α), and
hence rv(t(x)) is constant on g−1(α). As f is a partial elementary Lan-isomorphism and α
andβ ∈RV(C1), theLA,Q(C1)-formula∀x, g(x) = α⇒ rv(t(x)) = β is preserved by f . And
as f ′ is a partial elementaryLalg-isomorphism (by Theorem (1.4)) and g isLalg(C1)-definable,
gf(a2) = f(α) and we have that rv(tf(a2)) = f(β) = f(rv(t(a1))). ∎

Corollary 5.4:
The previous proposition holds without any assumption on residue characteristic.
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Proof . Recall Proposition (4.24) and assumeM1 andM2 havemixed characteristic and f and
f ′ are as in Proposition (5.3).
Then C∞alg(f

′) is an extension of C∞an(f) whose domain contains a1. By Proposition (5.3), we
obtain f ′′ an L∞an-isomorphism extending C∞an(f) whose domain contains a1 and we con-
clude by applying UC∞an. ∎

Corollary 5.5:
Let φ(x, y, r) be anyLan-formula where x and y areK-variables and r areRV∪ΣRV-variables,
then there exists a K-quantifier free Lalg-formula ψ(x, z, r) and Lan∣K-terms u(y) such that
Tan ⊧ φ(x, y, r) ⇐⇒ ψ(x,u(y), r).

Proof . This follows from the previous corollary by a (classic) compactness argument. For the
sake of completeness (and also because the uniformization part of that argumentmay be less
usual), let us state it. Consider the set of formulas

Tan ∪ {φ(x1, y, r),¬φ(x2, y, r)}∪
{ψ(x1, u(y), r) ⇐⇒ ψ(x2, u(y), r) ∶ ψ is an Lalg-formula and u are LA,Q∣K-terms}.

ByCorollary (5.4), this set of formulas cannot be consistent. Hence there is a finite set ofLalg-
formulas (ψi)0⩽i<n — that we can take K-quantifier free by Theorem (1.4) — and LA,Q∣K-
terms ui such that:

Tan ⊧ ∀yx1x2(⋀
i

ψi(x1, ui(y), r) ⇐⇒ ψi(x2, ui(y), r))⇒ (φ(x1, y, r) ⇐⇒ φ(x2, y, r)).

For all ε ∈ 2n, let θε ∶= ⋀ψi(x,ui(y), r)ε(i) where ψ1 = ψ and ψ0 = ¬ψ. For fixed y and r, the
θε(x, y, r) form a partition ofK compatible with φ(x, y, r). For all η ∈ 22n , let χη(y, r) be a
K-quantifier freeLan-formula equivalent to⋀ε(∃xθε(x, y, r)∧φ(x, y, r))η(ε). Note that for
any choice of y and r there is exactly one η such that χη(y, r) holds. It is now quite easy to
show that φ(x, y, r) ⇐⇒ ⋁η(χη(y, r) ∧⋁ε∈η θε(x, y, r)). ∎

Remark 5.6:
1. This corollary is a stronger version of [DHM99, TheoremB]. Not only is it resplendent

but it also has better control of the parameters (essentially due to a better control of
the parameters in Weierstrass preparation in [CL11]). In particular, it is uniform.

2. Let LacA,Q be Lac enriched with symbols for all the functions from A, a symbol Q ∶
K2 → K , for all units E ∈ A a symbol Ek ∶ Rk → Rk, a symbol ∣R ⊆ (Γ∞)2. Then, any
LacA,Q-formula (or even formulas in an R ∪ Γ-enrichment of LacA,Q) can be translated
into an RV-enrichment of LA,Q (see Proposition (1.8)), and hence Corollary (5.5) also
holds (resplendently) for theLacA,Q-theoryTac

A,Hen of Henselian valued fields with sepa-
ratedA-structure and angular components. Note that some of the symbols we should
have added have disappeared, like the trace of Ek on Γ∞ which is constant equal to 0.
Similarly theEk and ∣R1 are missing one of their arguments— theΓ∞-argument in the
case of Ek and theRn-argument for ∣R— but they depend trivially on it.
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6. K-quantifier elimination in TA,σ−Hen

Up to Section 6.3, we will be working solely in equicharacteristic zero, hence, we will once
againwriteRV and rv forRV1 and rv1. Wewill also be considering that variables are indexed
by N and we will sometimes identify a variable and its index. But hopefully no confusion
should arise.
LetM ⊧ TA and C ⩽M .

Definition 6.1 (Order-degree):
We say that an LA,Q∣K(C)-term t = ∑d

i=0 ti(x≠m)xim is polynomial of order (at most) d in xm.
If t is not of this form, we take the convention that t has infinite degree in xm. Let T (C) be the
set of tuples (t, I,m, d) where I is a finite set of variables, m ∈ I , d ∈ N ∪ {∞} and t ≠ 0 is
an LA,Q∣K(C)-term whose variables are contained in I and which is either polynomial in xm of
degree at most d or not polynomial in xm (and d =∞). Let T0(C) = T (C) ∪ {0}.
We (partially) order T (C) by saying that (u, J,n, e) has lower order-degree than (t, I,m, d) if
one of the following holds:

(i) max(J) <max(I);

(ii) max(J) =max(I) and J ⊂ I , i.e. J is strictly included in I ;

(iii) J = I and n >m;

(iv) J = I and n =m and e < d.

We extend this order to T0(C) by making the zero term greater than any element of T (C).

Remark 6.2:
1. This is a well-founded (partial) order.

2. In condition (iii), the order is inverse of what one would expect but that is because we
want minimal terms to be polynomial in the last variable.

3. We will also write J < I to mean that conditions (i) or (ii) hold.

When a is indexed by some set I ⊆N and n ∈ I , we will denote by a≠n the tuple amissing its
n-th component and (a≠n, xn) for the tuple a where the n-th component is replaced by xn.
We define σ≠n(a) and (σ≠n(a), xn) similarly and let σ⩽n(a) ∶= (a, σ(a), . . . , σn(a)). Finally,
we will write ⟨C⟩σ ∶= ⟨C⟩LA,Q,σ

and C⟨c⟩σ ∶= C⟨c⟩LA,Q,σ
(cf. Definition (A.12)).

6.1. Residual and ramified extensions
Definition 6.3 (Regularity):
Let t(x) = ∑i ti(x≠m)xim be an LA,Q(M) term and a ∈ K(M). We say that t is regular at a in
xm if

val(t(a)) =min
i
{val(ti(a≠m)) + ival(am)}.

By convention the zero term is never regular.
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First, we state a proposition which has nothing to do with automorphisms:

Proposition 6.4:
Let α ∈ rv(R(M)), a ∈ rv−1(α) and (t, I,m, d) ∈ T0(C) be of minimal order-degree such that
t(x) is polynomial in xm and t is not regular at a. Then for all (u, J,n, e) < (t, I,m, d), rv(u(x))
is constant on rv−1(α). Moreover for all a≠n ∈ rv−1(α≠n), u(a≠n, xn) hasWeierstrass division on
rv−1(αn).

Proof . First, we may assume that K(M)
alg
= K(M) (see Proposition (3.26)). We work by

induction on J for the order defined in Remark 6.2.3. The proposition is trivial for constant
terms. Now, assume the proposition is true for any (v,K, p, f) withK < J .
Let us first assume that u is polynomial in xn. Then, u = ∑i ui(x≠n)xin must be regular at a
and hence val(u(a)) =mini{val(ui(a≠n))+ival(an)} and rv(u(a)) = ∑i rv(ui(a≠n))αi

n ≠ 0.
For any e ∈ rv−1(α) and i, rv(ui(e≠n))rv(en)i = rv(ui(a≠n))αi

n. Moreover, if ∑i rv(ci) ≠ 0
then rv(∑i ci) = ∑i rv(ci) hencewemust also have rv(u(e)) = ∑i rv(ui(a≠n))αi

n ≠ 0. As u is
polynomial in xn, it has a Weierstrass preparation. Hence for polynomial u, the proposition
is proved.
Suppose now that u is of infinite degree in xn and hence that all terms (v, J, n, e)with e ≠∞
have been taken care of in the previous paragraph. By Weierstrass preparation, there exists
S ∈ SCR(C⟨a≠n⟩) such that u(a≠n, xn) has a Weierstrass preparation on S and an ∈ S. But
then either rv−1(αn) ⊆ S or rv−1(αn) contains a K(C⟨a≠n⟩)

alg
-ball and hence a point c ∈

K(C⟨a≠n⟩)
alg
. Let P = ∑pi(a≠n)Xi ∈ K(C⟨a≠n⟩)[X] be its minimal polynomial, then

for all e ∈ rv−1(αn), rv(P (e)) = 0 — i.e. P (e) = 0 — but that is absurd. Hence t has a
Weierstrass preparation on rv−1(αn) and there exists F (x, z) ∈ A, c ∈ K(C⟨a⟩), P and
Q ∈K(C⟨a≠n⟩)[X] such that for all xn ∈ rv−1(αn):

u(a≠n, xn) = F (
xn − an
an

, c) P (xn)
Q(xn)

and val(F ((xn − an)/an, c)) = 0. But rv(P (xn)) and rv(Q(xn)) do not depend on xn and
rv(F ((xn − an)/an, c)) only depends on res((xn − an)/an) = 0 (see Corollary (3.9)). Hence
β ∶= rv(u(a≠n, xn)) does not depend on xn ∈ rv−1(αn). The LA,Q-formula

∀xn rv(xn) = αn ⇒ rv(u(a≠n, xn)) = β

is in the LA,Q-type of a≠n over Cαnβ. By induction (and Corollary (1.6)), all tuples a≠n ∈
rv−1(α≠n) have the same LA,Q(Cαβ)-type and rv(u(a)) = β for all a ∈ rv−1(α). ∎

Let us now prove the first embedding theorem we will need to eliminate quantifiers. LetM1

andM2 be models of TA,σ−Hen, Ci ⩽Mi and f ∶ C1 → C2 an LRV−Mor
A,Q,σ -isomorphism.

Proposition 6.5:
Let α ∈ rv(R(M1)) ∩RV(C1), a ∈ rv−1(α) and (t, I,m, d) ∈ T0(C) be polynomial in xm for
somem ∈N. Assume that (t, I,m, d) is of minimal order-degree such that t is not regular at σ(a).
Then:

(i) There exists a1 ∈ R(M1) and a2 ∈ R(M2) such that t(σ(a1)) = 0 = tf(σ(a2)), rv(a1) =
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α and rv(a2) = f(α).

(ii) For any such ai, f can be extended to an LRV−Mor
A,Q,σ -isomorphism sending a1 to a2.

Proof . Let t = ∑d
i=0 ti(x≠m)xim. Byminimality of t, we cannot have td(σ≠m(a)) = 0. Dividing

by td, we may assume that td = 1.

Claim6.6: There exists c ∈K(M) that linearly approximates t on rv−1(α) at prolongations and
such that

min
j
{val(cj) + val(σj(a))} =min

i
{val(ti(σ(a))) + ival(σm(a))}.

Proof . Let Ni = Mi
alg

(see Proposition (3.26)). Let se ∶= ∑i<e tix
i
m and s ∶= sd. For all i and

j ≠ m, by Proposition (6.4) applied in N1, ti(σ≠j(a), xj) has Weiestrass preparation on the
ball bj ∶= rv−1(αj) and constant valuation. By Proposition (6.4), for all e ⩽ d, se also has
constant valuation on rv−1(σ(α)). By invariance under addition— and an induction on e—
we can show that s(σ≠j(a), xj) also has Weiestrass preparation on bj . Moreover ∂s/∂xj(x)
is also given by an LA,Q(C1)-term of degree d − 1 in xm hence rv(∂s/∂xj(σ≠j(a), xj)) is
constant on bj (equal to some rv(cj), where cj ∈K(M1)). By Proposition (3.27), for all yj and
zj ∈ bj :

rv(t(σ≠j(a), yj) − t(σ≠j(a), zj)) = rv(s(σ≠j(a), yj) − s(σ≠j(a), zj)) = rv(cj)rv(y − z).

This last statement is in the LA,Q-type of σ≠j(a) over C1rv(cj). By Proposition (6.4) and
Corollary (1.6), any e≠j ∈ rv−1(σ≠j(α)) has the same LA,Q(C1rv(cj))-type and hence the
same cj works for any e ∈ rv−1(σ(α)).
By minimality of t, s is regular at σ(a) and

val(s(σ(a))) =min
i<d
{val(ti(σ≠j(a))) + ival(σm(a))}.

Because val(s(σ≠j(a), xj)) is constant on bj , by the last statement of Proposition (3.27) and
because rad(bj) = rv(σj(a)), we obtain that:

val(cj) + val(σj(a)) ⩾ val(s(σ(a))) ⩾min
i
{val(ti(σ(a))) + ival(σm(a))}.

When j = m, as t is polynomial in xm and ∂t/∂xm(x) is of degree d − 1 in xm, by Proposi-
tion (3.27), we also find cm ∈K(M1) that linearly approximates t(e≠m, xm) on rv−1(σm(α))
for any e ∈ rv−1(σ(α)). And

val(cm)+val(σm(a)) = val(∂t/∂xm(x))+val(σm(a)) =min
i
{val(ti(σ(a)))+ival(σm(a))}.

It now follows from Proposition (4.6) that c linearly approximates t on rv−1(α) at prolonga-
tions. ⧫

35



6. K-quantifier elimination in TA,σ−Hen

If t ≠ 0, as t is not regular at σ(a), val(t(σ(a))) > mini{val(ti(σ(a))) + ival(σm(a))} =
val(cm)+val(σm(a)) =minj{val(cj)+val(σj(a))}, and (t, a, c,val(α)) is in σ-Hensel con-
figuration. Hence there exists a1 ∈ M1 such that val(a1 − a) ⩾ maxi{σ−i(t(σ(a)c−1i ))} and
t(a1) = 0. In particular,

val(σm(a1 − a)) ⩾ val(t(σ(a))) − val(cm)
> min

i
{val(ti(σ(a))) + ival(σm(a))} − val(cm)

= val(σm(a)),

and thus rv(a1) = rv(a).
If xm is not the highest variable appearing in t — that we call xn — then, applying Propo-
sition (6.4) to (t, I, n,∞) < (t, I,m, d), we get that rv(t(x)) is constant equal to 0 on all
of rv−1(σ(α)). As t(σ≠m(a), xm) is polynomial and has infinitely many zeros, we must have
ti(σ(a)) = 0 for all i, but that contradicts the non-regularity of t inxm atσ(a). Thusxmmust
be the highest variable appearing in t. For the same reasons, we cannot have rv(cm) = 0.
Note that we have also proved that for all e ∈ rv−1(σ(α)), t is minimal such that it is not reg-
ular in e, hence the LA,Q-type of σ(α) says so and hence, as TA eliminates field quantifiers,
tf has the same minimality property (relatively to f(α)) and we find a2 in the exact same
way. If t = 0 then any a1 and a2 ∈ rv−1(α) will work.
Let us now show that f can be extended to send a1 to a2. For all n < m, any term u(x⩽n) ∈
T0(C) has order-degree strictly smaller than (t, I,m, d) and hence β ∶= rv(u(e)) does not
depend on the choice of e ∈ rv−1(σ(α)). The formula “∀x rv(x) = σ(α) ⇒ rv(u(x)) = β”
is an LA,Q(C1)-formula respected by f and thus f(β) = f(rv(u(σ(a1)))) = u(σ(a2)). It
follows immediately that the function fn sending u(σ(a1)) to u(σ(a2)) is well defined. It
is obviously an LA,Q∣K-morphism, and, as it respects rv, by Lemma (A.13), it is an LA,Q-
morphism.
Let us now assume that t ≠ 0.

Claim6.7: Let P ∶= t(σ≠m(a1), xm) ∈ K(C1,m−1)[X]. For all n ⩾ m, σn(a1) is the only zero
of P σn−m

whose leading term is σn(α).
Proof . Because σ is an automorphism of valued fields, it suffices to prove the case n =m. Let
e ∈ rv−1(σm(α))∖{σm(a1)}, then rv(P (e)) = rv(P (e)−P (a)) = rv(cm)rv(e−σm(a1)) ≠ 0.
⧫
The same claim is true of σm(a2) with respect to f(P σn−m) and f(σn(α)). Therefore, it
suffices to extend fm−1 to the LA,Q-definable closure of C1,m−1, which we can certainly do
as fm−1 is an LA,Q-elementary isomorphism (by resplendent field quantifier elimination in
TA).
Thus we have obtained an LA,Q-isomorphism between C1⟨σ(a1)⟩ and C2⟨σ(a2)⟩. By Re-
mark (4.2), it is an LA,Q,σ-isomorphism. This morphism is also an LRV−Mor

A,Q,σ -isomorphism
by Lemma (A.13). ∎

Corollary 6.8:
Letα ∈RV(C1), then there exists a1 ∈M1 such that rv(a1) = α and f extends to an isomorphism
on C1⟨a1⟩σ .
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Proof . Ifα ∈ res(R(M1)), then Proposition (6.5) applies. If not apply Proposition (6.5) toα−1
and conclude by extending the isomorphism to the analytic field generated by its domain by
Remark (5.1). ∎

6.2. Immediate extensions
LetM ⊧ TA be sufficiently saturated and C ⩽M .

Definition 6.9 (Pseudo-convergent ⋆-sequences):
Let (xα) be a sequence of tuples of the same length. We say that it is a pseudo-convergent sequence
if for all i, (xi,α) is pseudo-convergent. Moreover, we will say that a is a pseudo-limit of (xα) if
for all i, xi,α↝ai.

Definition 6.10 (Equivalent pseudo-convergent sequences):
We will say that two pseudo-convergent sequences are equivalent if they have the same pseudo-
limits.

Lemma6.11:
Let xα be a pseudo-convergent sequence, a a pseudo-limit of this sequence and yα a sequence such
that for all i, val(ai − yi,α) = val(ai − xi,α), then (yα) is also a pseudo-convergent sequence,
equivalent to (xα).

Proof . Wemay assume that ∣xα∣ = 1. Note that for allβ > α, val(yβ−yα) = val(yβ−a+a−yα) =
val(a−xα) = val(xβ−xα), as val(a−xβ) > val(a−xα). Hence (yα) is also pseudo-convergent.
Moreover, if b is any pseudo-limit of (xα), then val(b−yα) = val(b−xα+1+xα+1−a+a−yα) =
val(a − yα) = val(a − xα) = val(b − xα) and yα↝b. The symmetric argument shows that if
yα↝b then xα↝b. ∎

Definition 6.12 (Rich enough families):
We say that a family F of equivalent pseudo-convergent sequences of C is rich enough if for any
linear polynomial P (X) = ∑i πiXi ∈ rv(K(C))[X], there exists (xα) ∈ F such that for all
pseudo-limit a and all α, P (rv(a − xα)) ≠ 0, i.e. if rv(pi) = πi then val(∑i pi(ai − xi,α)) =
mini{val(pi) + val(ai − xi,α)}.

We will say that a term u = ∑d
i=0 ui(x≠m)σm(x)i is monic if ud = 1. As in section 6.1, let us

begin by a proposition that does not seem to have anything to do with automorphisms.

Proposition 6.13:
LetF be a rich enough family of equivalent pseudo-convergent sequences ofC that are eventually
in R and (t, I,m, d) ∈ T0(C). Suppose that (t, I,m, d) has minimal order-degree such that t is
a monic polynomial in xm and there exists a pseudo-convergent sequence (xα) ∈ F that pseudo-
solves t. Then for all (u, J,n, e) < (t, I,m, d), there exists α0 such rv(u(x)) is constant on b0 ∶=
B̊γ0
(xα0+1), where γ0 ∶= val(xα0+1 −xα0)— it follows immediately that rv(u(x)) ∈ rv(K(C))

— and for any a ∈ b0, u(a≠n, xn) has a Weierstrass preparation on bn,0.

Proof . We may assume that K(M)
alg
= K(M). The proof proceeds by induction on J .

Suppose that Proposition (6.13) holds for any term (v,K, p, f) such thatK < J . Let us prove
a few claims to take care of certain induction steps.
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Claim6.14: Fix e and n ∈ N. Suppose the lemma holds for all (u, J, n, e), then it holds for any
(u, J,n, e + 1) where u is a monic polynomial in xn.

Note that the case e = 0 does not require any hypothesis (other than the induction hypothesis
on J ).

Proof . Let u = xe+1n + ∑i⩽e ui(x≠n)xin and for all f ⩽ e, sf ∶= ∑i⩽f ui(x≠n)xin. Let a be
a pseudo-limit of (xα). Then we can find α0 such that, for all j ≠ n, val(sf(a≠j , xj)) and
val(uf+1(a≠j , xj)) are constant on bj,0 and uf+1(a≠j , xj) has a Weierstrass preparation. By
induction on f and invariance under addition, se(a≠j , xj) has a Weierstrass preparation on
bj,0. Let s ∶= se. Making α0 bigger we can also assume that val(∂s/∂xj(a≠j , xj)) is con-
stant on bj,0. By Proposition (3.27), we find cj ∈ K(C) such that for all yj and zj ∈ bj,0,
rv(u(a≠j , yj) − u(a≠j , zj)) = rv(s(a≠j , yj) − s(a≠j , zj)) = rv(cj)rv(yj − zj). By field quanti-
fier elimination, this statement only depends on the value of rv(v(a≠j)) for a finite number
of LA,Q∣K(C)-terms v and hence, by induction, making α0 bigger, we may assume that this
statement is true of all a ∈ b0. When j = n, the same arguments yields some cn ∈ K(C) as u
is already polynomial in xn and ∂u/∂xn(x) is polynomial in xn of degree at most e. It now
follows from Proposition (4.6) that c linearly approximates u on b0.
Let (yα) ∈ F be such that for any pseudo-limit a, val(c ⋅ (a − yα)) =minj{val(cj) + val(aj −
yj,α)}. Then val(u(a) − u(yα)) = minj{val(cj) + val(aj − yj,α)}. If for all α, val(u(a)) >
minj{val(cj)+val(aj−yj,α)}, then val(u(yα)) =minj{val(cj)+val(aj−yj,α)} andu(yα)↝0
contradicting theminimality of t. Hence val(u(a)) <minj{val(cj)+val(aj−yj,α)} forα≫ 0
and rv(u(a)) = rv(u(yα)) ∈ rv(K(C)). By compactness, making α0 bigger, this is true for
any a ∈ b0. ⧫

Claim6.15: Fix e and n ∈ N. Suppose the lemma holds for (u, J, n, e) monic polynomial in xn,
then it holds for any (u, J,n, e).

Proof . Dividing by the dominant coefficient ue (which has constant rv on b0 by induction),
we obtain a term v monic polynomial of degree at most e in xn and which must also have
constant rv on b0 if we take α0 big enough. ⧫

Claim6.16: Fix n ∈ N. Suppose that for all e ∈ N, the lemma holds for all (u, J,n, e). Then it
also holds for all (u, J,n,∞).

Proof . Let a be a pseudo-limit of (xα). Any S ∈ SCR(C⟨a≠n⟩) that contains an must con-

tain bn,0 for α0 big enough. If not, there exists c ∈ K(C⟨a≠n⟩)
alg

such that xn,α↝c. Let
P (a≠n, xn) = ∑i pi(a≠n)xin be its minimal polynomial. Then, by hypothesis, for all e ∈ b0 (for
α0 big enough), rv(P (e)) = 0 and we must have pi(a≠n) = 0 for all i, but that is absurd.
It follows that we can find α0 such that, u(a≠n, xn) has aWeierstrass preparation on bn,0, i.e.
there exists F ∈ A, c ∈ K(C⟨a≠n⟩) and LA,Q∣K(C)-terms P and Q polynomial in xn such
that for all xn ∈ bj,0,

u(a≠n, xn) = F (
xn − xn,α0+1

xn,α0+1 − xn,α0

, c) P (a≠n, xn)
Q(a≠n, xn)
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and val(F ((xn − xn,α0+1)(xn,α0+1 − xn,α0), c)) = 0. In turn, this implies that rv(u(a≠n, xn))
does not depend on xn ∈ bn,0 and by the usual uniformization argument (making α0 bigger),
we can ensure that rv(u(e)) does not depend on e ∈ b0. ⧫
Proposition (6.13) follows by induction. ∎

Remark 6.17:
Note that the proof of Claim (6.14) also shows that there exists d ∈ K(C) that linearly ap-
proximates t on b0 for α0 big enough.

LetM ⊧ TA,σ be sufficiently saturated and C ⩽M such that res(K(C)) is linearly closed.

Proposition 6.18:
Let xα be a pseudo-convergent sequence of C . The family {σ(yα) ∶ yα is a pseudo-convergent
sequence ofC equivalent to xα} is a rich enough family of equivalent pseudo-convergent sequences
of C .

Proof . Let P (X) = ∑i piXi ∈ K(C)[X]. If for all i pi = 0, we are done. Otherwise, let
εα = xα+1 − xα, let i0 such that val(pi0) + val(σi0(εα)) is minimal, and let

Qα(σ(X)) = p−1i0 σ
i0(εα)−1P (σ(εαX)) =∑

i

pip
−1
i0 σ

i(εα)σi0(ε−1α )σi(X).

As res(Qα) is linear with coefficients in res(K(C)), which is linearly closed, we can find
dα ∈K(C) such that res(Qα(σ(dα))) ≠ res(Qα(σ(1))). In particular, res(dα) ≠ res(1) and
val(dα − 1) = 0. Let yα = xα + εαdα.
Let a be such that σ(xα)↝a, then

rv(ai − σi(yα)) = rv(ai − σi(xα+1) + σi(xα+1) − σi(xα) + σi(xα) − σi(yα))
= rv(σi(εα))rv(1 − σi(dα)).

It follows that val(a0 − yα) = val(εα) = val(a0 − xα). By Lemma (6.11), (yα) is equivalent to
(xα). Let ci = (ai − σi(yα))/σi(εα). Then

res(P (a − σ(yα))p−1i0 ε
−1
α ) = res(Q)(res(c))

= res(Q)(res(σ(1) − σ(dα)))
= res(Q(σ(1))) − res(Q(σ(dα)))
≠ 0.

Hence, we have val(P (a − σ(yα))) = val(pi0) + val(σi0(εα)) = mini{val(pi) + val(ai −
σi(yα))}. ∎
And now let us prove another embedding theorem for immediate extensions. LetM1 and
M2 ⊧ TA,σ−Hen be sufficiently saturated,Ni ⩽Mi have no immediate extension inMi and be
σ-Henselian — as we will see in Remark (6.21) this second hypothesis follows from the first
one —, Ci ⩽Ni be such that res(K(C1)) is linearly closed and f ∶ C1 → C2 an LRV−Mor

A,Q,σ -
isomorphism.
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Definition 6.19 (Minimal term of a pseudo-convergent sequence):
Let (xα) be a pseudo-convergent sequence of C1. We say that (t, I,m, d) ∈ T0(C1) is its minimal
term if it is minimal such that it is monic polynomial in xn and it is σ-pseudo-solved by a pseudo-
convergent sequence equivalent to (xα).

Note that any pseudo-convergent sequence has a minimal term, as any pseudo-convergent
sequence σ-pseudo-solves 0.

Proposition 6.20:
Let (xα) be a pseudo-convergent sequence ofK(C1) (indexed by a limit ordinal) which is eventu-
ally inR. Let (t, I,m, d) be its minimal term. Then:

(i) There exists a1 ∈ N1 and a2 ∈ N2 such that xα↝a1, f(xα)↝a2 and t(σ(a1)) = 0 =
tf(σ(a2)).

(ii) For any such a1, C1⟨a1⟩σ is an immediate extension of C1;

(iii) For any such ai, f can be extended to an LRV−Mor
A,Q,σ -isomorphism sending a1 to a2.

Proof . If t is zero, it suffices to choose any a1 and a2 such that xα↝a1 and f(xα)↝a2. These
exist inMi and we will see in the end why they exist in Ni. Let us now assume that t is not
zero. By Remark (6.17) — and Propositions (6.13) and (6.18) — we find α0 and d ∈ K(C1)
that linearly approximate t at prolongations on b0 ∶= B̊val(xα0+1−xα0)(xα0+1). By Proposi-
tion (6.18), we can find a pseudo-convergent sequence (zα) ofC1 equivalent to (xα) such that
for all pseudo-limit a of (xα), val(t(σ(a)) − t(σ(zα))) = mini{val(di) + val(σi(a − zα))}.
If for all such a, val(t(σ(a))) < mini{val(di) + val(σi(a − zα))} for α big enough, then
val(t(σ(a))) = val(t(σ(yα))). By compactness, val(t(σ(x))) is constant on some b0. But
this contradicts the fact that we can find yα equivalent to xα that σ-pseudo-solves t.
Hence there exists a pseudo-limit a such that val(t(σ(a))) > mini{val(di) + val(σi(a −
zα))} ⩾ mini{val(di) + val(σi(ξ0))} where ξ0 is the radius of b0 and (t, a, d, ξ0) is in σ-
Hensel configuration. As N1 is σ-Henselian, we can find a1 ∈ K(N1) such that t(a1) = 0
and val(a1 − a) ⩾ maxi{val(σ−i(t(σ(a))d−1i ))} > val(xα+1 − xα), i.e. xα↝a1. As f is an
LA,Q,σ-isomorphism, (tf , I,m, d) is the minimal term of (f(xα)) and the same argument
shows that there is a2 ∈K(N2) such that tf(a2) = 0 and f(xα)↝a2.
If t ≠ 0, let us now show that xm must be the last variable appearing in t. If it is not, let
xn be that last variable. By Proposition (6.13), we can find LA,Q∣K(A)-terms E, P and Q
such that E is a strong unit in xn, P and Q are polynomial in xn and for all a ∈ b0, t(a) =
E(a)P (a)/Q(a). As t(σ(a1)) = 0 we also have P (σ(a1)) = 0 and because (P, I, n,∞) <
(t, I,m, d), we have rv(P (a)) = 0— and hence rv(t(a)) = 0— for all a ∈ b0, contradicting
the fact that we can find yα equivalent to xα that σ-pseudo-solves t.
We can now conclude as in Proposition (6.5) by extending f to C1,n ∶= C1⟨σ⩽n(a1)⟩ progres-
sively, by sending σn(a1) to σn(a2). For n < m, it is exactly the same and for n ⩾ m, use
the fact that σn(a1) is the only zero of P σn−m(X) in (bn,0) for α0 ≫ 0, where P (Xm) =
t(σ≠m(a1),Xm).
If n < m, we have proved in Proposition (6.13) that the extension is immediate. If n ⩾ m,
we have just seen that σn(a1) is ACVF-definable over K(C1⟨σ⩽n−1(a1)⟩). It follows that
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6. K-quantifier elimination in TA,σ−Hen

σn(a1) ∈ K(C1⟨σ⩽n−1(a1)⟩)h which is an immediate extension of K(C1⟨σ⩽n−1(a1)⟩) and
we conclude by Proposition (3.26).
In the case where t is zero, we have yet to show that we can take ai ∈ Ni. Let (u, J,n, e)
be minimal overN1 that is σ-pseudo-solved by a pseudo-converging sequence equivalent to
xα. We can find a1 inM1 such that u(σ(a1)) = 0 and xα↝a1. But then K(N1⟨a1⟩σ) is an
immediate extension ofN1 and we must have a1 ∈ N1. ∎

Remark 6.21:
Note that we have just shown that if we only assume thatN1 has no immediate extension in
M1 (and not thatN1 is σ-Henselian), thenN1 is maximally complete and hence, by Proposi-
tion (4.14) it is σ-Henselian.

Definition 6.22 (Minimal term of a point):
Let a ∈ M1. We say that (t, I,m, d) ∈ T0(C1) is the minimal term of a over C1 if it is minimal
such that it is monic polynomial in xm and t(σ(a)) = 0.

Note that because of Weierstrass preparation, minimal terms will always be polynomial in
their last variable.

Definition 6.23 ((t, I,m, d)-fullness):
Let (t, I,m, d) ∈ T0(C1). We will say that C1 is (t, I,m, d)-full if for all pseudo-convergent se-
quences (xα) (indexed by a limit ordinal) of elements inC1 that are eventually inRwith minimal
term (u, J,n, e) < (t, I,m, d), (xα) has a pseudo-limit in C1.

Corollary 6.24:
Let (xα) be a maximal pseudo-convergent sequence in C1 (indexed by a limit ordinal) pseudo-
converging to some a1 ∈ R(M1). If (t, I,m, d) ∈ T0(C1) is its minimal term over C1 and C1

is (t, I,m, d)-full, then K(C1⟨a1⟩σ) is an immediate extension of K(C1) and f extends to a
morphism from C1⟨a1⟩σ intoN2.

Proof . SinceC1 is (t, I,m, d)-full, (xα) (or any equivalent pseudo-convergent sequence) can-
not pseudo-solve a term of order-degree strictly less than (t, I,m, d) (this would contradict
either (t, I,m, d)-fullness of C1 or maximality of (xα)). By Propositions (6.13) and (6.18),
there is a tuple d and a sequence (yα) equivalent to (xα) such that

val(t(σ(yα))) = val(t(σ(a)) − t(σ(yα))) =min
i
{val(di) + val(σi(a − yα))},

i.e. t(σ(yα))↝0. We have just showed that t is the minimal term of the pseudo-convergent
sequence (xα) and thus we can now apply Proposition (6.20). ∎

Fromnowon, suppose thatK(Ni) is an immediate extension ofK(Ci), hence it is amaximal
immediate extension ofK(Ci) inMi.

Corollary 6.25:
Suppose that all a ∈R(N1) with a minimal term of order-degree strictly smaller than (t, I,m, d)
are already in C1, then C1 is (t, I,m, d)-full.

Proof . Let (xα) be a pseudo-convergent sequence of C1 (indexed by a limit ordinal) that
is eventually in R and (u, J,n, e) < (t, I,m, d) that is σ-pseudo-solved by (xα). We may
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assume that (u, J,n, e) is its minimal term. By Proposition (6.20), there is a1 ∈ N1 such that
xα↝a1 and u(a1) = 0. Hence a1 has a minimal polynomial of order-degree strictly lower
than (t, I,m, d), so a1 ∈ C1 and C1 is indeed (t, I,m, d)-full. ∎

Corollary 6.26:
The isomorphism f extends to an isomorphism between N1 and N2, i.e. maximum immediate
extensions (in some saturated model) — and hence maximally complete extensions — are unique
up to isomorphism.

We could prove this corollary without using the notion of fullness and without doing the
extensions in the right order — just pick any maximal pseudo-convergent sequence indexed
by a limit ordinal, find its minimal term and apply Proposition (6.20) to extend f some more
and iterate. But the following proof provides a better description of the information needed
to describe the type of a given point in an immediate extension.

Proof . Let us consider the extensions C1 ⩽Lα ⩽N1 defined by taking Lα+1 = Lα⟨cα⟩σ where
cα ∈ R(N1) ∖ Lα has a minimal term of minimal order-degree over Lα+1 and Lλ = ⋃α<λLα

for λ limit. Then we can show by induction that we can extend f to Lα in a coherent way.
Let us suppose that we have extended f to fα on Lα. Let a = cα. Let xβ↝a be a maximal
pseudo-converging sequence ofLα. Then if (t, I,m, d) is aminimal term of a, then by Corol-
lary (6.25),Lα is (t, I,m, d)-full. Applying Corollary (6.24), we obtain that fα can be extended
to Lα⟨a⟩σ = Lα+1. The limit case is trivial.
AsN1 is the field generated by⋃αLα, by Remark (5.1)we can extend f to amorphism fromN1

intoN2. Now if f is not onto, pick a ∈K(N2)∖K(f(N1)), (xα)maximal pseudo-converging
to a and (t, I,m, d) its minimal term. Then applying Proposition (6.20) the other way round,
we would find an immediate extension ofN1 inM1, but that is absurd. ∎

6.3. Relative quantifier elimination
TheoremA:

The theory TA,σ−Hen eliminates quantifiers resplendently relatively toRV.

Proof . By Proposition (A.9), it suffices to show thatTA,σ−Hen eliminates quantifiers relatively
toRV. Note that if twomodels ofTA,σ−Hen contain isomorphic substructures they have the
same characteristic and residual characteristic, hence it also suffices to prove the result for
TA,σ−Hen,0,0 and TA,σ−Hen,0,p. Let us first consider the equicharacteristic zero case.
It suffices to show that ifM1 andM2 are sufficiently saturated models of TRV−Mor

A,σ−Hen,0,0, f a
partial LRV−Mor

A,Q -isomorphism with (small) domain C1, and a1 ∈ K(M1), f can be extended
toC1⟨a1⟩σ . LetN1 ⩽M1 with no immediate extension inM1 and containing bothC1 and a1.
By Morleyization onRV and Lemma (A.11)we can extend f toD1 ⩽N1 such thatRV(D1) =
RV(N1). Then applying Corollary (6.8) repetitively we can extend f to E1 ⩽N1 such that
rv(K(E1)) = RV(E1). Now K(N1) is a maximal immediate extension of K(E1) and we
can extend f toN1 by Proposition (6.20).
Now that we know the equicharacteristic zero case, the mixed characteristic case follows
from Propositions (B.5) and (4.23). ∎
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We also obtain the corresponding results when there are angular components. Let LacA,Q,σ
be LacA,Q enriched with a symbol σ ∶ K → K, symbols σn ∶ Rn → Rn and a symbol σΓ ∶
Γ∞ → Γ∞. Let Tac

A,σ−Hen be the LacA,Q,σ-theory of σ-Henselian analytic difference valued
fields with a linearly closed residue field and angular components that are compatible with
σ, i.e. acn ○ σ = σn ○ acn. Let Lac,frA,Q,σ be the enrichment of Lac,fr with the same symbols and

Tac,e−fr
A,σ−Hen,p be the theory of finitely ramified characteristic (0, p) valued fields as above with

ramification index at most e, i.e. e ⋅ 1 ⩾ val(p).

Corollary 6.27:
Tac
A,σ−Hen and T

ac,e−fr
A,σ−Hen,p for all p and e, eliminateK-quantifiers resplendently.

Proof . By Proposition (A.9), resplendence comes for free once we haveK-quantifier elimina-
tion. Moreover, by Propositions (1.8) and (B.5), we can transfer quantifier elimination in an
RV-enrichment ofTA,σ−Hen (cf. TheoremA) to quantifier elimination in a definableR∪Γ-
enrichment of Tac

A,σ−Hen and henceK-quantifier elimination in Tac
A,σ−Hen.

The proof for Tac,e−fr
A,σ−Hen,p now follows by Remark 1.9.3. ∎

Remark 6.28:
1. In a valuedfieldwith an isometry andval(Fix(K)) = val(K), angular components that

are compatible with σ are determined by their restriction to the fixed field. Indeed
if val(x) = val(ε) where ε ∈ Fix(K), then acn(x) = Rn(xε−1)acn(ε). In fact, any
angular components on the fixed field can be extended using this formula to angular
components on the whole field that are compatible with σ and hence any valued field
with an isometry and val(Fix(K)) = val(K) can be elementarily embedded into a
valued field with an isometry and compatible angular components.

2. In fact, the existence of angular components in a σ-Henselian valued field with an
isometry implies that val(Fix(K)) = val(K).

Until the end of this section, wewill add constants toLacA,Q,σ andL
ac,fr
A,Q,σ for acn(t) and val(t)

for every LA,Q,σ ∣K-term t without any free variables. The reason for which we need to add
theses constants is that although these are LacA,Q,σ-terms, we may have no trace of them in
LacA,Q,σ ∣R and LacA,Q,σ ∣Γ. Ax-Kochen-Eršov type results now follow by the usual arguments.

Corollary 6.29 (Ax-Kochen-Eršov principle for analytic difference valued fields):

(i) LetL be anR-extension of aΓ-extension ofLacA,Q,σ ,T anL-theory containingTac
A,σ−Hen,0,0

andM andN ⊧ T then:

(a) M ≡ N if and only ifR1(M) ≡ R1(N) as L∣R1
-structures and Γ∞(M) ≡ Γ∞(N)

as L∣Γ∞-structures;
(b) SupposeM ⩽N thenM ≼ N if and only ifR1(M) ≼R1(M) as L∣R1

-structures and
Γ∞(M) ≼ Γ∞(N) as L∣Γ∞-structures.

(ii) LetL be anR-extension of aΓ-extension ofLacA,Q,σ , T anL-theory containingTac,e−fr
A,σ−Hen,p

andM andN ⊧ T then:
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(a) M ≡ N if and only ifR(M) ≡ R(N) as L∣R-structures and Γ∞(M) ≡ Γ∞(N) as
L∣Γ∞-structures;

(b) SupposeM ⩽N thenM ≼ N if and only if R(M) ≼ R(N) as L∣R-structures and
Γ∞(M) ≼ Γ∞(N) as L∣Γ∞-structures.

Remark 6.30:
1. In mixed characteristic with finite ramification, if R = O, we have better results. In-

deed, the trace of any unit E on anyRVk is given by the trace of a polynomial (which
depends only onE and not on its interpretation) and theEk are in fact useless. Hence
theRn are pure rings with an automorphism. If there is no ramification (i.e. e = 1), the
Rn are ring schemes overR1 (the Witt vectors of length n) — the ring scheme struc-
ture does not depend on the actual model we are looking at, contrary to the general
finite ramification case — and the automorphism onRn can be defined using the au-
tomorphism onR1, henceR is definable inR1. Finally if σ is a lifting of the Frobenius,
σ0 is definable in the ring structure ofR1. It follows that we obtain Ax-Kochen-Eršov
results looking only atR1 as a ring and Γ∞ as an ordered abelian group (after adding
some constants).

2. The fact that the Ek are useless is also true in equicharacteristic zero whenR = O.

3. It also follows that in equicharacteristic zero or mixed characteristic with finite ramifi-
cation (with angular component),R and Γ∞ are stably embedded and have pure L∣R-
structure (resp. L∣Γ∞-structure) where L is either LacA,Q,σ or Lac,frA,Q,σ . In particular it
will make sense to speak of the theory induced onR or Γ∞.

Proposition 6.31:
Let L be the language LA,Q,σ enriched with predicates Pn onRV1 interpreted as n∣val1(x). The
L-theory ofWp is axiomatized by TA,σ−Hen and σ1 is the Frobenius, the induced theory onR1 is
ACFp, p has minimal positive valuation, Γ is a Z-group and σΓ is the identity. MoreoverR1 is a
pure algebraically closed valued field and Γ is a pure Z-group and they are stably embedded.

Proof . Any model of that theory has definable angular components compatible with σ. And
these angular components extend the usual ones on the field of constantsW(Fp

alg). Hence
the only constants we add are for elements of Fp

alg ⊆ R1 and Z ⊆ Γ. The proposition now
follows from the discussion above (and the fact thatACF andZ-groups aremodel complete).
∎

7. The NIP property in analytic difference valued fields
Let us first recall what is shown by Delon and Bélair in the algebraic case [Del81; Bél99]. Let
Tac
Hen be the Lac-theory of Henselian valued fields with angular component maps.
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Theorem7.1:
LetL be anR-enrichment of aΓ∞-enrichment ofLac and T ⊇ Tac

Hen be anL-theory implying
either equicharacteristic zero or finite ramification in mixed characteristic. Then T is NIP if
and only ifR (with its L∣R-structure) and Γ∞ (with its L∣Γ∞ -structure) are NIP.

Proof . See [Bél99, Théorème 7.4]. The resplendence of the theorem is not stated there but
the proof is exactly the same after enriching onR and Γ∞. ∎

This result can be extended first to analytic fields then to analytic fields with an automor-
phism.

Corollary 7.2:
LetL be anR-enrichment of aΓ∞-enrichment ofLacA,Q and T ⊇ Tac

A,Hen be anL theory implying
either equicharacteristic zero or finite ramification in mixed characteristic. Then T is NIP if and
only ifR (with its L∣R-structure) and Γ∞ (with its L∣Γ∞ -structure) are NIP.

Proof . Suppose T is not NIP. Then there is a formula φ(x, y) which has the independence
property and where ∣x∣ = 1. Note that, since for any sort there is an ∅-definable function
fromK onto that sort, we may assume that x and y areK-variables. By Remark 5.6.2, there
is an L ∖ (A ∪ {Q})-formula ψ(x, z) and LA,Q∣Kterms u(y) such that φ(x, y) is equiva-
lent to a ψ(x,u(y)). But then ψ would have the independence property too, contradicting
Theorem (7.1). ∎

Corollary 7.3:
Let L be an R-enrichment of a Γ∞-enrichment of LacA,Q,σ and T ⊇ Tac

A,σ−Hen be an L theory
implying either equicharacteristic zero or finite ramification in mixed characteristic. Then T is
NIP if and only ifR (with its L∣R-structure) and Γ∞ (with its L∣Γ∞ -structure) are NIP.

Proof . Suppose T is not NIP, then there is a formula φ(x, y) which has the independence
property (where x and the y are K-variables). By Corollary (6.27), we may assume that φ is
without K-quantifiers, i.e. there is a K-quantifier free LacA,Q,σ ∖ {σ}-formula ψ(x, z) such
that φ(x, y) is equivalent to ψ(σ(x), σ(y)). But then ψ would have the independence prop-
erty too, contradicting Corollary (7.2). ∎

Remark 7.4:
In the isometry case with val(Fix(K)) = val(K), this last result also holds without angular
components because any such valued field can be elementarily embedded into a valued field
with angular components compatible with σ.

Corollary 7.5:
The LA,Q,σ-theory ofWp is NIP.

Proof . This is an immediate corollary of Remark (7.4), Corollary (7.3) and the fact that R is
definable inR1 which is a pure algebraically closed field (where the Frobenius automorphism
is definable) and that Γ is a pure Z-group (see Proposition (6.31)). ∎
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Appendices
A. Resplendent relative quantifier elimination
The following section, although it may appear fastidious and nitpicking, is actually an at-
tempt at clarifying some notions and properties that are often assumed to be clear when
studying model theory of valued fields, but may actually need precise and careful presenta-
tion. In all this section, L will denote a language and Σ,Π a partition of its sorts.

DefinitionA.1 (Restriction):
If L′ ⊆ L be another language and T an L-theory we will denote by T ∣L′ the L′-theory {φ an L′-
formula ∶ T ⊧ φ} and if C is an L-structure, C ∣L′ will have underlying set ⋃S∈L′ S(C) with the
obvious L′-structure. In particular, whenΣ is a set of L sorts, let L∣Σ be the restriction of L to the
predicate and function symbols that only concern the sorts in Σ. Then we will write T ∣Σ ∶= T ∣L∣Σ
and C ∣Σ ∶= C ∣L∣Σ .

Note that the restriction is a functor from Str(T ) to Str(T ∣L′) respectingmodels, cardinality
and elementary submodels (see Section B for the definitions).

DefinitionA.2 (Enrichment):
Let Le ⊇ L be a another language and Σe the set of new Le-sorts, i.e. the Le-sorts that are not L-
sorts. The language Le is said to be a Σ-enrichment of L if Le ∖ Le∣Σ∪Σe

⊆ L, i.e. the enrichment
is limited to the new sorts and the sorts in Σ. If, moreover, Σe = ∅ and Le ∖ L consists only of
function symbols, we will say that Le is a Σ-term enrichment of L.
Let T be an L-theory. An Le-theory Te ⊇ T is said to be a definable enrichment of T if there are
no new sorts and for every predicate P (x) (resp. function f(x)) symbol in Le ∖ L, there is an
L-formula φP (x) (resp. φf(x, y) such that T ⊧ ∀x∃=1y, φf(x, y)) and that Te = T ∪{P (x)↔
φP (x)} ∪ {φf(x, f(x))}.

DefinitionA.3 (Morleyization):
The Morleyization of L on Σ is the language LΣ−Mor ∶= L ∪ {Pφ(x) ∶ φ(x) an L∣Σ-formula}.
If T is an L-theory, the Morleyization of T on Σ is the following LΣ−Mor-theory TΣ−Mor ∶= T ∪
{Pφ(x) ↔ φ(x)} and ifM is an L-structure, MΣ−Mor is the LΣ−Mor-structure with the same
L-structure asM and where Pφ is interpreted by φ(M).
On the other hand, we will say that an L-theory T is Morleyized on Σ if every L∣Σ-formula is
equivalent, modulo T , to a quantifier free L∣Σ-formula.

Note that TΣ−Mor is a definable Σ-enrichment of T and ifM ⊧ T thenMΣ−Mor ⊧ TΣ−Mor.

DefinitionA.4 (Elementary on Σ):
LetM1 andM2 be two L-structures. A partial isomorphismM1 →M2 is said to beΣ-elementary
if it is a partial LΣ−Mor-isomorphism.

DefinitionA.5 (Resplendent relative elimination of quantifiers):
Let T be an L-theory. We say that T eliminates quantifiers relatively to Σ if TΣ−Mor eliminates
quantifiers.
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We say that T eliminates quantifiers resplendently relatively to Σ if for any Σ-enrichment Le of
L (with possibly new sorts Σe) and any Le-theory Te ⊇ T , Te eliminates quantifiers relatively to
Σ ∪Σe.

DefinitionA.6 (Resplendent elimination of quantifiers from a sort):
We will say that an L-theory T eliminates Π-quantifiers if every L-formula is equivalent modulo
T to a formula where quantification only occurs on variables from the sorts in Σ.
We will say that T eliminatesΠ-quantifiers resplendently if for anyΣ-enrichmentLe ofL and any
Le-theory Te ⊇ T , Te eliminates Π-quantifiers.

DefinitionA.7 (Closed sorts):
We will say that Σ is closed if L ∖ (L∣Π ∪ L∣Σ) only consists of function symbols f ∶ ∏i Pi → S
where Pi ∈ Π and S ∈ Σ. Equivalently, any predicate involving a sort in Σ and any function with
a domain involving a sort in Σ only involves sorts in Σ.

RemarkA.8:
1. Note that if, the sortsΣ are closed then in anyΣ-enrichment—with possibly new sorts

Σe — of a Π-enrichment of L (or vice-versa), the sorts Σ ∪Σe are still closed.

2. Elimination of quantifiers relative to Σ implies elimination of Π-quantifiers. But the
converse is in general not true. Indeed, if L is a language with two sorts S1 and S2 and
a predicate on S1×S2, then the formula ∃xR(x, y) is an S2-quantifier free formula but
there is no reason for it to be equivalent to any quantifier free LS1−Mor-formula.

3. However, if the sorts Σ are closed, then it follows from RemarkA.10.1 that T elimi-
nates Π-quantifiers if and only if T eliminates quantifiers relatively to Σ. If Le is a
Σ-enrichment of L with new sorts Σe, then Σ ∪Σe is still closed, thus the equivalence
is also true resplendently.

Wewill now suppose thatΣ is closed and we will denote byF the set of functions f ∶∏i Pi →
S where Pi ∈ Π and S ∈ Σ.

PropositionA.9:
Let T be an L-theory. If T eliminates quantifiers relatively to Σ then T eliminates quantifiers
resplendently relatively to Σ.

Let us begin with some remarks and lemmas that will have a more general interest.

RemarkA.10:
1. Any atomicL-formulaφ(x, y)wherex areΠ-variables and y areΣ-variables, is either of

the form ψ(x) where ψ is an atomic L∣Π-formula or of the form ψ(f(u(x)), y) where
ψ is an atomic L∣Σ-formula, u are L∣Π-terms and f are functions from F .

2. If T eliminates quantifiers relatively toΣ, it follows from RemarkA.10.1 above that for
anyM ⊧ T , any L(M)-definable set in a product of sorts from Σ is defined by a for-
mula of the form φ(x, f(a), b)where φ is a L∣Σ-formula. HenceΣ is stably embedded
in T , i.e. any L(M)-definable subset of Σ is in fact L(Σ(M))-definable. Moreover,
these sets are in fact L∣Σ(Σ(M))-definable. In that case, we say that Σ is a pure L∣Σ-
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structure.

LemmaA.11:
Suppose T is an L-theory Morleyized on Σ, then for any sufficiently saturatedM1,M2 ⊧ T , any
partial L-isomorphism f ∶ M1 → M2 with small domain C1 and any c1 ∈ Σ(M1), f can be
extended to a partial L-isomorphism whose domain contains c1.

Proof . First we may assume that C1 ⩽M1 and in particular for all g ∈ F , g(C1) ⊆ Σ(C1).
Because f is a partial L-isomorphism and T is Morleyized on Σ, f ∣Σ is a partial elementary
L∣Σ-isomorphism. By saturation ofM2 we can extend f ∣Σ to f ′∣Σ ∶ M1∣Σ → M2∣Σ a partial
elementary L∣Σ-isomorphism whose domain contains c1. Let f ′ = f ∣Π ∪ f ′∣Σ.
As f ∣Π is a partial L∣Π-isomorphism, f ′ respects formulae φ(x) where φ is an atomic L∣Π-
formula (f ∣Π also respects L∣Π-terms). Moreover, as for all g ∈ F , f ′∣g(C1) = f ∣g(C1), f

′

still respects g. As f ′∣Σ is a partial L∣Σ-isomorphism, it respects all atomic L∣Σ-formulae. It
follows that f ′ also respects formulae of the form ψ(g(u(x)), y) where ψ is an atomic L∣Σ-
formula, u are L∣Π-terms and g ∈ F . By RemarkA.10.1, f ′ respects all atomicL-formulae and
hence is a partial L-isomorphism. ∎

DefinitionA.12 (Generated structure):
Let L be a language, M an L-structure and C ⊆ M . The L-structure generated by C will be
denoted ⟨C⟩L. If C is an L-structure and c ∈ M , the L-structure generated by C and c will be
denoted C⟨c⟩L.

LemmaA.13:
LetM1,M2 ⊧ T , f ∶M1 →M2 a partial L-isomorphism with domain C1 ⩽M1 and c1 ∈ Π(M1)
such that Σ(C1⟨c1⟩L) ⊆ Σ(C1). Suppose that f ′ is a partial L∣Π ∪F-isomorphism extending f
whose domain is C1⟨c1⟩L, then f ′ is also a partial L-isomorphism.

Proof . First, by hypothesis, f ′ respects atomic L∣Π-formulae. Moreover as Σ(C1⟨c1⟩L) ⊆
Σ(C1), f ′∣Σ = f ∣Σ and it is a partial L∣Σ-isomorphism. As, by hypothesis, f ′ respects g ∈ F ,
it respects all formulae of the form ψ(g(u(x)), y) where ψ is an atomic L∣Σ-formula, u are
L∣Π-terms and g ∈ F . Hence by RemarkA.10.1, f ′ is a partial L-isomorphism. ∎

Proof (Proposition (A.9)). We want to show that if Le is aΣ-enrichment of L (with new sorts
Σe) and Te ⊇ T an Le-theory, then TΣ∪Σe−Mor

e eliminates quantifiers. It suffices to show
that for allM1 andM2 ⊧ Te that are ∣Le∣+-saturated, for all partial LΣ∪Σe−Mor

e -isomorphism
f ∶M1 →M2 of domainC1 with ∣C1∣ ⩽ ∣Le∣, and for all c1 ∈M1, f can be extended to a partial
LΣ∪Σe−Mor
e -isomorphism whose domain contains c1.

Note first that Σ ∪ Σe is closed. If c1 ∈ Σ ∪ Σe(M1), then we can conclude by Lemma (A.11)
(where L is now LΣ∪Σe−Mor

e ). If c1 ∈ Π(M1), by repetitively applying Lemma (A.11), we can
extend f to f ′ whose domain contains all of Σ ∪ Σe(C1⟨c1⟩Le). Then f ′ is in particular an
LΣ−Mor-isomorphism and, as T eliminates quantifiers relatively to Σ, f ′ is in fact a partial
elementary L-isomorphism that can be extended to a partial L-isomorphism f ′′ whose do-
main contain c1. But, by Lemma (A.13), f ′′∣C1⟨c1⟩Le

is also a partial LΣ∪Σe−Mor
e -isomorphism.

∎
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B. Categories of structures
Recall that structures are always non empty.

DefinitionB.1 (Str(T )):
Let L be a language, T an L-theory. We will denote by Str(T ) the category whose objects are the
L-structures that can be embedded in a model of T — i.e. models of T∀— and whose morphisms
are the L-embeddings between those structures.
Moreover, let Ti be an Li-theory for i = 1,2, F ∶ Str(T1) → Str(T2) be a functor and κ be a
cardinal. We will denote by StrF,κ(T2) the full subcategory of Str(T2) of structures that embed
into some F (M) forM ⊧ T1 κ-saturated.

A functor F ∶ Str(T1)→ Str(T2) is said to respect:

• models if for allM ⊧ T1, F (M) ⊧ T2;

• κ-saturated models if for all κ-saturatedM ⊧ T1, F (M) ⊧ T2;

• cardinality if for all C ⊧ T1,∀, ∣F (C)∣ ⩽ ∣C ∣;

• cardinality up to κ if for all C ⊧ T1,∀, ∣F (C)∣ ⩽ ∣C ∣κ;

• elementary submodels if for allM1 ≼M2 ⊧ T1, F (M1) ≼ F (M2).

Let Σi be a closed set of Li-sorts for i = 1,2. We say that f ∶ C1 → C2 in Str(T1) is a
Σ1-extension if C2 ∖ f(C1) ⊆ Σ1(C2). We say that the functor F sends Σ1 to Σ2 if for all
Σ1-extensions C1 → C2, F (C1)→ F (C2) is a Σ2-extension.
Let me recall some basic notions of category theory. A natural transformation α between
functors F , G ∶ C1 → C2 associates a morphism αc ∈ HomC2(F (c),G(c)) to every object
c ∈ C1 such that for all morphism f ∈ HomC1(c, d), we haveG(f) ○αc = αd ○F (f). A natural
transformation is said to be a natural isomorphism if for all c ∈ C1, αc is an isomorphism
in C2. It is easy to check that when α is a natural isomorphism, its inverse — namely the
transformation that associates α−1c to any c ∈ C1 — is also natural.
A pair of functors F ∶ C1 → C2 and G ∶ C2 → C1 are said to be an equivalence of categories
between C1 and C2 ifGF and FG are naturally isomorphic to the identity functor of resp. C1
and C2. We can always choose the natural isomorphisms α ∶ FG→ Id and β ∶ GF → Id such
that αF = F (β) and βG = G(α) where αF ∶ c↦ αF (c) and F (α) ∶ c↦ F (αc).
Until the end of this section, let κ be a cardinal, Ti be an Li-theory and Σi be a set of closed
Li-sorts for i = 1,2 andF be a full subcategory ofStr(T1) containing theκ+-saturatedmodels
such that for any C → M1 ⊧ T1 whereM1 is κ+-saturated and ∣C ∣ ⩽ κ, there is some D in
F such that C → D → M1 and C → D is a Σ1-extension. Let F ∶ Str(T1) → Str(T2) and
G ∶ Str(T2)→ Str(T1) be functors that respect cardinality up to κ and induce an equivalence
of categories between F and StrF,κ+(T2). We will also suppose that G respects models and
elementary submodels and sends Σ2 to Σ1 and F respects κ+-saturated models.
The goal of this section is to show that these (somewhat technical) requirements are a way
to transfer elimination of quantifiers results from one theory to another and to give a mean-
ing to — and in fact extend — the impression that if theories are quantifier free bi-definable
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(whatever that means) then elimination of quantifiers in one theory should imply elimina-
tion in the other. Proposition (B.5) will be used, for example, to deduce valued field quan-
tifiers elimination with angular components from valued field quantifiers elimination with
sectioned leading terms. It will also be used to reduce the mixed characteristic case to the
equicharacteristic zero case.
Proposition (B.2) is only used to proveCorollary (B.4)which in turnwill be very useful to show
that the functors between mixed characteristic and equicharacteristic zero can be modified
to take in accountMorleyization onRVwhile remaining in the right setting to transfer elim-
ination of quantifiers.

PropositionB.2:
Suppose T1 is Morleyized onΣ1 and letM1 andM2 ⊧ T1 be (∣L2∣κ)+-saturated. Then any partial
L2-isomorphism f ∶ F (M1)→ F (M2) is Σ2-elementary.

Proof . To show that f is Σ2-elementary, it suffices to show that the restriction of f to any
finitely generated structure is Σ2-elementary. To do so it suffices to show that the restric-
tion of f can be extended (on both its domain and its image) to any finitely generated Σ2-
extension. By symmetry, it suffices to prove the following property: if D1, D2 ⩽F (M1) are
such thatD1 → D2 is a Σ2-extension, ∣D2∣ ⩽ ∣L2∣ and f ∶ D1 → F (M2) is an L2-embedding,
then f can be extended to some g ∶D2 → F (M2).
ApplyingG to the initial data, we obtain the following diagram:

GF (M1) M2 GF (M2)
βM2oo

G(D2)

OO
g

::

G(D1)

OO G(f)

::uuuuuuuuuuuuuuuuuuuuuuu

where g comes from the fact that, as T is Morleyized on Σ1, βM2 ○G(f)∣Σ1
is in fact ele-

mentary and, as ∣G(D2)∣ ⩽ ∣L2∣κ, M2 is (∣L2∣κ)+-saturated and G(D1) → G(D2) is a Σ1-
extension, by Lemma (A.11), βM2 ○G(f) can be extended to g ∶ G(D2) → M2. Applying F ,
we now obtain:

D2

α−1D2// FG(D2)
F (g) // F (M2)

D1
//

OO

f

HH

FG(D1)

OO 99ssssssssss

and F (g) ○ α−1D2
is the extension we were looking for. ∎
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RemarkB.3:
1. One could hope the proposition to be true without the saturation hypothesis. But

without some saturation, it is not even true thatM1 ≼ M2 implies F (M1) ≼ F (M2).
Take for example the coarsening functor C∞ of Section 2 and Qp ≼ M where M is
ℵ0-saturated, then C∞(Qp) is trivially valued but C∞(M) is not.

2. One should beware that as F (M1) and F (M2) are not saturated, we have not proved
that T2 eliminates quantifiers.

3. We have proved nonetheless that, if Σi is the set of all Li sorts (in that case we ask
that T2 eliminates all quantifiers) then for allM1 andM2 ⊧ T1 sufficiently saturated,
M1 ≡M2 implies F (M1) ≡ F (M2).

Corollary B.4:
Let T e

2 be a definable Σ2-enrichment of T2 (in the language Le2). Then F induces a functor
F e ∶ Str(T1) → Str(T e

2 ) and G induces a functor Ge ∶ Str(T e
2 ) → Str(T1). We can also find a

full subcategory Fe of F such that F e andGe induce an equivalence of categories between Fe and
StrF e,(∣L2∣κ)+(T

e
2 ). The functor Ge still respects cardinality up to κ, models and elementary sub-

models and sendsΣ2 toΣ1 andF e respects cardinality up to κ+ ∣L2∣ and (∣L2∣κ)+-saturatedmod-
els. Finally, Fe contains all (∣L2∣κ)+-saturated models and any C in Str(T1) has a Σ1-extension
D inFe. Moreover, ifC ⩽M1 ⊧ T1 andM1 is (∣L2∣κ)+-saturated, then we can find such aD ⩽M1.

Proof . Let C ⩽M ⊧ T1. We can suppose thatM is (∣L2∣κ)+-saturated. As F (M) ⊧ T2, we
can enrich F (M) to make it into an Le2-structure F (M)e ⊧ T e

2 and we take F e(C) = ⟨C⟩Le
2
.

Note that if M1 and M2 are two (∣L2∣κ)+-saturated models containing C , then Proposi-
tion (B.2) implies that idF (C) is a partial isomorphism F (M1)→ F (M2) Σ2-elementary and
hence the generatedLe2-structures areLe2-isomorphic. As F e(C) does not depend (up toLe2-
isomorphism) on the choice of (∣L2∣κ)+-saturated model containing C , F e is well-defined
on objects. If f ∶ C1 → C2 is a morphism in Str(T1), by the same Proposition (B.2), F (f)
is Σ2-elementary and can be extended to a Le2-isomorphism on the Le2-structure generated
by its domain. Note that if we denote by iC the embedding F (C) → F e(C), we have also
defined a natural transformation from F to F e (a meticulous reader might want to add the
forgetful functor Str(T e

2 )→ Str(T2) for it all to make sense).
We defineGe to beG (precomposed by the same forgetful functor). All the statements about
Ge follow immediately from those about G. As ⟨F (C)⟩Le

2
has cardinality at most ∣C ∣κ∣L2∣ ⩽

∣C ∣κ+∣L2∣, F respect cardinality up to κ + L2 and ifM ⊧ T1 is (∣L2∣κ)+-saturated then seeing
it as a substructure of itself we obtain that F e(M) ⊧ T e

2 .
We defineFe to be the full-subcategory ofF containing theC such that iC is an isomorphism.
In particular, it contains (∣L2∣κ)+-saturated models. LetD be an Le2-substructure of F e(M)
for some (∣L2∣κ)+-saturatedM ⊧ T1. Then F eGe(D) = ⟨FG(D)⟩Le

2
, where the generated

structure is taken in F (M). By Proposition (B.2), the (natural) isomorphismD → FG(D) is
Σ2-elementary and can be extended (uniquely) into anLe2-isomorphism betweenD = ⟨D⟩Le

2

and F eGe(D). This new isomorphism is also natural. It follows that FG(D) = F eGe(D)
and that iG(D) is in fact an isomorphism, henceG(D) ∈ Fe.
If C ∈ Fe, βC ○G(i−1C ) ∶ GeF e(C) → C is a natural isomorphism. Finally, there remains to
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show that anyC →M ⊧ T1, whereM is (∣L2∣κ)+-saturated, can be embedded in someE ∈ Fe

such that C → E is a Σ1-extension and E → M . We already know that there exists D ∈ F
such thatC →D →M andC →D is aΣ1-extension. NowF (D)→ F e(D) is aΣ2-extension
henceD ≅ GF (D)→ GF e(D) is aΣ1-extension. MoreoverGF e(D)→ GF e(M) ≅M and,
as F e(D) is an Le2-structure of F e(M),GF e(D) ∈ Fe. Thus we can take E = GF e(D). ∎

Let us now prove a second result in the spirit of Proposition (B.2), but the other way round.

PropositionB.5:
If T1 is Morleyized on Σ1 and T2 eliminates quantifiers, then T1 eliminates quantifiers.

Proof . To show that T1 eliminates quantifiers it suffices to show that for all κ+-saturated
Mi ⊧ T1, i = 1,2, and C1 ⩽C2 ⊆ M1 and f ∶ C1 → M2 an L1-embedding, then f can be
extended to an embedding from C2 into some elementary extension ofM2. Let D1 ∈ F be
such that C1 → D1 → M1 and C1 → D1 is a Σ1-extension. As T1 is Morleyized on Σ1,
by Lemma (A.11), we can extend f to an embedding from D1 into an elementary extension
of M2. Replacing C1 by D1, C2 by ⟨D1C2⟩L1 and M2 by its elementary extension, we can
consider that C1 ∈ F. Applying F , we obtain the following diagram:

F (M1) M⋆
2

F (C2)

OO
g

99

F (M2)

≼

OO

F (C1)

OO

F (f)

99ttttttttt

whereM⋆
2 is a (∣C1∣ℵ0)+-saturated extension of F (M2) and g comes from quantifier elimi-

nation in T2 and saturation ofM⋆
2 . ApplyingG we obtain:

C2
// GF (C2)

G(g)
// G(M⋆

2 )

C1

OO

//

f

55GF (C1)

OO

GF (f)
// GF (M2)

≼

OO

oo //M2

≼
ddIIIIIIIII

and we have the required extension. ∎
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