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Abstract. Given a structure M and a stably embedded ∅-definable set Q,

we prove tameness preservation results when enriching the induced structure

on Q by some further structure Q. In particular, we show that if T = Th(M)
and Th(Q) are stable (resp., superstable, ω-stable), then so is the theory T [Q]

of the enrichment ofM by Q. Assuming simplicity of T , elimination of hyper-
imaginaries and a further condition on Q related to the behavior of algebraic

closure, we also show that simplicity and NSOP1 pass from Th(Q) to T [Q].

We then prove several applications for tame expansions of weakly minimal
structures and, in particular, the group of integers. For example, we construct

the first known examples of strictly stable expansions of (Z,+). More gener-

ally, we show that any stable (resp., superstable, simple, NIP, NTP2, NSOP1)
countable graph can be defined in a stable (resp., superstable, simple, NIP,

NTP2, NSOP1) expansion of (Z,+) by some unary predicate A ⊆ N.

1. Introduction

The work presented in this article began when the authors met to discuss two
open questions from the literature on stable expansions of the group of integers.
Recall that (Z,+) is a canonical example of a group whose theory is superstable,
but not ω-stable. Over the last several years, there has been an extensive amount
of work on classifying (or at least cataloguing) stable expansions of (Z,+). See
[Con19, Con18, CL20, Haw20, LP20, PS18]. A compelling phenomenon is that every
proper stable expansion of (Z,+) identified in these previous sources is superstable
of U -rank ω (recall that (Z,+) itself has U -rank 1).1 This raises the following
questions, which are asked implicitly in [Con19, Question 7.10].

Question 1.

(a) Is there a strictly stable expansion of (Z,+)?
(b) Is there a superstable expansion of (Z,+) with U -rank not equal to ω?

The strategy undertaken to answer this question (which we will do) led us to a
much broader line of research and more general theorems. In particular, our results
not only add a significant new dimension to the understanding of stable expansions
of (Z,+), but also to other forms of tameness in expansions of arbitrary weakly
minimal structures, as well as the fully general question of preserving dividing lines
when enriching the induced structure on a stably embedded definable set. Thus,
before discussing the answer to the above question, we will first introduce what
we mean by “enriching structure”, and describe our general results on preserving
model-theoretic tameness in this context.

An appropriate starting point is the general framework of “model theory over a
predicate”. As described very nicely by Baldwin and Benedikt in the introduction
of [BB00], this research area can be divided to at least two main subtopics. The

Date: April 25, 2023.
1By the U -rank of a structure, we mean the U -rank of its complete theory.
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first deals with the extent to which one can learn about a structure (M, P ) from
the induced structure on P alone. See [BB00] for some specific references for this
line of research. The second subtopic deals with a kind of converse question: To
what extent do model-theoretic properties of a structure survive after naming a
new unary set? Usually one aims to preserve dividing lines such as stability, NIP,
simplicity, etc., and there is a significant amount of existing literature along these
lines. For example [BB00] and [CZ01] focus on preserving stability when naming
a new predicate, while [CS13] extends this to NIP. Those sources also draw from
earlier work of Poizat [Poi83] on belle paires, which has led to similar such notions
as lovely pairs [BYPV03], H-structures [BV16], and more.

Our work connects to the second subtopic above, and can be seen as a general
continuation of this line of thought. Let M be a structure, and suppose one is
given an ∅-definable set Q (e.g., a unary predicate). Then most reasonable forms
of model-theoretic tameness (e.g., stability), will be inherited by the structure on
Q induced from M. Suppose now that we enrich the M-induced structure on Q
to some expanded structure Q, which still maintains some level of tameness. Is
the corresponding enrichment ofM still tame? As we will see below, provided one
further assumes that Q is stably embedded in Th(M),2 then many dividing lines
yield a positive answer (under additional assumptions in some cases).

As far as we are aware, the only result of this nature in the literature is the
preservation of NIP, which appears in [JS20, Proposition 2.5] and [CS15, Lemma
48] (see Fact 3.6 below). In [JS20], this result is used to prove NIP for various
valued fields (in the spirit of Ax-Kochen-Ershov) by enriching the residue field in
a way that preserves NIP. The first main goal of this article is to prove analogous
preservation results for other model-theoretic dividing lines. With an eye toward
Question 1, we will start with various forms of stability.

Theorem A. Let T be a complete theory and let Q be an ∅-definable stably em-
bedded set in T . Fix an arbitrary structure Q expanding Qind, and let T [Q] be the
corresponding enrichment of T . Then T [Q] is stable (resp., superstable, ω-stable)
if and only if T and Th(Q) are stable (resp., superstable, ω-stable).

This result is proved in Section 3.1 (see Theorem 3.3). The proof stems from the
fact that, since Q is stably embedded, we can characterize types in T [Q] by means
of certain types in T and Th(Q) (see Proposition 2.8). The preservation of stability
can also be proved in a more combinatorial fashion along the lines of the proof for
NIP in [JS20] (see Remark 3.4). For superstability, the proof is more intricate and
relies on Shelah’s saturation spectrum [She90, Theorem VIII.4.7]. As a result we
obtain in Corollary 3.5 a negative answer to the question of existence of a strongly
dependent field which eliminates ∃∞, as opposed to fields of finite dp-rank [DG17,
Lemma 2.2]. The idea behind this example is due to Martin Hils.

In Section 3.2, we first recount the analogue of Theorem A for NIP (due to
[CS15, JS20]), and then we prove the analogue for NTP2 using various key results
of Chernikov and Hils [CH14] (see Propostion 3.7).

We then turn to the dividing lines of simplicity and NSOP1. For these notions of
tameness, we will prove conditional preservation results which require some further
assumptions. For one, we need to assume the starting theory T is simple with
elimination of hyperimaginaries. Moreover, we assume that the definable set Q
satisfies an additional coherence property for algebraic closure, which we refer to
as “algebraic embeddedness” (see Definition 4.11). Although somewhat technical,
this condition appears to be rather natural, and holds for several examples from

2Stable embeddedness is necessary; see Example 2.10.



ENRICHING A PREDICATE 3

the literature (see Sections 4.2 and 7.2). In any case, with these extra assumptions
we prove the following preservation result for simplicity and NSOP1.

Theorem B. Let T and Q be as in Theorem A. Assume further that T is simple
with elimination of hyperimaginaries, and that Q is algebraically embedded in T .
Then T [Q] is simple (resp., NSOP1) if and only if Th(Q) is simple (resp., NSOP1).

This theorem is proved in Section 4.5, and combines Theorem 4.35 and Corollary
4.36. The proof proceeds by characterizing (Kim-)forking independence over models
in T [Q] in terms of forking independence in T and (Kim-)forking independence in
Th(Q). Simplicity of T and algebraic embeddedness of Q are used in several steps
of the forking calculus. A crucial step is proving the independence theorem for
the relevant independence relation in T [Q]. This is done by first amalgamating
types in Q and then amalgamating (strong) types over Q. To carry out this latter
amalgamation, we introduce in Section 4.4 a structure H consisting of all definable
finite covers of Q. We then show that if Q is NSOP1, then so so is H, and we
then proceed with amalgamating types in H. Whether these extra assumptions are
necessary remains an interesting question for future work (see the discussion at the
end of Section 4.5 for further details).

In Sections 6 and 7 we turn to applications of the above theorems. Recall that our
initial motivation was Question 1 above. Even with Theorem A in hand, one does
not immediately obtain positive answers to the two parts of Question 1 because
of the fact that the induced structure on any infinite definable set in (Z,+) is
essentially the same as (Z,+). So, for example, finding a strictly stable enrichment
of the induced structure on a definable set in (Z,+) is roughly equivalent to the first
part of Question 1. Thus we will first need to expand (Z,+) by a unary predicate
with less complicated induced structure. Here we take a more general perspective
and work with “eventually indiscernible sequences” in arbitrary structures (see
Definition 6.1). Given any structureM, if Q ⊆M is enumerated by such a sequence
then the induced structure on Q is interdefinable with a pure set (see Lemma 6.5).
Moreover, ifM is weakly minimal (i.e., superstable of U -rank 1) then, using results
from [CZ01] and [CL20], we can name Q by a predicate, without losing stability,
and then apply the above preservation theorems to T = Th(M, Q). Given any
arbitrary structure N , we expand M to a structure that names N , meaning we
add a predicate for Q and an isomorphic copy of N with universe Q. This leads to
the following result, which is proved in Section 6.2 (see Theorem 6.10).

Theorem C. Assume L is countable and M is weakly minimal. Let N be a stable
(resp., superstable, NIP, NTP2) countable structure. Then there is a stable (resp.,
superstable, NIP, NTP2) expansion of M naming N .

The dividing lines of simplicity and NSOP1 are omitted from the previous re-
sult because, in the above setup, we do not necessarily know that an eventually
indiscernible sequence will enumerate a set satisfying the “algebraic embedded-
ness” condition necessary for Theorem B. However, in the special case that M is
(Z,+, 0, 1), we will show such that such sequences can be found (e.g., the sequence
of factorials; see Theorem 7.13). Thus we obtain the following main result regard-
ing tame expansions of the group of integers (which combines Theorem 7.2 and
Corollary 7.15).

Theorem D. Let N be a stable (resp., superstable, NIP, NTP2, simple, NSOP1)
countable structure. Then there is a stable (resp., superstable, NIP, NTP2, simple,
NSOP1) expansion Z of (Z,+) naming N . Moreover, the U -rank of Z is at least
that of N .

This result immediately gives a positive answer to both parts of Question 1. We
also note that, while NIP expansions of (Z,+) are well known (e.g., Presburger



4 G. CONANT, C. D’ELBÉE, Y. HALEVI, L. JIMENEZ, AND S. RIDEAU-KIKUCHI

arithmetic (Z,+, <)), and there has been some work on simple expansions (see
Section 1.2), to our knowledge there are no properly NTP2 or NSOP1 expansions
of (Z,+) appearing in previous literature.

Our main preservation results can also be used to answer an assortment of other
related questions about tame expansions of (Z,+) and weakly minimal structures in
general. In the remainder of this extended introduction, we will briefly summarize
several of these applications.

1.1. Expansions of (Z,+) by unary predicates. With the exception of [Haw20],
essentially all of the previous literature on stable expansions of (Z,+) focuses on
expansions of the form (Z,+, A) where A is some subset of Z. It is thus natural to
ask if a positive answer to Question 1 can be obtained using expansions of (Z,+) by
unary predicates, rather than by more complicated structures. In Section 7.3, we
prove the following result (a special case of Theorem 7.16), which shows that any
countable graph can be coded into an expansion of (Z,+) by some unary predicate,
while preserving various kinds of model theoretic complexity.

Theorem E. Let Q = {n! : n ∈ N}, and suppose E is an arbitrary graph relation
on Q. Define A = Q ∪ {a+ b : (a, b) ∈ E}.
(a) (Z,+, A) is interdefinable with (Z,+, Q,E).
(b) (Z,+, A) is stable (resp., superstable, simple, NIP, NTP2, NSOP1) if and only

if (Q,E) is stable (resp., superstable, simple, NIP, NTP2, NSOP1). Moreover,
the U -rank of (Z,+, A) is at least that of (Q,E).

The previous result applies more directly to [Con19, Question 7.10] (which mo-
tivated Question 1 above). In particular, this question from [Con19] focuses on
the (Z,+, 0, 1)-induced structure on a subset A ⊆ Z, which we denote AZ

ind. The
question asks whether there is a subset A ⊆ N such that AZ

ind is strictly stable,
and also which (countable) ordinals α can be realized as the U -rank of AZ

ind for
some A ⊆ N.3 We will use Theorem E to provide a positive answer to the first
question about strictly stable induced structure (see Corollary 7.21(a)). As for the
latter question about possible U -ranks in induced structure, we first note for con-
text that in the current literature, all examples of stable structures (Z,+, A), with
A ⊆ N, yield induced structure AZ

ind of U -rank 1. Shortly after [Con19] appeared,
the fourth author pointed out that one can obtain finite U -ranks using sumsets.
However, before the present work, there was no known example of a set A ⊆ Z with
AZ

ind superstable of infinite U -rank. See Corollary 7.21 for details.

1.2. Simple expansions of (Z,+). In [KS17], Kaplan and Shelah showed that if
P is the set of integers whose absolute value is prime then, assuming a number-
theoretic hypothesis called Dickson’s Conjecture, (Z,+, P ) is supersimple of SU-
rank 1 and unstable. Using a similar strategy, Bhardwaj and Tran [BT21] showed
that if S is the set of squarefree integers then (Z,+, S) is supersimple of SU-rank
1 and unstable (without any conditional hypotheses). For both of these results,
the proofs involve substantial machinery from number theory (e.g, the proof of
instability for (Z,+, P ) uses the work of Green and Tao on arithmetic progressions
in primes). Thus it is natural to ask for a more combinatorially straightforward
way to obtain a properly simple expansion of (Z,+). In particular, Theorem E
shows that one can simply add a random graph on top of the factorials.

A common feature in the examples (Z,+, P ) and (Z,+, S) above is that both P
and S are subsets of Z that are neither bounded above nor bounded below. This

3In [Con19], the focus on subsets of N, rather than Z, is done for thematic reasons related to
the discussion at the start of Section 1.3.
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property is crucial for simplicity in these examples. Indeed, using classical number-
theoretic facts, it is not hard to show that if one expands (Z,+) by a predicate for
the primes, or a predicate for the positive squarefree integers, then the resulting
structure defines the ordering on Z (e.g., this follows from [Con19, Corollary 8.17]).
These observations led the first author to ask whether one could obtain a properly
simple expansion of (Z,+) by naming a subset of N (see [Con19, Question 8.19]).
The intuition for a possible negative answer was that sparse subsets of N tend to
yield stable expansions of (Z,+), while dense subsets can be used to define the
ordering via sumsets. Nevertheless, Theorem E provides a positive answer.

1.3. Expansion by mutually algebraic structure. A recurring theme in the
study of stable expansions of (Z,+) is that given some A ⊆ N, if (Z,+, A) is stable
then A must be quite sparse. For example, any sumset A + . . . + A must have
upper Banach density 0 (see [Con19, Theorem 8.8] or [Con21, Corollary 6.2]). This
drastic level of sparsity led the first author to conjecture (in a preliminary version
of [Con19]) that if A ⊆ N and (Z,+, A) is stable, then (Z,+, B) is stable for any
B ⊆ A. Other evidence was the fact that this property holds for all examples
from the sources mentioned above. However, the fourth author soon noted that the
conjecture is false (see Proposition 7.20 below).

It was later understood that the hereditary nature of stability in the examples
from previous work could be accounted for by finer model-theoretic properties of the
induced structure. Then in all of the examples from [Con19, Con18, LP20, PS18]
of sets A ⊆ Z for which (Z,+, A) is stable, it turns out that AZ

ind is superstable of
U -rank 1 with trivial forking (e.g., for many examples, AZ

ind ends up being interde-
finable with an expansion of (N, x 7→ x + 1) by unary predicates). In this case, it
follows from work of Laskowski [Las13] that for any B ⊆ A, the expansion (AZ

ind, B)
is again superstable of U -rank 1 (with trivial forking), and thus the same holds for
BZ

ind. It then follows that (Z,+, B) is stable (e.g., using Fact 6.8 below).
The conclusions of the above discussion were previously accounted for in [CL20,

Theorem 3.21] (in a general group-theoretic context). However, the following more
nuanced question was left open. Specifically, suppose A ⊆ Z is as in the previous
paragraph, and B ⊆ A. Then (Z,+, A) and (Z,+, B) are both stable; but what
about (Z,+, A,B)? Even more, suppose we expand (Z,+) by predicates for all
subsets of A. Is this still stable? A related situation is considered by Lambotte and
Point [LP20], who show that if A ⊆ N is enumerated by a “regular” sequence, and
sA denotes the successor function on A, then (Z,+, A, sA) is stable.4 In Section 6.3,
we use our preservation result for superstability, together with work of Laskowski
[Las13], to prove a broad generalization. Given any set A, we let Ama denote the
collection of all mutually algebraic relations on A (see Definition 6.16; examples of
such relations include subsets of A and injective functions from A to itself).

Theorem F. Suppose M is weakly minimal and A ⊆ M is such that the M-
induced structure on A is weakly minimal with trivial forking. Then (M, Ama) is
superstable.

The previous result is proved in Corollary 6.20 below. A corresponding version
also holds whenM is only stable/superstable, provided that the set A is assumed to
be definable inM (see Theorem 6.19). Returning to our discussion of the integers,
suppose A ⊆ Z is such that AZ

ind is weakly minimal with trivial forking (recall that
this includes all examples from [Con19, Con18, LP20, PS18]). Then (Z,+, Ama)
is superstable. By the definition of mutual algebraicity (see Example 6.17), this
expansion includes predicates for all subsets of A, all bounded-to-one functions on
A (e.g., the successor function sA), all bounded degree graphs on A, and more.

4In some cases, sA is definable in (Z,+, A), but this need not hold for all A in [LP20].
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Notation and conventions. We use small letters a, b, c for tuples and capital
letters A,B,C for sets. We also employ the standard model-theoretic abuse of
notation and write a ∈ A to denote that a is a tuple of elements from A, when the
length of the tuple is immaterial or understood from context. When working in a
monster model U of some theory T , we assume that all tuples and sets are strictly
smaller in cardinality than the saturation of U , unless otherwise stated or implied
from context. We also abuse notation and write AB for A ∪B.

Given a structure M with universe M , and an arbitrary subset X ⊆ M , we
denote by XMind the relational structure with universe X and induced structure
from ∅-definable sets inM. WhenM is understood from context we may use Xind

in place of XMind. Given a parameter set A ⊆ M , we let MA denote the canonical
expansion of M by constants naming all elements of A.

If M1 and M2 are structures with the same universe M (but possibly different
languages), then we say that M1 is an definable reduct of M2 if every subset of
Mn definable in M1 (with parameters) is definable in M2. We say that M1 and
M2 are interdefinable if they are definable reducts of each other.

We identify an automorphism of a structure M with its canonical extension to
Meq. When working with a fixed theory T , we use the letters M,N for small
models of T , and thus use the same notation for the universe of the model.
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2. Preliminaries on stably embedded sets

Let T be a theory in a (possibly multi-sorted) language L.

Definition 2.2. A definable set Q is stably embedded in T if for any model M
of T , any M -definable subset X ⊆ Q(M)n is Q(M)-definable.

Throughout this section, we let Q be a fixed ∅-definable stably embedded set in
T . We note the following easy observation.

Remark 2.3. Stable embeddedness of Q is preserved after naming constants, i.e.,
for any M |= T and A ⊆M , Q is stably embedded in Th(MA).

We wish to understand types over Q by means of a type with small domain. This
will be done in the following results, some of which are folklore but never written
down to the best of our knowledge.

We first consider the case that T is stable. Note that in this case, the assumption
that Q is stably embedded is redundant.

Lemma 2.4. Assume T is stable, and let M be a model of T . Fix a finite tuple
a ∈M and a set B ⊆M .

(a) There is a tuple d ∈ Q(M), with |d| ≤ |T |, such that for every N � M ,
tpT (a/Bd) ` tpT (a/BQ(N)).
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(b) If T is countable and ω-stable then in (a) we may find d ∈ Q(M) with |d| finite.

Proof. Part (a). As tpT (a/BQ(M)) is definable, for every formula ϕ(x, y, z) there
is a formula ψϕ(y, z, bϕ,a, dϕ,a), with bϕ,a ∈ B and dϕ,a ∈ Q(M), such that for any
b ∈ B,

M |= ∀z ∈ Q (ϕ(a, b, z)↔ ψϕ(b, z, bϕ,a, dϕ,a)).

Let d = (dϕ,a)ϕ. Suppose a′ ∈ N � M is such that tpT (a/Bd) = tpT (a′/Bd), and
assume that ϕ(a, b, c) holds for some L-formula ϕ(x, y, z) and parameters b ∈ B
and c ∈ Q(N). Since the formula ∀z ∈ Q (ϕ(x, b, z) ↔ ψϕ(b, z, bϕ,a, dϕ,a)) is in
tpT (a/Bd), it follows that ϕ(a′, b, c) holds.

Part (b). Assume T is ω-stable. Then every complete type tpT (a/BQ(M)) is
definable over a finite subset of BQ(M) (see [Mar02, Corollary 6.3.6]). The rest is
as in part (a). �

If T is not stable, we can still find such elements, but we might need to relax
the bound on the cardinality. In order to have some canonicity, imaginaries will be
required. As Q is ∅-definable, any ∅-definable equivalence relation E on Qn extends
to an ∅-definable equivalence relation E′(x, y) := E(x, y) ∨ (x 6∈ Qn ∧ y 6∈ Qn) on
all n-tuples. Thus the quotient Qn/E can be identified with an ∅-definable set DE

in the E′ sort of T eq. Given a model M |= T , we let Qeq(M) denote the union⋃
E DE(M eq) where the index ranges over all such E on Qn for all n.

Lemma 2.5. Let M be a model of T .

(a) For any B ⊆ M and finite tuple a ∈ M , there exists d ∈ Q(M), with |d| ≤
|B|+ |T |, such that for every N �M , tpT (a/Bd) ` tpT (a/BQ(N)).

(b) For any L-formula ϕ(x, z) (with z a Q-variable), there exists an Leq-formula
ψϕ(u, z) and an Leq-definable function fϕ(x) into Qeq(M) such that for any
a ∈M , ϕ(a,Q(M)) = ψϕ(fϕ(a), Q(M)).

(c) Fix B ⊆M and a finite tuple a ∈M . Define the tuple

c = (fϕ(a, b) : b ∈ B, ϕ(x, y, z) an L-formula) ∈ Qeq(M) ∩ dcleq(aB).

Then |c| ≤ |B|+ |T | and, for every N �M , tpT
eq

(a/Bc) ` tpT (a/BQ(N)).

Proof. Recall that Q is definable and stably embedded. So by compactness, for
any L-formula ϕ(x, z), with z a Q-variable, there exists an L-formula ψ∗ϕ(v, z)
such that for any M |= T and a ∈ M , there is some dϕ,a ∈ Q(M) such that
ϕ(a,Q(M)) = ψ∗ϕ(dϕ,a, Q(M)).

Part (a). Fix B ⊆ M and a ∈ M . Define the tuple d = (dϕ,a,b)ϕ,b from Q(M)
where dϕ,a,b is as above, and the index ranges over all L-formulas ϕ(x, y, z) and
tuples b ∈ B. Now fix N � M . We show tpT (a/Bd) ` tpT (a/BQ(N)). Without
loss of generality, assume N is sufficiently saturated. Let a′ ∈ N be an arbitrary
realization of tpT (a/Bd). Fix a formula ϕ(x, b, c) ∈ tpT (a/BQ(N)) with b ∈ B
and c ∈ Q(N). By elementarity, we have ϕ(a, b,Q(N)) = ψ∗ϕ(dϕ,a,b, Q(N)). Thus

ϕ(a′, b, Q(N)) = ψ∗ϕ(dϕ,a,b, Q(N)) since a′ ≡TBd a. So ϕ(a′, b, c) holds.
Part (b). Let cϕ,b,a be the canonical parameter for the formula ψ∗ϕ(dϕ,b,a, z)∧z ∈

Q. Then cϕ,b,a ∈ Qeq(M) ∩ dcleq(aB). Let ψϕ(u, z) be the projection of ψ∗ϕ(v, z)
to the sort of cϕ,b,a, and let fϕ(x, y) be the ∅-definable function (in T eq) mapping
a to cϕ,b,a.

Part (c). This follows from part (b) using an argument similar to part (a), but
working in T eq with ψϕ instead of ψ∗ϕ. �

Remark 2.6. The following are immediate consequences of Lemma 2.5.

(a) For any M |= T and B ⊆ M , every B-definable subset of Q(M)n is definable
over dcleq(B) ∩Qeq(M).
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(b) On the other hand, if B is an elementary substructure ofM , then no imaginaries
are needed, i.e., every B-definable subset of Q(M)n is Q(B)-definable.

Given M |= T and B ⊆M , let QBind(M) denote the induced structure on Q(M)

from B-definable sets in M (in other words, QBind(M) is Q(M)MB

ind ). We write

Qind(M) for Q∅ind(M).
We now fix an arbitrary expansion Q of Qind in some language LQ, which we

assume (without loss of generality) to be disjoint from L. Let L[Q] = L ∪ LQ and
let T [Q] be the corresponding enrichment of T by Th(Q) on Q. In the following
results, we assume the existence of saturated models. This can be achieved under
some set-theoretic assumptions which do not affect the validity of what we want to
prove, see e.g. [HK21].

Proposition 2.7. Let M,N |= T [Q] be saturated models of the same cardinality.
Then any LQ-isomorphism from Q(M) to Q(N) extends to an L[Q]-isomorphism
from M to N . Consequently, T [Q] is complete, the definable set Q is stably embed-
ded in T [Q], and the L[Q]-induced structure on Q is Q.

Proof. Pick an LQ-isomorphism f : Q(M) → Q(N). Since T is complete, we may
also choose an L-isomorphism i : M → N . Let i0 be the restriction of i to Q(M).
Then i-10 f is an automorphism of Qind(M), and thus by stable embeddedness of Q
in T , i-10 f extends to an L-automorphism g of M (see [CH99, Lemma 1, Appendix]).
Now define σ = ig : M → N . Then σ is an L-isomorphism, which extends f by
construction, and therefore must also be an L[Q]-isomorphism, as desired.

It now follows that T [Q] is complete and, moreover, Q is stably embedded in
T [Q] (again by [CH99]). Finally, suppose X is an L[Q]-definable subset of Qn for
some n ≥ 1. Then by the above, X(M) is invariant under automorphisms of Q(M).
By saturation, it follows that X is LQ-definable. �

Proposition 2.8. Fix M |= T [Q], B ⊆ M , and a ∈ M . Suppose c ∈ Qeq(M) is
such that tpT

eq

(a/Bc) ` tpT (a/BQ(N)) for some saturated N �M with |N | > |B|.
(a) Suppose E ⊆ Qeq(M) is such that any automorphism of Qind(N) fixing E is

an automorphism of QBind(N). Then

tpT
eq

(ac/B) ∪ tpQ
eq

(c/E) ` tpT [Q]eq(ac/B).

(b) If E = dcleq(B) ∩Qeq(M) then tpT
eq

(ac/B) ∪ tpQ
eq

(c/E) ` tpT [Q]eq(ac/B).
(c) If B = ∅ or B is an elementary substructure of M then

tpT (ac/B) ∪ tpQ(c/Q(B)) ` tpT [Q](ac/B).

Proof. Part (a). It suffices to consider the case where M is already saturated with
|M | > |B| (and so we take M = N).

Fix a′c′ ∈M such that ac ≡T eq

B a′c′ and c ≡Q
eq

E c′. Then by saturation of Q(M),
there is an automorphism σ of Q(M) sending c′ to c and fixing E pointwise. By
assumption, σ is an automorphism of QBind(M). Therefore, in light of Remark 2.3,
we can apply Proposition 2.7 in the setting where L includes constants for B, and
extend σ to an L[Q]-automorphism of M fixing B.

Let a′′ = σ(a′). Then a′′c ≡T [Q]eq

B a′c′ ≡T eq

B ac, and so tpT
eq

(a′′/Bc) =

tpT
eq

(a/Bc). Since tpT
eq

(a/Bc) ` tpT (a/BQ(M)), we have tpT (a′′/BQ(M)) =
tpT (a/BQ(M)). By stable embeddedness of Q (even after naming B), there exists
an L-automorphism τ of M that fixes BQ(M) pointwise and sends a′′ to a (see,
e.g., [TZ12, Lemma 10.1.5]). Note that τ is automatically an L[Q]-automorphism
as well, and τ fixes c since c ∈ Qeq(M). So we have τσ(a′c′) = ac and hence

a′c′ ≡T [Q]eq

B ac, as desired.
Part (b). By Remark 2.6(a), E satisfies the assumptions in part (a).
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Part (c). If B = ∅ then we can clearly take E = ∅ in part (a). If B � M then
E = Q(B) satisfies the assumptions in part (a) by Remark 2.6(b). �

As a direct consequence of Proposition 2.8, we now obtain the following corollary,
which summarizes two well known results (part (a) appears in [CS15, Lemma 46];
part (b) was proved in various settings and stems from [Del12]). For part (b), to
ensure elimination of imaginaries one might need to allow Q to be a small union of
stably embedded definable sets. The results above can be adapted to this setting;
since we will not need this corollary for later work, we leave the proof to the reader.

Corollary 2.9. Assume that T and Th(Q) have quantifier elimination with respect
to L and LQ, respectively.

(a) Every L[Q]-formula ϕ(x) is equivalent, modulo T [Q], to a formula of the form

�1y1 ∈ Q . . .�nyn ∈ Qψ(x, y),

where �i ∈ {∀,∃} and ψ(x, y) is a Boolean combination of quantifier-free L-
formulas and quantifier-free LQ-formulas.

(b) Assume also Th(Q) eliminate imaginaries. Define L[Q]cb = L[Q] ∪ {fϕ :
ϕ is an L[Q]-formula}, and let T [Q]cb be an expansion by definition of T [Q]
where we interpret fϕ as in Lemma 2.5(b). Then T [Q]cb has quantifier elimi-
nation with respect to L[Q]cb.

The next two sections will focus on results showing that various forms of model-
theoretic tameness are preserved when passing from T and Q to T [Q] (sometimes
with further assumptions). So we end this section with an example showing that
stable embeddedness is necessary in general for this kind of preservation result.

Example 2.10. Let L consist to two unary relations P and Q, and a binary relation
E. Let T be the complete theory of the Fräıssé limit of all finite bipartite graphs.
Recall that T is simple and has quantifier elimination in L. From this one can show
that Q is not stably embedded, and that the (∅-definable) induced structure on Q
is a pure set. We first note that, given some structure Q expanding Qind, it need
not be the case that T [Q] is complete. For example, let Q add an infinite co-infinite
unary predicate X on Qind. Then T [Q] does not decide the sentence saying that
there is some point in P connected by E to a point in X.

In light of the previous observation, it is more natural to phrase the question of
preserving tameness as a question about models. In particular, if one expands a
model M0 of T to an L[Q]-structure M by expanding Qind(M0) to Q, then does
M maintain the same tameness present in T in Th(Q)? We now show that this is
not the case. Let Q be (Z,+), viewed as an expansion of Qind. Then T is simple
and Th(Q) is stable. Let M0 be the countable model of T . Let A ⊆ Z be an
arbitrary infinite co-infinite set, and let Q∗ be the structure (Z,+, A). Since M0

is universal for infinite bipartite graphs, we can find some point a ∈ P (M0) whose
E-neighborhood E(a,M0) is infinite and co-infinite. Now expand M to an L[Q]-
structure by naming Q = (Z,+) on Qind(M0) in such a way that E(a,M0) coincides
with A. Then Q∗ is a definable reduct of M since E(a,M0) is L[Q]-definable using
the parameter a.

In conclusion, if T and Q are as in the previous paragraph, then any model theo-
retic complexity that can be obtained when expanding (Z,+) by a unary predicate
can also be obtained when expanding a model T by naming Q on Qind. So for
example, we can obtain the strict order property by using Presburger arithmetic
(Z,+,N). More generally, it follows from Theorem 7.16 below that any countable
graph can be found as a definable reduct of some L[Q]-structure M |= T [Q] ob-
tained as above. Consequently, any countable structure in a finite language can be
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interpreted in a countable model of T [Q] (e.g., by [Hod93, Theorem 5.5.1]; one can
also extend to countable languages using [BZ92]).

3. Preservation of stability, NIP, and NTP2

3.1. Stability. Let T be a complete stable theory. Fix an ∅-definable set Q in
T , and an expansion Q of Qind. Recall that, since T is stable, Q is automatically
stably embedded.

Lemma 3.1. Fix a model M of T [Q].

(a) |ST [Q](M)| ≤ |ST (M)||T | · |SQ(Q(M))||T |.
(b) If T is countable and ω-stable, then |ST [Q](M)| ≤ |M | · |SQ(Q(M))|.
(c) Given λ > |T [Q]|, if M�L and Q(M) are λ-saturated then so is M . Thus if T

and Th(Q) have saturated models of size λ > |T [Q]|, then so does T [Q].

Proof. Part (a). Let N � M be a saturated extension. By Lemma 2.4(a) and
Proposition 2.8(c), for every finite tuple a ∈ N there is some ca ⊆ Q(N) with
|ca| ≤ |T | such that tpT (aca/M)∪ tpQ(ca/Q(M)) ` tpT [Q](aca/M) ` tpT [Q](a/M).
This yields the desired inequality.

Part (b). This follows using the same argument as in part (a), except that by
Lemma 2.4(b) we may further assume that each ca is finite .

Part (c). Let N �M with |N | ≤ λ, let p ∈ ST [Q](N), and let U be some monster
model of T [Q]. Let a |= p in U . By Lemma 2.4(a) and Proposition 2.8(c), there is
some c ∈ Q(U) such that |c| ≤ |T | and tpT (ac/N) ∪ tpQ(c/Q(N)) ` tpT [Q](ac/N).
Since Q(M) is λ-saturated, we may find c′ |= tpQ(c/Q(N)) inside Q(M). Since
M�L is λ-saturated, we can then find a′ ∈M such that tpT (a′c′/N) = tpT (ac/N).
Since we also have c′ |= tpQ(c/Q(N)), it follows that a′c′ |= tpT [Q](ac/N) and, in
particular, a′ |= p. So we have shown that M is λ-saturated. The final claim now
follows using the assumption that Q expands Qind. �

Although it will not be directly used in the subsequent results, we note the
following consequence of Lemma 3.1(a).

Remark 3.2. Given λ ≥ max{|T |, |Th(Q)|} with λ|T | = λ|Th(Q)| = λ, if T and
Th(Q) are λ-stable then T [Q] is also λ-stable.

We now state the main result of this section, which gives preservation of stability
(in various forms) when expanding the induced structure on a definable set. We
repeat the standing assumptions for clarity, and we recall again that definable sets
in stable theories are automatically stably embedded.

Theorem 3.3. Fix a complete theory T and an ∅-definable set Q in T . Let Q be
an arbitrary structure expanding Qind.

(a) If T and Th(Q) are stable, then so is T [Q].
(b) If T and Th(Q) are countable and ω-stable, then so is T [Q].
(c) If T and Th(Q) are superstable, then so is T [Q].

Proof. Part (a). Assume that T and Th(Q) are both stable. We need to check that
|S(M)| ≤ |M ||T [Q]| for every model M |= T [Q]. This follows easily from Lemma
3.1(a) and stability of T and Th(Q).

Part (b). This is immediate from Lemma 3.1(b).
Part (c). Assume that T and Th(Q) are both superstable and that T [Q] is

not superstable. Then T [Q] is strictly stable by part (a). So by [She90, Theorem
II.3.14], T [Q] is not λ-stable for any λ satisfying λ < λℵ0 .

Let λ = iℵ0(|T [Q]|). By König’s theorem, λ < λcf(λ) ≤ λℵ0 ≤ λ<λ and obviously
λ > |S(T [Q])|. By [She90, Theorem VIII.4.7], T [Q] has no saturated model of
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cardinality λ. By Lemma 3.1(c), either T or Th(Q) has no saturated model of
cardinality λ. Without loss of generality assume that it is T ; then by [She90,
Theorem VIII.4.7] again, T is not λ-stable. On the other hand, T is superstable
hence λ-stable for every λ ≥ 2|T | ([She90, Theorem II.3.14]), contradiction. �

Remark 3.4. Part (a) of Theorem 3.3 can also be proved in similar fashion to
[JS20, Proposition 2.5], using the fact that ϕ(x, y) has the order property if and
only if there is an indiscernible sequence (ai)i<ω2 and b such that ϕ(ai, b) holds
if and only if i < ω. One must then also prove a corresponding version of [JS20,
Lemma 2.2].

We take the opportunity now to state a specific application of the previous theo-
rem, since it was one of the seeds that later developed to the results in this section.
For motivation, recall that by [DG17, Lemma 2.2] every (not necessarily pure) field
of finite dp-rank eliminates ∃∞, and also that, conjecturally, every strongly depen-
dent pure field is of finite dp-rank [HHJ19, Proposition 3.11]. During a talk by the
third author in GTM Paris, Martin Hils noted that given Theorem 3.3(b), one can
construct an ω-stable (expansion of a) field that does not eliminate ∃∞, and thus
is strongly dependent but not of finite dp-rank.5

Corollary 3.5 (Hils). There exists an expansion K of a field (K,+, ·) such that
Th(K) is ω-stable, but does not eliminate ∃∞. In particular, Th(K) is strongly
dependent but not of finite dp-rank.

Proof. Let K be a uncountable algebraically closed field and let I ⊆ K be a
countable indiscernible sequence. By [BB00], (K,+, ·, I) is ω-stable and the in-
duced structure on I is a pure set. Let E be a new equivalence relation on I
with exactly one equivalence class of size n for every n < ω. By Theorem 3.3(b),
K = (K,+, ·, I, E) is still ω-stable. On the other hand, it obviously does not elimi-
nate ∃∞ and the result follows. �

Note that in the previous proof we took an arbitrary uncountable algebraically
closed field, expanded it by naming a countable indiscernible sequence equipped
with the canonical fcp theory of an equivalence relation, and concluded that the
resulting expansion is still ω-stable. After consulting [BB00], one can see that the
argument works with an arbitrary ℵ1-saturated ω-stable structure in place of the
field K. Theorem 6.10 will provide a closely related (and very general) result about
expanding any (not necessarily saturated) structure whose theory is superstable of
U -rank 1 (e.g., a model of ACF).

3.2. NIP and NTP2. In this subsection, we briefly discuss analogues of Theorem
3.3 in the context of NIP and NTP2 theories. As stated in the introduction, the
NIP analogue appears in previous literature; see [CS15, Lemma 48] and [JS20,
Proposition 2.4].

Fact 3.6 (Chernikov-Simon; Jahnke-Simon). Fix a complete theory T and an ∅-
definable set Q, which is stably embedded in T . Let Q be an arbitrary structure
expanding Qind. If T and Th(Q) are NIP, then so is T [Q].

The NTP2 analogue is essentially proved by Chernikov and Hils in [CH14], al-
though not explicitly. So we take the opportunity to spell out the details.

Proposition 3.7. Fix a complete theory T and an ∅-definable set Q, which is stably
embedded in T . Let Q be an arbitrary structure expanding Qind. If T and Th(Q)
are NTP2, then so is T [Q].

5DCF0 is also an example of a strongly dependent field which is not of finite dp-rank.
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Proof. As indicated above, the proof is largely a matter of combining several key
results from [CH14], along with a few basic tools from Section 2. For a contradiction,
assume T [Q] has TP2. By [CH14, Lemma 3.9], we find an L[Q]-formula ϕ(x, y)
and strongly indiscernible array (aij)i,j∈ω witnessing TP2 (see [CH14, Definition
3.1 and 3.4]), along with a realization c |= {ϕ(x, ai0) : i < ω} such that the sequence
of rows (ai)i<ω is indiscernible over c. Using Lemma 2.5(a), let d ∈ Q be a tuple
such that tpT (ca00/d) ` tpT (ca00/Q(N)) for every N |= T [Q] containing c and
a00. Note that, by Proposition 2.7, Q is stably embedded in T [Q] with induced
structure Q, which is NTP2. Therefore, by [CH14, Lemma 3.8], we may assume
d ⊆ a00. Now we have tpT (ca00)∪ tpQ(d) ` tpT [Q](ca00) by Proposition 2.8(c), and
thus tpT (c/a00) ` tpT [Q](c/a00). Since T is NTP2, it follows from [CH14, Lemma
3.11] that {ϕ(x, a0j) : j < ω} is consistent, contradicting that (aij)i,j<ω witnesses
TP2 for ϕ(x, y). �

4. Preservation of NSOP1 and simplicity

4.1. Preliminaries. Let T be a complete theory with monster model U .

Definition 4.1. Let |̂ be an invariant ternary relation on small subsets of U . We
define the following axioms.

(1) (normality) If A |̂
C
B then A |̂

C
BC.

(2) (monotonicity) If A |̂
C
BD then A |̂

C
B.

(3) (base monotonicity) If A |̂
C
BD then A |̂

CD
B.

(4) (finite character) If a |̂
C
B for all finite a ⊆ A, then A |̂

C
B.

(5) (existence) A |̂
C
C for any A and C.

(6) (extension) If A |̂
C
B then for any D there is A′ ≡BC A with A′ |̂

C
BD.

(7) (symmetry) If A |̂
C
B then B |̂

C
A.

(8) (transitivity) Given C ⊆ D ⊆ A, if A |̂
D
B and D |̂

C
B then A |̂

C
B.

(9) (local character) For every A and B there exists C ⊆ B such that |C| ≤ |A|+|T |
and A |̂

C
B.

(10) (the independence theorem over models) Let M be a small model, and assume
A |̂

M
B, C1 |̂ M A, C2 |̂ M B, and C1 ≡M C2. Then there is a set C such

that C |̂
M
AB, C ≡MA C1, and C ≡MB C2.

(11) (stationarity over models) Let M be a small model, and assume C1 |̂ M A,

C2 |̂ M A, and C1 ≡M C2. Then C1 ≡MA C2.

We also use the terminology monotonicity (resp., finite character, symmetry, ex-
istence, extension) over models to mean the axiom obtained by restricting to the
case when C is a small model M |= T . By base monotonicity (resp., transitivity)
over models, we mean the axiom obtained by restricting to the case when C and D
are small models M and N , with M ⊆ N .

Remark 4.2. Let |T^ denote forking independence in T . Then |T^ satisfies normal-
ity, monotonicity, base monotonicity, finite character, extension, and transitivity
(and also satisfies the natural “lefthand” analogues of normality and monotonicity).
Moreover, given A,B,C ⊆ U , we have:

(i) A |T^C
B ⇔ A |T^ acl(C)

B ⇔ acl(A) |T^C
B ⇔ A |T^C

acl(B), and

(ii) A |T^C
B ⇒ acl(A) ∩ acl(B) ⊆ acl(C).

Recall that T is simple if and only if forking independence satisfies symmetry.
In this case, forking independence coincides with dividing independence, and also
satisfies existence, local character, and the independence theorem over models. If
T is stable, then forking independence satisfies stationarity over models.
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Given tuples a, b ∈ U |= T , and a small model M , we say that tp(a/Mb) does
not Kim-divide over M if for any formula ϕ(x, b) ∈ tp(a/Mb) and any Morley
sequence (bi)i<ω in a global M -invariant extension of tp(b/M), the partial type
{ϕ(x, bi) : i < ω} is consistent. This leads to the natural analogue of Kim-forking,
and to the ternary relation of Kim-independence over models. By a standard ex-
ercise analogous to the case of forking, Kim-forking can be defined by forcing ex-
tension: tp(a/Mb) does not Kim-fork over M if and only if for every b′ ⊇ b, there
exists a′ ≡Mb a such that tp(a′/Mb′) does not Kim-divide over M .

Recall that T is NSOP1 if and only if Kim-independence satisfies symmetry over
models. Moreover, if T is simple, then Kim-independence and forking independence
coincide. See [KR20] for further details.

Remark 4.3. Using arguments similar to the case of forking independence, one can
show that Kim-independence satisfies conditions (i) and (ii) of Remark 4.2 when
C is a small model M . We will only need to use condition (i), which is proved for
NSOP1 theories in [KR20, Corollary 5.17]. So we sketch the proof for arbitrary
theories.

First, if tp(acl(a)/Mb) does not Kim-fork over M then neither does tp(a/Mb) by
the proof of [KR20, Corollary 5.17]. So we show that if tp(a/Mb) does not Kim-fork
over M , then neither does tp(acl(Ma)/Mb). Let us first consider Kim-dividing. If
tp(acl(aM)/bM) Kim-divides over M then there is a formula ϕ(x, b) and a Morley
sequence (bi)i<ω in tp(b/M) such that for some c ∈ acl(aM) such that ϕ(c, b), we
have that

∧
i ϕ(z, bi) is inconsistent. If θ(z, x) ∈ tp(ca/M) is such that θ(M, e)

is always finite, then
∧
i ∃zϕ(z, bi) ∧ θ(z, x) is also inconsistent, hence tp(a/bM)

Kim-divides. Finally, if tp(a/Mb) does not Kim-fork over M then, for every b′ ⊇ b,
there is an a′ ≡Mb a such that tp(a′/Mb′) does not Kim-divide over M . But
then tp(acl(Ma)/Mb′) does not Kim-divide over M and acl(Ma′) ≡Mb acl(Ma),
so tp(acl(Ma)/Mb) does not Kim-fork over M .

We will make use of the following observation.

Lemma 4.4. Let T0 be a simple reduct of T . For any M |= T and a, b ∈ U , if
tpT (a/Mb) does not Kim-divide over M (in the sense of T ), then tpT0(a/Mb) does
not fork over M (in the sense of T0).

Proof. Let p be a global extension of tpT (b/M), which is finitely satisfiable in M ,
and (bi)i<ω a Morley sequence in p overM , by which we mean that bn |= p�M(bi)i<n
for all n < ω. Let ϕ(x, b) ∈ tpT0(a/Mb). We show that ϕ(x, b) does not fork over
M (in the sense of T0). By simplicity of T0, it is enough to check that ϕ(x, b) does
not divide over M . As tpT (a/Mb) does not Kim-divide over M and (bi)i<ω is a
Morley sequence in the M -invariant type p, the partial type {ϕ(x, bi) : i < ω} is
consistent. Since (bi)i<ω is still a Morley sequence in the sense of T0, it then follows
from Kim’s Lemma that ϕ(x, b) does not divide over M . �

Remark 4.5. In the previous proof, the only facts used about T0 are Kim’s Lemma
(dividing with respect to one indiscernible sequence is equivalent to dividing with
respect to any indiscernible sequence) and the equivalence of forking and dividing.
Both of these facts have analogues for Kim-independence in the setting of NSOP1

theories [KR20]. Thus the proof of Lemma 4.4 also yields that if T0 is an NSOP1

reduct of T , and tpT (a/Mb) does not Kim-divide over M , then tpT0(a/Mb) does not
Kim-fork over M . We also note that if T0 is assumed to be stable with elimination
of imaginaries, then Lemma 4.4 has a generalization over acl-closed sets (this well-
known in the literature; see, e.g., [BMPW15, Lemma 2.1]).

Recall that in [KP97], Kim and Pillay characterized simple theories using the
existence of invariant ternary relation satisfying various axioms, which characterize
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the behavior of forking independence in the simple setting. An analogous treatment
of NSOP1 theories was developed in the work of Chernikov and Ramsey [CR16,
Proposition 5.8] and of Kaplan and Ramsey [KR20, Theorem 9.1]. This led to a
characterization of Kim-independence in NSOP1 theories which, while similar to the
Kim-Pillay theorem, was not a direct generalization in the strict sense. In [DK21],
Dobrowolski and Kamsma extended key results on NSOP1 theories to the setting of
positive logic. In doing so, they gave an axiomatization of Kim-independence over
models in NSOP1 theories which, when translated to the first-order setting, yields
a more direct correspondence to the result of Kim and Pillay. In particular, their
axiomatization can be obtained from [KP97, Theorem 4.2] by specializing all axioms
to be over models, removing base monotonicity, and replacing local character by
the following variation, which we refer to as chain local character.

(chain local character) Let a be a finite tuple and κ > |T | a regular cardinal.
For every continuous chain (Mi)i<κ of models with |Mi| < κ for all i < κ and
M =

⋃
i<κMi, there is j < κ such that a |̂

Mj
M .

Fact 4.6 (Chernikov-Ramsey; Kaplan-Ramsey; Dobrowolski-Kamsma). A com-
plete theory T is NSOP1 if and only if there is an invariant ternary relation |̂
on small subsets of U , which satisfies symmetry over models, existence over mod-
els, finite character over models, monotonicity over models, transitivity over mod-
els, extension over models, the independence theorem over models, and chain local
character. Moreover, in this case |̂ is Kim-independence over models.

Proof. We need to check that [DK21, Theorem 9.1] implies the above. Let T be
any theory and Tmor be its Morleyization viewed as a theory in positive logic.
Then Tmor is boolean in the sense of [DK21, Definition 2.13], hence in particular,
Hausdorff, semi-Hausdorff, and thick (see also Remark 2.14). Thus T is NSOP1 if
and only if Tmor is NSOP1 in positive logic ([DK21, Definition 2.26, Remark 2.27]).
Obviously, models of Tmor are existentially closed. Moreover, having the same
Lascar strong type in the positive sense for Tmor is equivalent to having the same
Lascar strong type in the first order sense in a model of T (by [DK21, Remark
3.4], as Tmor is semi-Hausdorff). When the base set is a model, this coincides
with having the same type in T . Finally, we need to check that the positive logic
definition of Kim-dividing in Tmor is equivalent to the first-order logic definition in
T . This follows from Kim’s Lemma ([DK21, Proposition 4.3]) since Lstp-invariance
and invariance coincide over models (see [DK21, Definition 4.1]). �

4.2. Canonical bases and algebraic embeddedness. Let T be a complete L-
theory, and fix an ∅-definable stably embedded set Q. Let U be a sufficiently
saturated monster model of T . We identify Q with Q(U).

Recall that the main goal of this section is to prove preservation results for
simplicity and NSOP1, when enriching Qind by some further structure. For these
tameness properties, we will require an additional assumption on Q (among other
things). Thus the purpose of this subsection is to define this assumption, establish
some basic facts, and point to existing examples from the literature.

Let Qeq denote Qeq(U) (as defined before Lemma 2.5). We define an operator
on subsets of U , which will act as a canonical base for types over Q.

Definition 4.7. Given A ⊆ U , set A = dcleq(A) ∩Qeq.

Remark 4.8. Note that if A ≡T
A
A′ then A′ = A (for a given choice of enumeration,

induced by that of A and A′).

Lemma 4.9. If A ⊆ U , then acleq
T (A) ∩ Qeq = acleq

T (A) ∩ Qeq. In particular, if

B ⊆ A, then acleq
T (BA) = acleq

T (A) ∩Qeq.
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Proof. It is immediate that acleq
T (A) ∩Qeq ⊆ acleq

T (A) ∩Qeq. Conversely, consider
e ∈ acleq(A) ∩ Qeq. Then e is contained in a finite A-definable subset C of (some
sort in) Qeq. By Remark 2.6(a), C is A-definable, and thus e ∈ acleq

T (A).

As for the second equality, we have acleq
T (A)∩Qeq ⊆ acleq

T (BA)∩Qeq = acleq
T (BA).

Conversely, since BA ⊆ dcleq
T (A), we have

acleq
T (BA) = acleq

T (BA) ∩Qeq ⊆ acleq
T (A) ∩Qeq = acleq

T (A) ∩Qeq,

as needed. �

Throughout this section, |T^ denotes forking independence in T eq. We assume

that every A ⊆ U is an extension base for |T^ ; this holds in particular if T is simple.

Lemma 4.10. If A ⊆ U then A |T^ A
C for any C ⊆ Qeq.

Proof. Note that tpeq(A/A) ` tp(A/Q) by Lemma 2.5(c). Since Qeq ⊆ dcleq
T (Q)

and A |T^A
A, this yields the claim. �

Definition 4.11. We say that Q is algebraically embedded in T if, for any

A,B,C ⊆ U , if A |̂ T
C
B and C contains a model, then ABC ⊆ acleq

T (AC,BC).

Remark 4.12. The only place where we use algebraic embeddedeness with C not
equal to a model is in the proof of Lemma 4.25. In that case, C = MQ(N) for
some M ≺ N ≺ U . That being said, we note that in all of the examples we will
consider below, algebraic embeddedness holds with C being arbitrary. Thus the
reader might argue that it would be more natural to phrase Definition 4.11 with
C arbitrary, leading to a stronger condition. However, one can construct examples
(even in stable theories) where Q is algebraically embedded as defined above, but
the stronger condition with C arbitrary does not hold (briefly: consider a 2-sorted
structure with (Q,+) in one sort and Q as a pure set in the other, with the natural
action of the former sort on the latter; let Q be the pure set sort). As a matter
of fact, we have so far been unable to find an example of a simple (or even stable)
theory and a stably embedded definable set that is not algebraically embedded (as
defined above).

Remark 4.13.

(a) Q is algebraically embedded in T if and only if, for any A,B,C ⊆ U , if

C contains a model and A |̂ T
C
B then ABC ⊆ acleq

Qind
(AC,BC) — in fact,

acleq
T (ABC) = acleq

Qind
(AC,BC). So, loosely speaking, any element of Qeq that

is algebraic over parameters ab with a ∈ A and b ∈ B, must also be algebraic
over parameters a′b′ with a′ ∈ A, b′ ∈ B, and a′b′ from Qeq. This observation
is behind our choice of the terminology.

(b) Suppose Th(Qind) has geometric elimination of imaginaries. Given A ⊆ U , let

A
r

= aclT (A) ∩Q. Then A ⊆ acleq
T (A

r
). So Q is algebraically embedded in T

if and only if for any A,B,C ⊆ U , if C contains a model and A |T^C
B then

ABC
r ⊆ aclT (AC

r
, BC

r
).

We now describe some examples of theories naming an algebraically embedded
predicate from the existing literature. We first prove the following lemma, which
can be used to characterize algebraically embedded definable sets in simple theories.

Lemma 4.14. Suppose T is simple. Fix A,B,C ⊆ U and assume A |T^ C
B. Then

the following are equivalent:

(i) A |T^ CABC
B.

(ii) ABC |T^ AC,BC
ABC.
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(iii) ABC ⊆ acleq
T (AC,BC).

Proof. Without loss of generality, we may assume C ⊆ A ∩ B (replacing A and B
with AC and BC has no effect on the statement). We will make tacit use of the
fact that since T eq is simple, |T^ is symmetric and so base monotonicity holds on
the left and transitivity holds on the right. To ease notation, we write acl and dcl
for acleq

T and dcleq
T .

(i) ⇒ (ii). Assume A |T^CAB
B. By existence and extension there is A′B′ ⊆ U

such that A′B′ ≡T
AB

AB and A′B′ |T^AB
AB.

Claim. A |T^CA′
BB′.

Proof. Note first that A |T^A
A′B′ by Lemma 4.10. So A |T^CA

CA′B′ (∗) by (left)

base monotonicity. Since AB = A′B′ (as sets) , we have A |T^CA′B′
B. Using

transitivity with (∗) yields A |T^CA
BA′B′ (∗∗). Next, since AB |T^A′B′

A′B′, we

have A |T^BA′B′
A′BB′ by base monotonicity. Using transitivity with (∗∗) then

yields A |T^CA
A′BB′. So A |̂

CAA′
BB′ by base monotonicity. Since A = A′ ⊆

dcl(A′), we have acl(CAA′) = acl(CA′). So A |T^CA′
BB′ by Remark 4.2(i). aclaim

Now, as A |T^AB
A′ and A |T^A

AB, we have A |T^A
A′ by transitivity, and

hence A |T^CA
CA′ (∗) by base monotonocity. We also have B |T^B

AB, and hence

B |T^A,B
AB (∗∗) by base monotonicity. From the claim, we have A |T^CA′

BB′,

hence by (∗) we have A |T^CA
BA′B′. As AB = A′B′ we get A |T^CA

BAB, hence

A |T^BA
AB. Using (∗∗) we obtain AB |T^A,B

AB.

(ii)⇒ (iii). This follows from Remark 4.2(ii) and the fact that AB ⊆ acl(AB).
(iii) ⇒ (i). First recall that A ⊆ dcl(A) and B ⊆ dcl(B). Thus we have

A |̂
CA,B

B by base monotonicity and the assumption that A |T^C
B. Therefore

(i) follows from (iii) (using Remark 4.2(i) and base monotonicity). �

Recall that a belle paire of models of a theory T0 is a pair (M,N) where M,N |=
T0, N � M , N is |T |+-saturated, and for any finite A ⊆ M , any type over NA is
realized in M . If T0 is stable with nfcp then the theory of belle paires of T0 is stable
(and nfcp). For further background, see [Poi83, BYPV03].

Corollary 4.15. Suppose T0 is a stable theory with nfcp. Let T be the theory of
belle paires of T0, and let Q name the elementary submodel. Then Q is algebraically
embedded in T .

Proof. Given a set D ⊆ Ueq, let Dc ⊆ Qeq be the canonical base of D over Q in the
sense of T0. In particular, we have Dc ⊆ D and for all B ⊆ Qeq, D |0^Dc

B, where

|0^ denotes forking independence in T eq
0 . Then by [BYPV03, Proposition 7.3],

A |T^C
B if and only if A |0^CQ

B and (AC)c |0^Cc
(BC)c. Now suppose A |T^C

B.

Then, as ABC ⊆ Qeq, we have A |0^CABCQ
B. Note also that (ACABC)c and

(BCABC)c are contained in ABC, and that ABC |0^ (CABC)c
ABC. Altogether,

we have A |T^CABC
B. The result now follows from Lemma 4.14. �

Suppose T0 is a superstable theory with U -rank 1. Then an H-structure of T0

is a structure (M,H) where M is a model of T and H is a new unary predicate
naming an algebraically independent subset of M that satisfies certain density and
extension properties for types. See [BV16] for details (the construction works more
generally for any geometric theory, but we focus on the U -rank 1 case). In this case,
there is a well-defined theory of H-structures of T0. Moreover, T is superstable (see
[BV16, Theorem 5.5, Proposition 5.24]) and so H is stably embedded in T .
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Corollary 4.16. Let T0 be a superstable theory of SU-rank 1, and let T be the
theory of H-structures of T0. Then H is algebraically embedded in T .

Proof. We work in a monster model U of T , and let H = H(U). Let |0^ denote

forking independence in T0. By [BCV17, Proposition 4.5], for every C ⊆ U and finite
tuple a ∈ U , there is a unique minimal finite subset H0 ⊆ H such that a |0^CH0

H.

This subset H0 is denoted HB(a/C). Given sets A,C ⊆ U , define HB(A/C) to
be the union of HB(a/C) for all finite tuples a from A. Then A |0^CHB(A/C)

H by

finite character and base monotonicity for |0^ . By [BCV17, Theorem 5.3], for any

A,B,C ⊆ U with B = aclT (B) and C = aclT (C), we have A |T^C
B if and only if

A |0^CH
B and HB(A/C) = HB(A/BC). Let HB(A) denote HB(A/∅).

Claim. Given A ⊆ U , we have acleq
T (A) = acleq

T (HB(A)) ∩Heq.
Proof. Fix A ⊆ U . Then HB(A) ⊆ aclT (A) by [BCV17, Corollary 4.13], and so
acleq

T (HB(A)) ⊆ acleq
T (A), which yields acleq

T (HB(A)) ∩ Heq ⊆ acleq
T (A) ∩ Heq =

acleq
T (A). For the other containment, first note that we have HB(A/HB(A)) = ∅ =

HB(A/H). Therefore A |T^HB(A)
H by the above characterization of |T^ . Using

Remark 4.2(ii), it then follows that A = acleq
T (A) ∩ Heq ⊆ acleq

T (HB(A)) ∩ Heq.
aclaim

Now observe that for any A,C ⊆ U , we have acleq(CHB(A)) = acleq(CA) by
the claim. So for any A,B,C,D ⊆ U , if A |T^CHB(D)

B then A |T^CD
B by Remark

4.2(i). It then follows from Lemma 4.14 that in order to prove H is algebraically
embedded in T , it is enough to prove that for any A,B,C ⊆ U , if A |T^C

B then

A |T^CHB(ABC)
B.

Fix A,B,C ⊆ U with A |T^C
B. Set D = HB(ABC). We want to show

A |T^CD
B. Without loss of generality, we may assume B = aclT (B) and C =

aclT (C). So A |0^CH
B, which implies A |0^CDH

B since D ⊆ H. Further, we have

ABC |0^D
H so A |0^CD

H and A |0^BCD
H. It follows that

HB(A/CD) = ∅ = HB(A/BCD).

Thus we conclude that A |T^CD
B, as desired. �

In Section 7.2, we will provide more examples of algebraically embedded definable
sets in stable expansions of (Z,+). In fact, we currently do not know an example
of a simple theory T and definable set Q that is not algebraically embedded. On
the other hand, if T is NSOP1 then it is more natural to consider a stronger version
of algebraic embeddedness in which |T^ is replaced by Kim-independence. In this
case, we can give a counterexample.

Example 4.17. We describe an NSOP1 theory with a stably embedded ∅-definable
set that is not algebraically embedded with respect to Kim-independence (as ex-
plained above). Let p be a fixed positive prime and let ACFG be the theory of
generic algebraically closed fields of characteristic p with a distinguished additive
subgroup. Then ACFG is NSOP1 and not simple (see [d’E21]). Let (K,G) be a
monster model of ACFG and let π be the canonical projection from the additive
group of K to the quotient group V = K/G. Consider the two sorted structure
(K,V, π : K → V ), whose theory is denoted T . From [d’E21, Theorem 3.15], T has
weak elimination of imaginaries. One can also deduce the following results from
[d’E21, Section 3]:

(1) V is stably embedded in (K,V, π) and Vind is a pure Fp-vector space of infinite
dimension; in particular it has weak elimination of imaginaries.
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(2) For any A ⊆ K, acleq
T (A) = aclACF(A) ∪ 〈π(aclACF(A))〉. In particular, A ⊆

π(aclACF(A)).

Fix (M,π(M)) ≺ (K,V ) and let A,B be algebraically closed subsets of K con-
taining M . Then A and B are Kim-independent over (M,π(M)) if and only if
A |ACF
^M

B and π(A) ∩ π(B) = π(M). It is left to the reader to check that there

exists A and B Kim-independent over (M,π(M)) such that

π(aclACF(AB)) * π(A)⊕π(M) π(B) = acleq(π(A), π(B)) ∩ V.

We conclude that V is not algebraically embedded (for Kim-independence) in T .

4.3. Adding Q. We now fix an arbitrary structure Q expanding Qind, and let U
be a monster model of T [Q]. As before, we identify Q with Q(U) and Q with its
interpretation in U (so Q is a monster model of Th(Q)). We write ≡Q for ≡Th(Qeq).

Given a tuple a in U , we will uniformly choose an enumeration for a. Precisely,
we proceed as follows: given an ordinal κ, we fix an enumeration of all (potentially
partial) ∅-definable functions, in the variables (xi)i<κ, into Qeq . For any tuple a
of U of length κ we apply these definable functions in order to a (substituting ai
for xi) whenever it makes sense. We denote a the resulting tuple in Qeq.

Remark 4.18. Let a, a′ be two small tuples from U . We note that if a ≡ a′ then
aa ≡ aa′ and that if a ≡a a′ then a = a′ (as tuples).

Lemma 4.19. Let c be a tuple from U .

(a) Given d, e ∈ Qeq, d ≡T [Q]
c e if and only if d ≡Qc e.

(b) Given a ∈ U and e ∈ Qeq, if e ≡Qc a then there is some b ∈ U such that

b ≡T [Q]
c a and b = e.

(c) Given a, b ∈ U , we have a ≡T [Q]
c b if and only if a ≡Tc b and ac ≡Qc bc.

Proof. Part (a). The forward direction is clear. Conversely, let σ be aQ-automorphism
over c sending d to e. As in the proof of Proposition 2.8(a), we may assume L in-
cludes constants for c and thus, by stable embeddedness, we may extend σ to an
L[Q]-automorphism of U over c.

Part (b). Assume e ≡Qc a. Then e ≡T [Q]
c a by part (a). So there is some

b ∈ U such that be ≡T [Q]
c aa. Since a ⊆ dcleq

T (a), and we have chosen a canonical

enumeration, it follows that b = e.
Part (c). The forward direction is clear. For the converse, assume a ≡Tc b and

ac ≡Qc bc. Note that a ≡Tc b implies aac ≡Tc bbc (since have we chosen canonical

enumerations of ac ⊆ dcleq
T (ac) and bc ⊆ dcleqT (bc)). By Lemma 2.5(c), we have

tpT (a/cac) ` tpT (a/cQ). So we can apply Proposition 2.8(a), where c is ac and E

is c, to conclude a ≡T [Q]
c b. �

Lemma 4.20. Suppose M ≺ U and B ⊆ U contains M . Fix a tuple a ∈ Q and
assume tpQind(a/B) does not divide over M in Th(Qind). Then tpT (a/B) does not
divide over M in T .

Proof. Let b enumerate B and choose an M -indiscernible sequence (bi)i<ω with b0 =
b. Then (bi)i<ω is M -indiscernible in T , and hence M -indiscernible in Th(Qind).

By assumption, there is some e ∈ Q(U) such that ebi ≡Qind

M
ab for all i < ω.

Given i < ω, since b ≡TM bi, we find some ei ∈ Q(U) with ab ≡TM eibi. Then

ebi ≡Qind

M
ab ≡Qind

M
eibi and, by Lemma 4.19(a), e ≡Tbi ei. So ebi ≡TM eibi ≡TM ab,

for all i < ω. �
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4.4. Strong types over Q and the structure H. The strategy to prove preser-
vation of simplicity and NSOP1 is to identify forking and apply Kim-Pillay type
results [KP97], see Theorem 4.35 and Corollary 4.36. One of the more technical
steps is to prove that the potential forking-independence verifies the independence
theorem, or equivalently 3-amalgamation. Our approach to proving this fact is to
first amalgamate in Q and then to amalgamate over Q. This however requires un-
derstanding strong types over Q. We solve that issue by replacing Q by a collection
of definable sets H =

⋃
X∈DX, such that strong types over Q(U) coincides with

types over H(U); provided T eliminates hyperimaginaries.
Let T be a complete L-theory, and fix an ∅-definable stably embedded set Q.

Let U be a sufficiently saturated monster model of T . Fix a small model M ≺ U .
Let D be the collection of M -definable subsets of Ueq that admit an M -definable
finite-to-one map to Qeq.

Proposition 4.21. D(U) =
⋃
X∈DX(U) = acleq

T (MQ).

Proof. The left-to-right containment is clear. Conversely, suppose e ∈ acleq
T (MQ).

Let ϕ(x, y) be an Leq
M -formula such that, for some tuple b from Q, ϕ(x, b) isolates

tpT
eq

(e/MQ). By modifying ϕ(x, y) if necessary, we may assume that ϕ(x, b′) is
algebraic for any b′, and that for any b′, b′′, ϕ(x, b′) and ϕ(x, b′′) are either equal
or disjoint. Now let X be defined by ∃yϕ(x, y), and define f : X → Qeq such that,
given a ∈ X(U), f(a) is the canonical parameter of ϕ(x, b′) for some/any b′ from
Q such that ϕ(a, b′) holds. �

We now define H. The sorts of H are given by D. For each X ∈ D we interpret
the universe X(H) as a new copy of X(U). Let ιX : X(U) → X(H) be a bijection
witnessing the copy. We put the Leq

M -induced structure on (the universe of) H as
follows. For any X1, . . . , Xn ∈ D and any Leq

M -definable Y ⊆ X1× . . .×Xn, we add
a relation R on X1(H)× . . .×Xn(H) such that (ιX1

(a1), . . . , ιXn
(an)) ∈ R if and

only if (a1, . . . , an) ∈ Y . In particular, ιX is an isomorphism between X(U) and
X(H) (as models of the TM -induced structure on X).

We also define the structure UH = (Ueq, H, (ιX)X∈D) in which we add H to Ueq

in its own set of sorts. Note that any automorphism of U over M uniquely extends
to UH .

Remark 4.22.

(1) The universe of H is a union of sorts Ueq
M (using the right definition), and

H is the precisely the induced structure on this universe. Note also that
the ιX maps are already included in Ueq

M . So altogether UH is a reduct of
Ueq
M . We chose to keep them separate in the hope of a clearer setup.

(2) By construction, the Th(UH)-induced structure on the universe of H is H.
(3) Let H(M) denote the substructure of H consisting of X(M) for all sorts

X in H. Then H(M) ≺ H. In fact, H(M) is the definable closure of ∅ in
H and thus a prime model. Note that if m enumerates M eq then m̂ (as
defined in the next paragraph) enumerates H(M).

Let us now define a map from tuples in acleq
T (MQ) to tuples in H. First consider

a singleton e ∈ acleq
T (MQ). Let De = {X ∈ D : e ∈ X(U)}. We define ê =

(ιX(e))X∈De
∈
∏
X∈De

X(H); where we implicitly choose a total order on the

elements of D. Then, given a tuple (ei)i∈I from acleq
T (MQ), let ê = (êi)i∈I ∈∏

i∈I
∏
X∈Dei

X(H). Note that if a, b are tuples from acleq
T (MQ) then âb = âb̂.

Let us prove of some basic facts about the structure H:

Lemma 4.23. Suppose e is a tuple from H and e ≡H b̂ for some tuple b ∈
acleq

T (MQ). Then there is some tuple a ∈ acleq
T (MQ) such that e = â.
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Proof. It follows from Remark 4.22(2), that e ≡UH b̂. So we find a ∈ U such that

ea ≡UH b̂b. But b̂ ∈ dclUH (b) and therefore e = â. �

Lemma 4.24. H eliminates imaginaries.

Proof. Since sorts of H are closed under products, it suffices, given X ∈ D, some
∅-definable equivalence relation E on X and some a ∈ X(H), to find some tuple
b ∈ H interdefinable with aE . Let c = ι-1X(a) ∈ X(U). Note that E induces
an M -definable equivalence relation on X(U) (via ιX), also denoted E. Then
cE ∈ dcleq

T (Mc) ⊆ acleq
T (MQ). Then aE and b = ĉE are interdefinable in Ueq

H and
therefore, by Remark 4.22(2), in Heq. �

From now on, we will assume that any subset of U is an extension basis for
nonforking in T , denoted |T^ . This holds in particular if T is simple. We also
assume that Q is algebraically embedded in T .

We say that (the collection of sorts of) H is stably embedded if any UH -definable
subset Y ⊆ X(M)n, for some X ∈ D, is H-definable. Recall that sorts of H are
closed under products.

Lemma 4.25. The collection of the sorts of H is stably embedded in UH .

Proof. It suffices to show that ι−1
X (Y ) ⊆ X(U) is definable over some tuple e ∈

acleq
T (MQ). Indeed Y is then definable over ê ⊆ D(U). So for the rest of the proof

we work only in T eq, and we identify X with X(U).
Let ϕ(x, y) be an Leq-formula such that ϕ(x, a) defines Y for some real tuple a

from U . Let e be the canonical parameter for ϕ(x, a). To show that Y is definable
over acleq

T (MQ), it suffices to show that e ∈ acleq
T (MQ).

Choose some N � U containing M and a. Since X ∈ D, we have an M -
definable finite-to-one function f : X → Qeq. Let S = {tp(c/Qeq(N)) : c ∈ f(X)}.
Since MQ(N) is an extension basis, we may fix a Morley sequence (aiei)i<κ in
tpT (ae/MQ(N)) with a0e0 = ae and κ > 2|S| + ℵ0. Let Yi be the set defined by
ϕ(x, ai), which has canonical parameter ei.

Claim. Yi = Yj for some i < j < κ.

Note that if the claim holds, then ei = e for all i < κ, and so e ∈ acleq
T (MQ(N)).

So it suffices to prove the claim.

Proof of the claim. For i < κ, let Ai = aiMQ(N). Then Q(N) ⊆ A0 ⊆ N and so
A0 = Qeq(N). So Ai = Qeq(N) for all i < κ by Remark 4.8. For any i < j < κ, we
have Ai |T^MQ(N)

Aj and so, since Q is algebraically embedded in T ,

AiAj ⊆ acleq
T (Ai, Aj) ∩Qeq = acleq

T (Qeq(N)) ∩Qeq = Qeq(N).

Note that each Yi is contained in X since ai ≡M a. Given c ∈ f(X) and i < κ,
let Yi,c = {x ∈ Yi : f(x) = c}. Given i < j, let Zi,j = {c ∈ f(X) : Yi,c = Yj,c}.
Then each Zi,j is an aiajM -definable subset of f(X). Since Q is stably embedded,

it follows from Remark 2.6(a) that each Zi,j is definable over aiajM ⊆ AiAj ⊆
Qeq(N).

Now fix p ∈ S. Define a map gp on κ such that gp(i) = {x ∈ Yi : f(x) |= p}.
We claim that gp has finite image. Indeed, suppose I ⊆ κ is infinite and fix some
c |= p. Since each Yi,c is a subset of f -1(c), which is finite, there are distinct i, j ∈ I
such that Yi,c = Yj,c, i.e., c ∈ Zi,j . Since Zi,j is definable over Qeq(N), we therefore
have Yi,d = Yj,d for all d |= p, and so gp(i) = gp(j).

Finally, define the map g on κ such that g(i) = (gp(i))p∈S . By the above, the

image of g has size at most 2|S| + ℵ0. So there are i < j < κ such that g(i) = g(j),
i.e., Yi = Yj . �
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We now fix an expansion Q of Qind and assume U |= T [Q] is a monster model.
Let H be as above. We use UTH to denote the structure ((U|T )eq, H, (ιX)X∈D) and
let UH be the expansion of UTH obtained by expanding Q with Q. Let H be the
structure on (the universe of) H induced by Th(UH). Let ιH denote the surjective
function from (the universe of) H to acleq

T (MQ) (inside U) given by
⋃
X∈D ι

-1
X .

Given a set A ⊆ H, we let Â denote the set ι̂H(A), and given a tuple a from H, we

let â denote the tuple ι̂H(a).
We now indicate how some of the results stated in Section 2 on a single stably

embedded set, namely Q, generalise to H which is a stably embedded collection of
∅-definable sets. For any tuple a in U , let aH (uniformly) enumerate dcleq

UH (a)∩H.

Lemma 4.26. For any tuple a in U , tp(a/aH) ` tp(a/H) and any automorphism
of H over aH extends to an automorphism UTH over a. In particular, any automor-
phism of H over aH extends to an automorphism UH over a.

Proof. For the first statement, we proceed as in Lemma 2.5(c), using the fact that
H eliminates imaginaries (Lemma 4.24) to find canonical parameters in H directly.

Since H is stably embedded (even with a named) and we just showed that the a-
induced structure on H in UTH is given by naming aH , the second statement follows
from the proof of [CH99, Lemma 1, Appendix], which extends word for word to the
context of a stably embedded collection of ∅-definable sets. �

Lemma 4.27. Suppose a is a tuple from U containing M , and let c enumerate
acleq

T (Ma). Then aH ⊆ ĉ.

Proof. Fix e ∈ dcleq
UH (a) ∩H. Then there is some X ∈ D and some b ∈ X(U) such

that e = ιX(b). Since ιX is a bijection, b ∈ dcleq
UH (e) ⊆ dcleq

UH (a)∩)∩Ueq = dcleq
T (a)

(recall that a contains M). By assumption, there is a M -definable finite-to-one
map f : X(U)→ Qeq. Then f(b) ∈ dcleq

T (b) ⊆ dcleq
T (a), and so f(b) ∈ a. Therefore

b ∈ c since f is finite-to-one and M -definable. So e = ιX(b) ∈ ĉ. �

Lemma 4.28. Suppose a, b, c are tuples in H. Then a ≡Hc b if and only if â ≡Hĉ b̂,

if and only if ιH(a) ≡T [Q]
ιH(c) ιH(b).

Proof. Since a ⊆ â ⊆ dclH(a), the first equivalence follows. As for the second,
it follows from Lemma 4.26 and the fact that any automorphism of UH preserves
ιX . �

Lemma 4.29. Suppose a, b are tuples from acleq
T (MQ), and c is a tuple from U

containing M . Let c∗ enumerate acleq
T (Mc), and assume â ≡Hĉ∗ b̂. Then a ≡T [Q]

c b.

Proof. By Lemma 4.27, we have cH ⊆ ĉ∗ and hence â ≡H
cH

b̂. Let σ be a H-

automorphism over cH sending â to b̂. Then, by Lemma 4.26, σ extends to an
automorphism of UH over c, which commutes with ιX and hence sends a to b. �

We can also generalise Lemma 4.20 to H, following the same argument but using
Lemma 4.26 instead of Lemma 4.19(a). A proof of a very similar result (but for
Kim-forking) is given in detail in the proof of Claim 3 of Lemma 4.32.

Lemma 4.30. Suppose N ≺ U contain M and B ⊆ U contains N . Fix a tuple a ∈
H and assume tpH(a/B

H
) does not divide over N

H
in Th(H). Then tpU

T
H (a/B)

does not divide over N in Th(UTH).

Given a set A ⊆ H, we let A denote the set ιH(A), and given a tuple a from H,

we let a denote the tuple ιH(a).
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Remark 4.31. Note that, for any tuples a, b, c ∈ H, if a ≡Hc b, then a ≡Qc c. This
follows from Lemmas 4.28 and 4.19(a).

Let Q∗ denote the expansion of Qeq
ind by Q (so Q∗ is an intermediate structure

between Q and Qeq). Note that if N ≺ H then N ≺ Q∗ and ιH(N) contains M .
We now assume that Th(Q) is NSOP1. Let |h^ and |q^ denote Kim-dividing

independence in H and Qeq, respectively.

Lemma 4.32. Suppose N ≺ H and a, b ∈ H are tuples containing N . Then

a |h^
N

b ⇐⇒ a |q^
N

b.

Proof. Given a tuple e fromH, let ẽ denote ê. Note that ẽ ∈ dclUT
H

(e)∩H = dclH(e).

Now suppose a |h^N
b. Fix an N -invariant global H-type q extending tpH(b/N),

and a Morley sequence (bi)i<ω in q over N with b0 = b. By [KR20, Lemma 3.18],
there exists c ≡Hb a such that (bi)i<ω is Nc-indiscernible in H. Then, by Re-

mark 4.31, c ≡Q
b
a.

Let q denote the type (in Q∗) whose restriction to any A ⊆ Qeq is the type of b
for any b |= q|Â. This is a complete type by Remark 4.31. Then q is N -invariant,

since, by Lemmas 4.28 and 4.19(a), for any e1, e2 ∈ Qeq, if e1 ≡QN e2 then ê1 ≡HN ê2.

Claim 1.

(i) (bi)i<ω is a Morley sequence in q over N .
(ii) (bi)i<ω is indiscernible over Nc.

Proof. Part (i). Fix i < ω. We have bi |= q|Nb<i
and hence, since b̃i ⊆ dclH(bi),

bi |= q|Nb̃<i
. It follows, by definition, that bi |= q|Nb<i

.

Part (ii). Fix i1 < . . . < in < ω and j1 < . . . < jn < ω. Then bi1 . . . bin ≡HNc
bj1 . . . bjn , and so, by Remark 4.31, bi1 . . . bin ≡QNc bj1 . . . bjn . aclaim

Recall that c ≡Q
b
a. Since Th(Q) is NSOP1, we have a |q^N

b by Claim 1, [KR20,

Lemma 3.18], and [KR20, Theorem 3.16].

Conversely, suppose a |q^N
b.

Claim 2. ã |h^N
b.

Proof. Fix an N -invariant global H-type q extending tpH(b/N), and a Morley
sequence (bi)i<ω in q over N with b0 = b. Let q be as above. By part (i) of
Claim 2, (bi)i<ω is a Morley sequence in q over N . Since a |q^N

b, there is some

e ∈ Qeq such that for all i < ω, ebi ≡QN ab. Given i < ω, by Lemma 4.28 we have

ιH(b) ≡T [Q]
ιH(N) ιH(bi) and hence aιH(b) ≡T [Q]

ιH(N) eiιH(bi), for some ei ∈ Qeq. Then

e ≡Q
bi
ei whence eιH(bi) ≡T [Q]

ιH(N) eiιH(bi) ≡T [Q]
ιH(N) aιH(b), which implies êbi ≡HN ãb,

for all i < ω. aclaim

Claim 3. a ∈ aclH(ã).
Proof. We may assume a ∈ X(H) for some X ∈ D. By assumption, there is an M -

definable finite-to-one map f : X(U) → Qeq. So f(ι-1X(a)) ∈ a and hence f̂(a) ∈ ã,

where f̂ is the map, definable in H sending any x to (any component of) ̂f(ι-1X(x)).

Since f̂ has finite fibers, we do have a ∈ aclH(ã). aclaim

Now a |h^N
b follows from Claims 2 and 3 and Remark 4.3. �

Corollary 4.33. Th(H) is NSOP1.
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Proof. Recall that Th(Q) is assumed to be NSOP1. So |q^ is symmetric [KR20].

Therefore |h^ is symmetric by Lemma 4.32, which implies Th(H) is NSOP1 by

[KR20, Proposition 3.22] (and its proof). �

Now we let |Q^ and |H^ denote Kim-independence in (the NSOP1 theories)

Th(Qeq) and Th(H), respectively.

Corollary 4.34. Suppose a, b are tuples in acleq
T (MQ) containing M . Then a |Q^M

b

if and only if â |H^ H(M)
b̂.

Proof. Note ιH(H(M)) = M eq. Moreover, ιH(ê) = e (as sets) for any tuple e ∈
acleq

T (M). So in light of Corollary 4.33, the claim is a special case of Lemma
4.32. �

4.5. NSOP1 and simplicity of T [Q]. We now prove our main preservation result
for NSOP1. Unlike the previous results involving stability, NIP, and NTP2, we
will need to add some extra assumptions. As discussed before, one assumption is
algebraic embeddedness for the set Q. In addition to this, we will need to assume
that the base theory T is simple with elimination of hyperimaginaries, rather than
just NSOP1. This is due to an extensive use of forking calculus in T , and also to
ensure Lascar strong types coincide with Shelah strong types (see Remark 4.37 for
further discussion).

Theorem 4.35. Assume T is simple with elimination of hyperimaginaries and Q is
algebraically embedded in T . Then T [Q] is NSOP1 if and only if Th(Q) is NSOP1.
Moreover, in this case Kim-independence over models in T [Q] is given by

A |̂
M

B ⇔ A |T^
M

B and AM |Q^
M

BM,

where |T^ is forking independence in T and |Q^ is Kim-independence in Th(Qeq).

Proof. Clearly, if T [Q] is NSOP1 then so is Th(Q). Assume Th(Q) is NSOP1. Let
|̂ be as defined in the theorem. Note that |̂ is L[Q]-automorphism invariant. We

will show that |̂ satisfies the axioms listed in Fact 4.6. First note that, since T is

stable, |T^ satisfies all of these axioms, as well as base monotonicity and stationarity

over models. As usual, we will also use |T^ for forking independence in T eq.
It is straightforward to check that existence, monotonicity, symmetry, and tran-

sitivity (all over models) transfer directly from |T^ and |Q^ to |̂ . For clarity, we
provide the details for transitivity.

Transitivity over models. Suppose A |̂
N
B and N |̂

M
B, with M � N ≺ U

and A,B ⊆ U . Then A |T^N
B and N |T^M

B, and so A |T^M
B by transitivity for

|T^ . Also A |Q^N
BN (hence A |Q^N

BM) and N |Q^M
BM , and so A |Q^M

BM by

transitivity for |Q^ . Altogether, A |̂
M
B.

Finite character over models. Fix A,B ⊆ U and M ≺ U , and suppose a |̂
M
B

for all finite a ⊆ A. Then a |T^M
B for all finite a ⊆ A, and so A |T^M

B by finite

character for |T^ . Now fix some finite c ⊆ AM . Since AM ⊆ acleq
T (AM), there is

a finite set a ⊆ A such that c ⊆ acleq
T (aM). Since AM ⊆ Qeq, we have c ⊆ aM .

Therefore c |Q^M
BM since a |̂

M
B implies aM |Q^M

BM . By finite character for

|Q^ , we now have AM |Q^M
BM . Altogether, A |̂

M
B.

Extension over models. Assume that a |̂
M
b. We may assume M ⊆ a ∩ b.

Let d be arbitrary. First, as a |Q^M
b, by extension for |Q^ there is e ⊆ Qeq with

e ≡Q
b
a such that e |Q^M

bd. By Lemma 4.19(b), there exists a′ such that a′ = e and
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a′ ≡T [Q]
b a. Therefore a′ |T^M

b. Since e = a′ ⊆ dcleq
T (a′), we then have a′ |T^Me

be

by (left) base monotonicity for |T^ and Remark 4.2(i). Since Q is algebraically

embedded and a′ |T^M
b, we have a′b ⊆ acleq

T (be), and thus a′ |T^Me
ba′b.

By extension for |T^ , there exists a′′ ≡T
ba′b

a′ such that a′′ |T^Me
bd. In particular,

we have a′′ = e = a′ and a′′b = a′b. Hence, by Lemma 4.19(c), a′′ ≡T [Q]
b a′ ≡T [Q]

b a.

Also, since e |Q^M
bd, we have e |T^M

bd by Lemmas 4.4 and 4.20. Together with

a′′ |T^Me
bd, we have a′′ |T^M

bd by transitivity for |T^ . Therefore a′′ |̂
M
bd.

Chain local character. Let a be a finite tuple, κ > |T | a regular cardinal and
M =

⋃
i<κMi a continuous chain of models (Mi)i<κ, with |Mi| < κ. We show that

there exists j < κ such that a |̂
Mj

M . First, using local character for |T^ , there is

a set B ⊆ M such that |B| ≤ |T | and a |T^B
M . Using base monotonicity for |T^ ,

we may assume without loss of generality that B � M is a model. By [KRS19,
Corollary 3.11] and existence, the set of N ≺ M such that |T | ≤ |N | < κ and
aB |Q^N

M is a club in [M ]<κ (the set of subsets of M of size < κ).6 In particular,

the set

C0 :=
{
N ≺M : B ⊆ N, |N | < κ, aB |Q^N

M
}

is a club of [M ]<κ. As κ is regular and the chain is continuous, the set {Mi : i < κ}
is a club set in [M ]<κ. In particular C := {Mi : B ⊆Mi, i < κ} is also a club of
[M ]<κ, and so C :=

{
Mi : Mi ∈ C

}
is a club of [M ]<κ. The two clubs C0 and C

intersect, hence there exists j < κ such that aB |Q^Mj
M and B ⊆ Mj . Since Q

is algebraically embedded in T and aB |T^B
Mj , we obtain aMj |Q^Mj

M . By base

monotonicity for |T^ , we have a |T^Mj
M , hence a |̂

Mj
M .

The independence theorem over models. Let a, b, c1, c2 ∈ U contain a small

M |= T [Q] with a |̂
M
b, c1 |̂ M a, c2 |̂ M b, and c1 ≡T [Q]

M c2. Fix an enumeration

e1 of acleq
T (Mc1). Since e1 ⊆ acleq

T (Mc1), and c1 ≡T [Q]
M c2, we may then choose an

enumeration e2 of acleq(Mc2) such that c1e1 ≡T [Q]
M c2e2. Let a∗ and b∗ enumerate

acleq
T (Ma) and acleq

T (Mb), respectively.

Claim 1. ê1 ≡HH(M) ê2, â∗ |H^H(M)
b̂∗, ê1 |H^H(M)

â∗, and ê2 |H^H(M)
b̂∗.

Proof. Since e1 ≡T [Q]
M e2, we have ê1 ≡HH(M) ê2 by Lemma 4.28.

Next we have a |̂
M
b, and so a |Q^M

b. By Lemma 4.9, a∗ = acleq
T (a) ∩ Qeq

and b∗ = acleq
T (b) ∩Qeq. So a∗ |Q^M

b∗. Therefore â∗ |H^H(M)
b̂∗ by Corollary 4.34.

Using similar arguments, we have that c1 |̂ M a implies ê1 |H^H(M)
â∗, and c2 |̂ M b

implies ê2 |H^H(M)
b̂∗. aclaim

Recall thatH is NSOP1 by Corollary 4.33. So by Claim 1, we can apply the inde-

pendence theorem over models to find some tuple e′ ∈ H such that e′ |H^H(M)
â∗b̂∗,

e′ ≡Hâ∗ ê1, and e′ ≡H
b̂∗
ê2.

Recall that a |̂
M
b, and so a |T^M

b. Since Q is algebraically embedded in T , it

follows that ab ⊆ acleq
T (ab), and so

acleq
T (Mab) ⊆ acleq

T (Mab) = acleq
T (a∗b∗).

Let g enumerate acleq
T (Mab). Then, since every (M -)definable relation in T between

elements c, d ∈ D(U) gives rise to a relation between (any of the components of) ĉ

and d̂ in H, ĝ ⊆ aclH(â∗b∗) = aclH(â∗b̂∗). Thus e′ |H^H(M)
ĝ.

6For basics on clubs, see e.g. [KRS19, Definition 2.10].
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Now, by Lemma 4.23, choose some tuple e from acleq
T (MQ) such that ê = e′.

So ê |H^H(M)
ĝ, ê ≡Hâ∗ ê1, and ê ≡H

b̂∗
ê2. By Lemma 4.29, we have e ≡T [Q]

a e1 and

e ≡T [Q]
b e2. Choose c′1 and c′2 such that c′1e ≡

T [Q]
a c1e1 and c′2e ≡

T [Q]
b c2e2.

Claim 2. c′1 ≡Te c′2, c′1 |T^ e
a, c′2 |T^ e

b, and a |T^ e
b.

Proof. First, we have c′1e ≡T c1e1 ≡T c2e2 ≡T c′2e, and so c′1 ≡Te c′2.
Next, recall that c1 |T^M

a and e1 ⊆ acleq
T (Mc1), and so c1e1 |T^M

a. Since

c′1e ≡Ta c1e1, we have c′1e |T^M
a by invariance, and so c′1 |T^ e

a by base monotonic-

ity. By a similar argument, we get c′2 |T^ e
b.

It remains to prove a |T^ e
b. Let us first observe that it suffices to prove e |T^M

ab.

Indeed, given this we get e |T^ aM
b by base monotonicity. Together with a |T^M

b,

we get ea |T^M
b by transitivity. So a |T^ e

b by base monotonicity.

So let us prove that e |T^M
ab. Recall that ê |H^H(M)

ĝ. Since Th(H) is simple

and H(M) � H, we get ê |H^H(M)
ĝ by Lemma 4.4, where |H^ denotes forking

independence in H. By Lemma 4.27, M
H

= H(M) and ab
H ⊆ ĝ. So we have

ê |H^M
H ab

H
. Then ê |UT

H
^M

ab by Remark 4.22(3) and Lemma 4.30. Since e ⊆
dclUT

H
(ê), we have e |UT

H
^M

ab, and thus e |T^M
ab since UTH is bi-interpretable over

M with its reduct to a model of T . aclaim

Let a′ enumerate acleq
T (ae) and b′ enumerate acleq

T (be). Then the previous claim
implies c′1 ≡Te c′2, c′1 |T^ e

a′, c′2 |T^ e
b′, and a′ |T^ e

b′. Note that e = acleq
T (e). Since

T is simple and eliminates hyperimaginaries, by [Kim14, Proposition 5.1.19] we
can apply the independence theorem over e to obtain some c such that c |T^ e

a′b′,

c ≡Ta′ c′1, and c ≡Tb′ c′2.

Claim 3. c |̂
M
ab.

Proof. We need to show c |T^M
ab and c |Q^M

ab. Note first that we have c |T^ e
ab

and e |T^M
ab, and so c |T^M

ab by transitivity. Next, recall that ê |H^H(M)
ĝ, and

so e |Q^M
g by Corollary 4.34. Since ab ⊆ g, we have e |Q^M

ab. Recall that e1

enumerates acleq
T (Mc1) and thus c1 ⊆ e. Since c1e1 ≡T c′1e ≡T ce, it follows that

c ⊆ e. Therefore c |Q^M
ab. aclaim

Finally, we prove c ≡T [Q]
a c1 and c ≡T [Q]

b c2. Recall from the proof of Claim 3
that c ⊆ e. Since c |T^M

a (by Claim 3), and Q is algebraically embedded in T , we

have
ca ⊆ acleq

T (c, a) ⊆ acleq
T (ea) ⊆ a′.

Since c ≡Ta′ c′1, it follows that ca = c′1a. So we have c ≡Ta c′1 and ca = c′1a which,

by Lemma 4.19(c), yields c ≡T [Q]
a c′1. Since c′1 ≡

T [Q]
a c1, we get c ≡T [Q]

a c1. Finally,

c ≡T [Q]
b c2 follows from a similar argument. �

Corollary 4.36. Assume that T is simple with elimination of hyperimaginaries
and Q is algebraically embedded in T . Then T [Q] is simple if and only if Th(Q) is
simple. Moreover, in this case forking independence over models in T [Q] is given
by

A |̂
M

B ⇔ A |T^
M

B and AM |Q^
M

BM,

where |T^ and |Q^ are forking independence in T and Th(Q), respectively.

Proof. Once again, if T [Q] is simple then so is Th(Q). So assume Th(Q) is simple.
Let |̂ be as defined above. By Theorem 4.35, T [Q] is NSOP1 and |̂ coincides
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with Kim-independence over models. Therefore, to prove the corollary, it suffices by
[KR20, Propositions 8.4 and 8.8] to show that |̂ satisfies base monotonicity over

models. So fix small models M ⊆ N , and suppose A |̂
M
BN . Then A |T^M

BN ,

and so A |T^N
B by base monotonicity for |T^ . We also have AM |Q^M

BN . So

AM |Q^N
B by base monotonicity for |Q^ . As AM |T^M

N and Q is algebraically

embedded in T , we have AN ⊆ aclQ(AM,N), and thus AN |Q^N
B (using Remark

4.2(i)). Altogether, A |̂
N
B, as desired. �

Remark 4.37. Let us discuss the extra assumptions present in Theorem 4.35. The
reader will have noticed that many steps of the proof involving forking calculus
require algebraic embeddedness of Q. As for simplicity of T , it is used in the
following places:

(1) We regularly use that all sets are extension bases for nonforking, e.g., in the
proofs of Lemmas 4.10 and 4.25.

(2) The proof of extension for |̂ uses base monotonicity (on the left) and transi-

tivity (on the right) for |T^ over arbitrary base sets.

(3) The proof of chain local character for |̂ uses local character and base mono-

tonicity for |T^ over arbitrary base sets.

(4) The proof of the independence theorem over models for |̂ uses base mono-

tonicity for |T^ .

The remaining extra assumption, namely elimination of hyperimaginaries for T ,
could likely be avoided with more work. For example, it is very probable that all of
what we do extends to continuous logic where the distinction between imaginaries
and hyperimaginaries is irrelevant, although it might be tedious to develop the
necessary tools. On the other hand, recall that elimination of hyperimaginaries is
known if T is stable [PP87] or supersimple [BPW01, Corollary 5.9]. Indeed, it is
conjectured that every simple theory has this property.

Altogether, it remains an open question whether, assuming Q is algebraically
embedded in T , we have that NSOP1 and/or simplicity pass from T and Th(Q)
to T [Q]. In the NSOP1 case, it would also be natural to work with a weaker form
of algebraic embeddedness in which |T^ is Kim-independence in T . That being

said, we do not know whether algebraic embeddedness (in any form) is necessary in
Theorem 4.35 and Corollary 4.36. Indeed, an interesting question for future work
is whether preservation results for simplicity and NSOP1 can be obtained using
a combinatorial approach along the lines of what is done for NIP by Jahnke and
Simon [JS20] and for NTP2 by Chernikov and Hils [CH14] (as mentioned in Remark
3.4, such an approach also works for preserving stability). On the other hand, this
method would not directly lead to a characterization of forking/Kim-independence
in T [Q]. Indeed, note that if T and Th(Q) are both stable then, assuming Q is
algebraically embedded in T , Corollary 4.36 provides a characterization of forking
independence over models in T [Q], which does not immediately follow from the
proof of Theorem 3.3.

5. Connection to interpolative fusions

In this section, we summarize the overlap between the previous results and the
work of Kruckman, Tran, and Walsberg [KTW21, KTW22] on interpolative fusions.
We first show that any theory T [Q] defined as in Section 2 can be built as an
interpolative fusion of two theories over a common base.

Let T be a complete L-theory, and fix an ∅-definable stably embedded set Q.
Let Qind denote the ∅-induced structure on Q. Without loss of generality, assume
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L contains a relation for Q and relations Rϕ(x) for any L-formula ϕ(x), and T
contains the sentence ∀x(Rϕ(x) ↔ (ϕ(x) ∧

∧
Q(xi))). Let L∩ = {Q} ∪ {Rϕ :

ϕ(x) an L-formula}, and let T∩ be the L∩-reduct of T . So T∩ is the theory of Qind

on Q and a pure set on ¬Q.
Now let Q be some arbitrary expansion of Qind. Without loss of generality, we

can view Th(Q) as expanding T∩ in a language L2 ⊇ L∩, with L2 ∩ L = L∩. In
other words, add to Q a pure set for ¬Q with no interaction to Q. Let L1 = L and
T1 = T . Then we have T1 ∩ T2 = T∩, and T1 ∪ T2 = T [Q]. In particular, T1 ∪ T2 is
a complete theory.

Proposition 5.1. Any model of T [Q] = T1 ∪ T2 is interpolative (over T∩).

Proof. Fix M |= T [Q]. For i ∈ {1, 2}, let Xi ⊆ Mn be an Li(M)-definable set,
and assume X1 ∩X2 = ∅. We need to find an L∩(M)-definable set Y ⊆ Mn such
that X1 ⊆ Y and X2 ∩ Y = ∅. Given I ⊆ {1, . . . , n}, let PI =

∏n
i=1 PI,i where

PI,i is Q(M) if i ∈ I and ¬Q(M) otherwise. Then (PI)I forms a partition of Mn

into L∩-definable sets. So it suffices to fix some I, and find an L∩(M)-definable
set YI ⊆ PI such that X1 ∩ PI ⊆ YI and X2 ∩ YI = ∅ (since we may then take
Y =

⋃
I YI). So fix some I. After permuting coordinates, we may assume without

loss of generality, that I is an initial segment of {1, . . . , n}. Write PI = A × B
where A = Q(M)|I| and B = (¬Q(M))n−|I|.

For t ∈ {1, 2}, let X ′t = Xt ∩ PI . We want to find an L∩(M)-definable set
YI ⊆ PI such that X ′1 ⊆ YI and X ′2 ∩ YI = ∅. Since M |L2

is a pure set outside of
Q, and X2 is L2(M)-definable, we may write X ′2 =

⋃
j∈J Cj × Dj where each Cj

is an L2(M)-definable subset of A and each Dj is an L∩(M)-definable subset of B
(more specifically, each Dj is the trace on B by some formula in the language of
equality). For each j ∈ J , we will find an L∩(M)-definable set YI,j ⊆ PI such that
X ′1 ⊆ YI,j and (Cj ×Dj) ∩ YI,j = ∅; and then let YI =

⋂
j∈J YI,j .

Fix some j ∈ J . Define V := A × (B\Dj), and note that V is an L∩(M)-
definable subset of A × B. Then X ′′1 := X ′1\V is L(M)-definable, and so we may
fix an L-formula ϕ(x, x′, y), where x = (xi)i∈I , x

′ = (xi)i 6∈I , and X ′′1 is defined by
ϕ(x, x′, c) for some c ∈ M . Let ψ(x, y) be ∃x′ϕ(x, x′, y). Then ψ(x, c) defines the
projection of X ′′1 to the coordinates in I, which we denote by W . Note that W ⊆ A.
By stable embeddedness, there is an L-formula θ(x, z) and some d ∈ Q(M) such
that θ(Q(M), d) = ψ(Q(M), c). Therefore W is L∩(M)-definable via the formula
Rθ(x, d) ∧

∧
i∈I Q(xi).

Define YI,j := (W × B) ∪ V . Then YI,j is L∩(M)-definable. We show that
X ′1 ⊆ YI,j and (Cj × Dj) ∩ YI,j = ∅. So first fix some (a, b) ∈ X ′1. If (a, b) ∈ V
then (a, b) ∈ YI,j . So assume (a, b) 6∈ V . Then (a, b) ∈ X ′′1 , and so a ∈ W , hence
(a, b) ∈W ×B ⊆ YI,j .

Finally, we show (Cj×Dj)∩YI,j = ∅. Note that (Cj×Dj)∩V = ∅ by definition
of V . So it suffices to show (Cj × Dj) ∩ (W × B) = ∅. For this, we show that
Cj ∩W = ∅. Toward a contradiction, suppose there is some a ∈ Cj ∩W . Since
a ∈ W , there is some b ∈ B such that (a, b) ∈ X ′′1 . By definition of X ′′1 , it
follows that (a, b) 6∈ V and so, in particular, b ∈ Dj by definition of V . But then
(a, b) ∈ X ′′1 ∩ (Cj ×Dj) ⊆ X1 ∩X2, which is a contradiction. �

Next we directly translate two main preservation results proved in [KTW22] for
arbitrary interpolative fusions to the setting of T [Q].

Corollary 5.2. Let T be a complete L-theory, Q an ∅-definable stably embedded
set, and Q an expansion of Qind.

(a) Suppose T and Th(Q) are NSOP1, and Th(Qind) is stable with trivial forking.
Then T [Q] is NSOP1.
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(b) Suppose Th(Qind) is stable, and both T and Th(Q) are simple and disintegrated
relative to Th(Qind).7 Then T [Q] is simple.

Proof. In light of Proposition 5.1, parts (a) and (b) follow from [KTW22, Corollary
4.8] and [KTW22, Theorem 4.11], respectively. �

Remark 5.3.

(a) Corollary 5.2(a) is orthogonal to our preservation result for NSOP1 (Theorem
4.35) since we do not need to assume Th(Qind) is stable with trivial forking,
but we do need to assume T is simple and eliminates hyperimaginaries (hence
Th(Qind) is simple as well) and Q is algebraically embedded. However, the main
preservation result for NSOP1 in [KTW22] actually works under the weaker
assumption that Kim-independence in T and Th(Q) both satisfy the “Th(Qind)-
generic independence theorem” (see [KTW22, Theorem 4.6]). Evidently, this
condition holds in all known examples of an NSOP1 theory and a stable reduct.
Thus, conjecturally, one only needs to assume Th(Qind) is stable in part (a) in
order to preserve NSOP1 using interpolative fusions.

(b) Corollary 5.2(b) is also orthogonal to our preservation result for simplicity
(Corollary 4.36) since we do not need to assume stability of Th(Qind) or dis-
integration, but we do need to assume T is simple with elimination of hyper-
imaginaries and Q is algebraically embedded. However, if T is disintegrated
relative to Th(Qind), and Th(Qind) has geometric elimination of imaginaries,
then Q is automatically algebraically embedded in T (e.g., it is easy to check
the characterization in Remark 4.13(c)).

There are a number of other preservation theorems in [KTW22] which, when ap-
plied to the setting of T [Q], yield special cases of what we have proved above. For
example, NIP, stability, superstability, and ω-stability can be preserved in general
interpolative fusions satisfying additional restrictions on T1 and T2 (see [KTW22,
Section 4.1]). In fact, when working with arbitrary interpolative fusions, one does
not expect unconditional preservation results. For example, it is possible to inter-
pret then generic triangle-free graph in the interpolative fusion of two simple the-
ories (see [KTW22, Section 5.2]). Further examples are constructed in [KTW22],
which illustrate that many of their preservation results are sharp for general in-
terpolative fusions. However, it is worth pointing out that by [KTW22, Corollary
4.10], if the interpolative fusion of two stable theories exists and is NIP, then it
must be stable. Combined with preservation of NIP in T [Q] (Fact 3.6), this gives
an alternative proof for preservation of stability in T [Q] (Theorem 3.3(a)).

6. Tame expansions of weakly minimal structures

The rest of this article is devoted to applications of the preservation results
proved above. Our focus will now shift to expansions of specific structures rather
than theories. Given a structure M, we will use the previous theorems to build
expansions of M that simultaneously introduce new model theoretic complexity,
while also preserving some desired level of tameness. The general approach will be
to add new structure on a (definable, stably embedded) set Q inM. This presents
the main obstacle of understanding the induced structure on Q. Thus we will first
investigate subsets of structures that are not necessarily definable, but do admit
very trivial induced structure. Then, in order to apply our preservation results,
we will name such a set by a new predicate. Of course, this risks losing whatever
model-theoretic tameness we might have had at the start. Therefore, we will need

7In [KTW22], a theory T1 is called disintegrated relative to a reduct T0 if, for any M |= T1

and A ⊆M , aclT1
(A) = aclT0

(
⋃

a∈A aclT1
(a)) (where a ranges over singletons).
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to work in a setting where one can freely name new predicates with sufficiently
trivial induced structure, without introducing too much complexity. Moreover,
there is also the issue of stable embeddedness for the named predicate. By known
results (see Fact 6.8), superstable theories of U -rank 1 provide setting in which we
can resolve all of these issues. Thus the main results of this section will be about
expansions of structures that are weakly minimal (i.e., superstable of U -rank 1).

6.1. Eventually indiscernible sequences. Recall that our focus is now on struc-
tures rather than theories. So throughout this subsection, we fix an arbitrary L-
structure M with universe M .

The goal of this subsection is to identify subsets of M that are both easy to
find and also admit induced structure that is as trivial as possible. In the stable
setting, a typical example would be a set enumerated by an indiscernible sequence.
However, there is no guarantee that such a sequence can be found inside a particular
structure. For example, in (Z,+) there are no non-constant indiscernible sequences.
Thus we will work instead with “eventually” indiscernible sequences.

Definition 6.1. A sequence (ai)i<ω from M is eventually indiscernible over
A ⊆M if for any LA-formula ϕ(x1, . . . , xn), there is some kϕ > 0 such that if kϕ <
i1 < . . . < in and kϕ < j1 < . . . < jn then M |= ϕ(ai1 , . . . , ain)↔ ϕ(aj1 , . . . , ajn).

Unlike the situation with indiscernible sequences, there is always a plentiful
supply of eventually indiscernible sequences inside a given structure in a countable
language. In particular, we have the following fact, whose proof is a standard
application of Ramsey’s Theorem (see [Gan21, Section 4] and [Sim15, Section 2.1]
for related discussion).

Fact 6.2. Suppose L is countable and A is a countable subset of M . Then any
infinite sequence from M has a subsequence that is eventually indiscernible over A.

If L is countable then, using the previous fact, one can construct an infinite
sequence (ai)i<ω in M which is eventually indiscernible over itself, or even over
all of M (if M is countable). This provides a stark contrast to the behavior of
indiscernible sequences.

We will soon analyze the induced structure on eventually indiscernible sequences.
In general, this structure may include a total order; but of course in a stable context
this does not happen.

Fact 6.3. Assume M is stable and (ai)i<ω is a sequence from M , which is even-
tually indiscernible over some A ⊆ M . Then (ai)i<ω is eventually totally in-
discernible over A, i.e., for any LA-formula ϕ(x1, . . . , xn), there is some kϕ > 0
such that if i1, . . . , in > kϕ are pairwise distinct and j1, . . . , jn > kϕ are pairwise
distinct then M |= ϕ(ai1 , . . . , ain)↔ ϕ(aj1 , . . . , ajn).

Proof. This is essentially identical to the argument that an indiscernible sequence
in a stable theory is totally indiscernible. �

Remark 6.4. Like with indiscernibility, the definition of eventual indiscernibility
can be localized to a particular set ∆ of formulas ϕ(x1, . . . , xn). So we note that
in this more general setting, the analogue of the previous fact still holds as long as
every formula in ∆ is stable (under any bi-partitioning of the free variables).

Lemma 6.5. Suppose Q ⊆M is enumerated by an injective sequence (ai)i<ω, and
fix A ⊆ M such that ai ∈ A for all i < ω. Then (ai)i<ω is eventually totally

indiscernible over A if and only if QMA

ind is interdefinable with (Q,=).

Proof. Suppose first that (ai)i<ω is eventually totally indiscernible over A. Given
an LA-formula ϕ(x1, . . . , xn), let Rϕ = {d̄ ∈ Qn : M |= ϕ(d̄)}. We want to show
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that each Rϕ is definable in (Q,=). Let k = kϕ < ω be given by the assumption
that (ai)i<ω is eventually totally indiscernible. Let Yϕ be the set of tuples d̄ ∈ Rϕ
such the coordinates of d̄ are pairwise distinct, and no coordinate of d̄ is in a≤k.
Set Zϕ = Rϕ\Yϕ. We show that Yϕ and Zϕ are both definable in (Q,=).

By choice of k, Yϕ is either empty or consists of all injective tuples from Qn

such that no coordinate is in a≤k. In either case, Yϕ is definable in (Q,=). As for
Zϕ, note that any tuple in Zϕ either has two coordinates that are equal, or has
some coordinate from a≤k. Since a≤k ⊆ A, it follows that Zϕ is definable in the
structure on Q induced from LA-formulas with fewer than n free variables. Arguing
by induction on n, we conclude that Zϕ is definable in (Q,=).

Conversely, suppose that the QMA

ind is interdefinable with Q := (Q,=). Fix an
LA-formula ϕ(x1, . . . , xn). Then there is some formula ψ(x̄, ȳ) in the language of
equality, and some tuple b̄ from Qȳ, such that given d̄ ∈ Qn, we have M |= ϕ(d̄)
if and only if Q |= ψ(d̄, b̄). Since Q � M|=, it follows that if d̄ ∈ Qn then
M |= ϕ(d̄) ↔ ψ(d̄, b̄). Let k = kϕ < ω be such that ai does not appear in
b̄ for all i > k. Then (ai)i>k is totally indiscernible over b̄ with respect to the
language of equality. So for any pairwise distinct i1, . . . , in > k and pairwise distinct
j1, . . . , jn > k, we have

M |= ψ(ai1 , . . . , ain , b̄)↔ ψ(aj1 , . . . , ajn , b̄),

and thus M |= ϕ(ai1 , . . . , ain)↔ ϕ(aj1 , . . . , ajn). �

6.2. Naming a structure. We continue working with a fixed L-structureM with
universe M .

So far we have shown that if Q ⊆M is enumerated by an eventually indiscernible
sequence over some set A ⊆M , then QMA

ind is interdefinable with (Q,=). However,
in order to apply our preservation theorems, we need Q to be definable in M. As
discussed above, our strategy is to make Q definable by expanding the language. So
we are now back in the classical setting of preserving tameness when naming a new
predicate. The following is a fundamental notion from this area of the literature
(e.g., [CZ01]).

Definition 6.6. Fix a subset Q ⊆ M . Consider the structure (M, Q) obtained
by expanding M by a new predicate interpreted as Q. A formula of (M, Q) is
bounded if it is of the form

�1y1 ∈ Q . . .�nyn ∈ Qψ(x, y),

where �i ∈ {∀,∃} and ψ(x, y) is a an L-formula. We say Q is bounded in M if
all formulas of (M, Q) are equivalent (modulo Th(M, Q)) to bounded formulas.

The following observation is a straightforward exercise.

Remark 6.7. If Q ⊆M is bounded in M , then Q
(M,Q)
ind coincides with QMind.

We can now explain the relevance of weakly minimal structures.

Fact 6.8. Let Q be a subset of M .

(a) [CZ01] Suppose Q is bounded in M . Then for any λ ≥ |L| + ℵ0, (M, Q) is
λ-stable if and only if M and QMind are λ-stable.

(b) [CL20] If M is weakly minimal, then Q is bounded in MA for any A �M.

Altogether, ifM is weakly minimal then we can orchestrate a setting in which the
above preservation theorems are applicable by naming an eventually indiscernible
sequence. Moreover, since the induced structure on this sequence is interdefinable
with a pure set, we are free to then enrich further by any other structure. This
brings us to the next definition.
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Definition 6.9. LetN be an arbitrary structure (in some language) whose universe
has size at most |M |. Then an expansion of M naming N is a structure of the
form (M,Q), where Q is an isomorphic copy of N and the universe of Q is some
subset Q ⊆M .

In order to solidify the previous definition, we give an example of naming a
structure. Let N = (V,E) be a graph. Then an expansion of M naming N is a
structure of the form (M, Q,R) where Q is a new (i.e., not in L) unary predicate
naming a subset of M and R is a new binary relation on Q such that Q := (Q,R)
is an isomorphic copy of N = (V,E).

We can now prove the main result of this subsection.

Theorem 6.10. Assume L is countable and M is weakly minimal. Let N be a
stable (resp., superstable, NIP, NTP2) countable structure. Then there is a stable
(resp., superstable, NIP, NTP2) expansion M∗ of M naming N . Moreover:

(i) If M and N are ω-stable, then so is M∗.
(ii) If Q ⊆M is the universe of the copy of N in M∗, then QM

∗

ind is interdefinable
with N .

Proof. Let A � M be a countable elementary substructure. Without loss of gen-
erality, we can expand L by constants for the universe A of A. By Facts 6.2 and
6.3 we may fix a subset Q ⊆ M , which is enumerated by an eventually totally
indiscernible sequence over A. Then QMind is interdefinable with (Q,=) by Lemma
6.5. In particular, QMind is λ-stable for all λ ≥ ℵ0. Applying Fact 6.8 we have that
T := Th(M, Q) is superstable. Moreover, if Th(M) is ω-stable then so is T .

We now apply the material in Section 3 to the base theory T and ∅-definable set
Q (which is stably embedded since T is stable). Note that the induced structure
QTind is still interdefinable with a pure set by Remark 6.7 and Fact 6.8(b). Let Q be
a copy of N expanding QTind (without loss of generality, we may add any necessary
constants to N ), and let M∗ be the corresponding expansion of (M, Q) by Q.
Then Th(M∗) is T [Q]. Altogether, the preservation of stability, superstability, ω-
stability, NIP, and NTP2 now follows from Theorem 3.3, Fact 3.6, and Proposition
3.7. Finally, note that QM

∗

ind is interdefinable with N by Proposition 2.7. �

Remark 6.11. Theorem 6.10 omits the dividing lines of simplicity and NSOP1

because our preservation results for these properties require the additional hypoth-
esis of algebraic embeddedness. So we point out that if M is weakly minimal
and contains an eventually indiscernible sequence that enumerates a set Q that is
algebraically embedded in Th(M, Q) then, using Corollary 4.36 (resp., Theorem
4.35), an analogous argument works to build a simple (resp., NSOP1) expansion
of M naming some arbitrary simple (resp., NSOP1) countable structure N . At
the moment, we do not know whether every weakly minimal structure admits an
eventually indiscernible sequence that is algebraically embedded after being named
by a new predicate. However, in Section 7.2 we will construct such sequences in
the special case of (Z,+, 0, 1).

As a counterpoint to Remark 6.11, we note that interpolative fusions [KTW22]
provide a different method for adding simplicity and NSOP1 in Theorem 6.10.

Proposition 6.12. Assume L is countable and M is weakly minimal. Let N be a
simple (resp., NSOP1) countable structure. Then there is a simple (resp., NSOP1)
expansion of M naming N .

Proof. First assume N is NSOP1. Let T and Q be as in Theorem 6.10. Then T [Q]
is NSOP1 by Corollary 5.2(a). Now, if N is actually simple, then it is also NTP2,
hence T [Q] is NTP2 by Proposition 3.7. So T [Q] is NSOP1 and NTP2, and thus is
simple (see [She90, Theorem III.7.11] or [KR20, Corollary 8.5]). �
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Next we state a quick corollary about distal structures. The notion of distality
was introduced by Simon as a means to understand “purely unstable” NIP theories.
Subsequent work of Chernikov and Starchenko [CS18] established a connection
between distality and “tame combinatorics” via regularity lemmas and the Erdős-
Hajnal property for definable sets. It has since been discovered that even the
property of having a distal expansion (which encompasses a much wider class within
NIP) leads to similar combinatorial tameness results. In particular, there is a
growing body of work on stable structures admitting distal expansions. To our
knowledge, there is no previously established example of a stable expansion of
(Z,+) which is known to not admit a distal expansion. So we take the opportunity
to construct one now.

Corollary 6.13. Assume L is countable and M is weakly minimal. Then there is
a superstable expansion M∗ of M that does not admit a distal expansion.

Proof. By Theorem 6.10 there is a superstable expansion M∗ of M naming Fp for
some prime p > 0. Then M∗ has no distal expansion by [CS18, Corollary 6.3]. �

Remark 6.14. To continue with the discussion before the previous corollary,
we speculate that most stable expansions of (Z,+) from the previous literature
(namely, [Con19, Con18, CL20, Haw20, LP20, PS18]) should admit distal expan-
sions. In particular, recall from the introduction that these examples are of the form
(Z,+, A) where A ⊆ Z is some “sparse” set. A reasonable guess in this case is that
by adding the ordering, one might obtain a distal structure (Z,+, <,A) expanding
Presburger arithmetic. However, it is not even known whether adding the order to
these examples preserves NIP (though some special cases, such as A = {2n : n ≥ 1},
have been dealt with in [LP20] and [Haw20]). Thus a natural question is to find
some stable expansion Z of (Z,+) such that the ordered expansion (Z, <) is not
NIP. We can now use a result of Shelah and Simon [SS12] to construct such an
example. In particular, by Theorem 6.10 there is a superstable expansion Z of
(Z,+) that names the additive group of an infinite-dimensional vector space over a
finite field. Then (Z, <) has the independence property by [SS12, Theorem 2.1].

We finish this subsection with some remarks on the assumption of weak mini-
mality, which was primarily used to get the boundedness condition on subsets of
M for free (via Fact 6.8(b)). An alternate route is via the notion of smallness.

Definition 6.15. Fix a subset Q ⊆ M . Then Q is small in M if there is some
(M′, Q′) ≡ (M, Q) such that, for any finite set B ⊆ M ′, any L-type over BQ′ is
realized in M′.

In [CZ01, Proposition 2.1], Casanovas and Ziegler show that if M is nfcp and
Q is small in M, then Q is bounded in M. Thus, instead of assuming M is
weakly minimal, one could instead assume M is nfcp and attempt to a name a
new structure on an eventually indiscernible sequence that enumerates a small set
in M. In general, such a sequence need not enumerate a small set, but in practice
showing sets are small can often be easier than proving boundedness. For example,
if Q ⊆ Z is enumerated by an eventually indiscernible sequence in (Z,+, 0, 1), then
Q is automatically small in (Z,+, 0, 1) by Lemma 6.5 and [CL20, Corollary 3.19(a)]
(which holds more generally for any U -rank 1 group with “finite torsion”).

Finally, we note that an NIP analogue of Fact 6.8(a) was proved by Chernikov
and Simon [CS13, Corollary 2.5]. In particular, ifM is NIP and Q ⊆M is bounded
inM then (M, Q) is NIP. Therefore, starting with the assumption thatM is NIP, if
one can find a set Q ⊆M that is bounded inM, stably embedded in Th(M, Q), and
enumerated by an eventually indiscernible sequence in M , then one can similarly
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use Q to build NIP (resp., NTP2) expansions of M naming arbitrary NIP (resp.,
NTP2) countable structures.

6.3. Expansion by mutually algebraic structure. The goal of this subsection
is to prove the main result stated in Section 1.3. We first recall the notion of a
“mutually algebraic” relation on a set A (introduced by Laskowski in [Las13]).

Definition 6.16. Let A be a set and R ⊆ An an n-ary relation on A, for some
n ≥ 1. Then R is a mutually algebraic relation on A if there is some N ≥ 1
such that for any 1 ≤ i ≤ n and any b ∈ A,

|{(a1, . . . , an−1) ∈ An−1 : (a1, . . . , ai−1, b, ai, . . . , an−1) ∈ R}| ≤ N.

Example 6.17. Fix a set A.

(1) Any unary relation R ⊆ A is mutually algebraic.
(2) Suppose R ⊆ A×A defines a graph relation on A. Then R is mutually algebraic

if and only if the graph has bounded degree.
(3) Suppose R ⊆ A × A defines the graph of a function from A to A. Then R is

mutually algebraic if and only if the function is (≤N)-to-one for some N ≥ 1.

Now let A be an arbitrary L-structure with universe A. Then an LA-formula
is mutually algebraic (in A) if it defines a mutually algebraic relation on A; and
the structure A is mutually algebraic if every LA-formula is equivalent (in A) to a
Boolean combination of mutually algebraic LA-formulas.

Fact 6.18 (Laskowski [Las13]). Let A be an L-structure.

(a) A is mutually algebraic if and only if Th(A) is superstable of U -rank 1 with
trivial forking.

(b) Assume A is mutually algebraic, and let A′ be an expansion of A by arbitrarily
many mutually algebraic relations on A. Then A′ is mutually algebraic.

Given a set A, let Ama denote the collection of all mutually algebraic relations
on A.

Theorem 6.19. Let M be a stable (resp., superstable) structure. Fix a definable
set A ⊆ M such that AMind is mutually algebraic. Then (M, Ama) is stable (resp.,
superstable).

Proof. Let A be the expansion of AMind obtained by naming all sets in Ama. Then
A is mutually algebraic by Fact 6.18(b), and thus superstable by Fact 6.18(a). So
(M,A) is stable (resp., superstable) by Theorem 3.3. Finally, note that (M,A) is
interdefinable with (M, Ama). �

As before, for weakly minimal structures we can use Fact 6.8(b) to remove the
definability assumption from the previous theorem.

Corollary 6.20. Let M be a weakly minimal structure. Fix a subset A ⊆M such
that AMind is mutually algebraic. Then (M, Ama) is superstable.

Proof. Note that AMind is superstable by Fact 6.18(a), and so (M, A) is superstable

by Fact 6.8. By Remark 6.7, AMind coincides with A
(M,A)
ind (after adding constants

for a small model). So we can apply Theorem 6.19 to (M, A). �

7. Tame expansions of (Z,+)

7.1. U-rank in stable expansions of (Z,+). Recall that the present article was
motivated in large part by Question 1, which we restate here.

Question 7.1.
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(a) Is there a strictly stable expansion of (Z,+)?
(b) Is there a superstable expansion of (Z,+) with U -rank not equal to ω?

Positive answers to both questions now follow immediately from the following
special case of Theorem 6.10.

Theorem 7.2. Let N be a stable (resp., superstable, NIP, NTP2) countable struc-
ture. Then there is a stable (resp., superstable, NIP, NTP2) expansion Z of (Z,+)
naming N . Moreover, the U -rank of Z is at least that of N .

Proof. Since (Z,+) is superstable of U -rank 1, Theorem 7.16 yields the desired
expansion Z of (Z,+), which names N on some set Q ⊆ Z. The lower bound on
the U -rank of Z comes from the fact that QZind is interdefinable with N . �

In particular, we can obtain a strictly stable expansion of (Z,+) by choosing N
to be any countable strictly stable structure (e.g., a nonabelian free group); and
we can obtain a superstable expansion of U -rank greater than ω by choosing N to
be any countable superstable structure of U -rank greater than ω (e.g., an (ω + 1)-
ordered chain of infinitely expanding equivalence relations with infinite classes).

A more meticulous version of Question 7.1(b) would ask for the precise identi-
fication of all ordinals α for which there is a superstable expansion of (Z,+) with
U -rank α. So let us summarize what is known. As previously mentioned, a large
number of examples with U -rank ω can be found in previous work of several authors
[Con19, Con18, CL20, Haw20, LP20, PS18]. Beyond this, Theorem 7.2 implies the
existence of superstable expansions of (Z,+) of arbitrarily high U -rank, although
the proof does not provide a way to construct one with a specifically chosen U -rank.
In fact, certain U -ranks are impossible to obtain. The following is the current state
of the art in this direction (to our knowledge).

Fact 7.3 ([BL86, PS18]). Every proper superstable expansion of (Z,+) has infinite
monomial U -rank.

Proof. First, we recall the theorem of Palaćın and Sklinos [PS18] that there is no
proper stable expansion of (Z,+) with finite U -rank.8 Second, we recall a classical
result of Berline and Lascar [BL86, Corollary IV.2.7] that if G is a superstable group
of U -rank ωα1k1 + . . . + ωαnkn (in Cantor normal form) then, for any 1 ≤ r ≤ n,
G has a definable normal subgroup of U -rank ωα1k1 + . . . + ωαrkr. Since any
nontrivial subgroup of (Z,+) has finite index, it then follows from the Berline-
Lascar inequalities for superstable groups [BL86, Corollary III.8.2] that the U -rank
of any superstable expansion of (Z,+) must be a monomial ωαk. �

7.2. Vaporous sets of integers. Our next goal is to extend Theorem 7.2 to
include the dividing lines of simplicity and NSOP1. Recall from Remark 6.11 that
if M is weakly minimal, and N is an arbitrary simple (resp., NSOP1) structure,
then the main obstacle in using the strategy of Theorem 6.10 to build a simple
(resp., NSOP1) expansion of M naming N is whether one can find an eventually
indiscernible sequence in M that enumerates a set that is algebraically embedded
after being named by a new predicate. We will show here that this is possible in
the special case of M = (Z,+, 0, 1). Note that a direct application of Proposition
6.12 yields a simple (resp., NSOP1) expansion of M naming N , without the need
to check for algebraic embeddedness.

Definition 7.4. A strictly increasing sequence (an)∞n=0 from Z+ is vaporous if
the following two properties hold:

(i) limn→∞
an+1

an
=∞.

8This was later strengthened to dp-rank in [CP18].
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(ii) For all m > 0, (an)∞n=0 is eventually constant modulo m.

The canonical example of a vaporous sequence is the factorials: an = n!. In
[PS18], it is shown that the (Z,+, 0, 1)-induced structure on the factorials is a pure
infinite set. Therefore the factorials are eventually totally indiscernible over Z by
Lemma 6.5. It turns out that the same holds for any vaporous sequence by various
general results from [Con19, CL20, LP20]. Nevertheless, we will give a short self-
contained proof (the details of which will be useful later).

Lemma 7.5. Suppose (an)∞n=0 is a strictly increasing sequence in Z+ such that
limn→∞

an+1

an
=∞. Then for any m,n > 0 and r ∈ Z, the equation

x1 + . . .+ xm = y1 + . . .+ yn + r

has only finitely many solutions in {an}n≥0 satisfying maxi xi 6= maxj yj.

Proof. Fix m,n > 0 and r ∈ Z. Let t = max{m,n}. By assumption, we can choose
some k ≥ 0 such that if i > k then ai+1 > tai + |r|. Fix i1, . . . , im, j1, . . . , jn ≥ 0
such that ai1 + . . . + aim = aj1 + . . . + ajn + r. Let i∗ = max{i1, . . . , im} and
j∗ = max{j1, . . . , jn}, and assume i∗ 6= j∗. We show i∗, j∗ ≤ k, which yields the
lemma. Suppose instead that max{i∗, j∗} > k. If i∗ > j∗ then i∗ > k, and thus

aj1 + . . .+ ajn + r ≤ taj∗ + r < ai∗ ≤ ai1 + . . .+ aim .

On the other hand, if i∗ < j∗ then j∗ > k, and thus

ai1 + . . .+ aim − r ≤ tai∗ − r < aj∗ ≤ aj1 + . . .+ ajn .

So in either case, we have a contradiction. �

Corollary 7.6. Any vaporous sequence from Z+ is eventually totally indiscernible
over Z with respect to (Z,+).

Proof. Fix a vaporous sequence (ai)
∞
i=0 in Z+. By quantifier elimination, it suffices

to consider formulas of the form:

(1) x1 + . . .+ xm = y1 + . . .+ yn + r for some m,n > 0 and r ∈ Z, or
(2) x ≡m r for some 0 ≤ r < m.

If ϕ(x̄, ȳ) is of the form in (1) then, by Lemma 7.5, there is some k such that
if i1, . . . , im, j1, . . . , jn > k are pairwise distinct then ¬ϕ(ai1 , . . . , aim , aj1 , . . . , ajn)
holds (recall that (ai)

∞
i=0 is strictly increasing). On the other hand, if ϕ(x) is of the

form in (2), then by condition (ii) of Definition 7.4 there is some k > 0 such that
either ϕ(ai) holds for all i > k or ¬ϕ(ai) holds for all i > k. �

We call an infinite subsetQ ⊆ Z+ vaporous if it can be enumerated by a (strictly
increasing) vaporous sequence. The next lemma collects some model-theoretic facts
about vaporous sets, which are all well-established in the literature.

Lemma 7.7. Suppose Q ⊆ Z+ is vaporous.

(a) QZ
ind is interdefinable with (Q,=).

(b) Q is small and bounded in (Z,+, 0, 1).

Proof. Part (a) follows from Corollary 7.6 and Lemma 6.5. For part (b), smallness
follows from part (a) and [CL20, Corollary 3.19(a)]; and boundedness follows from
Fact 6.8(b).9 �

Remark 7.8. It follows from Lemma 7.7 that if Q ⊆ Z+ is vaporous then (Z,+, Q)
is superstable. In fact, it is shown in [Con19] that the same conclusion holds for
any set Q ⊆ Z+ enumerated by a sequence satisfying condition (i) of Definition 7.4.

9Recall also that any small set in an nfcp structure is bounded by [CZ01, Proposition 2.1]. We
also stress that Lemma 7.7 is largely evident from earlier work of Palaćın and Sklinos [PS18] on
the factorials, and also from various more general results in [Con19] and [LP20].
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For the rest of this subsection, we let Q be a fixed vaporous subset of Z+. Define
the theory T = Th(Z,+, 0, 1, Q) in the language L = {+, 0, 1, Q}. Let U |= T be a
monster model and let |T^ denote forking independence in T .

Our next goal is to show that Q is algebraically embedded in T . Note first that
Lemma 7.7(a) yields weak elimination of imaginaries for Th(QZ

ind). By Remark

4.13(b), this allows us to focus on the operator A
r

= aclT (A) ∩ Q(U) on subsets
A ⊆ U . In order to prove that Q is algebraically embedded in T , it suffices to show:

(†) If A,B,C ⊆ U and A |T^C
B, then ABC

r ⊆ aclT (AC
r
, BC

r
).

We will start by giving a precise identification of the operator A
r
. The first step

is the following consequence of Lemma 7.5.

Corollary 7.9. Fix a ∈ U and suppose that ma = c1v1 + . . . + cnvn for some
c1, . . . , cn ∈ Z\{0}, m ∈ Z+, and pairwise distinct v1, . . . , vn ∈ Q(U). Then
v1, . . . , vn ∈ aclT (a).

Proof. We claim that the equation ma = c1x1 + . . .+ cnxn has only finitely many
solutions in Q(U)n where the xi’s are pairwise distinct. Note that if a ∈ Z then
this follows from Lemma 7.5 (and elementarity). To extend the result to a ∈ U ,
it suffices to show that in the context of Lemma 7.5, one can bound the number
of solutions independently of the integer r. Given the statement of Lemma 7.5,
this improvement follows using a direct pigeonhole argument (which we leave to
the reader). Alternatively, since Q is small in (Z,+, 0, 1), and both Th(Z,+, 0, 1)
and Th(QZ

ind) are nfcp, one obtains nfcp for T by [CZ01, Proposition 5.7]. Thus T
eliminates ∃∞ by [She90, Theorem II.4.4], which also yields the desired result. �

Let T0 = Th(Z,+, 0, 1) in the language L0 = {+, 0, 1}, and view (the L0-reduct
of) U as a monster model of T0. Recall that T0 has quantifier elimination after
adding adding binary relations for congruence mod n for all n ≥ 2. Consequently,
if A ⊆ U then aclT0

(A) is the (relative) divisible hull of the subgroup generated by
A. The previous corollary motivates the following definition.

Definition 7.10. Given A ⊆ U , the Q-projection of A, denoted QPr(A), is the
set of all v ∈ Q(U) for which there exist pairwise distinct v1, . . . , vn ∈ Q(U) and
c1, . . . , cn ∈ Z\{0} such that v = vi for some i and

∑
civi ∈ aclT0

(A).

Remark 7.11. Fix A ⊆ U .

(a) Since Z ⊆ aclT0(A), it follows by definition that Q(Z) ⊆ QPr(A).
(b) Given v ∈ Q(U), we have v ∈ QPr(A) if and only if v ∈ aclT0(A∪ (Q(U)\{v})).

Recall that for any A ⊆ U , A
r

denotes acl(A) ∩Q.

Proposition 7.12. If A ⊆ U then A
r

= QPr(A).

Proof. Fix A ⊆ U . Note that QPr(A) is contained in Q(U) by definition, and

contained in aclT (A) by Corollary 7.9. So it suffices to show A
r ⊆ QPr(A). With-

out loss of generality, we may assume |A| is small enough to ensure |Q(U)| >
|QPr(A)| (recall QPr(A) ⊆ aclT (A)). Set V = Q(U)\QPr(A). We want to show
V ∩aclT (A) = ∅. Since V is infinite, it suffices to fix u, v ∈ V and show that u ≡TA v.

Set B = A∪(Q(U)\{u, v}). We claim that uv ≡T0

B vu. By quantifier elimination,
and the fact that {u, v} is aclT0

-independent over B (by Remark 7.11(b)), we only
need to check that u and v have the same remainder modulo n for all integers n ≥ 1.
Since u, v ∈ Q(U)\Z (by Remark 7.11(a)), this follows from compactness and the
assumption that Q is vaporous (in particular, condition (ii) of Definition 7.4).

We now have a partial L0-elementary map f , which fixes B pointwise and ex-
changes u and v. Since Q is bounded in (Z,+, 0, 1), it follows that f is L-elementary
(see [CZ01, Lemma 3.2]). In particular, this shows u ≡TA v. �
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Theorem 7.13. Q is algebraically embedded in T = Th(Z,+, 0, 1, Q).

Proof. We will show that for any aclT0
-closed sets A,B,C ⊆ U , with C ⊆ A∩B, if

A |T^C
B then QPr(AB) ⊆ QPr(A)∪QPr(B). Note that this implies the statement

(†) above by Proposition 7.12 and basic properties of forking independence (mainly
Remark 4.2(i)). So fix aclT0

-closed A,B,C ⊆ U , with C ⊆ A ∩ B, and assume

A |̂ T
C
B. Fix some v0 ∈ QPr(AB). Then there are a ∈ A, b ∈ B, pairwise distinct

v1, . . . , vn ∈ Q(U), which are distinct from v0, and c0, c1, . . . , cn ∈ Z\{0}, such that

c0v0 + . . .+ cnvn = a+ b.

Suppose first that b ∈ aclT0(Q(U)C). Then we have an identity of the form

(†) mb = d1w1 + . . .+ dkwk + c

for some pairwise distinct w1, . . . , wk ∈ Q(U), c ∈ C, d1, . . . , dk,m ∈ Z\{0}. So

(††) mc0v0 + . . .+mcnvn = ma+ d1w1 + . . .+ dkwk + c

If v0 = wi for some 1 ≤ i ≤ k, then (†) implies that v0 ∈ QPr(mb− c) ⊆ QPr(B).
So we may assume v0 6= wi for all 1 ≤ i ≤ k. Then, after some rearranging and
renaming, (††) gives us an identity of the form

mc0v0 + e1u1 + . . .+ e`u` = ma+ c

where u1, . . . , u` ∈ Q(U) are pairwise distinct, and distinct from v0. So v0 ∈
QPr(ma+ c) ⊆ QPr(A).

Finally, suppose b 6∈ aclT0(Q(U)C). Then, since Q is small in (Z,+, 0, 1), we

can construct a sequence (bi)i<ω in U such that for all i < ω, bi ≡T0

Q(U)C b and

bi 6∈ aclT0
(Q(U)Cb<i). Since Q is bounded in (Z,+, 0, 1), it then follows from

[CZ01, Lemma 3.2] that bi ≡TC b for all i < ω. Now define the L-formula

ϕ(x, y) := ∃v0 ∈ Q . . .∃vn ∈ Q(c0v0 + . . .+ cnvn = x+ y).

Note that ϕ(a, b) holds. We show that {ϕ(x, bi) : i < ω} is 2-inconsistent, which

contradicts A |̂ T
C
B. So fix i < j < ω and suppose we have a∗ |= ϕ(x, bi)∧ϕ(x, bj).

Then there are v′0, . . . , v
′
n, v
′′
1 , . . . , v

′′
n ∈ Q(U) such that a∗ + bi = c0v

′
0 + . . .+ cnv

′
n

and a∗ + bj = c0v
′′
0 + . . .+ cnv

′′
n. Then we have

bj = c0v
′′
0 + . . .+ cnv

′′
n − a∗ = c0v

′′
0 + . . .+ cnv

′′
n − (c0v

′
0 + . . .+ cnv

′
n) + bi,

Thus bj ∈ aclT0
(Q(U)bi), which is a contradiction. �

Remark 7.14. Theorem 7.13 can be generalized to any set Q ⊆ Z+ enumerated
by a sequence satisfying just condition (i) of Definition 7.4. More generally, one
only needs the conclusion of Lemma 7.5. In this case, QZ

ind is interdefinable with an
expansion of (Q,=) by various unary predicates (namely, those for Q∩ (mZ+r) for
all integers m, r). Therefore Q is still small (and thus also bounded) in (Z,+, 0, 1)
by, e.g., [CL20, Corollary 3.19(a)]. We also note that QZ

ind still has weak elimination
of imaginaries since this is true for any theory involving only unary relations10. The
only other use use of condition (ii) of Definition 7.4 was in the proof of Proposition
7.12 when analyzing the set V . But one could instead partition V using cosets of the
divisible subgroup of U , and run the same analysis on each piece. By compactness,
each piece in this partition of V is either empty or of unbounded cardinality, and
so the argument goes through.

We can now extend Theorem 7.2 to also include simplicity and NSOP1.

10It is easy to check that in such a theory, the stationarity axiom holds for algebraic indepen-

dence |a^ over any algebraically closed set, and thus |a^ satisfies the criterion for weak elimination

of imaginaries in [MRK21, Proposition 1.17].
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Corollary 7.15. Let N be a simple (resp., NSOP1) countable structure. Then
there is a simple (resp., NSOP1) expansion of (Z,+) naming N .

Proof. Let Q ⊆ Z+ be vaporous, and set T = Th(Z,+, 0, 1, Q). Then T is stable,
and Q is algebraically embedded in T by Theorem 7.13. So we may apply Corollary
4.36 (resp., Theorem 4.35) where Q is a copy of N with universe Q. �

7.3. Expansions by unary sets. The goal of this subsection is to prove the results
summarized in Sections 1.1 and 1.2. We first use vaporous sets to show that any
countable graph can be coded into an expansion of (Z,+) by some unary predicate,
while preserving various levels of model-theoretic complexity.

Theorem 7.16. Suppose Q ⊆ Z+ is vaporous. Let E be a graph relation on Q,
and set A = Q ∪ {a+ b : (a, b) ∈ E}.
(a) (Z,+, A) is interdefinable with (Z,+, Q,E).
(b) (Z,+, A) is stable (resp., superstable, simple, NIP, NTP2, NSOP1) if and only

if (Q,E) is stable (resp., superstable, simple, NIP, NTP2, NSOP1). Moreover,
the U -rank of (Z,+, A) is at least that of (Q,E).

Proof. Part (a). Obviously A is definable in (Z,+, Q,E). For the other direction,
we first show that Q is definable in (Z,+, A). Consider a formula ϕ(x), which says
that x ∈ A and x is the sum of two distinct elements in A. Clearly A\Q ⊆ ϕ(Z).
Moreover, Lemma 7.5 (with m = 1, n ∈ {2, 3, 4}, and r = 0) implies that only
finitely many elements of Q satisfy ϕ(x). So A(x) ∧ ¬ϕ(x) defines some cofinite
subset of Q, which suffices to prove that Q is definable in (Z,+, A).

Next we show E is definable in (Z,+, A). Consider a formula ψ(x, y), which says
that x, y ∈ Q and x + y ∈ A. Clearly E ⊆ ψ(Z). Moreover, Lemma 7.5 (with
m = 2, n ∈ {1, 2}, and r = 0) implies that ψ(Z)\E is finite.

Part (b). By Corollary 7.6 and Lemma 6.5, Th(Z,+, 0, 1, Q,E) is precisely T [Q]
where T = Th(Z,+, 0, 1, Q) and Q is the expansion of (Q,E) by constants for all
elements of Q. Recall also that Q is algebraically embedded in T by Theorem 7.13.
Altogether, the first claim follows from part (a) and the preservation theorems
above. For the second claim, recall that the (Z,+, 0, 1, Q,E)-induced structure on
Q is interdefinable with (Q,E) by Proposition 2.7. It follows that the U -rank of
(Z,+, Q,E) is at least that of (Q,E), and so the same is true of (Z,+, A). �

We can now give another positive answer Question 1 (restated above in Question
7.1) using expansions of (Z,+) by unary predicates.

Definition 7.17. Let UG be the set of all ordinals α such that there is a superstable
(pure) graph of U -rank at least α.

Corollary 7.18. There is a set A∞ ⊆ N such that (Z,+, A∞) is strictly stable.
Moreover, for any α ∈ UG there is a set Aα ⊆ N such that (Z,+, Aα) is superstable
of U -rank at least α.

Proof. This follows immediately from Theorem 7.16, together with the definition
of UG and the existence of strictly stable graphs (see [HMS83] for an explicit de-
scription of such a graph). �

Remark 7.19. It is a well-known fact that every first-order structure in a finite
language is bi-interpretable with a graph (see [Hod93, Theorem 5.5.1]). Conse-
quently, if there is a superstable theory T in a finite language with U(T ) ≥ αω,
then α ∈ UG by sub-additivity of U -rank. Thus we conjecture that UG is the set
of all countable ordinals, since there ought to be theories in finite languages with
arbitrarily high countable U -ranks. However, we have so far been unable to find a
reference or a proof of this. In light of existing literature, it appears the most we
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can say is that UG contains ωm for all m > 0 (e.g., witnessed by DCF0,m [McG00]).
Beyond this, a possible lead is unpublished work of Bouscaren and Ziegler [BZ92],
in which the authors describe a particular interpretation of an L-structure in a
graph, with L countable (and possibly infinite). Using this construction, they show
that Vaught’s Conjecture reduces to theories of graphs. In personal communication,
Ziegler suggested that their interpretation should preserve superstability.

Next, we give a concrete formulation of the result alluded to at the start of
Section 1.3, namely, the existence of sets B ⊆ A ⊆ N such that (Z,+, A) is stable
and (Z,+, B) is unstable. Indeed, by Remark 7.8 and Theorem 7.16(a), we have
the following general observation.

Proposition 7.20. Let Q ⊆ Z+ be a vaporous set, and define A = Q ∪ (Q + Q).
Then (Z,+, A) is superstable, but for any countable graph Γ there is some B ⊆ A
such that Γ is definable in (Z,+, B).

Finally, we use similar techniques to construct sets A ⊆ N such that the induced
structure AZ

ind has arbitrarily large U -rank. As discussed in Section 1.1, all examples
in previous literature of stable expansions (Z,+, A) are such that U(AZ

ind) = 1.

Corollary 7.21.

(a) There is a set A ⊆ N such that AZ
ind is strictly stable.

(b) For any n < ω, there is a set A ⊆ N such that U(AZ
ind) = n.

(c) Suppose α is an ordinal such that UG contains some β > αω. Then there is a
set A ⊆ N such that U(AZ

ind) > α.

Proof. Part (a). Let A = A∞ be as in Corollary 7.18. Then (Z,+, A∞) is strictly
stable, and thus so is AZ

ind by Fact 6.8.
Part (b). Fix n < ω. We may assume n ≥ 1. Let Q = {k! : k ≥ n}. It is easy to

check that it follows by the definition of Q that the map (x1, . . . , xn) 7→ x1+. . .+xn
from Qn to N is injective. Note that U(QZ

ind) = 1 since QZ
ind is interdefinable with

(Q,=). Define

B = {x1 + . . .+ xn : x̄ ∈ Qn, xi > n! for some 1 < i ≤ n}.
Let A = B ∪Q. Then it follows from Lemma 7.5 (similar to the proof of Theorem
7.16(a)) that B∩Q is finite and Q is an AZ

ind-definable subset of A. So U(AZ
ind) ≥ n

since we have an injective definable map from (Q\{n!})n into A. Conversely, we
can definably interpret AZ

ind in QZ
ind with universe Qn (send Q\B into Q×{n!}n−1,

and B to the complement). Therefore U(AZ
ind) ≤ n by Lascar’s inequality.

Part (c). Given such an α, let Γ be a graph of U -rank β > αω. By Theorem
7.16, there is a set A ⊆ N such that (Z,+, A) is superstable and defines Γ (using
a unary set for the universe). Thus (Z,+, A) is has U -rank at least β. So AZ

ind is
superstable, and it follows from [Con19, Theorem 2.11] that U(AZ

ind) > α. �

7.4. Addendum on vaporous sequences. In the course of developing various
results of eventually indiscernible sequences and then specializing to vaporous se-
quences in Z+, the authors wondered whether any strictly increasing sequence in
Z+, which is eventually indiscernible in the structure (Z,+, 0, 1), must be vaporous.
So we have included some brief details showing that this is not the case. Note first
that any eventually indiscernible sequence in (Z,+, 0, 1) must satisfy condition (ii)
of Definition 7.4; but we will see that condition (i) can fail.

Let (pk)∞k=1 be a strictly increasing enumeration of all prime powers. The fol-
lowing is a special case of the (generalized) Chinese Remainder Theorem.

Fact 7.22. Fix k ≥ 1, and suppose b ∈ Z is such that b ≡pt 0 for all 1 ≤ t < k.
Then there is some 0 ≤ r < lcm(p1, . . . , pk) such that r ≡pk b and r ≡pt 0 for all
1 ≤ t < k.
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Lemma 7.23. Let (bn)∞n=0 be any sequence of integers. Then there is a sequence
(an)∞n=0 in Z such that |an − bn| ≤ n for all n ≥ 0 and, for all m > 0, (an)∞n=0 is
eventually 0 modulo m.

Proof. We first fix n ≥ 0, and inductively define a sequence (bn,k)∞k=0 such that:

(i) bn,k ≡pt 0 for all 1 ≤ t ≤ k, and
(ii) bn,k+1 = bn,k + rn,k+1 for some 0 ≤ rn,k+1 < lcm(p1, . . . , pk+1).

Let bn,0 = bn. Suppose we have bn,0, . . . , bn,k satisfying (i) and (ii). Using (i) and
Fact 7.22, choose 0 ≤ rn,k+1 < lcm(p1, . . . , pk+1) such that rn,k+1 ≡pk+1

-bn,k and
rn,k+1 ≡pt 0 for all 1 ≤ t ≤ k. Set bn,k+1 = bn,k + rn,k+1. To verify (i), note that
if 1 ≤ t ≤ k then rn,k+1 ≡pt 0 by construction and bn,k ≡pt 0 by induction, and so
bn,k+1 ≡pt 0. Moreover, rn,k ≡pk+1

-bn,k by construction, and so bn,k+1 ≡pk+1
0.

Set N0 = 0 and, for k ≥ 1, set Nk =
∑k
t=1(lcm(p1, . . . , pt) − 1). For any n ≥ 0

and k ≥ 0, we have

bn,k = bn + rn,1 + . . .+ rn,k ≤ bn +Nk.

Now for each n ≥ 0, let kn ≥ 0 be the maximal k such that n ≥ Nk. Define
an = bn,kn . Then |an − bn| ≤ Nkn ≤ n.

Finally, we show that (an)∞n=0 is eventually 0 modulo m for all m > 0. It suffices
to assume m = pk for some k ≥ 1. So fix k ≥ 1. Suppose n ≥ Nk. Then k ≤ kn,
and so an = bn,kn ≡pk 0. �

Remark 7.24. After minor modifications to the proof, one can adjust the state-
ment of the lemma so that |an − bn| ≤ n is replaced by |an − bn| ≤ f(n), where
f(n) is any divergent function.

Corollary 7.25. There is a sequence (an)∞n=0 in Z+, which is eventually indis-
cernible over Z but not vaporous.

Proof. Let (an)∞n=0 be as in Lemma 7.23 with respect to the starting sequence
bn = bπnc. Set Q = {an : n ≥ 0}. We claim that the induced structure on Q from
(Z,+, 0, 1) is (Q,=), and so (an)∞n=0 is eventually indiscernible over Z by Lemma
6.5. For formulas of the form x ≡m r this follows by construction. For the induced
structure from linear equations, this is a special case of a more general family of
examples considered in [Con18] (in particular, “independently sparse” sequences;
see [Con18, Remark 4.19]).

To see that (an)∞n=0 is not vaporous, note that an = πn + rn where rn is real
number with |rn| < n+ 1. Therefore

lim
n→∞

an+1

an
= lim
n→∞

πn+1 + rn+1

πn + rn
= lim
n→∞

π + rn+1

πn

1 + rn
πn

= π. �
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