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In this paper, we give a very general criterion for elimination of imaginaries us-
ing an abstract independent relation. We also study germs of definable functions
at certain well-behaved invariant types. Finally we apply these results to prove
the elimination of imaginaries in bounded pseudo-p-adically closed fields.

Introduction
Elimination of imaginaries is a positive answer to the question of finding definable moduli
spaces for every definable family of definable sets; that is, given definable sets X ⊆ Y × Z,
finding a definable map f ∶ Y → W such that for all y1,y2 ∈ Y, f(y1) = f(y2) if and only if the
fiber of X above y1 is equal to the one above y2. This is equivalent to the existence, for every
set defined with parameters, of a smallest set of definition. In recent work of Hrushovksi
[Hru14] on the elimination of imaginaries in algebraically closed valued fields, the focus is
shifted to the local question of finding smallest sets of definition for definable types — and
proving that there are enough definable types to deduce elimination of imaginaries.
But there are many structures of interest, among which the field of p-adic numbers, where
there are too few definable types for this local approach to work. It is therefore tempting to
workwith invariant types instead. This presents a number of issues, themost basic being that,
generally, invariant types cannot have smallest sets of definition due to their fundamentally
infinitary nature. Some of them, for example, encode the cofinality of an infinite ordered
set. In this paper, we choose focus on a class of tractable invariant types: those that are
arbitrarily close to definable types; the set D(M/A) of Definition (1.1). The first part of this
paper consists in providing the tools for an approach to elimination of imaginaries based on
these definably approximable types.
The most important technical issue is the understanding of germs of definable functions at
definably approximable types. At general invariant types, these germs are complicated hyper-
imaginaries. However, we show that, at a definably approximable type, germs of definable
functions are encoded by the cofinality of a filtered ordered set of imaginary points. This
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can then used to encode germs of functions in a theory using elimination of imaginaries in
a reduct, cf. Proposition (1.8). We also give necessary and sufficient conditions for every in-
variant type to be definably approximable — equivalently, in an NIP theory, for every non
forking formula to contain a definable type. In dp-minimal theories, Simon and Starchenko
[SS14] give a sufficient conditions for this density result to hold over models. We show that
for the density result to hold over arbitrary algebraically closed basis, it suffices for the result
to hold over models and for every definable set to contain a type definable almost over its
code. In particular, the density result holds in algebraically closed valued fields (including
imaginaries).
The other abstract contribution of this paper is to provide a very general criterion for weak
elimination of imaginaries. Many proofs of elimination of imaginaries in tame unstable con-
texts follow the outline of Hrushovksi’s approach in bounded pseudo-algebraically closed
fields [Hru02, Proposition 3.2]. So it seemed interesting to isolate an abstract criterion pin-
pointing the exact ingredients of this proof. We show that if one can find an independence
relation satisfying a strong form of extension and a certain amalgamation result, then weak
elimination of imaginaries follows. For certain choices of independence relation (for exam-
ple definable independence or invariant independence), this criterion reduces to previously
known criteria of Hrushovski [Hru14, Lemma 1.17] or the second author [Rid, Proposition
9.1]. For other choices of independence relation, one recovers a large number of previously
known elimination of imaginaries proofs, for examples the one in algebraically closed fields
with a generic automorphism [CH99, §1.10].

The second part of this paper is devoted to applying these general methods to the class of
bounded pseudo-p-adically closed fields. Note that the approach presented in this paper does
not rely on the elimination of imaginaries in p-adic fields but rather reproves it, providing us
with a new, slightly different, proof of [HMR, Theorem 2.6]. The new proof focuses, from the
start, on constructing invariant types rather than reducing the problem to the elimination of
unary imaginaries.
A field is said to be pseudo-algebraically closed if every absolutely irreducible variety over this
field has a rational point. This class of fields first appeared in Ax’s work on pseudo-finite fields
[Ax68]. Their model theory has since been extensively studied, in parallel with the develop-
ment of simplicity. Indeed bounded pseudo-algebraically closed fields— those that have only
finitelymany extensions of any given degree—provide themain examples of simple unstable
fields. As interest in less restrictive tameness notions grew, for example notions like NTP2
that do not preclude the existence of any definable order, it also became important to find
algebraic examples, in particular enriched fields, that would provide us with study cases.
In [Mon17a] and [Mon17b], the first author thus started a neo-stability flavored study of two
classes of large fields extending the class of pseudo-algebraically closed fields: pseudo-p-
adically closed fields and pseudo-real closed fields. Those two classes consist of the fields
over which any absolutely irreducible variety with a simple point over every p-adically closed
(respectively real closed) extensionhas a rational point. These classeswere definedbyBasarav,
Prestel, Grob, Jarden and Haran over 30 years ago in [Bas84; Pre82; Gro87; HJ88] and a num-
ber of their model theoretic properties, pertaining to model completeness and the descrip-
tion of types, had been worked out. In [Mon17b], the first author provided new tools to
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study these fields, mostly in the bounded case, and proved a number of classification results.
One particularity that stands out in the first author’s work is that, although most results are
proved for both classes, elimination of imaginaries was only proved for pseudo-real closed
fields [Mon17a]. The initial motivation for this paper was to repair that asymmetry.
Since bounded pseudo-p-adically closed fields that are not pseudo-algebraically closed fields
come with finitely many definable valuations, one cannot expect elimination of imaginar-
ies in a language with just one sort for the field, contrary to what happens with pseudo-real
closed fields. But since the work of [HHM06], we know how to circumvent that particular
issue: we have to add, for each valuation, codes for certain definable modules over the valua-
tion ring; that is, work in the so-called geometric language. Themain question regarding the
imaginaries in bounded pseudo-p-adically closed fields then becomes to prove that there are
no imaginaries arising from the interaction between the various valuations and, therefore,
that it suffices to add the geometric sorts for each of the valuations. The main result of this
paper, Theorem (2.25), is a positive answer to this question.
Our first step towards this result, and a core ingredient of the rest of the paper, is Proposi-
tion (2.29) which states that not only are the geometric sorts for each valuation orthogonal
but also that the structure of any given geometric sort is the one induced by the relevant p-
adic closure. We then proceed to deduce, from this strong statement on the independence of
the valuations, a result on the structure of definable subsets of the valued field, where, at first
sight, the valuations do interact. Since we are unable, in pseudo-p-adic fields, to give a canon-
ical version of the first author’s density result [Mon17b, Theorem 6.11], we choose to work at
the level of types by proving, in Theorem (2.44), that every type over algebraically closed sets
of imaginary parameters is consistent with a global quantifier free type which is invariant
over the geometric part of the parameters. The last ingredient needed to prove weak elimi-
nation of imaginaries is to extend the first author’s amalgamation result [Mon17b, Theorem
3.21] to allow geometric parameters, cf. Theorem (2.55). This in particular required proving,
in Theorem (2.16), existential closedness of pseudo-p-adicaly closed fields in a stronger lan-
guage containing Macintyre’s language for each p-adic valuation.
As is often the case, coding finite sets ismostly an independent issue. Here, we deduce it from
the coding of finite sets in algebraically closedfields equippedwith finitelymany independent
valuations. Our approached, inspired by Johnson’s account [Joh, §6.2] of the coding of finite
sets in algebraically closed valued fields, consists in first lifting tuples of geometric points by
generically stable types of the valued field and then using the code of these types to encode
finite sets.

The organization of the paper is as follows. Section 1 contains the more abstract results and
Section 2 is devoted to pseudo-p-adically closed fields. We start, in Section 1.1, by recalling
definitions related to imaginaries and their elimination. In Section 1.2, we consider invariant
types that can be approximated by definable types and the germs of definable functions over
such types. We conclude the abstract part of the paper, in Section 1.3, by proving a criterion
for weak elimination of imaginaries and discussing various specific cases of that criterion.
Preliminaries on the model theory of valued fields and pseudo-p-adically closed fields can be
found in Section 2.1. Section 2.2 contains themain theorem and various details regarding the
language that we will be using. The orthogonality and purity of the geometric sorts is proved
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1 Imaginaries and germs of functions

in Section 2.3. Section 2.4 is devoted to the description of the algebraic closure in bounded
pseudo-p-adically closed fields, including geometric imaginaries, and in Section 2.5, we prove
the existence of quantifier free invariant extensions of types over algebraically closed bases.
Amalgamation over geometric points is proved in Section 2.6. Finally, in Section 2.7, we code
finite sets.

The authors would like to thank Gabriel Conant for giving them the idea of working with an
abstract independence relation in the criterion for elimination of imaginaries.

1 Imaginaries and germs of functions
1.1 Preliminaries
We will assume knowledge of standard model theoretic knowledge and notation. We refer
the reader to [TZ12] for an introduction to model theory.
Let us start by recalling the basic definitions regarding elimination of imaginaries. Let X be a
definable set in some L-structureM. The tuple b ∈ M is a canonical parameter for X (via the
L-formula ϕ(x,y)) if for all tuple b′ ∈ M, X = ϕ(M,b′) if and only if b′ = b. An L-theory T is
said to eliminate imaginaries if every definable set in any model of T has a canonical param-
eter (via some L-formula). Equivalently, if T has a sufficiently many constants, T eliminates
imaginaries if and only if, for everyL-formula ϕ(x,y), there exists an∅-definable map f such
that

T ⊢ ∀y1∀y2 (f(y1) = f(y2)↔ (∀x (ϕ(x,y1)↔ ϕ(x,y2)))).

Note that if ϕ defines an equivalence relation E in T, then we have that T ⊢ ∀x∀y (xEy ↔
f(x) = f(y)).
Given any language L, we define the language Leq that contains, for each L-formula ϕ(x,y),
a new sort Eϕ and a new function symbol fϕ from the product of sorts of y to Eϕ. Given an
L-theory T, we define the Leq-theory

Teq ∶= T ∪⋃
ϕ

{fϕ is onto and ∀y1∀y2 (f(y1) = f(y2)↔ (∀x (ϕ(x,y1)↔ ϕ(x,y2))))}.

The theory Teq eliminates imaginaries and to anyM ⊧ T, we can associate a uniqueMeq ⊧ Teq
whose reduct to L is M. We denote by acleq (respectively dcleq) the algebraic (respectively
definable) closure in Meq. If X is an L(M)-definable set, we define ⌜X⌝ = dcleq(b) ⊆ Meq for
any choice of canonical parameter b of X.

1.2 Invariant types approximated by definable types
In this section, we want to show how being able to approximate invariant types by definable
types can be helpful to compute “canonical bases” of invariant types. This will allow us to
study the invariance of germs of functions over invariant types. We also give necessary and
sufficient conditions, that hold in algebraically closed valued fields, for invariant types to be
approximated by definable types.
We denote by S(M) the type space overM and by Sx(M) the type space overM in variable x.
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1 Imaginaries and germs of functions

Definition 1.1: Let T be some L-theory and A ⊆M ⊧ T and p(x) ∈ Sx(M).
1. We say that p isAut(M/A)-invariant if for all σ ∈ Aut(M/A), any L-formula ϕ(x,y) and

tuple a ∈ A, ϕ(x,a) ∈ p if and only if ϕ(x, σ(a)) ∈ p.
2. The type p is L(A)-definable if for every L-formula ϕ(x,y), there is some L(A)-formula

dpx ϕ(x,y) = θ(y) such that for all a ∈ A, p ⊢ ϕ(x,a) if and only ifM ⊧ dpx ϕ(x,a).

Definition 1.2: Let T be some L-theory and let A ⊆M ⊧ T. We define:
1. Ix(M/A) ⊆ Sx(M) the set of Aut(M/A)-invariant types overM;
2. Dx(M/A) ⊆ Sx(M) the set of L(A)-definable types overM;
3. Dx(M/A) the set of types p ∈ Sx(M) such that for all L(M)-formula ϕ(x) ∈ p, there exists

q ∈ Dx(M/A) such that ϕ ∈ q.

Remark 1.3:We haveD(M/A) ⊆ D(M/A) ⊆ I(M/A) and the last two sets are closed in S(M).
Moreover, as the notation indicates,D(M/A) is the closure ofD(M/A).

Fact 1.4: Let T be someL-theory, letA ⊆M ⊧ T and let p ∈ Dx(M/A). Then there exists a sequence
(qi)i∈I ∈ Dx(M/A), indexed by a directed set of size atmost 2∣L(A)∣, such that for allL(M)-formula
ϕ(x), ϕ ∈ p if and only if ϕ ∈ qi for almost all i.

By almost all i, we mean that it holds for all i greater that some i0 ∈ I. This is just the charac-
terization of closure by nets.

Definition 1.5: LetM be an L-structure p ∈ S(M) and f, g be L(M)-definable functions, defined
at p. We say that f and g have the same p-germ if p(x) ⊢ f(x) = g(x). We denote by [f]p the class
of f for this equivalence relation.

A priori, [f]p is an hyperimaginary: an equivalence class for an invariant equivalence rela-
tion. If p is definable, it can be identified with an imaginary point. The core of the following
proposition is that, if p ∈ D(M/A), then the hyperimaginary [f]p is coded by the “limit” of a
sequence of imaginaries.
Inwhat follows, letT0 be someL0-theory eliminating quantifiers and imaginarieswhose sorts
we denoteR0. Let T be a completeL-theory containing the universal part of T0. LetM ⊧ T be
sufficiently saturated and homogeneous,A ⊆Meq be such thatR0(aclL(A)) ⊆ A andM0 ⊧ T0
containing R0(M) be such that any automorphism of M extends to M0. When we say that
something is L0-definable, it will mean that it is definable inM0. Assume that:
(†) for all ϵ ∈ dclM0

L0 (R0(M)), there exists a tuple η ∈ R0(M) such that ϵ and η are interde-
finable in the pair (M0,M).

Proposition 1.6: Let p ∈ DL0x (M0/R0(A)) and f be anL0(R0(M))-definable function defined at
p. If [f]p has a finite orbit under AutL(M/A), then it is AutL0(M0/R0(A))-invariant.

Proof . Let (qi)i∈I ∈ DL0x (M0/R0(A)) be as in Fact (1.4)with respect to p and let ϵi ∶= [f]qi ∈M0
and ηi be as in Hypothesis † with respect to ϵi. Let F = (Fm)m be an L0-definable family of
functions such that f = Fm0 for somem0. Note that p(x) ⊢ Fm1(x) = Fm2(x) if and only if qi ⊢
Fm1(x) = Fm2(x) for almost all i. In particular, for any σ ∈ AutL0(M0/R0(A)), σ([f]p) = [f]p
if and only if σ(ϵi) = ϵi for almost all i.
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1 Imaginaries and germs of functions

Claim 1.7: ηi ∈R0(A), for almost all i ∈ I.

Proof . As ηi ∈ R0(M), it suffices to prove that ηi ∈ A for almost all i. If not, there is an un-
bounded subset J ⊆ I such that for all j ∈ J, ηj has an infinite AutL(M/A)-orbit and hence
AutL(M/Aηj) has infinite index. By Neumann’s lemma, for all choice of j1, . . . , jn ∈ J, there
exists τ1, . . . τn ∈ AutL(M/A) such that, for all k, the τl(ηjk) are all distinct. By saturation
and homogeneity, there exists (τl)l∈ω ∈ AutL(M/A) such that, for all j ∈ J, the τl(ηj) are all
distinct and hence, extending τl toM0, so are all the τl([f]qj). Since the set J is unbounded, it
follows that the τl([f]p) are all distinct, a contradiction. ◊

We have proved that AutL0(M0/R0(A)) fixes almost all ϵi and hence it fixes [f]p. ◻

LetH be a subset ofR0. We now also assume that:
(⋆) For all tuple a ∈H(N), where N ≽M,R0(aclL(Ma)) ⊆ aclL0(R0(Ma)).

Proposition 1.8: Let a ∈ H(N), where N ≽ M, and c ∈ R0(acl
eq
L (Aa)) be tuples. Assume that

p ∶= tpL0(R0(a)/M0) ∈ D(M0/R0(A)) Then, there exists an L0(M)-definable map F such that
[F]p is AutL0(M0/R0(A))-invariant and c ∈ aclL0(F(a)).

Proof . Since c ∈ acleqL (Aa), we can find anLeq(A)-definable function f such that f(a) encodes
a finite set containing c. By (⋆), we have that f(a) ⊆ R0(aclL(Ma)) ⊆ aclL0(Ma). It follows
that we can find an L0(M)-definable function F such that F(a) encodes (in M0) a finite set
containing f(a). Note that we have c ∈ f(a) ⊆ aclL0(F(a)).
By compactness (and replacing Fwith a finite union), we may assume that f(x) ⊆ F(x) always
holds. The cardinality of F is constant on realizations of p. We may assume it is minimal
among all possible F. Let σ ∈ AutL(M/A), then f(a) ⊆ F(a) ∩ Fσ(a). By minimality, we must
have ∣F(a) ∩ Fσ(a)∣ = ∣F(a)∣ = ∣Fσ(a)∣ and hence F(a) = Fσ(a). We have just proved that [F]p
is AutL(M/A)-invariant. By Proposition (1.6), it is, in fact, AutL0(M0/R0(A))-invariant. ◻

If T0 is stable — more precisely if p is generically stable (cf. [ACP14, Definition 1.6]) — we
can deduce a stronger consequence of this results that shows quite clearly that what we have
been encoding (germs of) functions:

Corollary 1.9: In the setting of Proposition (1.8), assume p is generically stable. Then

R0(acl
eq
L (Aa)) ⊆ aclL0(R0(A)a).

Proof . Pick any c ∈R0(acl
eq
L (Aa) and let F be as in Proposition (1.8). Recall that p being gener-

ically stable is definable and therefore that [F]p ∈ dclL0(R0(A)) ⊆ R0(A). Also, by [ACP14,
Theorem 2, 2], there exists an L0(R0(A))-definable map G such that [G]p = [F]p. Thus,
c ∈ aclL0(F(a)) = aclL0(G(a)) ⊆ aclL0(R0(A)a). ◻

For technical reasons, wewill need to involve a third intermediary language. LetL0 ⊆ L1 ⊆ L,
T0,∀ ⊆ T1,∀ ⊆ T andM ⊆M1 ⊆M0 be such thatM1 ⊧ T1 and every automorphismofM1 extends
to an automorphism ofM0. Assume T1 is NIP.

Corollary 1.10: Let N ≽M and a ∈H(N) a tuple. If p ∶= tpL0(R0(a)/M0) ∈ D(M0/R0(A)) and
q ∶= tpL1(R0(a)/M1) ∈ I(M1/R0(A)), then tpL1(R0(acl

eq
L (Aa))/M1) ∈ I(M1/R0(A)).
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1 Imaginaries and germs of functions

Proof . By Proposition (1.8), we can find F such that [F]p is AutL0(M0/R0(A))-invariant and
R0(acl

eq
L (Aa)) ⊆ aclL0(F(a)) ⊆ aclL1(F(a)). Since automorphisms ofM1 extend to automor-

phismsofM0, [F]q isAutL1(M1/R0(A))-invariant andhence tpL1(F(a)/M1) ∈ I(M1/R0(A)).
The corollary now follows from [HP11, Lemma 2.12]. ◻

Note that, in the above corollary, we only build an invariant type and not, a priori, a definably
approximable one. Let us therefore conclude with examples of theories in which I(M/A) =
D(M/A), in which case we will be able to continue with the induction and build invariant
types in all arities, cf. Theorem (2.44).

Proposition 1.11: Let T be an L-theory that weakly eliminates imaginaries and M be sufficiently
saturated. Assume:

(i) for all N ≼M ⊧ T, I(M/N) = D(M/N);
(ii) for all A = acl(A) ⊆ M ⊧ T any unary L(A)-definable set is consistent with a type p ∈
D(M/A).

Then, for all A = acl(A) ⊆M ⊧ T, I(M/A) = D(M/A).
Note that the converse is obvious.

Proof . Let us start with some classic lemmas.

Claim 1.12: Let A = acl(A) ⊆ M. Assume tp(a/M) ∈ D(M/A) and c ⊆ acl(Aa), then tp(c/M) ∈
D(M/A).

Proof .We may assume that c is a finite tuple. Let ϕ(y,x) be an L(A)-formula such that
ϕ(y,a) algebrizes c over Aa. Let p = tp(a/M) and pick ψ(y, z) any L-formula. We define
z1Ez2 to hold ifM ⊧ dpx (∀y ϕ(y,x) → (ψ(y, z1)↔ ψ(y, z2))). This is an L(A)-definable fi-
nite equivalence and its classes are L(A)-definable by elimination of imaginaries. Moreover,
ϕ(c,M) is a finite union of E-classes. It is therefore L(A)-definable. ◊

Claim 1.13: Pick A ⊆ N ≼M, p ∈ D(N/A), a ⊧ p inM, q ∈ D(M/Aa) and c ⊧ q. Then tp(ac/N) ∈
D(N/A).

Proof . Pick ψ(x,y, z) any L-formula. Let θ(y, z,a) be an L(A)-formula such that, for all b,
d ∈ M, ψ(b,y,d) ∈ q if and only ifM ⊧ θ(b,d,a). Then, for all b ∈ N,M ⊧ ψ(a, c,b) if an only
ifM ⊧ dpx θ(x,b,x). ◊

Claim 1.14: For all N ≼ M containing A, there exists N⋆ ≼ M containing A such that tp(N⋆/N) ∈
D(N/A).

Proof . Let {ϕi(xi) ∶ i ∈ κ} be an enumeration of all consistent L(A)-formulas in one variable
xi. By induction, for all i, we build ai ∈M such thatM ⊧ ϕi(ai), ci = acl(Ac<iai) and tp(ci/N) ∈
D(N/A). The element ai is found by Hypothesis 1.11.(ii) applied toAc<i = acl(Ac<i). Then by
Claim (1.13), tp(c<iai/N) ∈ D(N/A). Let ci = acl(Ac<iai). By Claim (1.12), tp(ci/N) ∈ D(N/A).
Let d0 = A and d1 = c<κ = acl(Ad1). By repeating the above construction, we obtain (di)i∈ω
such that, for all i ∈ ω, tp(di/N) ∈ D(N/A) and any consistentL(d<i)-formula in one variable
is realized in di. By Tarski-Vaught, d<ω ≼M. Moreover, A ⊆ d<ω and tp(d<ω/N) ∈ D(N/A). ◊

7



1 Imaginaries and germs of functions

Pick p ∈ I(M/A). We have to show that for all L(M)-formula ϕ(x), if p ⊢ ϕ, then there
exists q ∈ D(M/A) such that q ⊢ ϕ. Actually, it suffices to find such a q ∈ D(N/A) for some
N ≼ M containing A and such that ϕ ∈ L(N). By Claim (1.14), we find A ⊆ N⋆ ⊆ M such that
tp(N⋆/N) ∈ D(N/A). By Hypothesis 1.11.(i), we find q ∈ D(M/N⋆) consistent with ϕ. Let
c ⊧ q, by Claim (1.13), tp(N⋆c/N) ∈ D(N/A). In particular, ϕ ∈ q∣N = tp(c/N) ∈ D(N/A). ◻

Remark 1.15:Let H be a set of dominant sorts in T, i.e. any other sort is the image of a ∅-
definable function whose domain is a product of sorts in H. Then, in Proposition (1.11), it
suffices to assume Hypothesis 1.11.(ii) for definable subsets of a single sort inH.

Corollary 1.16: Let T be anyC-minimal theory which weakly eliminates imaginaries. Then, for all
A = acl(A) ⊆M ⊧ T sufficiently saturated, I(M/A) = D(M/A).

Proof . Hypothesis 1.11.(ii) holds for definable subsets of K in C-minimal theories by taking
the generic type of any outer ball of the swiss cheese decomposition. Hypothesis 1.11.(i) then
follows by [SS14, Theorem 5 and Lemma 6]. ◻

1.3 A criterion using amalgamation
The following criterion is an attempt at an abstract account of the proof given byHrushovski
in [Hru02, Proposition 3.2] and adapted in many various settings since then. Let T be an L-
theory with sortsR andM ⊧ T be sufficiently saturated and homogeneous.

Proposition 1.17: Let ⫝ be a ternary relation on small subsets ofM. Assume:
(i) for all E = acleq(E) ⊆Meq, tuple a ∈M and C ⊆M, there exists a⋆ such that a⋆ ≡L(E) a and

a⋆ ⫝R(E) C;
(ii) for all E = acl(E) ⊆ M and tuples a,b, c ∈ M, if b ⫝E a, c ⫝E ab and a ≡L(E) b, then there

exists c⋆ such that ac ≡L(E) ac⋆ ≡L(E) bc⋆.
Then T weakly eliminates imaginaries.

Proof . Pick any e ∈ Meq. There exists an ∅-definable map f and a tuple a ∈ M such that
e = f(a). Let E = acleq(e) and E = R(E). We want e ∈ dcleq(E). It suffices to prove that
tp(a/E) ⊢ f(a) = e.
Pick any b ≡L(E) a. By Hypothesis (i), there exists b⋆ ≡L(E) b such that b⋆ ⫝E a. Applying
Hypothesis (i) again, we find c ≡L(E) a such that c ⫝E ab. Note that we have f(c) = e = f(a).
Now, applying Hypothesis (ii), we find c⋆ such that ac ≡L(E) ac⋆ ≡L(E) b⋆c⋆. It follows that
e = f(a) = f(c) = f(c⋆) = f(b⋆). Since b⋆ ≡L(E) b and e ∈ E, we have that f(b) = e. ◻

The notion of independence that we will be using, in this paper, is quantifier free invariant
independence.

Definition 1.18:
1. Let A ⊆ M. A quantifier free type p over M is said to be Aut(M/A)-invariant if for every

quantifier free L-formula ϕ(x,y), a ∈ M and σ ∈ Aut(M/A), ϕ(x,a) ∈ p if and only if
ϕ(x, σ(a)) ∈ p.
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2 Pseudo p-adically closed fields

2. Let a ∈M be a tuple and C,B ⊂M. We define a ⫝i,qfC B to hold if there exists an Aut(M/A)-
invariant quantifier free type p overM such that a ⊧ p∣CB.

We write a ≡qfL(E) b to say a and b have the same quantifier free type over E.

Lemma 1.19:Hypothesis 1.17.(ii) for ⫝i,qf follows from:
(ii’) for all E = acl(E) ⊆ M and tuples a1,a2, c1, c2, c ∈ M, if a1 ⫝i,qfE a2, c ⫝i,qfE a1a2 and

c1 ≡L(E) c2 and, for all i, aici ≡
qf
L(E) aic, then there exists c

⋆ such that aici ≡L(E) aic⋆, for all
i.

Proof . Let E, a, b and c be as in Hypothesis 1.17.(ii). Since a ≡L(A) b, we can find d such that

ac ≡L(E) bd. Then we do have a ⫝i,qf b, c ⫝i,qfE ab and c ≡L(E) d. Moreover, since a and b
are Aut(M/E)-conjugated and there exists an Aut(M/E)-invariant quantifier free type p, it
follows that a ≡qfL(Ec) b and hence bd ≡qfL(E) bc. It follows that we can apply (ii’) to find a c⋆

that ac ≡L(E) ac⋆ and bd ≡L(E) bc⋆. Since bd ≡L(E) ac, we have the required conclusion. ◻

Remark 1.20:Note that if T eliminates quantifiers (or if we are working in the Morleyized
language), (ii’) and therefore (ii), holds trivially for⫝i,qf. In that case, Proposition (1.17) reduces
to the statement that if every definable set X definable in models of T contains a type which
is R(acleq(⌜X⌝))-invariant, then T weakly eliminates imaginaries. A particular case of that
statement is Hrushovski’s criterion via definable types [Hru14, Lemma 1.17] where invariant
is replaced by definable — and the coding of definable sets is built in.
One important difference of working with definable types, though, is that, as pointed out in
Remark (1.15), building types on some X which are definable almost over ⌜X⌝, without con-
trolling in which sorts the canonical basis lies, can be done just for unary dominant definable
sets. The general case follows by an easy induction. Also, contrary to definable types, invari-
ant types do not have an imaginary canonical basis and thus it is much harder to compute
their canonical basis, unless it is obvious from the construction of the invariant type, as in
Proposition (2.41).

2 Pseudo p-adically closed fields
2.1 Preliminaries
In this section we will give all the preliminaries on valued fields, p-adically closed fields and
pseudo pseudo p-adically fields that are required throughout the paper.

Notation 2.1:Whenever F is a field, we denote by Fa its algebraic closure.

2.1.1 Valued Fields

Let us start by fixing our notations regarding valued fields and introduce the geometric lan-
guage.

9
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Definition 2.2:A valuation on a field F is a group morphism map v ∶ F⋆ → Γ, where (Γ,+, 0,<)
is a totally ordered abelian group, such that for all a,b ∈ F, v(a + b) ≥ min{v(a),v(b)}. The set
O ∶= {x ∈ F ∶ v(x) ≥ 0} is a subring of F that is called the valuation ring. The set M ∶= {x ∈ F ∶
v(x) > 0} is the unique maximal ideal ofO. The field k ∶= O/M is called the residue field of F.

Definition 2.3 (Geometric language): Let (F,v) be a valued field. For allm ∈ Z>0, We define

Sm(F) ∶= GLm(F)/GLm(O) and Tm(F) ∶= GLm(F)/GLm,m(O),

where GLm,m(O) is the group of matricesM ∈ GLm(O) whose last column reduces moduloM to
a columun of zero except for a 1 on the diagonal.
The geometric language LG consists of the sort K equipped with the ring language, sorts Sm and
Tm, for all m ∈ Z>0, maps sm ∶ Km2 → Sm and tm ∶ Km2 → Tm interpreted as the canonical
projections and the necessary predicates to have quantifier elimination in the LG-theory ACVFG
of algebraically closed valued fields.

Remark 2.4:
1. The sort Sm is the moduli space of all rankm freeO-submodules of Km, i.e. O-lattices.

For all s ∈ Sm, let Λ(s) to be the lattice whose set of bases is s.
2. We can identify S1 = K/O⋆ with v(K⋆) and s1 with the valuation map.
3. For all s ∈ Sm, the fiber of the natural map τm ∶ Tm → Sm above s can be identified (once

we add a zero) with the dimensionm k-vector space Λ(s)/MΛ(s).
4. When the valuation v is discrete, i.e. there are elements θ with minimal positive val-

uation, there is an ∅-definable map from Tm to Sm+1. It follows that, in that case, the
sorts Tm are not necessary to obtain elimination of imaginaries.

The geometric sorts where introduced by Haskell, Hrushovski and Macpherson to prove:

Theorem2.5 ([HHM06]): The theory ACVFG of algebraically closed valued fields in the geomet-
ric language eliminates imaginaries.

2.1.2 p-adically closed fields

Definition 2.6: Let (F,v) be a valued field.
1. The valuation v is called p-adic if the residue field is Fp and v(p) is the smallest positive

element of the value group v(F⋆).
2. We say that (F,v) is p-adically closed if (F,v) is p-adically valued and it has no proper

p-adically valued algebraic extension.
3. A p-adic closure of (F,v) is an algebraic extension (F,v), which is p-adically closed. It always

exist when (F,v) is p-adically valued.

Fact 2.7 (Properties of the theory of p-adically closed fields):
(i) The class pCF of p-adically closed fields is elementary in the language Lrg ∶= {+,−, ⋅, 0, 1}

of rings.
(ii) Let LMac be the language of rings to which we add a binary predicate ∣ and, for allm ∈ Z>0,

unary predicates {Pm ∶ m > 1}. We interpret x∣y as v(x) ≤ v(y) and Pm as set of m-th
powers. By [Mac76, Theorem 1], pCF eliminates quantifiers in LMac.
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2.1.3 Pseudo p-adically closed fields

Wenowdefine of pseudo p-adically closes fields and recall known results. We end this section
by proving a new result regarding existential closedness of bounded p-adically closed fields.
We refer the reader to [Jar91], [HJ88] and [Mon17b] for more details.

Definition 2.8: Let F ≤ L be an extension of characteristic 0 fields.
1. F ≤ L is called totally p-adic if every p-adic valuation of F can be extended to a p-adic

valuation of L.
2. F ≤ L is a regular extension if L ∩ Fa = F.

Definition 2.9:A field F of characteristic 0 is pseudo-p-adically closed (PpC) if it is is existentially
closed, as an Lrg-structure, in every totally p-adic regular extension.

Remark 2.10:By Lemma 13.9 of [HJ88] this is equivalent to every non-empty absolutely ir-
reducible variety V defined over F having an F-rational point, provided that it has a simple
rational point in each p-adic closure of F.

Fact 2.11 ([Jar91, Theorem 10.8]): Let F be a PpC field and let v be a p-adic valuation on F. Then:
(i) The p-adic closure of F with respect to v is exactly its Henselization. In particular all p-adic

closures of F with respect to v are F-isomorphic.
(ii) F is dense, for the v-topology, in its p-adic closure Fp.
(iii) v(F) is a Z group.
(iv) If v1 and v2 are distinct p-adic valuations on F, then v1 and v2 are independent, i.e. v1 and

v2 generate different topologies.

Remark 2.12:Let F be a PpC field and let v1, . . . ,vn be different p-adic valuations on F. For all
i ≤ n, let Ui be a subset of Fr which is open in the topology associated to vi. Then by [PZ78,
Theorem 4.1] and Fact (2.11) we have that ⋂iUi /= ∅.

Definition 2.13: Let F be a field, n ≥ 1, and let v1, . . . ,vn be n distinct p-adic valuations on F. The
field (F,v1, . . . ,vn) is n-pseudo p-adically closed (n−PpC) if F is a PpC field and v1, . . . ,vn are the
only p-adic valuations of F. If Ui is an open (respectively closed) set for the topology associated to
the valuation vi, we will say that Ui is i-open (respectively i-closed).

Notation 2.14:Let F be a fields and for 0 < i ≤ n, let vi be a p-adic valuation on F and let us fix
a p-adic closure Fi of F with respect to vi. Let also Li = Lrg ∪ {Pim ∶ m ∈ Z>0, 1 ≤ i ≤ n}. Let
L ∶= ⋃n

i=1Li. We interpret Pim as :

F ⊧ Pim(a) if and only if Fi ⊧ ∃y ym = a ∧ a /= 0.

Recall that, by Fact (2.11), if F is n−PpC, Fi is unique up to isomorphism, so theL-structure of
F does not depend on the choice of Fi. In particular, if L is a totally p-adic extension of F, the
L-structure induced by L on F is that unique L-structure. Note also that Pim(Fi) is a i-clopen
subset of F⋆i .
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Fact 2.15 ([EJ90, Lemma 3.6]): Let (F,v1, . . . ,vn) be an n−PpC field and let V be an absolutely
irreducible variety defined over F. For each 1 ≤ i ≤ n, let qi ∈ V(Fi) be a simple point. Then V
contains an F-rational point q, arbitrarily i-close to qi, for all i ∈ {1, . . . ,n}.

Theorem2.16: Let (F,v1, . . .vn) be n−PpC and let L be a regular totally p-adic extension of F.
Then F is existentially closed in L as an L-structure.

Proof . Let φ ∶= ∃Xϕ(X) be an existential L-formula such that L ⊧ φ. We need to show that
F ⊧ φ. Observe that φ is equivalent to a formula of the form:

∃X (⋁
l≤k
(X ∈ Vl ∧X /∈ Zl ∧⋀

i≤n
X ∈ Ui,l)) ,

where Vl and Zl are Zariski closed over F and Ui,l is an i-open quantifier free Li(F)-definable
set. Since the disjunction symbol commutes with the existential quantifiers, we may as-
sume that k = 1. Also, if g(X) is a polynomial, then the formula g(X) /= 0 is equivalent to
∃Y (Yg(X) − 1 = 0). So we can assume that φ is of the form:

∃X (X ∈ V ∧⋀
i≤n

X ∈ Ui),

where V is Zariski closed over F and Ui is an i-open quantifier free Li(F)-definable set. Let
a ∈ L be any tuple such that L ⊧ a ∈ V ∧ ⋀i∈I a ∈ Ui. Since F ≤ L is a regular extension, so is
F ≤ F(a). By [FJ08, Corollary 10.2.2], there is an absolutely irreducible varietyW, defined over
F such that a is a generic point ofW. Note thatW ⊆ V.
For every i, let Li be the p-adic closure used to define the L-structure of L and let Fi ≼ Li be a
p-adic closure of F. Since L ⊆ Li,

Li ⊧ ψi(a) ∶= a is a simple point ofW ∧ a ∈ Ui,

and hence we find bi ∈ Fi such that Fi ⊧ ψi(bi). By Fact (2.15) there is b ∈W(F) such that b is
arbitrarily i-close to bi, for all i. In particular, we can choose b ∈ ⋂iUi. Thenwe have F ⊧ ϕ(b).
◻

Remark 2.17: For every i ∈ {1, . . . ,n} and x,y ∈ Fi, we have

vi(x) ≤ vi(y) if and only if xm + pym ∈ Pim,

for any choice ofm prime to p. So Theorem (2.16) also holds if we add the predicates ∣i to the
language.

Remark 2.18:As a Corollary of Theorem (2.16), we can generalize [Mon17b, Theorem 7.1] to
obtain that if n ≥ 2 and F is an n−PpC field, then ThLrg(F) is not NIP. The proof is exactly
as in [Mon17b, Theoreme 7.1], the only difference is that we can work in L, without using
boundedness so that L is a definable expansion of Lrg.
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2.2 Notations and new results
In this section, we describe the language in which we prove elimination of imaginaries for
the bounded PpC fields. Theorem (2.25) is the main result of this paper.

Definition 2.19:A field F is bounded if for any n ∈ Z>0, F has finitely many extensions of degree n.

Let us fix some notation for the rest of the paper.

Notation 2.20: Fix a bounded PpC field F. By [Mon17b, Lemma 6.1] there is n ∈ Z>0 such
that F has exactly n p-adic valuations {v1, . . . ,vn}. For each i ∈ {1, . . . ,n} let Oi denote the
valuation ring associated with vi and letO ∶= ⋂iOi. Denote byMi the maximal ideal ofOi.
Let F0 ≼ F be a countable elementary substructure (in the language of rings). LetLi be a copie
of LG(F0) sharing the field sort K and constant symbols for the elements of F0. Let Gi denote
the sorts of Li. For all m ∈ Z>0, we denote by Sim the sort interpreted as GLm(K)/GLm(Oi)
and Tim the sort interpreted by GLm(K)/GLm,m(Oi). Let ACVFGi denote the copie of ACVF
in Li. Let Li denote a definable enrichment of Li in which pCFGi , the Li-theory of p-adically
closed fields, eliminates quantifiers. LetL ∶= ⋃i≤nLi and T ∶= ThL(F), where theLi-structure
of F is induced by its p-adic closure for vi.

Remark 2.21:Observe that Fa = F0
aF and hence, for allM ⊧ T, K(M)

a
= F0

aK(M). So K(M) is
bounded. Moreover the extension F0 ≤ K(M) is regular.

Proposition 2.22: In models of T, every L-definable set is Lrg(F0)-interpretable.

Proof . Let us first prove that LMac is definable in Lrg(F0):

Claim2.23: Let M,N ⊧ T, A = K(A)
a
∩ M ⊆ M, B = K(B)

a
∩ N ⊆ N and f ∶ A → B be an

Lrg(F0)-isomorphism. Then f is an L-isomorphism.

Proof . By quantifier elimination inLMac and the fact that ∣i can be defined wihout quantifiers
using the predicates Pim of Notation (2.14), it suffices to check that these predicates are pre-
served by f. Let Mi ⊧ pCFGi contain M. Then for any a ∈ A, Pim(a) holds if and only if there
exists y ∈ Mi such that ym = a. Let L ≥ K(M) be the compositum of all degreem extensions
of K(M) inside Mi. Since K(M) is bounded, L is a finite extension and there exists α ∈ F0

a
,

such that L = K(M)[α]. Then, Pim(a) holds if and only if there exists y ∈ K(M)[α] such that
ym = x. Identifying K(M)[α] with Kl(M) for some l, we see that the coordinates of y are in
(F0a)

a
∩K(M) ⊆ K(A). It follows that Pm,i(a) if and only if Pm,i(f(a)). ◊

It follows that every Oi is Lrg(F0)-definable and hence that the geometric sorts for the valu-
ation i are Lrg(F0)-interpretable.
Now, letϕ(x) be anyLi-formula. Let f be the canonical projection from some cartesian power
of K to the sort of x. The formula ψ(y) ∶= ϕ(f(y)) is equivalent, in ACVFGi , to a formula in
the language Lrg ∪ {∣i} and hence ϕ(x) is equivalent, in ACVFGi to both ∀y f(y) = x → ψ(y)
and ∃y f(y) = x ∧ ψ(y). It follows that these two formulas also define the trace of ϕ in any
model of pCFGi . So in models of pCFGi , everyLi-definable set is interpretable inLrg, since ∣i is
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definable in Lrg. The same argument, but starting with a Li-formula and looking at its trace
onM allows us to conclude. ◻

Notation 2.24: For the rest of the paper, wefixM ⊧ T sufficiently saturated andhomogeneous.
Let Mi ⊧ ACVFGi be the algebraic closure of M, along with an extension of vi, and let Mi be
the p-adic closure ofM insideMi. We denote by acl, aclLi , aclLi , dcl, dclLi and dclLi themodel
theoretic algebraic and definable closures inM,Mi andMi respectively.
Let A ⊆ M and a,b ∈ M be tuples. We denote by a ≡L(A) b, a ≡Li(A) b and a ≡Li(A) b the fact
that a and b have the same type over A in M, Mi and Mi respectively. We also denote by tp,
tpLi and tpLi the type inM,Mi andMi respectively.

Observe that a ≡Li(A) b (respectively a ≡Li(A) b) if and only if a and b have the same quantifier

freeLi-type (respectivelyLi-type) inM overA. Note also that a ≡qfL(A) b if and only a ≡Li(A) b,
for all i.
We can now state our main result:

Theorem2.25:The theory T eliminates imaginaries.

Proof .We apply Proposition (1.17) and Lemma (1.19) to obtain weak elimination of imaginar-
ies. Hypothesis (i) is proved inTheorem (2.44) andHypothesis (ii’) is proved inTheorem (2.55).
Since, by Corollary (2.58), finite sets are coded, we obtain elimination of imaginaries. ◻

Remark 2.26:As noted above, for all m, Tim is Li-definably embedded in Sim, so the Tim are
not necessary to eliminate imaginaries. Also the map sending a coset ofGLm(O) inGLm(K)
to the tuple of GLm(Oi) cosets it is contained in is an L-definable bijection — the inverse is
given by taking the intersection of the GLm(Oi) cosets. So T also eliminates imaginaries in
the language with a sort for K and, for allm ∈ Z>0, a sort Sm for GLm(K)/GLm(O).

2.2.1 A pseudo-real digression

Recall that a pseudo-real closed field is a field which is existentially closed in any regular
extension to which every order extends. Elimination of imaginaries for bounded pseudo-
really closed fields, in the language of rings with constants for an elementary subfield, was
proved in [Mon17a]. However, there seem to be a error in the final arguments. As the proof
of Lemma 4.5 is written, it implicitly uses elimination of imaginaries in bounded pseudo-real
closed fields. Indeed, to be able to find a1 and a2 as stated, it is necessary to assume that
acleq(Ee) ∩M ⊆ E. However, unless we already know elimination of imaginaries, this is not
implied by E = acl(E) ⊆ acleqe ∩M. But that weaker hypothesis is, a priori, the only one that
remains true when, in Claim 1 of Theorem 4.8, E is replaced by E(a′).
However, this is easy to fix:

Lemma2.27: Let M be a bounded pseudo-real closed field and let X be M-definable. There exists
p ∈ D(Ma/acleq(⌜X⌝) ∩M) consistent withM.
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Proof . Take p to be the generic type of any irreducible component of the Zariski closure of
X(M). By elimination of imaginaries in algebraically closed fields (and Galois theory), p is
acleq(⌜X⌝) ∩M-definable. ◻

In Claim 1 of the proof of [Mon17a, Theorem 4.8], one can, using Lemma (2.27), first find p ∈
D(Ma/E) consistent with f−1(e) and then choose a ⊧ p. It then follows from Corollary (1.9)
that for any a′ ⊆ a, E′ ∶= acleq(ea′)∩M = acl(Ea′) and hence that acleq(E′e)∩M ⊆ E′. It follows
that we can safely apply Lemma 4.5 to E′ without knowing elimination of imaginaries inM.
Another, somewhat overkill, approach would be to adapt the general outline of the proof
presented in this paper. The only result on bounded pseudo-p-adically closed fields which
is proved in this paper and whose pseudo-real closed equivalent is not already proved in
[Mon17b] is Proposition (2.41). But the bounded pseudo-p-adically closed equivalent is an
easy consequence of [Mon17b, Lemma 4.4] and Neumann’s Lemma. The rest of the argu-
ments can be copiedmutatismutandis replacingACVFG and pCFG by the theory of real closed
fields.
The proof presented in this paper could also be adapted to a number of other case: among
other examples, bounded pseudo-algebraically closed valued fields with finitely many inde-
pendent valuations.

2.3 Orthogonality of the geometric sorts
In this section we will prove that the Sim sorts are orthogonal. We also show that their struc-
ture is the pure structure induced byMi.

Lemma2.28: Let m ∈ Z>0, A ⊆ K(M) and, for all i ∈ {1, . . . ,n} let si ∈ Sim(M). Assume M is
∣A∣+-saturated, then there exists c ∈ ⋂i si(M) such that trdeg(c/A) = m2.

Proof . For all i,O⋆i is i-open in K(M) and hence GLm(Oi) ⊆ Km2
is i-open and so is si. There-

fore, there exists a product of i-closed balls Ui included in Si. So it suffices to find c ∈ ⋂iUi ⊆
Km2(M) such that trdeg(c/A) = m2. This is easily seen to reduce (by induction on the di-
mension and translation) to showing that ⋂iOi = O contains transcendental elements over
any small set of parameters and by compactness to showing thatO is infinite. But this is an
immediate consequence of Remark (2.12). ◻

Proposition 2.29: Let A ⊆ K(M) and, for all i ≤ n, let si and s′i ∈ Sim(M). If si ≡Li(A) s
′
i , for all i,

then (s1, . . . , sn) ≡L(A) (s′1, . . . , s′n).

Proof . By Lemma (2.28), there exists c ∈ ⋂i si(M) such that trdeg(c/A) = m2 = ∣c∣.

Claim2.30:There exists ci ∈ s′i(M) such that ci ≡Li(A) c.

Proof . By compactness, we have to show that for all (quantifier free)Li(A)-formulaϕ(x) such
thatMi ⊧ ϕ(c), s′i∩ϕ(M) ≠ ∅. Note that si∩ϕ(Mi) is anLi(A)-definable subset of (K(Mi))m

2

that contains an element of transcendence degree m2 over A, so it is i-open. As si ≡Li(A) s
′
i ,

s′i ∩ϕ(Mi) is also i-open and non empty. By the density ofM inMi, this set has has a point in
M. ◊
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By [Mon17b, Lemma 6.12], tp(c/A) ∪ {x ∈ ⋂i s′i} is consistent in M. Let c′ realise this type.
Then there exists an L(A)-automorphism of M sending c to c′ and hence si = cGLm(Oi) to
s′i = c′GLm(Oi). ◻

Corollary 2.31: Let A ⊆ K(M) and X ⊆∏i Simi
be L(A)-definable. Then there exists finitely many

quantifier free Li(A)-formulas ϕi,j(xi) such that X = ⋃j∏i ϕi,j(M).

Proof . By Proposition (2.29), the following set is inconsistent:

{ψ(xi)↔ ψ(x′i) ∶ 0 < i ≤ n and ψ is an Li(A)-formula} ∪ {(xi)i ∈ X ∧ (x′i)i ∉ X}.

By compactness, it follows that there are ki formulas ψi,j(xi) such that

M ⊧ ∀x1 . . .xn ( ⋀
0≤j<ki

ψi,j(xi)↔ ψi,j(x′i))→ ((xi)i≤n ∈ X↔ (x′i)i≤n ∈ X).

For all ϵi ∶ ki → 2, let θi,ϵi(xi) = ⋀0≤j<ki ψ(xi)ϵi(j) and for all tuple ϵ = (ϵi)i, θϵ(x) = θi,ϵi(xi).
Then for all ϵ, if θϵ(M) ∩X ≠ ∅, then θϵ(M) ⊆ X. Let E = {ϵ ∶ θϵ(M) ∩X ≠ ∅}. Then

X =⋃
ϵ∈E
θϵ(M) =⋃

ϵ∈E
∏
i
θi,ϵi(M).

This concludes the proof. ◻

Define Gimi to be the set of all Li-sorts but K.

Corollary 2.32: LetA ⊆M, Si be a product of sorts in Gimi andX ⊆∏i Si be anL(A)-definable sub-
set. Then, there exists quantifier freeLi(Gi(A))-definable setsXi,j ⊆ Si such thatX = ⋃j∏iXi,j(M).

Proof . It suffices to show the corollary forA ⊆ K(M), all the other parameters can be replaced
by free variables and put back in afterwards. Because any finite product of sorts from Gimi can
be encoded, in pCFGi , in any Sim for large enoughm, wemay also assume that Si = Sim for some
fixedm. We can now apply Corollary (2.31). ◻

2.4 The algebraic closure
Let us now describe the algebraic closure in T.

Proposition 2.33: Let A ⊆M. Then, for all i, Sim(acl(A)) ⊆ aclLi(Gi(A)).
Proof . ByCorollary (2.32), any (finite)L(A)-definable subset of Sim is quantifier freeLi(Gi(A))-
definable. The proposition follows. ◻

The sorts K and Sim are obviously not orthogonal as there are functions with infinite image
from K to Sim, but the converse is not true.

Proposition 2.34: Let A ⊆M. Then K(acl(A)) ⊆ K(A)a.
Proof . Let c ∈ K(acl(A)). As in the proof of Corollary (2.32), we may assume that there exists
si ∈ Sim, for some fixed m, such that c ∈ acl(K(A)(si)i≤n). By Lemma (2.28), there exists
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e ∈ ⋂i si(M) such that trdeg(e/K(A)c) = m2 = ∣e∣. Then by Lemma 2.6 of [Mon17b] c ∈
acl(K(A)e) ⊆ K(A)ea. But e is algebraically independent from c over A. It follows that c ∈
K(A)

a
. ◻

Corollary 2.35: Let A ⊆M. Then,

acl(A) ⊆⋃
i
aclLi(Gi(A)).

Proof . This is an easy consequence of Propositions (2.33) and (2.34). ◻

Corollary 2.36: Let S be one of the sorts in Gimi and S′ be a sort in Gj for some j ≠ i. Then any
L(M)-definable function S→ S′ has finite image.

Proof . If S′ = Sjm, then this follows immediately fromCorollary (2.32). If S′ = K, it follows from
Proposition (2.34) and compactness. ◻

Corollary 2.37: Let A ⊆ K(M). Then acl(A) ⊆ ⋃i aclLi(A).
Proof . By Corollary (2.35), acl(A) ⊆ ⋃i aclLi(A). Since the relative algebraic closure of a field
inside a p-adic field is its p-adic closure (cf. [HMR, Section 4.(i)]), we have aclLi(C) ⊆ aclLi(C).
◻

We have proved that hypothesis (⋆) of Section 1.2 holds of ACVFGi and T. Let us now prove
that (†) also holds:

Lemma2.38: Let ϵ ∈ dclLi(M), for some i ≤ n. Then there exists η ∈ M such that ϵ and η are
interdefinable in the pair (Mi,M).

Proof .We know by Fact (2.11) that the Henselization of K(M) with respect to vi is the p-adic
closure K(Mi) of K(M). It follows that if ϵ ∈ K(dclLi(M)), then ϵ ∈ K(Mi). As K(M)

a
=

F0
aK(M), and K(Mi) ⊆ K(M)

a
there is b ∈ F0

a
such that K(M)[ϵ] = K(M)[b]. Since ϵ ∈ Mi,

it follows that b ∈ F0
a ∩ K(Mi) ∶= F1 ⊆ dclLi(∅). Let η be the unique tuple in M such that

ϵ = ∑i ηibi. Then η and ϵ are interdefinable in the pair (Mi,M).
The case ϵ ∈ Sim ∪ Tim is tackled as in [HMR, (ii) p. 30]. Let us first assume that ϵ ∈ Tim. Find
a finite extension L of K(Mi), of degree r, in which the lattice coded by τm(ϵ), denoted Λ(ϵ),
has a basis and the coset coded by ϵ has a point c. Since K(Mi)

a
= F1

aK(Mi), we can find
a ∈ F0

a
such that O(L) = O(K(Mi))[a]. Let fa ∶ (K(Mi))r → L be the map r ↦ ∑i riai. Then

f−1a (c +MiΛ(ϵ)) ⊆ (K(Mi))mr is coded by some η ∈ Timr(Mi) = Timr(M). If a and a′ have
the same Li(F0)-orbit, then they have the same Li(F1)-orbit and hence the same Li(Mi)-
orbit. In particular, there exists τ ∈ AutLi(Mi) fixingMi pointwise such that τ(a) = a′. Then
f−1a (c+MiΛ(ϵ)) = f−1τ(a)(c+MiΛ(ϵ)) = f−1a′ (c+Mi(Λ(ϵ))). It follows that any automorphism

ofMi that stabilizesM globally fixes ϵ if and only if it fixes η. Note that we did not use in the
proof that Mi was the algebraic closure of M, so the same argument works in a sufficiently
saturated andhomogeneousmodel of the pair (Mi,M). So η and ϵ are interdefinable. If ϵ ∈ Sim,
since ϵ andMiΛ(ϵ) are interdefinable inMi, we can apply the previous case toMiΛ(ϵ). ◻
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We can now apply Corollary (1.10) in our setting. If we already knew elimination of imaginar-
ies in T, then the following result would be a rather immediate corollary of the description
of the algebraic closure and the fact that pCF and ACVF are NIP. But since we do not know
elimination of imaginaries yet, this is where the encoding of (germs of) functions happens.

Corollary 2.39: Let i ∈ {1, . . . ,n}. Let A ⊆ Meq containing G(acleq(A)) and a ∈ K(N), where
N ≽ M, be a tuple such that tpLi(a/Mi) ∈ I(Mi/Gi(A)) and tpLi(Gi(a)/Mi) ∈ I(Mi/Gi(A)).
Then tpLi(Gi(acl

eq(Aa))/Mi) ∈ I(Mi/Gi(A)) and tpLi(Gi(acl
eq(Aa))/Mi) ∈ I(Mi/Gi(A)).

Proof .We apply Corollary (1.10) twice — once with T1 = ACVFGi and a second time with T1 =
pCFGi . ◻

2.5 A local density result

Definition 2.40: LetMi ⊧ ACVFGi . We denote byBi(Mi) the set of balls inMi. We consider points
to be closed balls of infinite radius and the whole field to be an open ball of radius −∞.
Let P ⊆ B(Mi). We define αP, the generic type of ⋂b∈P b as:

αP(x) ∶= {x ∈ b ∶ b ∈ P} ∪ {x ∉ b′ ∶ ∀b ∈ P,b′ ⊂ b}.

By C-minimality of ACVF, when it is consistent, αP generates a complete type. We will
not distinguish αP from the complete type it generates. Note that, if P ⊆ Bi(A), then αP ∈
I(Mi/A).

Proposition 2.41: Let A ⊆ Meq containing G(acleq(A)) and c ∈ K(M). For each i ≤ n, let Pi =
{b ∈ Bi(A) ∶ c ∈ b}. Then the partial type:

tp(c/A) ∪⋃
i
αPi

is consistent.

Proof . Assume that this type is not consistent. By compactness, there exists a L(A)-formula
ϕ(x), balls bi ∈ Pi and bi,j ∈ Bi(Mi) with bi,j ⊂ bi for all bi ∈ Pi, such that M ⊧ ∀x ϕ(x) ∧
⋀i x ∈ bi → ⋁i,j x ∈ bi,j. Because the valuation vi is p-adic, any ball is covered by finitely
many subballs and, because A contains G(acleq(A)), Pi cannot have a minimal element. It
follows that replacing the bi,j by the smallest ball covering them, wemay assume that there is
only one bi,j denoted b′i . For all tuple of balls b

′
2, . . . ,b

′
n (with finite radius) where b′i ∈ Bi, let

f1(b′2, . . . ,b′n) be the minimal ball covering (ϕ(M) ∩ ⋂bi(M)) ∖ ⋃i≥2 b′i(M). This ball exists
because, by Fact (2.11), vi(M) is a pure Z-group.
By Corollary (2.36), f1(b′2, . . . ,b′n) ∈ A. Removing (the set encoded by) f1(b′2, . . . ,b′n) from
ϕ(x), we still have M ⊧ ϕ(c), but now M ⊧ ∀x ϕ(x) ∧ ⋀i x ∈ bi → ⋁i≥2 b′i . By induction,
removing Leq(A)-definable sets from ϕ(x), we can get to a situation where M ⊧ ϕ(c) and
ϕ(M) ∩⋂i bi(M) = ∅, a contradiction. ◻
This result is local version, for n−PpC, of [Mon17a, Theorem 4.4]. In fact, this theoremwould
follows from the n−PpC version of [Mon17a, Theorem 4.4] (which is not known to hold) that
must take in account the geometric sorts. The converse is far from clear.
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2 Pseudo p-adically closed fields

Question 2.42:Does the n−PpC version of [Mon17a, Theorem 4.4] hold?

Proposition 2.43: Let A ⊆ Meq containing G(acleq(A)) and c ∈ K(M). Then we can find types
pi ∈ I(Mi/Gi(A)) and qi ∈ I(Mi/Gi(A)) such that the partial type:

tp(c/A) ∪⋃
i
pi ∪⋃

i
qi

is consistent.

Proof . By Proposition (2.41), we can find Pi ⊆ Bi(A) such that tp(c/A) ∪ ⋃i αPi is consistent.
If any of the αPi is a realized type, then c ∈ K(A) and we are done.
We may assume that c ⊧ αPi . Pick any d ∈ ⋂b∈Pi b(Mi) and let fm ∈ F0

a ∩ M be such that
fm(c − d) ∈ K(Mi)m. Then for any d′ ∈ ⋂b∈Pi b(Mi), fm(c − d′) ∈ K(Mi)m since d and d′ are
much closer to each other than to c. Note also that for any e ∉ ⋂b∈Pi b(Mi), fm(c−e) ∈ K(Mi)m
if and only if fm(d − e) ∈ K(Mi)m, a value that does not depend on the choice of c.
So αPi(x)∣Mi

∪ {fm(x − d) ∈ K(Mi)m ∶ m ∈ Z>0} generates qi(x) ∶= tpLi(c/Mi), which is
therefore in I(Mi/Gi(A)). ◻

The higher dimension version of Proposition (2.43) follows formally by induction fromCorol-
lary (2.39).

Theorem2.44: Let A ⊆ Meq containing G(acleq(A)) and c ∈ Km(M). Then we can find types
pi ∈ I(Mi/Gi(A)) and qi ∈ I(Mi/Gi(A)) such that the partial type:

tp(c/A) ∪⋃
i
pi ∪⋃

i
qi

is consistent.

Proof .We proceed by induction on m. Assume that we have pi(x) ∈ I(Mi/Gi(A)), qi ∈
I(Mi/Gi(A)) and a ⊧ ⋃i pi ∪ ⋃i qi. Pick some c ∈ K(M). We want to find types ri(x,y) ∈
I(Mi/Gi(A)) and si(x,y) ∈ I(Mi/Gi(A)) such that tp(ac/A) ∪⋃i ri ∪⋃i si are consistant.
Let Ei = Gi(acleq(Aa)). By Corollary (2.39), we find p′i ∈ I(Mi/Gi(A)) and q′i ∈ I(Mi/Gi(A))
such that Ei ⊧ p′i ∪ q′i . Let E ∶= A ∪ ⋃i Ei, then G(acleq(E)) ⊆ E. Let N ≽ M containing
M∪E, Ni and Ni as in Notation (2.24). Applying Proposition (2.41), we can find p′′i ∈ I(Ni/Ei),
q′′i ∈ I(Mi/Ei) and c∗ ⊧ tp(c/E) ∪ ⋃i p′′i ∪ q′′i . Let ri(x,y) ∶= {ϕ(x,y) ∶ ϕ(x,a) ∈ p′′i } and
si(x,y) ∶= {ϕ(x,y) ∶ ϕ(x,a) ∈ q′′i }. It is easy to check that these two types have the required
properties. ◻

Remark 2.45:Note that, so far, we have not used [HMR, Theorem 2.6]— elimination of imag-
inaries in p-adically closed fields. Moreover, if M is p-adically closed, then there is just one
p-adic valuation onM and the type q1 that we constructed is a complete type. We have just
reproved a strong version of the invariant extension property (cf. [HMR, Corollary 4.7]), of
which, by Remark (1.20), weak elimination of imaginaries follows. The main difference be-
tween the two proofs is that the proof presented here focuses from the start on finding in-
variant extensions. The arguments in this paper could also easily be carried out in finite
extensions of p-adically closed fields.
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2 Pseudo p-adically closed fields

2.6 Amalgamation over geometric points
The goal of this section is to improve Montenegro’s amalgamation result [Mon17b, Theorem
3.21] to allow amalgamation over bases of geometric points.

Fact 2.46: Let E ≤ A ≤ C be field extensions.
(i) If E ≤ C is regular, then EaA ∩ C = EA.
(ii) If A ≤ C is regular, then EaC ∩Aa = EaA

Proof .
(i) Since C is linearly disjoint from Ea over E, then C is linearly disjoint from EaA over A.
(ii) Since A

a
is linearly disjoint from C over A, and A ≤ EaA ≤ A

a
, we also have that A

a
is

linearly disjoint from EaAC = EaC over EaA. ◻

Lemma2.47: Let A ⊆ K(M). If Aa ∩K(M) ⊆ A, then Aa = F0
aA.

Proof .We have A
a ⊆ K(M)

a
= F0

aK(M). So Aa ⊆ F0
aK(M) ∩Aa = F0

aA. The equality follows
from Fact 2.46.(ii) and the fact that A ≤ K(M) is regular. ◻

Lemma2.48: Let A ⊆ M ≼ N ⊧ T and K(A) ⊆ C ⊆ K(N). Assume that K(dcl(A)) ∩M ⊆ A
and that, for some i ≤ n, qftpLi(C/M) is AutL(M/A)-invariant. Then C and and K(M) are
algebraically disjoint over K(A).

Proof . Letm be any finite tuple in C and V be its algebraic locus over K(M). We have to show
that V is defined over K(B). Pick any σ ∈ AutL(M/A). Since qftpLi(C/M) is AutL(M/A)-
invariant, we also have m ∈ σi(V) = σ(V) and hence V ⊆ σ(V). It follows, using σ−1, that
V = σ(V) and, by elimination of imaginaries in ACF, V is defined over K(dcl(B)) = K(B)a ∩
M = K(B). ◻

Let us first generalize the characterisation of types in bounded pseudo-p-adically closed fields
(cf. [Jar91, Proposition 10.4] and [Mon17b, §6.4]) to allow geometric parameters:

Lemma2.49: Let M, N ⊧ T, A ⊆ M, B ⊆ N and f ∶ A → B be an L-isomorphism. Assume that
K(A)

a
∩M ⊆ A and K(B)

a
∩ N ⊆ B and N is ∣M∣+-saturated. Then there exists an L-embedding

g ∶M→ N such that K(g(M))
a
∩N ⊆ g(M).

Proof . LetUi ⊧ pCFGi be a sufficiently saturated and homogeneous and contain Gi(M)∪Gi(N).
Let Ai ∶= aclLi(A), Bi ∶= aclLi(B) and fi ∶ Ai → Bi be an Li-isomorphism extending f. Also, for
each i, letpi ∈ I(Ui/Bi) extend (fi)⋆tpLi(K(M)/Ai) = {ϕ(x, fi(a)) ∶ ϕ(x,a) ∈ tpLi(K(M)/Ai)}.
Let Fi ⊧ pi∣NAi

. Note that the fields Fi are all isomorphic as fields (over K(N)K(B)) so we may
identify them. LetM⋆ be theL-structure whose underlying field is Fi andwhoseLi-structure
is induced by Ui. Note that there is an L-isomorphism betweenM andM⋆ extending f.
Note that since any automorphismofM extends toUi, qftpLi(M

⋆/N) isAutL(N/B)-invariant.
It follows, by Lemma (2.48), K(M⋆) is algebraically independent from K(N) over K(B). Also,
the extension K(A) ≤ K(M) is regular, hence so are the extensions K(B) ≤ K(M⋆) and
K(N) ≤ K(M⋆)K(N). Since, K(M⋆)K(N) ≤ Ui, for all i ≤ n, this extension is totally p-adic.
Let N0 ≼ N be a small model containing B. As N is pseudo-p-adically closed, there exists
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2 Pseudo p-adically closed fields

M◇ ≤ Nwhich is Lrg(N0)-isomorphic toM⋆. Since L is a definable enrichment of Lrg(F0), it
follows thatM◇ is L(B)-isomorphic toM⋆. Composing with the L-isomorphism betweenM
andM⋆, we get an L-isomorphism g ∶M→M◇ extending f.

Claim2.50:K(M◇)
a
∩N = K(M◇)

Proof . Note that M◇ is L-isomorphic to M and hence M◇ ⊧ T. It follows that K(M◇)
a
=

F0
aK(M◇). Since F0 ≤ N is regular, by Fact 2.46.(i), K(M◇)

a
∩N = F0

aK(M◇) ∩N = K(M◇). ◊

This concludes the proof. ◻

Proposition 2.51: LetM, N ⊧ T, A ⊆ M, B ⊆ N and f ∶ A → B be an L-isomorphism. Assume that
K(A)

a
∩M ⊆ A and K(B)

a
∩N ⊆ B. Then f is elementary.

Proof . AssumeM and N are sufficiently saturated. We proved in Lemma (2.49) that the set of
L-isomorphisms between (small)A ⊆M andB ⊆ N such thatK(A)

a
∩M ⊆ A andK(B)

a
∩N ⊆ B

has the back-and-forth (if it is not empty). It follows that any such isomorphism is elementary.
◻

Using the results of Section 2.3 and and the fact that the L-structure on the sort K in T is a
definable expansion of the ring language, we can improve this last result:

Corollary 2.52: Let F0 ⊆ E ⊆M and a ∈M be a tuple, then

qftpL(a/E) ∪ qftpLrg(F0)(K(E)K(a)
a
∩M/K(E)) ⊢ tp(a/E).

Proof . It suffices to prove that if we have A,B ⊆M containing F0,f ∶ A→ B an L-isomorphism
and g ∶ K(A)

a
∩M → K(B)

a
∩M an Lrg(F0)-isomorphism such that f∣K(A) = g∣K(A), then f is

an elementaryL-isomorphism. By Claim (2.23), g is anL-isomorphism. By Proposition (2.51),
g is an elementary L-isomorphism which extends to σ ∈ AutL(M). Let C ∶= σ(A). It suffices
to prove that C ≡L B. We know that K(C) = K(B) so it suffices to prove that Gim(C) ≡L(K(B))
Gim(B), where Gim is the set of all L-sorts except for K. By hypothesis, C ≡qfL A ≡qfL B so
Gim(C) ≡qfL(K(B)) G

im(B). But, by Proposition (2.29), this is equivalent to Gim(C) ≡L(K(B))
Gim(B). ◻

Lemma2.53: Let L1, L2 ⊧ pCF∀ and k0 be a common LMac-substructure of L1 and L2 such that
L1 and L2 are linearly disjoint over k0. Then L1L2 can be made into an LMac-structure extending
that L1 and L2 such that L1L2 ⊧ pCF∀.
Proof . Since pCF eliminates quantifiers in LMac, there exists U ⊧ pCF containing both L1 and
L2 as LMac-substructures. By induction, it suffices to consider the case where L1 = k0(a). If a
is algebraic over k0, then the minimal polynomial of a over k0 and L2 coincide. So k0(a) and
L2 are linearly independent over k0 (as subfields of U) and we are done. If a is transcendental
over k0, let c ∈ U ∖ L2

a
realize tpLMac

(a/k0). Then k0(c) is linearly independent from L2 over
k0 and we are also done. ◻
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Remark 2.54:The above proof is not really about p-adically closed fields. It holds of any the-
ory of (enriched) fields that eliminates quantifiers and is algebraically bounded.

Theorem2.55: Let M ⊧ T, E ⊆ M and a1,a2, c1, c2, c ∈ K(M) be such that K(E)
a
∩ M ⊆ E,

K(E)(a1)
a
∩ K(E)(a2)

a
= K(E)

a
, c ⫝i,qfE a1a2, c1 ≡L(E) c2, c ≡

qf
L(Ea1) c1 and c ≡

qf
L(Ea2) c2. Then

tp(c1/Ea1) ∪ tp(c2/Ea2) ∪ qftpL(c/Ea1a2) is satisfiable.
Proof . Let p be a quantifier freeAutL(M/E)-invariant type extending the quantifier free type
of c over Ea1a2. Choosing c ⊧ p in someN ≽M, wemay assume that c ⫝E M. By Lemma (2.48),
K(E)(c) is algebraically disjoint fromK(M)overK(E). LetAj ∶= K(E)aj

a
∩M,Cj ∶= K(E)cj

a
∩M,

C ∶= K(E)c
a
∩M, F = A1A2

a ∩M and Bj ∶= AjCj
a ∩M. Since c ≡qfL(Eaj) cj and aclLi = dclLi , we

have that C ≡qfL(Aj) Cj. So there exists an L(Aj)-isomorphism ϕj ∶ AjCj → AjC sending Cj

to C. We can extend this isomorphism to an Lrg(F0)-isomorphism ϕj ∶ AjCj
a → AjC

a
. Let

Dj ∶= ϕj(Bj). A picture of the involved fields might help:

B1
ϕ1 // D1 F D2 B2

ϕ2oo

A1C1
ϕ1 // A1C A1A2 A2C A2C2

ϕ2oo

C1 A1

NNNNNNNNNNNN
qqqqqq

qqqqq

C

MMMMMMMMMMMM

qqqqqqqqqqqq A2

MMMMMM

MMMMM
pppppppppppp

C2

K(E)(c1) K(E)(a1) K(E)(c) K(E)(a2) K(E)(c2)

K(E)

VVVVVVVVVVVVVVVVVVVVVV

LLLLLLLLLL

rrrrrrrrrr

hhhhhhhhhhhhhhhhhhhhhh

By [Cha02, Lemma 2.5.(2)],

CA1
a ∩ CA2

a
A1A2

a = Ca(A1
a ∩A2

a)
a
A1

a = Ca
A1

a = K(E)
a
CA1.

The last equality follows from Lemma (2.47). SinceK(E) ≤ C2F ≤ K(M) is regular, it follows
K(E) ≤ D2F is regular and hence that D2F is linearly disjoint from K(E)

a
CA1 over CA1. In

conclusion, we have that CA1
a ∩D2F = K(E)

a
CA1 ∩D2F = CA1, i.e. the extension CA1 ≤ D2F

is regular. By a symmetric argument, the extension CA2 ≤ D1F is also regular. Since D2F is
linearly disjoint from D1 ≤ CA1

a
over CA1 and the extension CA1 ≤ D2F is regular, then so

is the extension D2F ≤ D1D2F. Since K(E) ≤ F is regular, it follows that D1D2F is linearly
disjoint from Fa = K(E)

a
F over F, i.e. the extension F ≤ D1D2F is regular.

Note that CF ⊆ N can be made into a model of ⋃i pCFi,∀. Also, Bj can be made into a model
of ⋃i pCFi,∀ and hence so does Dj by transfert. Note that since ϕj is an L-isomorphism, the
Li-structures induced by Dj and CF on CAj coincide. Note also, that since CAj ≤ DlF, where
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l ≠ j is regular, Dj and CF are linearly disjoint over CAj. By Lemma (2.53), it follows that DjF
can be made into a model of pCFi,∀ whoseLi-structure extends that of CF. Since CA1 ≤ D2F
is regular, we also have that D1F and D2F are linearly disjoint over CF. By Lemma (2.53) again,
D1D2F can be made into a model of pCFi,∀ whose Li-structure extends that of F.
Recall that K(E)(c) is algebraically disjoint from K(M) over K(E). It follows that CF is alge-
braically disjoint from K(M) over F and thus that D1D2F ⊆ CF

a
is algebraically disjoint from

K(M) over F. Since F ≤ K(M) is regular, D1D2F ⊆ CF
a
and K(M) are in fact linearly dis-

joint over F and, since F ≤ D1D2F is also regular, M ≤ D1D2K(M) is regular. Moreover, by
Lemma (2.53), D1D2M can be made into a model of pCFi,∀ for all i, i.e. the extension if totally
p-adic. Since M ⊧ n−PpC, by Theorem (2.16), there exists M⋆ ≽ M containing D1D2F as an
L-subtrucrture.
Since Bj

a = K(E)
a
Bj, we also have Dj

a = K(E)
a
Bj. As K(E) is regular in K(M⋆), it then follows

that Dj
a ∩ M⋆ = Dj. Note that, since the L-structure on M(c) coincides with the one we

built on D1D2F and hence with the one in N(c), qftpM
⋆

L (c/Ea1a2) = qftp
N
L(c/Ea1a2) has not

changed and we still have that c ≡qfL(Eaj) cj. By construction, we also have Dj ≡qfL(Aj) Bj. It
follows, from Corollary (2.52), that c ≡L(Eaj) cj. ◻

2.7 Finite sets
Our goal, in this section, is to prove that finite sets are coded. We first prove that finite sets
are coded in the algebraic closure of a n−PpC field equippedwith extensions of the geometric
language for each valuation and then we conclude with Lemma (2.38). The proof technique
is inspired by Johnson’s account of elimination of imaginaries in algebraically closed valued
fields [Joh, §6.2].
In what follows, let F be an algebraically closed field and vi be n independent valuations on
F. Recall Notation (2.20). Let Oi also denote the valuation ring for vi and O = ⋂iOi. Let
L ∶= ⋃iLi. The field F can naturally be made into an L-structure.
A quantifier freeL-type p(x) over F is said to be definable if for each quantifier freeLi-formula
ϕ(x,y), there exists a quantifier freeLi-formula θ(y) such thatϕ(x,a) ∈ p if andonly if⊧ θ(a).
If p(x) and q are quantifier free L-types over F, then we define p⊗ q to be the quantifier free
definable L-type of tuples abwhere a ⊧ p and b ⊧ q∣Fa. It is also a quantifier free definable L-
type. The type p is said to be symmetric if for any quantifier free definableL-typeq, p⊗q = q⊗p,
i.e. if a ⊧ p and b ⊧ q∣Fb, then a ⊧ p∣Fb. This happens if and only if, for all i, p∣Li is a generically
stable type in ACVFGi .

Lemma2.56: Pick any s ∈ Sm(F) ∶= GLm(F)/GLm(O). There exists a quantifier free symmetric
s-definable L-type qs such that qs(x) ⊢ x ∈ s.

Proof . Let ki be the residue field for the valuation vi and pi be the generic type of GLm(ki).
Let qi be the generically stable type of matrices inGLm(O)whose reduct moduloM realizes
pi. Note that, by independence of the valuations, q ∶= ⋃i qi is consistent and also that, since
qi is invariant by multiplication in GLm(Oi), q is invariant by multiplication in GLm(O).
Pick any M ∈ s(F). The quantifier free definable L-type qs of elements MN for some N ⊧ q
does not depend on the choice ofM and it is quantifier free symmetric s-definable. ◻
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Lemma2.57: Let C be a finite subset of Sm(F)×Fl for somem and l. Then C is coded in G ∶= ⋃i Gi.

Proof . By Lemma (2.56), for all c ∈ C, there exists a quantifier free symmetric c-definable type
pc concentrating on c, i.e. if c = c1c2 with c2 ∈ Kl, then pc(x1,x2) ⊧ x1 ∈ c1 ∧ x2 = c2. Let s be
the definable map sending a finite subset of K∣x1∣+∣x2∣ of size ∣C∣ to its code. Note that we can
choose the image of s to be a subset of some Km. Let pC = s⋆(⊗c∈C pc). Note that since each
pc is symmetric, the type pC does not depend on a choice of enumeration for C. So pC is a
⌜C⌝-definable quantifier free type and C is L(⌜pC⌝)-definable. By elimination of imaginaries
in ACVFi, each pC∣Li has a canonical basis in Gi and since pC = ⋃i pC∣Li , pC, and hence C, is
G(⌜C⌝)-definable. ◻

Corollary 2.58: LetM ⊧ T, and C be a finite subset of Gk(M). Then C is coded in G.

Proof . Any product of sorts from Gimi can be Li-definably embedded in Sim for large enough
m. Also, there is an L-definable injection Sim(K) → Sm(K) sending a coset of GLm(Oi) to
its intersection with ⋂j≠iGLm(Oj). So we may assume that C is a subset of Sm ×Kl for some
m and l. By Lemma (2.57), C is coded by some ϵ ∈ Ma

. Note that since C is L(M)-definable,
Gi(ϵ) ⊆ dclLi(M). Thus, by Lemma (2.38), we can find ηi ∈ M such that Gi(ϵ) and ηi are
interdefinable in the pair (Mi,M). It follows that ⋃i ηi is a code for C inM. ◻
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