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We answer two open questions about the model theory of valued differential
fields introduced by Scanlon [Scaoo]. We show that they eliminate imaginaries
in the geometric language introduced by Haskell, Hrushovski and Macpherson
and that they have the invariant extension property. These two result follow
from an abstract criterion for the density of definable types in enrichments of
algebraically closed valued fields. Finally, we show that this theory is metastable.

In [Scaoo], Scanlon showed that the model theory of equicharacteristic zero fields equipped
with both a valuation and a contractive derivation (i.e. a derivation 0 such that for all x,
val(9(z)) > val(zx)) is reasonably tractable. Indeed, Scanlon proved a quantifier elimina-
tion theorem for certain of these fields and showed the existence of an elementary class
of existentially-closed such valued differential fields, which we will, from now on, denote
VDF¢c. In this paper, we wish to investigate further their model theoretic properties.

One of the model theoretic questions we address is the elimination of imaginaries. A theory
is said to eliminate imaginaries if for every @-definable set D and every @-definable equiv-
alence relation E ¢ D?, there exists an @-definable function f such that 2 Ey if and only if
f(z) = f(y); in other words, a theory eliminates imaginaries if the category of definable sets
is closed under quotients. In [HHMo6], Haskell, Hrushovski and Macpherson proved that,
although algebraically closed valued fields (ACVF) cannot eliminate imaginaries in any of
the “usual” languages, it suffices to add certain quotients, the so-called “geometric sorts” to
obtain elimination of imaginaries. By analogy with the fact that differentially closed fields of
characteristic zero (DCF) have no more imaginaries than algebraically closed fields (ACF),
it was conjectured that VDF¢¢ also eliminates imaginaries in the geometric language with a
symbol added for the derivation.

To prove their elimination results Haskell, Hrushovski and Macpherson developed the the-
ory of “stable domination” and “metastability”, an attempt at formalising the idea that, if we
ignore the value group, algebraically closed valued fields behave in a very stable-like way —
see Section 1.3 for precise definitions. Few examples of metastable theories are known, but
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VDF¢c seemed like a promising candidate. Once again, the analogy with differentially closed
fields is tempting. Among stable fields, algebraically closed fields are extremely well under-
stood but are too tame (they are strongly minimal) for any of the more subtle behaviour of
stability to appear. The theory DCF, of differentially closed fields in characteristic zero, on
the other hand, is still quite tame (it is w-stable) but some pathologies begin to show and in
studying DCF one gets a better understanding of stability. The theory VDF¢¢ could play a
similar role with respect to ACVF" it is a more complicated but still very tractable theory in
which to experiment with metastability, provided we prove it is metastable.

Nevertheless, it was quickly realised that the metastability of VDF ¢ was still an open ques-
tion, one of the difficulties being to prove the invariant extension property. A theory has the
invariant extension property if, as in stable theories, every type over an algebraically closed
set A has a “nice” global extension: an extension which is preserved under all automorphisms
that fix A (Definition (1.14)).

In Theorem (1.18), we solve these three questions, by showing that VDF¢¢ eliminates imagi-
naries in the geometric language, has the invariant extension property and is metastable over
its value group.

Following the general idea of [Hru14; Joh], elimination of imaginaries relative to the geomet-
ric sorts is obtained as a consequence, on the one hand, of the density of definable types over
algebraically closed parameters and, on the other hand, of being able to control the canonical
basis of definable types in VDF¢¢. This second part of the problem is tackled in [RS]. More-
over, the invariant extension property is also a consequence of the density of definable types.
Hence, one of the goals of this paper (which will occupy us from Sections 6 to 9) is to prove
density of definable types in VDF¢¢: given any A-definable set X in a model of VDF ¢, we
find a type in X which is definable over the algebraic closure of A.

To be precise, we will be working in the more general context of a theory 7" enriching a theory
T which isitself a C-minimal enrichment of ACVF, see Section 6 for precise definitions. But
for the sake of clarity, in this introduction, we will focus on the example where T" is ACVF
and T is VDF¢e.

Let us fix some notations. Let Lg;, be the one sorted language for ACVF and L qiy := Lqiv U
{0} be the one sorted language for VDF ¢, where 0 is a symbol for the derivation. It follows
from quantifier elimination in VDF¢¢ that, to describe the Ly iy -type of x (denoted p), it
suffices to give the Lg;,-type of 9,,(z) := (0" (2))n<w (denoted V,,(p)) and that p is consistent
with X if and only if V,,(p) is consistent with 9,,(X), the image of X under the map 0,,. Note
that v,,(p) is the pushforward of p by d,, restricted to Lg;, and V,,(p) is definable if and only
if p is. Therefore it will be enough to find a “generic” definable Lg;,-type ¢ consistent with
0w (X).

A definable L4, -type is a consistent collection of definable A-types where A is a finite set of
Lqiv-formulas and so we can ultimately reduce to finding, for any such finite A a “generic”
definable A-type consistent with some L 4i, (M )-definable set (see Proposition (9.5)). 1t fol-
lows that most of the preparatory work in the second part of this paper (Sections 6 to 8) will
attempt to better understand A-types for finite A in ACVF.

An example of this somewhat convoluted back and forth between two languages Lg4;, and
Ly qiv is essentially underlying the proof of elimination of imaginaries in DCF; in that case
the back and forth is between the language of rings and the language of differential rings,



although, in the classical proof, it may not appear clearly. One might think that this example
is too simple, but it is, in fact, quite revealing of what is going on in what follows. Take
any set X definable in DCFy, let X,, := 0,,(X) where 9,(z) := (9°(x))o<i<n and let Y,, be
the Zariski closure of X,,. Now, choose a consistent sequence (py, )n< of ACF-types such
that p,, has maximal Morley rank in Y;,. Because ACF is stable all the p,, are definable and,
by elimination of imaginaries in ACF, they already have canonical bases in the fields itself.
Then the complete type of points x such that 9,,(z) & p,, is also definable with a canonical
basis of field points and it is obviously consistent with X.

In ACVF, we cannot use the Zariski closure because we also need to take into account valu-
ative inequalities. But the balls in ACVF are combinatorially well-behaved, and we can ap-
proximate sets definable in VDF¢¢ by finite fibrations of balls over lower dimensional sets,
i.e. cells in the C-minimal setting (see Section 9). Because C'-minimality is really the core
property of ACVF which we are using, the results presented here generalise naturally to any
C-minimal extension of ACVF. Although that might seem like unnecessary generalisation,
we hope it might lead in the future to a proof that VDF¢¢ with analytic structure has the in-
variant extension property and has no more imaginaries than ACVF with analytic structure
(denoted ACVEy,), even though we know that ACVE, does not eliminate imaginaries in the
geometric language and we have no concrete idea of what those analytic imaginaries might
be (see [HHM13]).

The paper is organised as follows. The first part contains model theoretic considerations
about VDF¢¢. In Section 1, we give some background and state Theorem (1.18), our main new
theorem about VDF¢: whose proof uses most of what appears later in the paper. Section 2
consists in an exploration of the properties of an analogue of the prolongations on the type
space. In Section 3, we prove that the constant field is stably embedded in models of VDF¢c.
In Section 4, we study the definable and algebraic closures and finally in Section 5, we prove
that metastability bases exist in VDF¢c.

As announced earlier, Sections 6 to 9 contain the proof of Theorem (9.8), an abstract criterion
for the density of definable types. In Section 6 we study certain “generic” A-types, for A fi-
nite, in a C-minimal expansion 7" of ACVF (see Definition (6.12)). In Section 7, we introduce
the notion of quantifiable types and we show that the previously defined “generic” types are
quantifiable. In Section 8, we consider definable families of functions into the value group,
in ACVF and ACVEy, and show that their germs are internal to the value group and in Sec-
tion 9, we put everything together to prove Theorem (9.8). Finally, in Section 10, we show
how this density result can be used to give a criterion for elimination of imaginaries and the
invariant extension property.

This paper also contains, as an appendix, improvements of known results on stable embed-
dedness in pairs of valued fields which are used in Section 3 and in order to apply the results
of [RS].

1 would like to thank my PhD advisors, Tom Scanlon and Elisabeth Bouscaren, for our dis-
cussions, all their corrections, and, most importantly, their endless support. 1 would also like
to thank Pierre Simon and Martin Hils for our many enlightening discussions.



Model theory of valued differential fields

1. Background and main results

Let us now fix some notation. Whenever X is a definable set (or a union of definable sets) and
Ais aset of parameters, X (A) will denote X n A. Usually in this notation there is an implicit
definable closure, but we want to avoid that here because more often than not there will be
multiple languages around and hence multiple definable closures which could be implicit.
Similarly, if S is a set of definable sorts, we will write S(A) for Uges S(A).

Also, the symbol c will denote strict inclusion.

For all the definitions concerning stability or the independence property, we refer the reader
to [Sim].

1.1. Valued differential fields

We will mostly study equicharacteristic zero valued fields in the leading term language. It
consists of three sorts K, RV and I" with the ordered group language on T, the ring language
on RV and K and maps rv : K - RV and valgry : RV — TI'. Note that, although the group
structure on RV will be denoted multiplicatively, on I" it will be denoted additively.

A valued field (K, val) has a canonical LBV -structure given by interpreting T' as its value
group and RV as (K*/(1+9)) u {0} where 9t denotes the maximal ideal of the valuation
ring O ¢ K. The map rv is interpreted as the canonical projection K* - RV™ := K*/(1+90)
extended to K by rv(0) = 0. The function - on RV is interpreted as its group structure and
we have a short exact sequence 1 -» k* - RV”* - I' - 0 where k := O/ is the residue field.
The function + is interpreted as the function induced by the addition on the fibres RV, :=
valgy (7) U {0} (and for all z and y € RV such that valry () < valgy (), we define z +y =
y + 2 := ). Note that (RV,, +,-) is a one dimensional k-vector space and that RV, = k.
Although valgy (0) is usually denoted +oco # -y, we consider here that 0 lies in each RV, It is
in fact the unit of the group (RV,, +).

The valued fields we consider are also endowed with a derivation 0 such that for all z € K,
val(0(z)) > val(x). They are usually called valued fields with a contractive derivation and
were first studied by Scanlon in [Scaoo]. We denote ng the language LBV enriched with
two new symbols 0 : K - K and dgry : RV — RV. In a valued differential field with
contractive derivation, we interpret O as the derivation and Ory as the function induced by 0
on each RV,,. This function Ory turns RV, into a differential k-vector space and, moreover,
for any x and y € RV, we have Orv (2-y) = Orv(x) -y +x-Orv (y). We will denote by L5 rv
the restriction of L&V to the sorts RV and I".

The valued fields we will consider are also “sufficiently closed” in the sense that they are 0-
Henselian. This notion can take many equivalent forms but we will give the one considered
in [Scaoo]. Let 9, () denote (z,d(x),...,0"(x)) and 9, (z) denote (9 (x))ien-
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Definition 1.1 (0-Henselian>):
Let (K, val, ) be a valued differential field. K is 0-Henselian if for all P € O(K)[Xo, ..., X,]

and a € O(K) such that val(P(9,(a))) > 0 and mini{val(ai&P(an(a)))} = (), there exists
c € O such that P(0,(c)) = 0 and res(c) = res(a).

Definition 1.2 (Enough constants):
Let (K,val,d) be a valued differential field. We say that K has enough constants if val(Cg ) =

val(K') where Cg := {x € K : 9(x) = 0} denotes the field of constants.

Let L4y be the one sorted language for valued fields. It consists of the ring language enriched
with a predicate x|y interpreted as val(z) < val(y). Let Ly qiv := Laiv U {0} and VDF¢¢ be
the L giv-theory of valued fields with a contractive derivation which are 9-Henselian with
enough constants, such that the residue field is differentially closed of characteristic zero
and the value group is divisible. Note that we call it VDF¢¢ and not VDF¢¢ o or VDFgc 0
because we mostly work in equicharacteristic zero in this text. Similarly we will not spec-
ify the characteristic when speaking of ACVF, but it is understood that we are speaking of
ACVFy.

Example1.3:

Let (k,0) = DCF( and T be a divisible ordered Abelian group. We endow the Hahn field
K = k[[t"]] of power series 3. .1 a,t” with well ordered support and coefficients in k, with
the derivation 9( X, er ayt7) := e 9(ay)t". Then (K, val,d) = VDFec.

As in the case of ACVF, VDF ¢ can also be considered in the one sorted, two sorted and the
three sorted languages which are enrichments of the valued field versions with symbols for
the derivation. For example, the three sorted language for valued differential fields consists
of the sorts K, I" and k along with the differential ring language on K and k, the ordered
Abelian group language on T' and maps val : K — T and res : K? — k where res(z,y) is
interpreted as res(zy1).

Recall that an £-definable set D in some L-theory T is said to be stably embedded if, for all
M & T and all L(M)-definable set X, X n D is L(D(M ))definable.

Theorem 1.4 ([Scaoo; Scaos]):

(i) The theory VDF ¢¢ eliminates quantifiers (and is complete) in the one sorted language,
the two sorted language, the three sorted language and the leading term language;

(ii) The value group T is stably embedded and a pure divisible ordered Abelian group;
(iii) The residue field k is stably embedded and a pure model of DCF

(iv) The theory VDF ¢ is NIP (does not have the independence property).

Proof. By [Scaoo, Theorem 7.1] we have field quantifier elimination in the three sorted lan-
guage. The stable embeddedness and purity results for k and IT" follow (see, for example,
[Rid, Remark A.10.2]). Now, the theory induced on k and I" are, respectively, differentially
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closed fields and divisible ordered Abelian groups. Both of these theories eliminate quanti-
fiers. Quantifier elimination in the three sorted language follows and so does qualifier elim-
ination in the one sorted and two sorted languages.

As for the leading term structure, by [Scao3, Corollary5.8 and Theorem 6.3], VDF¢¢ elimi-
nates quantifiers relative to RV and hence one can easily check that RV is stably embedded
and it is a pure L gy -structure. Quantifier elimination for VDF¢¢ in the leading term lan-
guage now follows from quantifier elimination for the structure induced on RV which we
prove in the following lemma:

Lemmar.s:
Let Try be the L rv -theory of short exact sequences of Abelian groups 1 - k* - RV* =T - 0

where k = DCFq and T is a divisible ordered Abelian group, for all v € T, (RV,,+,-,0) is a
differential k-vector space and for all x and y € RV, 0(x - y) = 0(x) -y + = - I(y).
Then T eliminates quantifiers.

Proof . 1f suffices to prove that for all M, N & Try such that N is |[M|*-saturated and for
all partial isomorphism f : M — N, there exists an isomorphism g : M — N extending f
defined on all of M.

Let A be the domain of f. We construct the extension step by step:

Claim 1.6: We may assume that T'(A) = T'(M)

Proof . By quantifier elimination in divisible ordered Abelian groups, there exists g : I'(M ) —
I'(N) defined on all of I'(M) and extending f|p.. It is easy to see that f U g is a partial
isomorphism. A

Claim 1.7: We may assume that A is closed under inverses.

Proof. Forall a and b € RV (A), we define g(a™ - b) := f(a)™'- f(b). One can check that
g U f defines a partial isomorphism. A

Claim 1.8: We may assume that k(M) c A.

Proof . By elimination of quantifiers in DCFy, and saturation of N, f|, can be extended to
h : k(M) - k(N). Now define g(A-a) = h(A\) - f(a) forall A\ e kand a € A. As A is
closed under inverse, this is well-defined and one can check that f u g is indeed a partial
isomorphism. A

Now, let a € M and v = valrv (a). If a ¢ A, then RV, (A) = 2.

Claim1.9: There exists c e RV, (M) such that 9(c) = 0.

This is an easy consequence of the fact that k = DCFy and it is true of any finite dimensional
differential k-vector space. But let us give the proof in dimension one.

Proof . Pick any ¢ € RV[(M). We have d(c) = A - ¢ for some A € k(). We want to find
wu# 0suchthat 9(p-c) =0,ie. () - c+ pA-c=0and equivalently, O(u) + Ay = 0. But this
equation has a solution in k() as it is differentially closed. A
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Pick any such ¢ e RV (M). If there exist an n € N such that ¢" € A, let ng be the minimal
such n, if such an n does not exist, let ng = 0. In both cases, let b € RVy(.,y(IV) be such that
d(b) =0and b™ = f(c™). Note that if ny = 0, the last condition is empty and if ny # 0, the
first condition follows from the second one.

Now, for all a € RV(A) and n € N, define g(a-c™) = f(a) - b". ltis easy to check that g U f
is a partial isomorphism. Applying this last construction repetitively, we obtain a morphism
g: M — N. ¢

The fact that VDF¢¢ is NIP is an easy consequence of elimination of quantifiers (in the one
sorted language for example) and the fact that ACVF is NIP. ]

Remark 1.10:
I. If M = VDFge, K(M) and Ck (M) are algebraically closed, but K(M) is not differ-
entially closed as the set {z ¢ K(M) : 3y 9(y) = xy} defines the valuation ring.

2. Scanlon also proved that VDF¢¢ is the model completion of valued fields with a con-
tractive derivation (see [Scaoo, Theorem 7.1]). To be precise he proved that any struc-
ture A in the three sorted language for valued differential fields where k(A) is a dif-
ferential field, I'(A) is an ordered Abelian group and (K (A), val, res) is a valued field
with a contractive derivation (val and res are not assumed to be onto) can be embedded
in a model of VDFge.

A similar result in the leading term language holds: let A be an L&V -structure such
that I'(A) is an Abelian ordered group, k(A) is a differential field, RV (A) is family
of dimension one differential k(A)-vector spaces indexed by a subgroup of I'( A) with
a symmetric bilinear group law - such that dgv (z - y) = Orv(x) -y + = - Orv (y) and
(K(A),rv,0) is a valued field with a contractive derivation (rv is not assumed to be
onto). Then A can be embedded in a model of VDF ¢¢.

1.2. Elimination of imaginaries

Let us now recall some facts about elimination of imaginaries. A more thorough introduction
can be found in [Poi85, Sections 16.d and 16.e]. An imaginary is a point in an interpretable set
or equivalently a class of a definable equivalence relation. To every theory 7" we can associate
a theory 7° obtained by adding all the imaginaries. More precisely a new sort and a new
function symbol are added for every @-interpretable set and they are interpreted respectively
as the interpretable set itself and the canonical projection to the interpretable set. A model
of T°% is usually denoted M*“%. We write dcl®d and acl®@ to denote the definable and algebraic
closure in M9,

To every set X definable (with parameters in some model M of T'), we can associate the set
"X ¢ M*Iwhich is the smallest definably closed set of parameters over which X is defined.
We usually call "X the code or canonical parameter of X.

Let T"be a theory in alanguage £ and R a set of L-sorts. The theory T" eliminates imaginaries
up to R if every set X definable with parameters is in fact definable over R(" X "); we say that
X iscoded in R. If every X is only definable over R (acl®d("X ")), we say that 7" weakly elimi-
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nates imaginaries. A theory eliminates imaginaries up to R if and only if it weakly eliminates
imaginaries up to R and every finite set from the sorts R is coded in R.

In [HHMo6], Haskell, Hrushovski and Macpherson introduced the geometric language £9
for valued fields. It consists of a sort K for the valued field itself, equipped with the ring
language, for all n € N the sorts S,, = GL,,(K)/GL,,(O) where O denotes the valuation ring
of K and the sorts T,, = GL,,(K)/GLj, ,(O) where GL,, ,(O) < GL,(O) consists of the
matrices which are congruent modulo the maximal ideal 9t to the matrix whose last columns
contains only zeroes except for a one on the diagonal, and finally the canonical projections
onto S,, and T,,. We will denote by G the sorts of the geometric language. Note that S; is
exactly the value group and the canonical projection from K* onto S is the valuation.

The main “raison d’étre” of this geometric language is the following theorem:

Theorem 1.11 (HHMo06, Theorem 1.0.1]):

The theory ACVFY of algebraically closed valued fields in the geometric language eliminates
imaginaries.

1.3. Metastability

Let T'be a theory, M & T be sufficiently saturated and A ¢ M. Recall that an £( A)-definable
set X is said to be stably embedded if for all £L()-definable set Y, Y (M) n X (M) is of the
form Z (M) n X (M) where Z is L(Au X (M ))-definable. The set X is stable stably embed-
ded if it is stably embedded and the £(A)-induced structure on X is stable. We denote by
St 4 the structure whose sorts are the stable stably embedded sets which are £( A)-definable,
equipped with their £( A)-induced structure. We will denote by | ¢ forking independence
in Stc.

Definition 1.12 (x-definable functions):

Let L be a language, M an L-structure and x = (x;)ier and y = (y;) jes be (potentially infinite)
tuples of variables. Let S; be the sort in which the variable x; lives, and similarly for S;. A partial
function f : Tle; Si(M) — Tl ey Sj(M) is said to be (L, x,y)-definable (or simply an (L, x)-
definable function, if we do not want to specify x or y) if for all j € J there exists an L-definable
function f; : [1;ef Si = Sj such that f =Tl e fj-

Definition 1.13 (Stable domination):
Let M be some L-structure, C' € M, f an (L(C'), x)-definable map to St and p € S(C'). We say

that p is stably dominated via f if for every a = p and B € M such that Sto(dcl(CB)) Lo f(a),

tp(B/f(a)) - tp(B/Ca).

We say that p is stably dominated if it is stably dominated via some map f. It is then stably domi-
nated via any map enumerating St (dcl(Ca)) for any a = p.

Definition 1.14 (Invariant extension property):

Let T be an L-theory that eliminates imaginaries, A € M for some M = T. We say that T has the
invariant extension property over A if, for all N & T, every type p € S(A) can be extended to an
Aut(N/A)-invariant type.
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We say that T has the invariant extension property if T  has invariant extensions over any A =
acl(A)c M eT.

Definition 1.15 (Metastability):
Let T be a theory and T' an &-definable stably embedded set. We say that T' is metastable over T’

if:
(i) The theory T has the invariant extension property.

(ii) Existence of metastability bases: For all A ¢ M, there exists C' ¢ M containing A such
that for all tuples a € M, tp(a/CT (dcl(Ca))) is stably dominated.

In [HHMo8], Haskell, Hrushovski and Macpherson showed that maximally complete fields
are metastability bases in ACVF. Recall that a valued field (K, val) is maximally complete if
every chain of ball contains a point or equivalently every pseudo-Cauchy sequence from K
(a sequence (Zq )qex such that for all o < 8 < v, val(z — 2g) > val(xg — 24 )) have a limit in
K, i.e.there exists a € K such that for all a < 3, val(a — z3) > val(a - ).

To finish this section, let us introduce two other kinds of types which coincide with stably
dominated types in NIP metastable theories.

Definition 1.16 (Stable genericity):
Let M be some NIP L-structure and p € S(M ). The type p is said to be generically stable if it is

L(M)-definable and finitely satisfiable in some (small) N < M.

Definition 1.r7 (Orthogonality to I'):
Let M & T be sufficiently saturated, C < M, T" be an L-definable set and p € S(M) be an

Aut(M /C)-invariant type. The type p is said to be orthogonal to T if for all B < M containing
Aand a E p|g, T'(dcl(Ba)) = T'(dcl(B)).

1.4. New results about VDFg,

Let L',g be the language £9 enriched with a symbol for the derivation d : K — K and let
VDFgC be the Eg—theory of models of VDF¢¢. One of the goals of this paper is to prove the
following:

Theorem 1.18:

The theory VDFgC eliminates imaginaries, has the invariant extension property and is
metastable. Moreover, over algebraically closed sets of parameters, definable types are dense.

By density of definable types, we mean that every definable set X is consistent with a global
Eg (acl®(" X "))-definable type p.

Proof. Density of definable types, elimination of imaginaries and the invariant extension
property follow from Theorems (9.8) and (10.7) taking 7" to be ACVFY and T to be VDFgC.
Hypothesis 9.8.(i) follows from Theorem 1.4.(ii) and 1.4.(iii). A theory eliminate 3 if the
cardinality of finite definable sets is uniformly bounded. In DCF, the algebraic closure is
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the field algebraic closure of the generated differential field. It follows that the cardinality
of finite definable sets is (uniformly) bounded by the degree of the polynomials whose roots
form the finite set. As for T, it is a pure model of DOAG which is an o-minimal theory and
o-minimal theories always eliminate 3.

Hypothesis 9.8.(ii) is an easy consequence of elimination of quantifiers: let ¢(x;s) be an
Eg—formula such that z and s are tuples of field variables, then there exists an Lg;,-formula
¥ (u;t) and n € N such that p(z; s) is equivalent modulo VDF¢¢ to ¢(0,(z); 0, (s)), i.e. for
allm e N, 8, is an Ly 4;,-definable bijection between (N;m) and ¢ (x, 8y, (m)) N 8y, (KI).
Hypothesis 9.8.(iii) follows from the fact that if k¥ = DCF, then the Hahn field k((t®)) with
the derivation 9(Y; a;t') = ¥, 0(a;)t!, i.e. d(t) = 0, is a model of VDFg¢. By Corollary (A.8)
the underlying valued field is uniformly stably embedded in every elementary extension.
The fact that ACVFY admits I'-reparametrisations is proved in Proposition (8.8).

Finally, as we have now proved the invariant extension property, to prove metastability, there
only remains to prove the existence of metastability basis. However, in Proposition (5.6), we
show that any algebraically closed maximally complete differential field C' is a metastability
basis, hence there only remains to show that any A ¢ M = VDFgc is contained in such a
(small) C c K(M).

This follows from a classical proof, but for the sake of completeness, let us sketch the argu-
ment. Taking any lifting in K of the points in A, we may assume that A ¢ dcl g (K(A)). We

may also assume that K(A) is algebraically closed. 1f K(A) is not maximally complete, take
(z4) to be a maximal pseudo-convergent sequence with no pseudo-limit in K and such that
the order-degree of the minimal differential polynomial P pseudo-solved by () is minimal
among all such pseudo-convergent sequences. Then the extension by any root of P which
is also a pseudo-limit a is immediate, see [Scaoo, Proposition 7.32]. lterating this last step as
many times as necessary, we obtain an immediate extension C' of A which is maximally com-
plete. Because k(C) = k(A)andI'(C) =T'(A), K(C) is Henselian and K (A) is algebraically
closed, K(C) is also algebraically closed. ]

At the very end of [HHMo8], an incorrect proof of the metastability of VDF ¢¢ (and in partic-
ular of the invariant extension property) is sketched. Because it overlooks major difficulties
inherent to the proof of the invariant extension property, there can be no easy way to fix
this proof and new techniques had to be developed. Furthermore, it seems that proving the
existence of metastable bases in VDF¢¢ is not as straightforward as one might hope either
and the proof we give in Proposition (5.6) is surprisingly convoluted as it relies on a good
understanding of the imaginaries of the structure induced on RV.

2. Prolongation of the type space

The goal of this section is to study the relation between types in VDF¢¢ and types in ACVE.
This construction plays a fundamental role in the rest of this paper, be it to prove that there
are metastability bases in VDF¢¢ or that definable types are dense, although, in the proof of
Theorem (9.8), it appears in a more abstract setting.

Forall z € K or x € RV, let J,,() denote, respectively, (0" (x))nen and (Ogy () ))nen. 1f
x € T, let , () denote () nen. If z is a tuple of variables, we denote by o, the tuple () );en
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2. Prolongation of the type space

where each 2 is sorted like .
Let M = VDF¢c be sufficiently saturated and A < M be a substructure. We write S~ (A) for
the space of complete L-types over A in the variable x.

Definition 2.1: .
Let us assume that A c KuT' URV. Wedefine v, : Sf"’ (A) > Sf:v (A) to be the map which
sends a complete type p to the complete type

Vw(p) = {p(rc,a) : pisan LRV—formula and (0, (z),a) € p}.

Proposition 2.2:
The function V,, is a homeomorphism onto its image (which is closed).

RV
Proof. As Sf 9 (A) is compact and Sf:V(A) is Hausdorft, it suffices to show that V,, is
continuous and injective. Let us first show continuity. Let U = (p(2c,a)) € Sf:v (A), then
RV RV
VN U) = (¢(0,(x),a)) € Sfa (A). As for V,, being injective, let p and ¢ € Sfa (A) and
let o(z,a) be an LFY -formula in p \ ¢. By quantifier elimination, we can assume that ¢ is of
the form 6(0,,(z),a) for some LRV -formula 0. Then 0(z o0, a) € V., (p) \ Vi (q). ]

In fact, we can describe exactly what the closed image is. For every differential ring R let
R{Xji,..., X} be the ring of differential polynomials in m variables (i.e. R[Xi(j ) VG
N and 1 <7 <m]). We also denote O the derivation on this ring. When P € R{X1,..., X},
we will write P* € R[Xi(j ) j € Nand 1 < i < m] for the underlying polynomial.

Proposition 2.3:
Let x be a tuple of K-variables and P, be the following set of LY (A)-formulas:

{val(0(P)" (7)) 2 val(P"(2)) : P e K(A){z}}
U {a=1v((5)" (2)) Aval(d(5)" (o)) = val((§)" (o))
~ 8(a) = 1v(9(§)" () :a e RV(A) and P, Q e K(A){x}}

U {a=1v((5)" (7)) Aval(d(5)* (2e)) > val((§)* (Teo))
~8(a)=0:aecRV(A)and P,Q e K(A){z}}

Let P,(A) ¢ Sfjv (A) be the set of types over A containing P,. Then V,, (SfaRV (A)) =P, (A).

There is a slight abuse of notation in the above formulas. To be precise, the expression
rv(0( g )* (o)) should read instead

v (Q*(fvoo)a(P)*(woo) - P*(xoo)B(Q)*(woo))
(Q*(70))? '

- - Toind . . .
Asimilar description of V,,(S;? (A)) canbe given when z also contains I' and RV -variables
but it is much more cumbersome.

II



2. Prolongation of the type space

Proof. Forany P € K(A){X} and tuple ¢ € K(M) of the right length, we have 9(P(c)) =

d(P)(dy(c)). 1t follows that Vw(S 5 (A)) € Pz(A). Let us now show that this inclusion
is an equality. Let p € Pz(A) and ¢ & p. In particular ¢ = (¢j;)jen0<iclz- Then, {P €
K(A){X}: P*(¢) = 0} is a differential ideal as for all such P, val(9(P)*(¢)) > val(P*(¢)) =
oo. Hence L = K(A)(¢) can be endowed with a (unique) differential ring structure such that
0(¢ji) = i

For any P,Q € K(A){ X}, we have

val(0(P)*(¢)) > val(P*(¢)) and val(9(Q)* (¢)) > val(Q* (¢)),

P*(E))) (P*(E)) (5(13)*(5) 3(@)*(5))

vall 0 —val| ——= ] =val - > 0.

( (Q*(E) Q* () P(e) Q* ()

Then C = L u A is a valued field with a contractive derivation — in the broader sense

where rv and val might not be onto. As VDF¢¢ is the model completion of such struc-
tures (see Remark 1.10.2), we can find an embedding f : C - M such that f fixes A. Let

q = tprv ((f(c0,))ociclzl/A), then Vi (q) = p. L]

We will now look at how V,, and its inverse behave with respect to various properties of types.
One must beware though that however innocent these questions might seem, transferring
some properties from p to V,,(p) actually presents real challenges. Proving Propositions (2.4)
and (2.5) required the development of [RS]. Note that in [RS] the variables of the type p are
in K, the same proof applies if the variables are in K, RV and I' (we have to use elimination
of quantifiers in LY instead).

and hence

Proposition 2.4 ([RS, Corollary 3.3]):
Letpe S5 (M). Assume A = acl® R (A). The following are equivalent:

(i) pis Eg”v’eq(A)—deﬁnable;
(i) V.o (p) is L9(G(A))-definable;
(iii) pis L5(G(A))-definable.

Proposition 2.5 ([RS, Corollary 3.5]):
Letpe S5 (M). Assume A = acl®\ RV (A). The following are equivalent:

(i) pis Au‘ccamr,eq (M| A)-invariant;

(ii) Vu(p)is Aut, ¢ (M/G(A))-invariant;
(iii) pis Autcg (M/G(A))-invariant.

I2



2. Prolongation of the type space

Proposition 2.6:
Let p € P,(A), f be an (LY(A), )-definable map defined on p and let D be the image of
f. Assume that A ¢ K uT u RV, p is stably dominated via f and that Deq(aclz%w(A)) =

D*4(acl}ky (A)). Then V' (p) is also stably dominated (via f o ,,).
To be precise, it suffices to consider D relative to the LRV -induced structure (and not the
Egv—induced structure).

Proof. We will need the following result:

Claim 2.7: Let D be £L9(M)-definable. If D is stable and stably embedded in ACVF, then it is
also stable and stably embedded in VDF ¢c.

Proof. 1t follows from [HHMo6, Lemma 2.6.2 and Remark 2.6.3] that D ¢ dcl,¢ (F U k) for
some finite £ ¢ D. Because k also eliminates imaginaries, is stable and stably embedded in
VDFgc, it immediately follows that D is stably embedded and stable in VDF¢¢ too. ¢
Now let ¢ = V! (p) and B ¢ K be such that

RV

St (delgn (AB)) 157 £(0.(0))

RV RV
where Lﬁa denotes independence in Stja over A. By hypothesis, Deq(acleﬁ‘%V (A)) =
1]
D*(aclky (A)), and hence

SE™ (delpmy (48,(B))) 15 f(8.(c))

where J,fle denotes independence in StﬁRv over A. Since J,,(¢) E p and p is stably domi-
nated via f,

tperv (B/f(9u(c))) = tperv(0.(B)/f(9u(c)))
F tperv (0,(B)/Ady(c))
I— tpEDRv(B/AC).

Here the last implication comes from the fact that Vv, is one to one on the space of types.
Hence, we have proved that V! (p) is stably dominated via f o . ]

Proposition 2.8:

RV
Assume M sufficiently saturated and homogeneous and let p € Sf 9" (M) be LEY (M)-definable.
The following are equivalent:

(i) pis stably dominated; (iv) Vw(p) is stably dominated;
(ii) pis generically stable; (v) V. (p) is generically stable;
(iti) pis orthogonal to T; (vi) V. (p) is orthogonal to T;

Proof. The equivalence of (iv), (v) and (vi) is proved for ACVF in [HL, Proposition 2.8.1].
Moreover, the implications (i) = (ii) = (iii) hold in any NIP theory where I is ordered.
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3. Stable embeddedness of the field of constants

We proved in Proposition (2.6) that (iv) implies (i). Let us now prove that (iii) implies (iv). By
Proposition (2.4), V..(p) is LBV (A)-definable for some A ¢ M. Let C' = VDF¢c be maxi-
mally complete, and contain A and let ¢ = p|,. As p is orthogonal to I', we have I'(C') ¢
I'(dclrv(Cec)) < I‘(dclcaav(Cc)) = I'(C). Because C' is maximally complete and max-
imally complete fields are metastability bases in ACVF (see [HHMo8, Theorem 12.18.(ii)]),
tp(9,(¢)/CT(dcl srv (Cc))) is stably dominated. But

tp(9(¢)/CT (delzrv (Cc))) = tp(0.,(c)/C) = Vu(P)lc

and hence V,,(p) is also stably dominated. ]

3. Stable embeddedness of the field of constants

In this section we wish to study the stable embeddedness of the field of constants Ck in
VDF¢c. We will be using the results of Appendix A and we will be working in the one sorted
language for valued differential fields £ qiv = Laiv U {O}. Nevertheless, it is easy to see that
the results we obtain here are valid in any choice of language.

Recall Definition (A.1): an extension K < L of valued field is said to be separated if any
finite dimensional sub- K -vector space of L has a basis a such that for any tuple \ € K,
val(}; Aia;) = min;{val(\;ja;)}.

Proposition 3.1:
Any pair K ¢ L which is elementarily equivalent to a pair K* < L*, where K* is maximally
complete, is separated. In particular, in models of VDF ¢¢, the pair Ck < K is separated.

Proof . The first part of the corollary is an immediate consequence of Propositions (A.2) and
the fact that separation is preserved by elementary equivalence of the pair. The rest of the
corollary then follows because for any & = DCFy and I' = DOAG, k((t!)) equipped with
the derivation O(¥ cr a4t") = X, er 9(a,)t” is a model of VDF¢c whose constant field is
Cr((t")) which is maximally complete and, as VDFg¢ is complete, all the pairs Ck ¢ K are
elementary equivalent. ]

Proposition 3.2:
The field of constants Ck is stably embedded in models of VDF ¢c. It follows that it is a pure model
of ACVF.

Proof. Let M £ VDFgc and p(x,m) be a formula with parameters in K(M). By quanti-
fier elimination, we may assume that ¢ is of the form (9, (x), 9, (m)) where 1 is an L ;-
formula and n € N. For all x € Cg, ¢(x,m) is equivalent to ¢(«,0,...,0,09,(m)), i.e. an
Laiv (K(M))-formula, hence it suffices to prove that Ck (M) is stably embedded in K(M)
as a valued field. But K (M) is algebraically closed, the pair Cx (M) ¢ K(M )is separated
(Proposition (3.1)) and, because there are enough constants, val(K(M)) = val(Ck(M)),
hence we can apply Theorem (A.0).

It now follows from quantifier elimination that any subset of Ck definable in M is defin-
able by a quantifier-free £4;, (Cx (M) )-formula and hence is defined in Ck (/) by the same
formula. ]

14



4. Definable and algebraic closure in VDF ¢¢

These results can be transposed easily to the Witt vectors over Ealg with the lifting of the
Frobenius W (Frob,). Recall that in this field there are definable angular component maps
acy, for all the residue rings R,, := O/p™9t which are compatible with the automorphism.

Indeed, Fix(W(IFpalg)) = Q, where angular component maps ac,, are definable and for all

x € W(Ealg) define ac,, () := res,, (zy~1)ac, (y) for any y € Q, such that val(z) = val(y).
Thus we will consider the theory of this field in the three sorted language £7°p with the
angular component maps described above and divisibility predicates P, on the value group.
Let WE,, denote Thzae, (W (F,"®), W(Frob,), ac,).
Theorem 3.3 ((BMSo7]):

The theory WF,, eliminates quantifiers (and is complete).

Proof. By [BMSo7, Theorem 11.4], WF), eliminates quantifiers in £, relativeto R = U, R,
and I'. The theorem now follows from the fact that algebraically closed fields eliminate quan-

tifiers and Z-groups eliminate quantifiers once we add divisibility predicates. ]

Proposition 3.4:
The fixed field Fix(K) is stably embedded in models of WF', and is a pure valued field elementarily
equivalent to Q,

Proof . 1t is essentially the same proof as in Proposition (3.2). Let M = WF,. By quanti-
fier elimination, the intersection of any definable set in M with Fix(K) is the intersection
with Fix(K) of a set definable in M as a valued field with angular components. Because

(W(Fpalg), W (Frob,)) is a model of WF), whose fixed field is Q,, (which is also maximally
complete), by Proposition (3.1), in models of WEF,, the pair Fix(K) ¢ K is separated. We
can now apply Theorem (A.7) to conclude. The fact that it is a pure valued field now follows
by elimination of quantifiers (and the fact that the angular component maps we chose are

definable in Th(Q,)). |

4. Definable and algebraic closure in VDFg¢,

In this section, we investigate the definable and algebraic closures in VDF¢z. We show that
they are not as simple as one might hope. In DCF, the definable closure of a is exactly the
field generated by 0,,(a). In VDFg¢, we have, at least, to take in account the Henselianisa-
tion, but we show that the definable closure of a can be even larger than the Henselianisa-
tion of the field generated by 0,,(a). This fact was already known to Ehud Hrushovski and
Thomas Scanlon but was never written down.

We will, again, be working in the leading term language and all the set of parameters that
appear in this section will be living in the sorts K uT U RV. We denote by (A)y the LY -
structure generated by A and (A)-1 5 the closure of A under both LV -terms and inverses
on K, RV and I'. Recall that c denotes strict inclusion.
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4. Definable and algebraic closure in VDF ¢¢

Fact 4.1:

Let M = VDF ¢c be sufficiently saturated. Forall C' € M, there exists A ¢ M, such that C ¢ Aand
K(dcl rv({A)g)) = K((A)—17a)h c K(dclg, 4, (A)). In fact, there exists a € K(dclg, ., (A4))
which is transcendental over (A)y. In particular, we also have a ¢ acl rv ({A)g).

We show that certain (linear) differential equations which have infinitely many solutions in
differentially closed fields have only one solution in models of VDF¢¢, due to the valuative
restrictions imposed by having a contractive derivation. In other terms, we exhibit a two
dimensional ACVF-definable set which contains a unique prolongation type that has only
one realisation of the form 9, ().

Proof. Let P(X) € O(M)[X],a € O(M) and ¢ € M(M). Let Qu(d(z)) = z —a +
eP(0,(x)), then Q, has a unique zero in M. Indeed val(Q,(a)) > 0, Val(ggg (a)) =val(1) =
0 and val(gX‘z (a)) = val(e) + val(g—)i(a)) > 0, hence o-Henselianity applies. If Q,(z) =
Qq(y) =0, thenres(x) =res(a) = res(y) and thus val(x — y) > 0. Let n := z — y, we have

Qa(y) =z +n-a+ecP(z+n)= x+n—€(;PI(a)n1) = n+6(HZ Pr(a)n").
I>0

But, if n # 0, val(ePr(a)n’) > |I|val(n) > val(n) and hence val(Q.(y)) = val(n) # oo, a
contradiction. Hence the equation P(0,,(x)) = 0 has a unique solution in M.

Let us now show that, in some cases, we do get new definable functions. We may assume
that C' = dcl rv(K(C)). Let k be a differential field, @ € k be differentially transcen-
dental and let us equip k[[¢]] with the usual contractive derivation (i.e. the one such that
val(¢) = 0). We embed k[[¢]] in M so that k and k(C') are independent and K(C')(¢) is a
transcendental ramified extension of K(C'). To avoid any confusion, let us denote by a the
image of @ by the embedding of & into k[[¢]] and into M. One can check that for all n € N,
res(K(C) (2, 0, ())) = k(C) (9 (@)).

Let us now try to solve z — a — £0(z) = 0in k[[£]]. Let « = ¥ 2;¢° where z; € k, the equation

can then be rewritten as:
S we’ =a® + Y O(w;)e,

and hence 7 = a and 241 = d(z;) = 0" (a). If 2 € (C, a,e)-17aalg then for some n € N, we
must have z € K(C)(9,(a), a)ulg. Any automorphism of ¢ : k U k(C) fixing k(C') can be
lifted into an automorphism of k[[¢]] u C fixing C and sending ¥ z;¢’ € k[[£]] to ¥ o (x;)e".
Because 0" (@) is transcendental over k(C)(8,(@)), it follows that x has an infinite orbit
over K(C)(0y,(a),e), a contradiction. ]

Nevertheless, by quantifier elimination, the definable closure in I, k and RV is exactly what
one could hope for. Let us begin with the easier cases of I and k.

Proposition 4.2:
Let M = VDF¢e and A € M, then

[(delzrv(A)) = T(aclrv (4)) = Q@ T'({A)-15),

k(del v (4)) = k((4)-1 5) and k(acl v (4)) = k(A1 )"
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4. Definable and algebraic closure in VDF ¢¢

Proof. Let us first show that I'(acl LRV (A)) = Q®val({A)-1 ). By quantifier elimination
in the leading term language, any formula with variables in I" and parameters in A is of the
form ¢(z,a) where a e I'((A)y). In particular, any v € I'(M ) algebraic over A is algebraic, in
I, over I'((A) ) which is a pure divisible ordered Abelian group. 1t follows immediately that
7€ Q@®T((A)-1 ). Finally, as Q ® val({A)-1 ») is rigid over val({A4)-1 9) € I‘(dclﬁgw (A))
the equality I'(dcl LRV (A)) =T(acl LRV (A)) also holds.

As for the results concerning k, they are proved similarly. Indeed, any formula with variables
in k and parameters in A is of the form ¢(z,a) where a € k({A)-1 5) is a tuple. The proof
of this fact requires a little more work than for I' because formulas of the form ¥;.; a;2* =
0 where a; € RV({A)-1 ») are not immediately seen to be of the right form. But we may
assume that all a; have the same valuation (as only the monomials with minimal valuation
are relevant to this equation). Hence, it is equivalent to 3 ;c; a;a;; 2% = 0 which is of the right
form.

The results now follow from the fact that in DCF the definable closure is just the differen-
tial field generated by the parameters and the algebraic closure is its field theoretic algebraic
closure. ]

Let us now tackle the case of RV.

Proposition 4.3:
Let M = VDFgc and A € M. Then

RV (dcl iy (A4)) = RV((A)-15) and RV (acl zrv (A)) = RV (aclzrv ({4)o)).

Proof. Let A := (RV UT')({A)y). By quantifier elimination for VDF¢¢ in the leading term
language, any formula with variables in RV and parameters in A is of the form ¢(x, a) where
a € Ais a tuple. In particular, RV (acl LRV (A)) cacl RV (A).

Claim 4.4: Lety € T\ Q@®valgy (RV(A)). We have RVry(dCIEBRV (A)) = RVV(aclﬁgv (A)) =
.

Proof. Pick any (d;);en € k such that d%,,, = d,, and 9(d,,) = 0 for all m and n € N. Let us
write I' = (Q ® I'(A)) @,c; Q; where one of the ~; is . Define a group morphism o : I —
k(M) sending all of Q ® T'(A) and all ; # y to 0 and p/q - y to db. For all z € RV, we now
define 7(x) = o(valgy (z)) - . It is easy to check that 7 is an Ly gry-automorphism of RV
and that 7 fixes A.

On the fibre RV,, 7 sends x to d; - x. It immediately follows that, because we have infinitely
many choices for d (as Cy is algebraically closed), the orbit of x under Aut., ., (RV/ A)is

infinite. Thus RV, (dcl EBRV(Z)) =RV, (acl %RV(Z)) = 2. ¢

Claim 4.5: Let v € Q ® valgy (RV (A4)) \ valgy (RV(A)). Then RVV(dclcgv(K)) = @ and
RV, (acl rv(4)) # @.

Proof. Let n be minimal such that § = 4™ € valgy (RV(A)). Taking d; as above, such that
dy = 1, and defining o such that o(p/qd) = dj, we obtain an L& -automorphism 7 which
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4. Definable and algebraic closure in VDF ¢¢

fixes A and acts on RV, by multiplying by d,,. As there are n choices for d,,, we obtain that
RV,Y(dCIng(A)) =g.

Now, let us show that RV, (acl rv (g)) # &. Let ¢ € RV,. We have valgy(c") = 7" and
there exists A € k such that A - ¢ € A. Let p € k be such that " = Aand leta = p - c. Then
a™ = \-c" e A. As, the kernel of z — 2™ is finite, we have a € acl rv (A). ¢
Now, let c €e RV (dcl LRV (A)). By Claims (4.5) and (4.4), valry (¢) = valry (a) for some a € A.
It follows that c-a™! € k(dcl LRV (A)), which, by Proposition (4.2) is equal to k(A), and hence
c=(c‘a_1)-aefA{'V(;1v). _
If c e RV (acl 8 (A)), by Claim (4.4) and (4.5), valgy (¢) = valry (a) for some a € acl rv (A),

and hence that c-a™! € k(aclﬁaav (A)) = k(acl rv (A)). ]

Concerning the definable closure and algebraic closure in the sort K, although the situation
is not ideal, we nevertheless have some control over it:

Corollary 4.6:

Let M = VDF¢c and A c K(M), then K((A)_lva)alg c K(aclﬁgv(A)) is an immediate exten-
sion.

Proof. We have val(K(aclng (A))) < I‘(aclﬁg{v (A)) = val(K((A)_lﬁ)alg) where the sec-
ond equality comes from Proposition (4.2). Similarly res(K (acl LRV (A))) < k(acl CRY (A)) =

res(K((A)_l’a)alg) and hence K(aclcgw (A)) is an immediate extension ofK((A)_l’a)alg. ]

Corollary 4.7:
Let M = VDFgcand A c K(M) then K({A)-1 9) € K(dclﬁgv (A)) is an immediate extension.

Proof. By Proposition (4.2), res(K(dclﬁgv(A))) c k(dclﬁamz(A)) = res(K({A4)-1)) and
Val(K(dClﬁaRV(A))) c I‘(dclﬁgv(A)) = Q@ val(K({A)-19)). Let L := K(dClEgV(A))

and F := K((A>—178)h. Let ¢ € L. We already know that val(c) € Q ® val(F'). Let n be
minimal such that n - val(¢) = val(a) for some a € F. Let us show that n = 1. We have
res(ac™™) e res(L) = res(F') and we can find u € F such that res(ac™) = res(u). As L must
be Henselian (indeed Zh = dclg,,, (L) = L), we can find v € L such that v" = ac"ul, ie.
(cv)™ = au™! € F. Hence we may assume that ¢” itself is in F".

But derivations have a unique extension to algebraic extensions and, as F’ is Henselian, the
valuation also has a unique extension to the algebraic closure. It follows that any algebraic
conjugate of ¢ is also an L giv-conjugate of c. As K(M) is algebraically closed, it contains
non trivial n-th roots of the unit and it follows that we must have n = 1. ,

We have just proved that K(dcl ng(A)) is an immediate extension of K({A)-15) and
hence of K({A)-1 5). ]

In the field of constants, though, we can describe both the definable closure and the algebraic
closure.
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5. Metastability in VDF ¢¢

Proposition 4.8:
Let M = VDF¢c and A ¢ Cg (M), then K(dclﬂgv (A)) = Frac(A)h and K(acll:gw (A)) =
Frac(A)alg.

Proof. It follows from the fact that the pair Cx < K is separated (see Proposition (3.1))
that Ck does not have any immediate extension in K. Hence dcl LgV(A) ¢ Ck(M) and

acl LRV (A) € Ck(M). The proposition now follows from the fact that, by Proposition (3.2)
Ck is a pure model of ACVF. ]

5. Metastability in VDF ¢

In this section we prove that maximally complete models of VDF¢¢ are metastability bases.
Together with our later work on the existence of invariant extensions in VDFg¢, this will
allow us to conclude that this theory is metastable.

As mentioned earlier, the existence of metastability bases in VDFg¢ is not as straightforward
as one might hope. The main issue is that we can only prove Proposition (2.6) when we con-
trol the LRV -algebraic closure of the parameters inside the stable part. Thus we cannot apply
it blindly to sets of the form CT'(dcl 9 (Ce)).

However, in ACVF, we have a more precise description of types over maximally complete
fields:

Proposition 5.1 (HHMo8, Remark 12.19]):

Let M = ACVF, C ¢ M be maximally complete and algebraically closed, a € K(M) be a tuple
and H := T'(dclyrv (Ca)). Then tp(a/CH) is stably dominated via rv(C'(a)), where rv(x) is
seen as an element of RV, () © Ston-

It follows that to prove the existence of metastability basis, we only have to study the L&Y -
algebraic closure in RV®4. In Proposition (4.3), we showed that we have control over the
LEV -algebraic closure hence it suffices to prove that RV with its £5" -induced structure
eliminates imaginaries. As a matter of fact, we only need to prove elimination for the LY -
structure induced on RVy = U,y RV, where each fibre is a distinct sort.

In [Hrurz], Hrushovski studies such structures. The main difference with [Hruiz] is that,
here, each fibre will also be endowed with a derivation. Let us now give a precise definition
of these objects.

Definition 5.2 (Differential linear structure):
Let H be a group. We define Li o to be the language with a sort RV, for each v € H. The

sort RV} := k is equipped with the differential ring language and, for all other -, the sort RV, is
equipped with the language of k-vector spaces (i.e. a map + : RV72 - RV,, a constant 0., and
maps — : RV, - RV,, -, : k x RV, - RV, and 0, : RV, - RV,). Moreover, we ask that for
all yand § € H there isa map -, s : RV, x RV; - RV, .

To avoid cluttering the notations, we usually will not write the indexes of +, 0, —, O and - as they
should be clear from the context.

A differential linear structure is an L p-structure such that RVy = k is a differential field, each
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5. Metastability in VDF ¢¢

RV, is a one dimensional differential k-vector space and -~ . is a bilinear map. Moreover, we ask
that:

(i) Forall vy € H, - coincides with the scalar multiplication (equivalently, for all z € RV,,
1-x = x where 1 denotes the unit in k);

(ii) Forally,e e Hyallz e RV, andy e RV,, -y =y - z;

(iii) Forally,e,ne H,allz e RV,,ye RV.and z e RV,, (z-y) -z =2 - (y - 2);
(iv) Forally,e e Hyallx e RV, andy e RV,, z -y = 0ifand only if t =0 ory = 0.
(v) Forallv,e e Hyallz e RV, andy e RV,, 0(x - y) = 0(x) -y + z - O(y).

Let T’y p denote the L i o-theory of differential linear structures. We denote by Ty pcr, the theory
of models of T o where k = DCF

Remarks.3:

1. Because all the RV, have dimension 1, -, . induces a bijection between RV, ® RV, and
RV, .. and -_, , induces a bijection between RV_, and the dual of RV,

2. It also follows that for all z € RV, \ {0} there exists (a necessarily unique) y € RV_,
such that y - « = 1. We will denote it 1.

3. Let M be a model of VDF¢¢, and H <I'(M ), then RVy (M) = Ty pcr,. Moreover,
by quantifier elimination for VDF¢¢ in the leading term language [Scao3, Corollary 5.8
and Theorem 6.3], RVy (M) is stably embedded in M and a pure Ly 5-structure.

Proposition 5.4:
The theory Ty pcr, eliminates quantifiers and k is stably embedded and a pure model of DCF .

Proof. The proof is the same as for Lemma (1.5), except that Claim (1.6) is not needed here.
As for the stable embeddedness and purity claim they follow from quantifier elimination. m

Proposition 5.5:
The theory Ty pcF, eliminates imaginaries.

Proof. Let us first prove that T pcr, is stable. Let M = Ty pcr,, A € M. At the cost of
enlarging A, we may assume that for all v € H, RV, (A) # {0}. Then, for all y € H, RV, is
in L7 (A)-definable bijection with k £ DCF\. It follows that T pcr, is indeed stable. In
particular, (global) definable types are dense over any set of algebraically closed parameters.

Now, to prove the elimination of imaginaries in Ty pcr,, by Proposition (10.2), it suffices
to show that (definable) types have real canonical bases. But, by quantifier elimination, the
canonical basis of tp, ., (¢/M) is equal to the canonical basis of tp c, (0w (c)/M) where L3, :=
L ~ {0y : v € H}; and this type has a real canonical basis by elimination of imaginaries in
ACF-linear structures with flags [Hru12, Lemma .6]. Note that, as every RV, is one dimen-
sional, models of Ty pcr, trivially have flags. [}

We can now show the existence of metastable bases in VDF¢c.
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Proposition 5.6:
Let M = VDFge, C € K(M) be a maximally complete algebraically closed differential subfield
and a € K(M). Then, the type tporv (a/CT(dclEaRv (Ca))) is stably dominated.

Proof . Let H := T'(dcl LRV (Ca)). By Proposition (5.1),
H=Q@&TI({(Ca)-1y) =T (dcl rv (COu(a))).

By Proposition (5.1), tp rv (0,,(a)/C H) is stably dominated viarv(C'(a)) € RVy. By Propo-
sitions (4.3) and (5.5),

RVEq(aclz%v CH)) = RVH(aclﬁgv(C’H)) =RVy(aclrv (CH)).

By Proposition (2.6), we can now conclude that tp RV (a/CH) is stably dominated. ]

Definable types in enrichments of ACVF

6. Types and uniform families of balls

Let £ 2 L4y and T' 2 ACVF be an L-theory that eliminates imaginaries. We assume that
T is C-minimal, i.e. every L-sort is the image of an £-definable map with domain some K"
(we say that K is dominant) and for all M & T, every £(M )-definable unary set X ¢ K is
a Boolean combination of balls. For a more extensive introduction to C'-minimal theories,
one can refer to [Cubi4].

In this section, we wish to make precise the idea that in C-minimal theories, n + 1-types
can be viewed as generic types of balls parametrised by realisations of an n-type. This is an
obvious higher dimensional generalisation of the unary notion of genericity in a ball (see
[HHMo06, Definition 2.3.4] or [HMR, Section 3]). To do so, we introduce a class of A-types
(see Definition (6.12)) for A a finite set of £-formulas that will play a central role in the rest
of this text. We also show that at the cost of enlarging A, we may assume that all types are
of this specific form.

We take the convention that points in K are closed balls of radius +oo and K itself is an open
ball of radius —oco.

Definition 6.1 (Bl and Bgi]):

Let B be the set of all closed balls (potentially with radius +oco), B be the set of all open balls
(potentially with radius —oo), B := B U B and [ € N,. We define Bl := {Bc B :|B|<1}. We
also define Bglt] := {B e BIY : all the balls in B have the same radius and they are either all open
or all closed}.

Notation 6.2:
For all B € BIYl, we will be denoting by S(B) the set Upep b, i.e. the set of valued field points

in the balls of B. Because the balls can be nested, S is not an injective function. But in each
fibre of S there is a unique element with minimal cardinality — the one where there is no
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6. Types and uniform families of balls

intersection between the balls. We will denote by B this canonical section of S.

Remark 6.3:

I. As B is the disjoint union of the sets of codes for open balls and the set of codes for
closed ones, one can decide whether a given code is the code of an open or a closed ball

(1]

and hence Bsi is indeed an interpretable set. In fact, one can also recognise if a ball b
is open or closed by looking if the set {val(x — y) : x,y € b} has a smallest element or
not.

2. Note that g ¢ Bgi]

3. Points in Bgi] behave more or less like balls. For example if B; and Bs ¢ Bgi] are such

that S(B1) c S(B3), where c denotes the strict inclusion, then either all the balls in B;
have smaller radius than the balls in B or if they have equal radiuses, then the balls in
Bj must be open and those in By must be closed, or else the inclusion would not be
strict.

Definition 6.4 (Generalised radius):

Let B € Bgi] \ {@}. We define the generalised radius of B (denoted grad(B)) to be the pair (~,0)
when the balls in B are closed of radius ~y and (y, 1) when they are open of radius ~. The set of
generalised radiuses, a subset of (I' U {—o0, +o0}) x {0, 1}, is ordered lexicographically.

We also define the generalised radius of @ to be (+o0, 1), i.e. greater than any generalised radius

l
of non empty B € B[t].

S

Proposition 6.5:

Let (B;)ier € Bgi]. Assume that there exists io such that the balls in B;, have generalised radius
greater or equal than all the other B;. In particular this holds if I is finite. Then B(N; S(B;)) <
Bj,. Moreover, there exists (i;)o<j< € I such that N; S(B;) = ﬂézo S(B;,).

Proof. Forany b € B;,,if N; S(B;) nb + @ thenb c N; S(B;). Hence N; S(B;) = S({b € B;, :
bnN; B; + @}) and B(N; S(B;)) € Bi,. Moreover, if N; S(B;) nb = &, then there exists i,
such that b n S(B;,) = @ and N; S(B;) can be obtained by intersecting B;, with the B;, of
which there are at most /. u

Definition 6.6 (di(Bl, Bg)):

Let by and by € B. When by n be = @&, we define d(by,b2) to be val(xy — x2), where z; € b,
which does not depend on the choice of the x;, When by n by # &, we define d(by,bs) =
min{rad(by),rad(by)}, where rad(b) is the radius of the ball b.

For all By and By € B et us define D(B1, Bs) := {d(b1,b2) : b1 € By and by € By} and let us
list the elements in D(B1, Bs) as dy > ds > -+ > dy. For all i < k, we define d;( By, B2) := d;.

This definition coincides with the definition in Section 8 for finite sets of points. When B;
and B> ¢ BY, we also define do(B1, B2) :=min{rad(B),rad(B3)};itisequal to d; (B, B2)

st

when S(B1)NnS(Bs) + @. Later, for coding purposes we might want d;( By, By) to be defined
for all 4 < 12 in which case, for i > k, we set d;(B1, Bz) = dy.
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6. Types and uniform families of balls

Let M =T, F = (F)\)aea be an L(M)-definable family of functions K" — Bgi] (in particular
Ais an L(M)-definable set) and A(z,y;t) be a finite set of £L-formulas where 2z ¢ K", y ¢ K
and t is a tuple of variables. To simplify notations, we will be denoting S(F)(z)) by F5 (z).
We define WA p(x,y;t, A) to be the set A(x,y;t) u{y e FAx(x) AXe A}

Note that if n = 0 all of what we prove in this section and in Section 7 still hold (and is in fact
much more straightforward because we are considering fixed balls instead of parametrised

balls).

Definition 6.7 (A adapted to F):
We say that A is adapted to F if there are Ay and Ak € A such that for all x e K", F)\,(x) = @
and Fy, (z) = {K} and forall p € Sﬁy(M), p(x,y) decides:

(i) Forallo e {=,c}, all \and (u;)o<ici € A(M ), whether Fy (2) 0Uopci<i F;i () (respectively
Fx(z) 0 Ui« Fpu, (2));

(ii) Forall \y, all \y and p € A(M), whether Ff(a:) = Ffl (x)n F/\S2 (x);
(iti) Forall A € A(M), whether the balls in F(x) are closed;

(iv) Forallo € {=,<}, all \, py and ps € A(M) and all i < 1%, whether rad(Fy,(z)) O
di(Fln(x)vFuQ(x))'

Note that none of the above formulas actually depend on y so what is really relevant is not p
but the closed set induced by p in S&(M).

Until Proposition (6.15), let us assume that A is adapted to F and let p € S:f’y(M ).

Definition 6.8 (Generic intersection):
We say that F is closed under generic intersection over p if for all \; and Ao € A(M), there exists

w € A(M) such that
p(e,y) = F(2) = F}, (2) 0 By, (2).

Let us assume, until Proposition (6.15), that ' is closed under generic intersection over p.

Definition 6.9 (Generic irreducibility):

For all A € A(M), we say that F) is generically irreducible over p if for all € A(M), if p(z,y) +
Fu(z) € Fx(z)and p(x,y) v F,(z) # @ then p(z,y) - F,(x) = FA\(x).

We say that F' is generically irreducible over p if for every A € A(M), F), is generically irreducible
over p.

Let us now show that generically irreducible families of balls behave nicely under generic
intersection.

Proposition 6.10:

Let \1 and \y € A(M) be such that Fy, and F), are generically irreducible over p and p(z,y)
implies that the balls in F, (x) have smaller or equal generalised radius than the balls in F), ().
Then either p(x,y) + Ffl(x) N F)i(x) =gorp(z,y) + Ffl(a:) N F)i (z) = F>§1 ().
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6. Types and uniform families of balls

Proof. Let (a,c) = p. By Proposition (6.5), we have that B(Ffl(a) N F/\SQ(a)) = Ffl(a). By
generic intersection, there exists x4 such that p(z,y) + FHS(Q;’) = Ffl (z)n FAS2 (z). Then
F,(a) ¢ Fy,(a) and hence, if F),(a) # @, F,(a) = F), (a). [

Corollary 6.11:
Assume p is L(M )-definable. Then A, := {\ € A : F) is generically irreducible over p} is L(M)-
definable and the L( M )-definable family (F\) xen, is closed under generic intersection over p.

Proof. The definability of A, is a consequence of the definability of p and the closure of
(F\) e, under generic intersection follows from Proposition (6.10). ]

Until Proposition (6.15), let us also assume that F' is generically irreducible over p.

Definition 6.12 ((A, F')-generic type of E over p):
Let E ¢ A(M). We define a,(z,y), the (A, F')-generic type of E over p, to be the following
WA, p-type over M:

p(z,y) U {ye Ff(x) :Ae B}
U {y¢Fy(2):peA(M)andforall e E, p(z,y) - FS(z) c Fy(z)}.

Note that most of the time, A and F will be obvious from the context and it will not be an
issue that the notation o/, mentions neither A nor F.

Proposition 6.13:
Let E c A(M) be such that oy, is consistent, then ag, generates a complete W A p-type over
M.

Therefore, when it is consistent, we will identify oy, with the type it generates.

Proof.. Pick any € A(M). Either there exists \ € E such that p(z,y) + Ff(x) nFY(z) = 2,
in which case ag,(z,y) -y ¢ FE(JZ), or there exists A € E such that p(z,y) + F{(z) ¢
Ff(a:), and then ag,(z,y) + y € Ff(w), orforall A € E, p(x,y) + FE(:C) c F{(x) and
hence agy,(7,y) -y ¢ FS(:U) [ ]

Remark 6.14:
Any q € SgﬁF(M) is of the form a . Indeed let p := g, and E' = {\ € A(M) : q(z,y) +
y € Fx(x)}, then, quite clearly, ¢ = ag/,.

Although this will not be used afterwards, when y does not appear in A, we can prove con-
sistency under some obvious hypothesis:

Proposition 6.15:

Assume that y does not appear in any of the formulas in A and let E ¢ A(M ) be such that for all
Arand Az € E, p(x) = F), () n F),(x) # @. Then ay, is consistent and generates a complete
WA, p-type over M.

Proof. Let us show consistency. Completeness then follows from Proposition (6.13). If this
type is not consistent, there exists finitely many \; € F and finitely many p; € A(M) such
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that forall A\ € E, p(x) + FEJ, (z) ¢ FY(x) and p(x) + N Fi_(a:) c U FEJ, (z). Replacing
Ni F/\Sl(z:) by their generic intersection, we find A € E such that p(z) + F} (z) € U, FSJ_ (z).
Let a = p and b be one of the balls in F)\(a). This ball is covered by finitely many subballs
from U; F},; (a) and, as the residue field is infinite, it must be included in one of those balls.
Let us assume that b ¢ F, 51 (a). Then the balls of F\(a) must have smaller or equal gener-
alised radius than those of F},, (a). Hence by Proposition (6.10), Fﬁl (a)nF}(a) = F(a),ie.
F{(a) c Fﬁl (a), a contradiction. ]

Now that we have found finite sets © of £-formulas, namely those of the form ¥ r, for
which we understand the O-types, let us show that any finite set of formulas with variables
in K™*! can be decided by some ¥ a,r for well chosen A and F.

Proposition 6.16 (Reduction to ¥ a p-types):

Let ©(x,y;t) be a finite set of L-formulas where x € K" and y € K. Then there exists an L-
definable family (F))ea of functions K™ — Bl and a finite set of £-formulas A(x; s) such that
any W A p-type decides all the formulas in ©.

Proof. Let ¢(z,y;t) be a formula in ©. As T is C-minimal, for all tuples « € K and ¢ €
M, the set ¢(a, M;c) has a canonical representation as Swiss cheeses, i.e. it is of the form
U; (bi \ b; ) where the b; and b; j are algebraic over ac. In particular, there exists [ € N, and
L(c)-definable functions H, . : K" — B! and Goet K" — B such that M & Vy (y €
Hf,’c(a) N Gi,c(a) <= ¢(a,y;c)). By compactness, we can find finitely many £-definable
families (H; , ¢)cers and (G o ¢ ) cenr of functions K" — Blli«l such that for any choice of ¢
and a there is an i such that p(a,y;c) < y ¢ Hl-S’%c(a) N GZ-SMC((L). Choosing [ to be the
maximum of the /; , and using any coding trick, one can find an £-definable family (F)ea
of functions K" — B[ such that for any ¢ € ©, i and ¢ we find y and v € A such that
Hipc=F,and G, = F),.

Now let A(z;t, p,v) = {Vy (p(z,y;t) < y ¢ FE(.I) N\ F5(z)) : ¢ € ©}. Then for any
p € S;IfyA’F(M), ¢ € O and tuple ¢ € M, there exists u and v € A(M) such that p(z,y) +
o(z,y;¢) <= ye FS(CC) \ FS(z) and either p(z,y) -y € FE(QE) Ay ¢ F3(z) in which case
p(z,y) - p(x,y; c) or not, in which case p(x,y) + —¢(x, y; c). ]
And now let us show that we can refine any A and F into a family verifying all previous
hypotheses.

Proposition 6.17 (Reduction to Bglt] ):
Let A € M and (F))en be an L( A)-definable family of functions K™ — B, Then there exists
an L( A)-definable family (G, ).,cq of functions K™ — Bgi] such that for all \ there exist (w; ) o<i<i

such that F)(z) = U; G, () and for all w there exists A such that G, (z) € F)\(z).

Proof. Forall A e A,0<i<landj=0,1,wedefine G ; ;(x) = {be F\(x): bisopenifj =0,
closed otherwise and b has the i-th smallest radius among the balls in F(z)}. As i and j only
take finitely many values, G = (G,,).cq can indeed be viewed as an £( A)-definable family.

Then for all z, G, (x) € Bgt] andforallzand A, G ; j(x) € Fx(z) and Fy(z) = U; j Gai5(2)
and at most [ of them are non empty. ]
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Definition 6.18 (Generic complement):
We say that F is closed under generic complement over p if for all A\ and p € A(M) such that
p(z) - Fy(x) € F\(x), there exists x € A(M) such that

p(x) = Fx(x) = Fu(x) v Fe(x).

Note that p can indeed decide any such statement because it is equivalent to F\(x) = F,(z)u
F.(x)and FE(m) nFS(r)=g2.

Lemma 6.19:

Let F' = (F)\)xen be an L(M)-definable family of functions K™ — Bgt], A(x;t) a finite set of
L-formulas adapted to F and p € S (M). Assume that F is closed under generic complement
over p. Let A, := {\ € A : F} is generically irreducible over p}, then for all \ € A(M) there exists
(Ai)osi<t € Ap(M) such that p(z) — F\(z) = U; F, ().

Proof. Let x £ p. We work by induction on |F)(x)|. 1f there exists 4 € A(M) such that
Fu(x) c Fx(x)and F,(x) # @, then there exists x € A(M ) such that F\(z) = F,(x)wF.(z).
We now apply the induction hypothesis to F},(x) and F},(x). Finally, because |F)(z)| < [, we
cannot cut it in more than [ distinct pieces. ]

Proposition 6.20 (Reduction to irreducible families):

Let A <€ M, (F)\)aea be an L(A)-definable family of functions K™ — Bglt] and A(x;t) a finite set
of L-formulas. Then, there exists an L( A)-definable family (G, )< of functions K" — Bgi] and
afinite set of L-formulas ©(x;t,s) 2 A(x;t) such that © is adapted to G and forany p € SO (M):

(i) G is closed under generic intersection and complement over p;
(ii) Forall w € Q(M) there exists A € A(M) such that p(z) + G, (x) € F\(z);
(iti) Forall A € A(M), there exists w € Q(M) such that p(z) + F)\(z) = G, (x);
(iv) Forall w e Q(M), there exists (w; )o<i<i € 2p (M) such that p(z) + G, (z) = U; G, (2);
where (2, := {w € Q : G, is generically irreducible over p}.

Proof. Adding them if necessary, we may assume that F' contains the constant functions
equal to @ and {K} respectively. For all X € A™*! let Hy(z) = B(No<ict F/\Sl(a:)) It follows
from Proposition (6.5), that H = (Hy)y i1 is well-defined and that 6.20.(ii) holds for H.
Adding finitely many formulas to A(x;t), we obtain =(x; s) which is adapted to H. Let p €
SZ(M). Proposition (6.5) also implies that for a given z, the intersection of any number of
F3(x) is given by the intersection of [ + 1 of them and hence is an instance of H. As Z is
adapted to H, we have proved that H is closed under generic intersection over any =-type p.
Condition 6.20.(iii) also clearly holds for H.

Let B € Bgi], we define B! to be B and B to be its complement (in B). As previously, to

simplify notations, for € € {0, 1}, we will write H () for (H,(z))".

Claim 6.21: Let B ¢ Bglt]. Any Boolean combination of sets (C;)i<r € B (where we take the
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complement in B, i.e. C° n B) lives in Bgi] and can be written as (N de(C’;’ék N B) where the
C; are taken among the C; and €, € {0,1}.

Proof. Such a Boolean combination lives in Byt] because it is a subset of B. The fact that
it can be written as N; U (C sj"k N B) is just the existence of the conjunctive normal form.

Moreover, as in Proposition (6 5), any intersection (N C'. Jkk N B for fixed j can be rewritten
as the intersection of at most [ of then (for each ball from B missing from the intersection,
choose a k such that this ball is not in C’; Jk’“ N B). Similarly, the union can be rewritten as the
union of at most [ of them by choosmg, for every b € B which appears in the union a j such
that b appears in ij,(()’]j,f’c N B). ¢

Forall v € A™, 7 e (A1) and £ € 27, we define G, zz(x) = Nia Uja((H? () n
H,(r)) whenever all the H,, . ¢ H,(r) and G, zz(z) = H, () otherwise. Adding some
more formulas to =, we obtain a finite set of formulas O (x; ¢, s, u) which is adapted to G. 1t
is clear that 6.20.(ii) and 6.20.(iii) still hold. Furthermore,

Graz(@) N Gozy(2) = ﬂU(S(Hflii(ﬂf) NS(Hr) () 0 Hy(x) n Hy(x)).

As H is closed under generic intersection there exists p such that Hpg(x) = H3(z) n HS(2).
By Proposition (6.5), we have both B(S(H,.\” (x)) n H3(x)) € Hp(x) and B(S(H7:" () n
H S(a:)) C H,(x) and we can conclude by Claim (6.21) that G is also closed under generic
intersection over p. Similarly we show that whenever G, 7 z() € Go77(z) then G% zz(@)n
G 75(x)isalso an instance of GG, i.e. G is closed under generic complement over p and hence
6.20.(iv) is proved in Lemma (6.19). [}

7. Quantifiable types

Let us begin with the example that motivates the definition of quantifiable types. Let b be an
open ball in some model of ACVF and o, be its generic type — the type of points which are
in b but avoid all its strict subballs. Let X be any set definable in an enrichment of ACVF.
Then all realisations of ay, are in X, i.e. ap + x € X, if and only if there exists b’ € B such
that b’ c band b \ b’ ¢ X. Thus, although for most definable sets X, both X and its comple-
ment are consistent with ay, if it happens that all realisations of o, are in X, then there is a
formula which says so. We have just shown that oy, is quantifiable as a partial £-type (see Def-
inition (7.1)) for any enrichment £ of ACVF. If (b;);c; is a strict chain of balls, i.e. P := N; b;
is not a ball, the exact same proof shows that the generic type of P is also quantifiable as a
partial £-type.

If b is a closed ball, the situation is somewhat more complicated because a;(x) + x € X if
and only if there exists finitely many maximal open subballs (b;)o<i<r of b such that for all
x e K,z e b~ ;b implies z € X. Because the set of maximal open subballs of a given ball
is internal to the residue field, to obtain that «, is quantifiable (as a partial £-type), we need
to know that the £-induced structure on k eliminates 3 to bound the number of maximal
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open subballs we have to remove. Recall that an £-theory T eliminates 3 if for every £-
formula ¢(z; s) there is an n € N such that for all M = T and m € M, if |p(M;m)| < co then
lp(M;m)| < n.

The notion of quantifiable type will play a fundamental role in Section 9. The main result of
this section is Corollary (7.12) which says that, under some more hypothesis on the families
of parametrised balls we consider, the types of the form a g, (see Definition (6.12)) are quan-
tifiable if F is definable and p is quantifiable. The proof is essentially a parametrised version
of the argument above. We then prove that we can refine families of parametrised balls so
that they have the necessary properties.

Let £ be alanguage and M an L-structure.

Definition 7.1 (Quantifiable partial £-types):
Let p be a partial L(M )-type. We say that p is quantifiable if for all L-formulas p(z;s) there
exists an L( M )-formula 0(s) such that for all tuples m € M,

M = 0(m) if and only if p(z) + p(x;m).

Let A ¢ M. If we want to specify that 0 is an L(A)-formula, we will say that p is L(A)-
quantifiable.

Remark 7.2:

I. A type p(x) is quantifiable if we can quantifiy universally and existentially over realisa-
tions of p, that is for every formula ¢ (), “for all = £ p, p(z) holds” and “there exists
an x E p such that p(z) holds” are both first order formulas. Hence the name.

2. The notion of quantifiability of a type generalises definability of types to partial types.
If p is a complete L-type then it is definable if and only if it is quantifiable.

3. In fact, there are various possible ways in which to extend definability to partial types
depending on two things: do we want the defining scheme to be open, closed or clopen
(i.e. ind-definable, pro-definable or definable) and do we want the closure under im-
plication of the partial type also to be definable? Quantifiable partial types correspond
to the case where the closure under implication of the type has a definable defining
scheme. Although these different notions have often been indistinctively called defin-
ability, we feel that it is better to try and distinguish them and quantifiability seems to
be a notion that naturally concerns the closure under implication of a partial type.

4. The partial types we will consider here are (complete) A-types for some set A(x;t) of
L-formulas. Note that if p € S2(M) is £L(A)-quantifiable, it is in particular £(A)-
definable as a A-type, i.e. for any formula p(x;t) € A, there is an £L(A)-formula
dpzp(x;t) = 6(t) such that for all tuples m € M, p(xz;m) € pif and only if M &=
dyx(z;m). In particular, p has a canonical extension p|y to any N > M defined us-
ing the same defining scheme, i.e. for all p(x;t) € A and tuple m € N, p(z;m) € p|y
ifand only if N & dpzp(z;m)

Let us now prove some results on quantifiable types which will not be needed afterwards but
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which shed some light on this notion.

Proposition 7.3:
Let A(x;t) be aset of L-formulas and p € S (M) be quantifiable. Assume that M is (Ro+|A|)*-
saturated, then for all N > M, p| is quantifiable, using the same formulas.

Proof. Let p(x;s) be any L-formula. By quantifiability of p, there exists #(s) such that for
all tuples m € M, M = 0(m) if and only if p(x) + ¢(z;m), which in turn is equivalent to the
existence of a finite number of v;(x;m;) € psuch that M =V A; ¥;(z;m;) - p(z;m). Let
dpx i(x;t;) be the L(M )-formula in the defining scheme of p relative to v;, we have:

0(s) > V (N dpzipi(zit) n (Vo N\ di(aits) > o(a35))).

e i<l i<y)|

Because there are at most R + |A| parameters involved in the formulas above and M is (X¢ +
|A[)*-saturated, there exists finitely many tuples (1); )o<;j<k such that

0(s) =\ (N dpxipji(m;ty) n (Vo N\ ji(a;tys) - o(z;s))).

0i<k i<y i<[);]

It follows that in any N > M, the same implication holds and hence for allm € N, N = 6(m)
implies that p|y + p(x;m).

Now assume that there exists m € N such that N = -6(m) but p|y + ¢(z;m). Then there
exists (1;(s;m;))o<ick € Pl such that N = Vo A;(z;m;) - ¢(z;m). Therefore

N & 3s-0(s) A Elf(/\ dpx oi(x;ti) A (Yo N\ Yi(x;m;) = o(z;m))).

Because N > M, this also holds in M, contradicting the quantifiability of p. ]

Remark 7.4:

The saturation hypothesis is not superfluous. Indeed, let £ := E, M be the L-structure where
E is an equivalence relation with exactly one class of every finite cardinality. Let A(z;t) :=
{r =t}and p := {x + m : m € M}. Then by quantifier elimination and the fact that
{m e M : p(x) - zEm} = @ is definable, p is quantifiable. But for all N > M, {n € N :
ply () - ~xzEn} = M is not definable if N' + M.

Proposition 7.5:
Let A ¢ M. Assume M is | A|*-saturated and strongly | A|*-homogeneous. If p is quantifiable and
Aut(M ] A)-invariant, then it is L( A)-quantifiable.

Recall that a structure M is strongly k-homogeneous if every partial elementary isomorphism
whose domain has cardinality < x can be extended to an automorphism of M.

Proof . Let o(x; s) be any L-formulaand (s) be the £-formula such that for all tuplesm € M,
M = 0(m) if and only if p(x) + ¢(x;m). Let 0 € Aut(M/A) and m € M be such that
M = 60(m). Thenp = o(p) + 0(x;0(m)) and hence M E 6(c(m)), i.e. (M) is stabilised
globally by Aut(M/A). ]
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As previously, let now £ 2 Lgiy, T 2 ACVF be a C-minimal £-theory which eliminates
imaginaries, R be the set of £-sorts, £ be an enrichment of £, T an L-theory containing T,
M e Tand M := M| ‘ - We will also be assuming that k is stably embedded in T and that the
induced theory on k eliminates 3°°. Until the end of the section, quantifiability of types will
refer to quantifiability as partial £-types.

Let A ¢ M, A= R(A), F = (F\)xea be an L(A)-definable family of functions K" — Bgt]
and A(x,y;t) a finite set of £-formulas where z e K" andy e K, p € Sﬁy(M) be definable.
Assume that A is adapted to F' and that F is closed under generic intersection over p and is
generically irreducible over p.

Definition 7.6 (Generic covering property):

We say that F' has the generic covering property over p if for any E ¢ A(M) and any finite set
(Mi)o<i<k € A(M) such that for all u € E, p(x,y) + F/\SZ(J:‘) c FS(ac), there exists (r;)o<j<i €
A(M) such that:

(i) Forall j, p(z,y) v “the balls in F,;, () are closed”;
(ii) Forall p e E and j, p(x,y) + F;i_ (z)c FE(JJ),’
(iii) Foralli, p(z,y) - Fy (z) € U; Fy (2);

Note thatif E = {\o} and p(z, y) + “the balls in F ,(x) are closed”, then the generic covering
property holds trivially as it suffices to take all x; = Ag. It will only be interesting if p(z,y) +
“the balls in F,,(z) are open” or E does not have a smallest element over p, i.e. forall A ¢ E
there exists p € E' such that p(z,y) + FE(m) c F§(z).

Let £ ¢ A be £(A)-definable.

Proposition 7.7:
Assume that one of the following holds:

@i € (M ) does not have a smallest element over p;

(i) thereisa \g € E(M) such that forall X € E(M), p(z,y) + F/\S0 (z) € Fy(x) and p(z,y) +
“the balls in F\,(x) are open”.

Assume also that p is L(A)-quantifiable and F has the generic covering property over p, then
Qg () /p IS L( A)-quantifiable.

Proof. Let ¢(x,y;t) be an L-formula. Then, for all tuples m € M such that ozg(M)/p(w, y) +

o(z,y;m), there exists Ao € £(M) and a finite number of (\;)o<i<k € A(M) such that for all
pe&M)andi > 0, p(x,y) - Fi(m) = FE(LE) and p(z,y) F y € F/\So(x) N UZ->0F§Z_(:E) -
¢(x,y;m). By the generic covering property, we can find (x;)o<j« € A(M) such that, for all
Jyp(z,y) + “theballs in Fy;, (v) are closed”, for all € £(M) and j, p(x,y) + Ffj (z)c Ff(x)
and foralli > 0, p(z,y) + Fi(:c) c U, FEJ(;U)

If £(M) does not have a smallest element over p, for all . € £(M) and j, we have that
p(z,y) + Ffj () c Ff(x) If £(M) has a smallest element, because the balls in Fy, ()
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are open and those in F};, (z) are closed, we also have p(x,y) + F,fj (z) c Ffo (x). As the
Uj F,fj (z) covers U; Fi (), it follows that:

p(z,y) FyeFy (@)~ U FL (2) > ¢(z,y;m).
0gy<l

By L(A)-quantifiability of p there exists an L(A)-formula 8, (x, ;1) equivalent to p(z,y) +
F(x) ¢ F3(x) and an L(A)-formula d2(Xo, %, m) equivalent to p(xz,y) + y € Fy () \
Uja F,fj () » ¢(x,y;m). We have just shown that, for all tuples m € M, ag(ﬁ)/p(;v, y) -
o(x,y;m) implies that:
MF: 3)\0 e£IreA /\ V;L € Eél(nj,u) N 52()\0,E,m).
j<l

The converse is trivial. ]
Definition 7.8 (Maximal open subball property):

We say that F' has the maximal open subball property over p if for all \; and Ay € A(M ) such that
p(z,y) + Ffl (x) c Fi (), there exists (11;)o<i<i € A(M) such that:

(i) Foralli, p(x,y) + “the balls in F),, (x) are open”;
(ii) Foralli, p(x,y) + rad(Fy,(x)) = rad(F), (z)).
(iii) p(x,y) - Fy, (x) € Ui F, (2);

Note that when the balls in F)y, («) are open, it suffices to take all 1; = A2. Hence this property
is only useful when the balls in F), (x) are closed.

Proposition 7.9:
Assume that there is a A € E(M) such that for all \ € (M), p(z,y) + Ffo (z) € F{(z) and

that p(x,y) + “the balls in F,(x) are closed”. Assume also that p is Z(Z);qzigntiﬁable and that
F has the maximal open subball property over p, then the type c¢ (A7) /p S L( A)-quantifiable.

Proof . 1f the balls in F),(z) have radius +oo, they are singletons. By irreducibility, F)\, ()
does not have any strict subset of the form F)(z) and « e "~ o(x,y;m) if and only if

p(z,y)-ye F/\SO (z) = o(x,y;m). We can conclude immediately by £( A)-quantifiable of p.
We may now assume that the balls in F,(z) have a radius different from +oco. Let us begin
with some preliminary results.

Claim 7.10: Let (Y., ;)weq,zckn be a definable family of sets such that forallwand z, Y, , € {b: b
is a maximal open subball of some b’ € F (x)}. Then there exists k € N such that for all w € Q)
and x € K", either |Y,, ;| > oo or |Y,, »| < k.

Let B (a) denote the closed ball of radius  around a.

Proof. Let Yy pac = {beB:beY,,,bisamaximal open subball of Eval(c)(a)}. Note
that for any maximal open subball b of Eval(c) (a), theset {(x —a)/c: x € b} is a coset of M
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in O, i.e. an element of k which we denote res, .(b). The function res, . is one to one. Let
YVQ,W,:E,a,c = resa,c(Yl,w,x,a,c)- o

Then Y = (Y20 .2.0,c)w,za.c is an L(M )-definable family of subsets of k and hence by stable
embeddedness of k in T (as well as compactness and some coding) there exists an £(k(M))-
definable family (X4)4.p where D c K" for some r such that for all (w, z, a, ¢), there exists
d € D such that Y5, 5 4. = X4. Moreover as the theory induced on k eliminates 3°°, there
exists s € N such that for all d € D, either |X4| > oo or | X, < s. It follows that for all
(w,z,a,c),either [Y1 y z.4.c] > 00 0O [Y1 4 2.4, < s. But, as there are at most [ balls in F ()
and that each of these balls contains infinitely or at most s maximal open subballs from Y, ,,
we have that for all z and w, |Y[, 5| > o0 or |Y,, | < Is. ¢

Let X, := {A € A : p(z,y) + y € F{(z) - @(x,y;m) and p(z,y) + “the balls in F)(z)
are maximal open subballs of the balls in F),(z)” }. By quantifiability of p, X,, is an £(M)-
definable family. Let Y;,, , := {b: 3\ € X,5,, b € F\(z)}. Then by Claim (7.10), there exists
such that for all m and z, |Y},, »| < oo implies |Y;, | < k.

Let us now assume that g (3T /p(a:, y) + @(x,y;m). Then there exists a finite number
of (1i)o<i<r € A(M) such that p(z,y) + Fi(:c) c F/\So(sc) and p(z,y) + y € Ff’o(x) N
U; F;i () = ¢(x,y;m). As F has the maximal open subball property over p and is closed un-
der generic intersection, we may assume that p(x,y) + “the balls in the F},, (x) are maximal
open subballs of the balls in F),(x)”.

Claim7.ar: X,,(M) ¢ {\ € A(M) : for some i, p(z,y) + Fx\(z) = F,,(x)}. In particular
|Yynz| < 0o and hence |Yy, | < k.

Proof. Let \ € X,,. There exists z, y  p such that y € F{(z), the balls in F) (z) are maximal
open subballs of the balls in F,(z) and £ -~ (x,y;m). Hence y € U; F;i (x). We may assume
that y € FEO (x) and hence that FEO () n F{(z) # @. By Proposition (6.10), we must have
FEO (z) N FY(x) = FS(x) forboth k = Aand k = o, i.e. Fy(z) = F,,(z) and because such an
equality is decided by p this holds for all realisations of p.

It follows that Yy, , € U; F,, () and Y}y, 2| < 7l < oo. ¢
Thus for all (x,y) & p, only & balls among the ones in U; F),,(x) cover ¢(z, Ffo (x);m). By
similar arguments as in Proposition (6.5), we may assume that for all ¢, F},, (x) ¢ U§=1 Fy, ().
It follows that:

k k
p(z,y) F /\1 Fy (z) € Fy (x) A (y € Fyy (@) U1 Fs (z) > ¢(z,y;m))
j= i=

where k does not depend on m. We can now conclude as in Proposition (7.7). ]

Corollary 7.12:
Ifpis L(A)-quantifiable and F has the generic covering property and the maximal open subball
property over p, then « £(TT)/p IS L( A)-quantifiable.

Proof. This follows immediately from Propositions(7.7) and (7.9) and the fact that either
E(M) is non empty and has no smallest element or it has a smallest element which consists
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of open balls or it has a smallest element which consists of closed balls or it is empty in which
case we could also take &£ to consist of all the A € A such that F), is constantequalto K. =

Let us conclude this section by showing that, as previously, we can find families of balls ver-
ifying all the necessary hypotheses. But because both the generic covering property and the
maximal open subball property are instances of, more generally, being able to find large balls
in the family, let us first consider the following definition. Recall that d;( B, Bs) is the i-th
distance between balls of By and balls of By (see Definition (6.6))

Definition 7.13 (Generic large ball property):
We say that F' has the generic large ball property over p if for all \; and Ay € A(M) and i € N,
there exists (11 )o<j<1 € A(M) such that:

(i) Forall j, p(x,y) + “the balls in F), () are closed”;
(ii) Forall j, p(w,y) +rad(Fy, (7)) = d;(Fx,(7), Fx,(2)).
(iii) p(x,y) - F5, (2) € U; F ();

and, if p(x,y) + “the balls in F\, (x) are open” or p(z,y) + rad(F),(z)) < d;(F)\,(z), F,(z)),
there exists (p;)j< € A(M) such that:

(i) Forall j, p(z,y) v “the balls in I, () are open”;
(ii) Forall j, p(x,y) = rad(Fp,(x)) = di(Fy, (2), Fx, ().
(iii) p(z,y) - F () € U; Fp (2);

Definition 7.14 (Good representation):
Let A(x,y;t) and O(z,y; s) be two finite sets of L-formulas where v € K" and (F)xep and

(Gy)weq be two L-definable families of functions K" — Bgi]. We say that (©,G, ) is a good
representation of (A, F, ) if for all L(M)-definable p ¢ SO (M):

(i) © is adapted to G;

(ii) (Gu)wen, is closed under generic intersection over p;
(iii) (Gw)wen, has the generic large ball property over p;
(iv) p decides all formulas in A;

(v) Forall X € A(M), there exists a finite number of (w;)o<i<i € p(M) such that p(z,y) +
Fy(x) = Us G ().

where Q, := {w € Q : G, is generically irreducible over p}.

If we only want to say that 7.14.(i) to 7.14.(iii) hold we will say that (©, G, x) is a good repre-
sentation.
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Proposition 7.15 (Existence of good representations):
Let (F\)aea be any L-definable family of functions K" — B[i] and A(x;t) any finite set of L-

S

formulas where x € K". Then, there exists a good representation (¥, G, x) of (A, F,x).
Proof . Let us begin with some lemmas.

Lemma 7.16:

There exists (H,) ,ep an L-definable family of functions K" — Bgi] and Z(z;t,s) 2 A(x;t) a
finite set of L-formulas adapted to H such that H has the generic large ball property over any
E-type and for all \ € A, there exists p € P such that H, = F).

Proof. Forall \, pand n € A and i < [%, define Hy ,, ,,;1(x) to be the closed balls with radius
min{d;(F,(x), F,(x)),rad(F\(z))} around the ballsin F) (). If the balls in F)\ (x) are open
or if they are closed of radius strictly smaller than d; (F),(z), F;,(x)), define H) ,, , ; o() tobe
the set open balls with radius d;(F),(x), F;,(«)) around the balls in F (z). Otherwise, define
Hy ,u.n.i0(2) to be the closed balls with radius min{d;(F,(x), F;,(z)),rad(F)(x))} around
the balls in F\ (). By usual coding tricks, we may assume that H is an £-definable family of
functions. Adding finitely many formulas to A we obtain =(«;¢, s) which is adapted to H.
Let p e SE(M) and x & p.

Let us first show the closed ball case of the generic large ball property. For all Ay, p and ny, €
A(M)and iy and j, e Nfork € {1,2} andr € N, d = d,-(H), 161,51 (T) s Hg i o in,jo (T))
is either the radius of the balls in Hy, ,, . i.jx (%), 1-€. diy (F, (2), Fy, (x)) or rad(Fy, (x)),
or the distance between two disjoint balls from the H}, ,, », i..j. (2) in which case it is also
the distance between some disjoint balls in the F), (z). If d = d;, (F}, (), Fy,. (2)), it is easy
to check that A, ,,, .., i.,1 has all the suitable properties; and that this one instance suffices.
Otherwise there exists some m such that Hy, x, x,m,1(2) is suitable.

The same reasoning applies to the open ball case (the extra conditions under which we have
to work are just here to ensure that the balls in F\, (x) are indeed smaller than those we are
trying to build around them). ¢

Lemma 7.17:
Assume that F has the generic large ball property over any A-type. Let (G,)w.eq be any L(M)-

definable family of functions K" — Bgi] and O (x; s) be any finite set of L-formulas adapted to
G such that for all p e SO (M), we have:

(i) Forallw e Q(M), there exists A € A(M ) such that p(x) + G, (z) € F)\(x);
(ii) Forall X e A(M), there exists (w; )o<i<i € L(M) such that p(z) + F)\(z) = U; G, ().
Then G also has the generic large ball property over any O-type.

Proof. Let wy and wy € Q(M), i € Nyg and = = p. Then there exists A\; and A\ € A(M)
such that Gy, (z) € F),(z). Then d;(Gy, (x),Gu,(x)) is either the radius of one of the
balls involved and hence is the radius of one of F), (x) or the distance between a ball in
Gu, () and a ball in G, (), i.e. the distance between a ball in F}, (z) and one in F), ().
In both cases, the large closed ball property in F* allows us to find (1;)o<j< € A(M) such
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that Gil (z) c Ffl (z) cU; F, Ej (), for all j, the balls in F),; () are closed and their radius
is d;i(Gu, (7),Gw,(x)). But, by hypothesis there are (p; 1 )o<k< € 2(M) such that F, (z) =
Uk Gy, . (). By picking one p; 1. per ball in G, (), we see that [ of them are enough to cover
Gy, (z) and we are done. The open ball case is proved similarly as the extra conditions hold

for G, and G, if and only if they hold for F\, and F),. ¢

Adding them if we have to, we may assume that there is an instance of F’ constant equal to &
and another constant one equal to {K}. Let (H,,)ep and = be as in Lemma (7.16), (G, )we
and O(z;u) be as given by Proposition (6.20) applied to H. Let p € SO (M). Then Condi-
tions 7.14.(i), 7.14.(iv) and 7.14.(v) hold. Condition 7.14.(ii) also holds, by Corollary (6.11), and
by Lemma (7.17) applied to (G, )weq,, 7-14-(iii) also holds. ]

Proposition 7.18:

Let (A(x;t), (F)\)xen, ) be a good representation and p € S2 (M) be L(M)-definable. Then
Fy = (F\) A, has the generic covering property and the maximal open subball property over p,
where Ay, := {\ € A : F) is generically irreducible over p}

Proof. Let x & p, Ay and Ay € A,(M) be such that Ffl (z) c FAS2 (z). Then by the generic
large ball property (because FAS1 (z) c Fi (x), the necessary conditions hold), there exists
pj € Ap(M) such that the balls in F),, () are open of radius rad(F),(z)) and Ffl (z) ¢
Uj Ffj (x). We have proved the maximal open subball property.

Let now E ¢ Ap(M) and (\;)o<i<k € Ap(M) be such that for all 4 € E, Fi(a;) c Ff(x)
For any two 1 and pp € E, if the balls in F},, («) are smaller than the balls in F},, (x), by
irreducibility, as FEl(x) N F§2 (z) 2 Fy,(z) # @, we must have Ffl(x) c FEQ (z). Let us
define the following equivalence relation on Nyg F/\S(aj): y1 = yo if forall u € E, y; and ys
are in the same ball from F},(z). If we take two non equivalent points y; and y», there exists
i € E such that y; and y» are not in the same ball from F),(x) and in fact this also holds for
any 7 such that Fs‘(m) c FE(:B) In particular it follows that there are at most [ equivalence
classes and that there exists p such that each equivalence class is contained in a different
ball from F},;(x). Moreover each of these equivalence classes is in fact the intersection of
balls from the F),(x) for p € E. We will denote these equivalence classes by (P}) je.s.

For any j, let Bj = {b € U; F),(z) : b € P;}. Then the set R; := {d(b1,b2) : b1,b2 € B;} u
{rad(b) : b € B;} is finite and hence has a minimum ~. By the generic large ball property,
there exists i; € Ap(M) such that the balls in F),, (x) are closed of radius v and one of its
balls (call it by) contains one of the balls in B;. In fact by contains all of them as + is the
minimum of R;. Forall k € E, all b € B; are such that b ¢ F5(x). If rad(bg) = d(b1,bs) for
some some by and b € B; then, because b; and by are in the same ball from F,(x), rad(by) =
d(b1,b2) < rad(Fi(z)). lf rad(by) = rad(b) for some b € Bj, then because b is inside one
of the balls from F,;(z), rad(by) = rad(b) < rad(F,(x)). In both cases, by c FS(:J:). Let n;
be such that F;f’j (x) = FEJ_ () N Nuep FS(2). Such an n; exists by generic intersection and
because, by Proposition (6.5), this intersection is given by the intersection of a finite numbers
of its elements.

Then, as F, (v) ¢ F,;(z), the balls in F}; () are closed. Obviously, for all x € £, F7§j (z) c
FS(x). Moreover, for all 4, Fi(m) cUj FEJ_ (x) and for all k € E, F/\Sl(x) ¢ F3(x), hence we
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also have Fi, (z) cU; F,fj (z). As there are at most [ of the 7;, we are done. ]

8. I'-reparametrisations

Let £ 2 Lgiy, T 2 ACVF be an L-theory which eliminates imaginaries. Assume that 7" is C-
minimal. The two main examples of such theories are ACVFY and ACVF;? where Ais some
separated Weierstrass system (for example U,, ,, Z[[ X0, . .., X»]][Y0, - .., Ym]) and ACVE,
denotes the theory of algebraically closed valued fields with A-analytic structure (see [CL11]
or [Rid, Section 3]). This structure is considered in the language £ 4 ¢ = Lgiy U AU {-1}.

Remark 8.1:
The value group T is stably embedded and o-minimal in 7. As I is an o-minimal group, the

induced structure on I' eliminates imaginaries.

Proof. Let M = T and X ¢ T be a unary £(M)-definable set. The set val™'(X) is both a
(potentially infinite) union of annuli around 0 and a finite union of Swiss cheeses, hence it is
a finite union of annuli around 0 and X must be a finite union of intervals. Therefore, I" is
o-minimal in 7" and by [HO10], T is stably embedded in models of 7T ]

Let M = T, f = (fr)rea be an L(M)-definable family of functions K" — T, A(x;t) be a
finite set of £-formulas and p € S2(M). We wish to study the family f and in particular its
germs over p (see Definition (8.4)), to show that they are internal to I. This is later used as a
partial elimination of imaginaries result in enrichments 7 of T where T is stably embedded:
any subset of these germs definable in 7 is coded in I'®? (where eq is taken relative to the
theory induced by T). We only achieve this goal in ACVFY and ACVF;". The idea of the
proof is to reparametrise the family of functions (see Definition (8.2)).

Let g = (gy)~ec be an L(M)-definable family of functions K" - T, where G c T'* for some
k.

Definition 8.2 (I'-reparametrisation):
We say that g T-reparametrises f over p if for all \ € A(M), there is v € G(M) such that

p(z) = fa(z) = gy(2).

We say that T' admits T'-reparametrisations if for every L(M )-definable family f = (f))xea of
functions K™ — T there exists a finite set of L-formulas A(x;s) such that for all M = T and
p € S2(M), there exists an L(M )-definable family g = (g-)~ec of functions K™ — T which
I'-reparametrises f over p.

We will also be needing a stronger form of reparametrisation. Let g = (gu,y)wen,vec be an
L(M)-definable family of functions K™ — I" where G ¢ T'* for some k.

Definition 8.3 (Uniform I'-reparametrisation):
We say that g uniformly T'-reparametrises f over A-types if for every p € S (M) there exists
wo € Q(M) such that for all A e A(M), there is v € G(M) such that

p(l‘) = f)\(x) = gwo,'y(l‘)-
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We say that T admits uniform T'-reparametrisations if for every L(M )-definable family [ =
(fa)rea of functions K™ — T there exists a finite set of L-formulas A(x;s) and an L(M)-
definable family g = (9w~ )we,veq Of functions K™ — T' which uniformly I'-reparametrises f
over A-types.

We will say that A is adapted to f (respectively to g) when any A-type decides when fy, (z) =
fr, () (respectively g, () = g4, (2)).

Definition 8.4 (p-germ):

Assume that A is adapted to f and that p is L(M )-definable. We say that fy, and f», have the
same p-germ if p(x) + f, () = fx, (). Let us denote 0, fx € M the code of the equivalence class
of A under the equivalence relation “having the same p-germ”.

Proposition 8.5:
Let us assume that g is a T-reparametrisation of f over p, that A is adapted to both f and g and
that p is L(M )-definable. The set {0, fx : X € A} is internal to T, i.e. there is an L( M )-definable

one to one map from this set into some Cartesian power of T

Proof. As +y is a tuple from I" and I" is stably embedded in 7" and eliminates imaginaries (see
Remark (8.1)), we may assume that d,g, € I'. Now pick any A. Let y be such that p(x) ~
fa(z) = gy(z). Then 0,9, only depends on 9, f) and not on A or ~. It follows that the set
{Opfr + XA € A} is in L(M )-definable one to one correspondence with a subset of the set
{Opgy : v € G} which is itself a subset of some Cartesian power of T". u

If Z1 and Z, c K are finite sets, we will denote D(Z;,Z5) := {val(z1 — 2z2) : 21 € Z; and
29 € Zs}. Let us order the elementsin D(Z, Zs) asdy > dg > -+ > d and let d;(Z1, Z3) := d;.
If Z1 = {z} is singleton we will write d;(z, Z5).

Proposition 8.6:

Let t(z,y,\) : K" » K be an L]y (M)-term polynomial iny, i.e. t = Y% t;(x, \)y’, where
|z| =n, ly| = Land |\| = I. Let Z)(x) = {y : t(x,y,A) = 0}. Then there exists an L(M )-definable
family q = (qy)nen of functions K™ — T such that for all N > M, z ¢ K"(N) and y € K(N),
there exists pg € A(M) such that for all X € A(M) there exists n € H(M ) and n smaller than the
degree of t in y such that:

val(t(2,5, 1)) = @y () + 11~ d1 (Y, Zy ().

Proof. For all a € Z)(z), let m, be its multiplicity and let us define:

t(x,y, A
o) =
aeZy(x)

which is £-definable and does not depend on y, and

k
Uy gojn (@) = val(u(a, X)) + 3 dj, (Zx(x), Zy ().

=0
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where k is at most the degree of  in 3y and j; < I?. Note that because we can code disjunctions
on a finite number of integers, g can be considered as an £ (M )-definable family of functions
K" —»T.

Let N > M,z ¢ K"(IN) and y € K(N) and let us first assume that there exists po € A(M)
suchthatd; (y, Z,,(x)) = max,{di(y, Z,(x))} andlet oy € Z,,,(x) be such that val(y—cy) =
di(y, Zuy(x)). Now pick any A € A(M) and a € Z ().

Claim 8.7: Either val(y — «) = di(y, Z,,(x)) orval(y — &) = d;, (Zx(x), Z,,,(x)) for some jq.

Proof. If val(y — o) # di(y, Z,,(z)), then val(y — o) < di(y, Z,,(z)) and val(y — a) =
val(a — o) = dj(Zx(x), Zyuy(x)) for some j. ¢

Let Z1 == {a e Z\(x) :val(y — o) = di(y, Z,,(x)) } and n := Y 7, Ma. We have:

val(t(xz,y,A)) = val(u(z,\))+ ZZ( )maval(y—a)
val(u(z,A)) + géZZ: Mmadj, (Zx(2), Z () + - di(y, Zy, (7))
Q)\7k37n(x) +n-dy (y7 Zﬂo (x))

for some k and ;.

In the other case, if there does not exist a maximum in {d(y, Z,(x))}, for any A\ € A(M),
there exists € A(M) such that di(y, Z,(z)) > di(y, Zx(x)). Let ag be such that val(y —
ag) = di(y, Zy(x)), thenforall a € Z)(x), val(y — «) = val(a - ap) = d;, (Z\(x), Z,(x)) for
some j,. It follows that:

val(u(z,\)) + >, madj, (Zx(z), Zy(2))
aeZy(x)

val(t(z,y,\))

qukyjy,LLO (x)
for some k and ;. n

Proposition 8.8:
The theories ACVFY and ACVEF,* admit uniform I'-reparametrisations.

Proof. Let f = (fx)xea be an L(M)-definable family of functions K” — I". We work by
induction on n. The case n = 0 is trivial as f is nothing more than a family of points in I" that
can be reparametrised by themselves. Let us now assume that n = m+1 and = = (y, z) where
|z| = 1. Because K is dominant, we may assume up to reparametrisation that A is a tuple from
K. If T = ACVFY, the graph of ) is given by an £9(M)-formula. If T = ACVF,%, by [Rid,
Corollary 5.5] there exists an £9(M)-formula ¢ (z,w,~) and L|x-terms 7(z, \) such that
M e fi(y,z) = yifand only if M & ¢(z,7(y, A),~y). Taking 7 to be the identity, the graph
of fy also has this form when T' = ACVFY. By elimination of quantifiers in ACVFY (or in
the two sorted language), we know that ¥ (z,w,7y) is of the form x((val(P;(z,w)))o<i<k,?Y)
where x is an Eg‘r-formula and P; ¢ K(M)[Y,W]. We may also assume that x defines a

function h : T* - T.
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Let t;(y,2,A) = P;i(2,7(y,\)) and ¢; = (qi.5)nen, be an L(M )-definable family of functions
K™ — T as in Proposition (8.6) with respect to ¢;. By the usual coding tricks we may assume
that there is only one family ¢ = (g;,)en such that for all i and 7 € H; there exists ¢ € H such
that ¢; ,, = ¢.. By induction, there exists a uniform I'-reparametrisation for ¢, i.e. there exist
a finite set of £-formulas Z(y; s) and an £(M)-definable family (u. 5):cg sep of functions
K™ — T, where D ¢ T for some [, such that for any p ¢ SE(M), for some ¢ € E(M),
(tey,5)sep is a I-reparametrisation of ¢. Let Z; x\(y) = {2 : P;(y,2,A) =0} and

gg7ﬁ7g7ﬁ(y’ Z) = h((ua,éi(x) +ng- dl(z’ Zi,uz‘ (y)))0<i<k)'

Letalso on(y, 23 A, 6,1,0):="fa(y,2) = 9., 57(y,2)" and A(y, z;s, A, €, 1,0,7m) = E(y; 5) U
{on(y,z;\,e,11,0) : we N}. Forall p Syéz(M), there exists ¢ € E(M ) such that (uc, 5)sen
I'-reparametrises ¢ over p|=. Let (y,z) = p. By Proposition (8.6) there exists a tuple 7z, €
A(M) such that for all A € A(M), there exists tuples 77 € H(M ) and 7 such that

Val(ti(yv Z, )‘)) = dn; (y) +n;: dy (y7 Z’i,ltoyi (IE))

As y E p|z, there exists 0; € D(M) such that g, (y) = ue, s, (y) and hence

h((V&l(tz(y, 2 )‘)))Oékk)
h((u€0,5i (y) +n; - dl(ya Zi,,uoﬂ- (x)))0§i<k)
9507%7375(3/7 Z)

f)\(yvz)

Because p decides such equalities, this holds in fact for all realisations of p. We have just
shown that (g o T BT, )5e D men Teparametrises f over p. But because ¢ is a tuple from I' and
disjunctions on a finite number of bounded integers can be coded in I', it is in fact a I'-
reparametrisation. [ |

Question 8.9: Do all C'-minimal extensions of ACVF admit uniform I'-reparametrisations?

9. Approximating sets with balls

As before, let £ 2 £ 2 Lg;, be languages, R be the set of L-sorts, T' 2 ACVF be a C'-minimal
L-theory which eliminates imaginaries and admits I'-reparametrisations, T a complete L-
theory containing 7, N = T, N := N ‘ . and A= acleq(A) c N°4, Let us assume that k and

I are stably embedded in 7" and that the induced theor1es on k and I'* eliminate 3°° (where
“eq” is taken relative to the £-induced structure on ).

In this section we bring together all the work we have done in Sections 6, 7 and 8 to actually
construct definable types, in order to prove Theorem (9.8). The core of the work is done in

Lemma (9.1) where we show that we can enrich a quantifiable partial £-type with formulas

of the form y € F)(x), where F), is an £-definable family of functions K" — Bgt], while

maintaining consistency with a given £-definable set. Once this is done, it is only a question
of proving the various reductions sketched in the introduction. In Proposition (9.5), we show
that we can enrich a quantifiable partial £-type with arbitrary formulas while maintaining
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consistency with a given L-definable set. Finally, in Proposition (9.7), we show that every
strict (Z, » )-definable set X (see Definition (9.6)) is consistent with a definable £-type.
Note that, even though all the type which are constructed in this section are L-types (or
A-types for some set A of L-formulas), they are definable using £( N)-formulas: for every
@(x;t) € A, there exists an £(N)-formula d,z¢(x;t) such (x;m) € p if and only if N =
dyxp(x;m). One of the goals of [RS] is to show that, under some more hypotheses, such
types are indeed L( N )-definable.

Lemma 9.1:

Let Y c K™ be a non empty L°I(A)- deﬁnable set. Let (A(w,y;t), (Fx)aenr, ) be a good
representation where x € K". Let p(x,y) € S (N ) be L°9( A)-quantifiable (as a partial £*-
type) and consistent with Y. Assume that there exzsts an L(N)-definable family g = (g~)~ec of
functions K" — T which I'-reparametrises the family (rad o F)\)xcp over p.

Then there exists a type q(x,y) € S;p, 27 (N) which is £L°9( A)-quantifiable and consistent with p
andY.

We are looking for a type ¢ = apy, (see Definition (6.12)) so most of the work consists in
finding the right E.

Proof. We define the preorder < on A, := {\ € A : F) is generically irreducible over p} by
A < pifand only if p(z,y) v (y € Fy(z) A (z,y) €Y) - y € F5(z). Note that, by £°(A)-
quantifiability of p, < is £¢4(A)-definable. Let ~ be the associated equivalence relation, i.e
A~ pifandonlyifp(z,y) - (y e Fy(2)A(z,y) € Y) <= (ye FE(z) A(z,y) €Y). Then <
induces a (partial) order on A, /~ that we will also denote <. For any ), let us denote by X ¢ A,,
the ~-class of . The set A,,/~ has a greatest element given by the class of any A € A,(N') such
that F\(z) = {K} for all  and a smallest element given by the class of any A € A,(V) such
that () = @ for all . Let K be the greatest element of A,,/~ and @ be its smallest element.
Because p is consistent with Y, K+ 3.

Claim 9.2: Let A € A, \ 3, then < totally orders {fi : € Ay AN < pu}.

Proof. Let py and po € A,(N) such that A < ;. Because \ ¢ & there exists (z,y) = p such
that y € Fy(z) and (z,y) € Y. As A < y;, we also have y € F;i(m) and hence F, M(az) N
F/i (z) # @. By Proposition (6.10), we have Ffl(x) c FEQ(x) or FEQ(x) c FEl(:c) and we
may assume that the first one holds. Then p; < po. ¢

Hence ((Ap/~)~{@}, <) isa tree with the root on the top. Let us now show that the branches
of this tree are internal to I'. Let h(\) := (9prad(F)),0) if p(z,y) implies that the balls in
F)\(x)areclosedand h(\) := (Oprad(F)), 1) otherwise (the p-germ 9, of a function is defined
in Definition (8.4)). By Proposition (8.5), we may assume (after adding some parameters) that
the image of / is in some Cartesian power of I". Let us also define , : X ~ "h(X)". By stable
embeddedness of T, h, takes its values in IT"°4.

Claim 9.3: Pick any X € A, \ @, then the function h, is injective on {f1: A < p}.

Proof. Let u11 and ps be such that A < u;. We have seen in Claim (9.2), that we may assume
for all (z,y) = p, M(x) c m(a:). Let (x,y) E p. If i1 # 15 then we must have F’ m(:n) c
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FEQ (z). Hence either rad(F),, (z)) < rad(F),,(z)) or the balls in F},, (x) are open and those
in F,,(z) are closed. In any case, h(1) # h(pu2).

In fact for all w; € [7; we obtain by the same argument that h(w; ) # h(w2) and hence h, (fi1) #
h. (/7). ’
Let A € A,(N) be such that "\ € A. If () the generic type of A(IV) over p, is consistent
with Y, it s, in particular, consistent and consistent wj}h p. By Proposition (6.13), it is a com-
plete ¥ a p-type. By Corollary (7.12), KRy /p 1 L9(A)-quantifiable. It follows that taking
4= O5(Fyp works. Therefore, it suffices to find a X € A,(N) such that "\" € A and KW /p
is consistent with Y.

Claimo.4: Let A € Ap(N). If X # B and () /p IS MOt consistent with Y, there exists i such

that 71 is an immediate <-predecessor of X and "Ti" ¢ acleg(g ).

Proof . 1f a5 ), is not consistent with Y, there exists ug € N(N) and (13)o<ick € Ap(N)
such that for all 1 € X(N), p(x, y) + Fs (x) € F5(x) and

k
p(zy) FyeFy (x) A (z,y)eY >ye UlFi(w)-
b

In particular p; < A\. Removing some y;, we may assume that for all i, y; ¢ @ and that p(x,y) +
Ff(x) N FEJ_ (z) =@ foralli+ j.

Let k € Ap(N) be such that y1;, < k < A\ for some ig. As £ < A, we have p(x,y) + (y €
F3(@)n(z,y)eY) > (ye F{(z) A (2,y) eY) > Vi, (ye Fi(w) A (z,y) € Y). Because
i < K, we have p(x,y) = FS(z) n FEZ,O () # @. If p(a,y) - FS(z) c Fio (z) then k < 4,
and hence x ~ ;.

Otherwise, for any i # g, if p(z,y) - FS(z) n FEZ(x) # ¢ then we must have p(z,y) +
F/i(a:) ¢ F3(z) and hence for I = {i : Fli(a:) N Fo(z)® # @} we have p(z,y) + (y €
Fi(z) A (2,y) €Y) <= Vier(y € F (2) A (2,y) € Y).

It follows that the set {% : pu; < k < A for some i} is finite. In particular we could choose
1; such that there is no & such that 7i; < & < . The 1; are then the (finitely many) direct
<-predecessors of A and for all i, 7i; € aclezfl(Ava’). ¢

Let us assume that there does not exist ) such that "\" € A and (¥ /p is consistent with Y.

Pick any Ao € K(IV), then Ag = K € A and we can construct by induction, using Claim (9.4),
a sequence (\;);e, such that N1 is a direct J-predecessor of ;. For all i, we have {7 N, <
i} =i+1=|h.({f: N < 7})| and that contradicts the elimination of 3% in "%, This
concludes the proof. ]

In the following proposition, the most general case is when |z| = 0, but we need this more
complicated statement to carry out the induction.

Proposition 9.5:
Let Y ¢ K™ be an L°9(A)-definable set, A(z,y;t) and ©(y; s) be finite sets of L-formulas
where |x| = n and |y| = m. Let p € Sﬁy(N) be L¢1( A)-quantifiable and consistent with Y. Then
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there exists a finite set of L-formulas Z(x,y;s,t,r) 2 AU © and a type q € Siy(N) which is
L°9( A)-quantifiable and consistent with p and Y .

As noted in Remark 7.2.4, ¢ is in particular £¢( A)-definable as a Z-type.

Proof. We proceed by induction on |y|. The case |y| = 0 is trivial. Let us now assume that
y = (z,w) where |w| = 1. By Proposition (6.16) there exists ®(z; ) a finite set of L-formulas
and F = (F))xea an £-definable family of functions K™ ! — B such that Ug r decides
any formula in ©. By Propositions (6.17) and (7.15) we can assume that F), : K™! > Bglt]
and (@, F, z) is a good representation. We can easily make F' into an £-definable family of

functions K" 1 - Bgi] by setting G (x, z) = F)\(2). As T admits I'-reparametrisations,
there exists Y (z, z; v) such that for any p € Sg (IV), there exists a I'-reparametrisation (g )~
of (rad o G))) xep OVer p.

By induction applied to Ay ((z,w), 2;t) := A(z, z,w;t), Op(z;u,v) := P(z;u) U Y(2;v) and
p, we obtain a finite set of £-formulas Q(z,w,z;7) 2 Au® u T and a type ¢; € szz’w(N)

which is £°¢( A)-quantifiable and consistent with p and Y. Let g = (g, )~ I-reparametrise
(rad o G)en Over qi|y. We can now apply Lemma (9.1)to Y, (22, G, (2, 2)), ¢1 and g to find
atype g € S;If w$ (N) which is £°( A)-quantifiable and consistent with ¢; and Y. As all the
formulas in © are decided by Vg r and hence by Vg, ¢, we may assume that g is in fact a
(P, U©O)-type and we can take == U ¢ U O and g = ¢o. [ ]

Definition 9.6 (Strict x-definable sets):

Let L be a language, N an L-structure and x = (x;)ier a (potentially infinite) tuple of variables.
Let P be a set of L-formulas with variables x. The set P(N) := {m € N* : Yo € P, N E ¢o(m)}
is said to be (L, x)-definable, or simply (L, «)-definable if we do not want to specify x. We say
that an (L, *)-definable set is strict (L, » )-definable if the projection on any finite subset of x is
L-definable.

When z is finite and P is infinite, P(N) is usually called an co-definable set.

Proposition 9.7:

Let X be non empty strict (L°1( A), x)-definable where all the variables in x are K-variables and
|z| < Ro. Assume also that |£| < Ro. Then there exists an L A)-definable type p € S5(N)
consistent with X.

Note that this is the only proof where we need a cardinality hypothesis on L.

Proof. Let {¢;(x;;t;): j <w} be an enumeration of all £-formulas such that z; is a tuple of
variables from z. Let A_; := @ and p_; := @ and we construct by induction on j a finite set
Aj(xj;s5) of L-formulas and a type p; € S?mjj (V) such that forall j <w, Aju{p;} € Aji,
pj+1 is L°9(A)-quantifiable and consistent with p; and X. Let us assume that p; and A,
have been constructed. Let Y;,; be the projection of X on the variables z¢;.1. Then Y},
is £°9( A)-definable. We can then apply Proposition (9.5) to A (z<j; 8;), {¢(xj:1;t541)}, Dj
and Yj,1 in order to obtain p;.1. As Y}, is the projection of X on the variables which appear
in p; and pj;;1, and that py, pj.1 and Y are consistent, it follows that p;, p;+1 and X are also
consistent.
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We can now take p := Uj, pj. As each p; is L£¢1( A)-definable (as Aj-type), so is p (as a
complete L-type). ]

Note that p might not be quantifiable anymore (as a £%-type). Although the fact that D)
is £°9( A)-quantifiable is necessary to carry out the induction, we will not need £¢9(A)-
quantifiability afterwards, except if we were to continue the induction. This is exactly why
we cannot prove Proposition (9.7), and hence Theorem (9.8), if £ is not countable. Neverthe-
less, we will see later that Theorem (9.8) is stronger than what is needed to prove elimination
of imaginaries which we will be able to show even when L is not countable.

We now prove the main result we have been aiming for.

Theorem 9.8:

Let £ 2 L 2 Ly be languages such that |L| < Ro, R be the set of L-sorts, T 2 ACVF be a
C-minimal L-theory which eliminates imaginaries and admits I'-reparametrisations and T'
a complete L-theory containing T such that K is dominant in T and:

(i) The sets k and T' are stably embedded in T and the induced theories on k and T4
eliminate 3°°;

(ii) Forany N = T, A = K(dclz(A)) N and any L(A)-definable set X ¢ K", there

exists an L-definable bijection f : K" — Y such that f(X) =Y n Z where Z is L(A)-
definable; note that f has to be defined without parameters.

Then forall N = T and every non empty L(N)-definable set X, there exists p € S c (N) which
is consistent with X and L (acleZq( "X"))-definable.

If, moreover, the following also holds:

(iii) There exists M & T such that M| | . is uniformly stably embedded in every elementary
extension;

then, the type p can be assumed to be [,N(R(acl%q( "X")))-definable

This really is a result on the density of definable types with canonical basis in R. Indeed let
A= acleg(}lv), the conclusion of Theorem (9.8) states that the set {p ¢ S*(A) : pis L(R(A))-

definable} is dense in S £ (A).

Proof. Let A := aclezq(rX ). We may assume that X c K" for some n. Indeed, let S; be the

sorts such that X ¢ [].S;. Since K is dominant, there is an £-definable surjection 7 : K" —
[1S;. 1f we find p consistent with Y := 77}(X) and Z(acleg(rY’))—deﬁnable, then 7, p is
consistent with X and £ (A)-definable.

Let F := { f is an £-definable bijection whose domain is K"} and 8,,(x) := (f(z) ) fer- Then
D,,(X) is strict (£L°4(A), I)-definable for some I with |I| < Xq. By Proposition (9.7), there
exists an £(A)-definable type p € S¥(V) consistent with d,,(X).

Let ¢ = {z : 0,(x) = p}. Then g is consistent with X. There only remains to show that it
is a complete type and that it is £( A)-definable. Let ¢(x; s) be an £-formula where z € K™.
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10. Imaginaries and invariant extensions

As K is dominant we may assume s is a tuple of variables from K too. By (iii), for all tuples
m € K(N), there exists (f : K® - Y) ¢ F and an L-definable map g (into K' for some 1)
such that f(p(N;m)) = Y (N)nZ(N) where Z is £(g(m))-definable. As N is arbitrary, we
may assume that it is sufficiently saturated and by compactness there exists a finite number
of (f; : K" - Y;) € F, L-definable maps g; and £L-formulas 1 (y;;t) such that for any tuple
m € K(N) there exists i such that f;,(o(N;m)) = ¥i,(N; gi,(m)) 0 Yi, (N).

Let c; and o F ¢ (ie. O,(c;) & p, for j € {1,2}) and assume that = ¢(c1;m). Then
fio(er) € Yig(N;gio(m)) 0 Yig(N). As fig(c1) =£vy fio(e2) and fig(c2) € Yo (V) we
also have fi,(c2) € i, (N;gi,(m)) n Yio(N) = fi,(¢(N;m)) and, because f;, is a bijec-
tion, = ¢(c2;m). As for definability, we have just shown that ¢(z;m) € ¢ if and only if
Vio (i3 giy (M)) € p for some ig such that f;, (o(N;m)) = i, (N; gi,(m)) 0 Y, (N) but that
can be stated with an £(A)-formula.

Moreover, if Hypothesis 9.8.(iii) holds, by [RS, Corollary 1.6], the type ¢ is in fact L(R(A))-
definable and hence, p is L(R(A))-definable ]

10. Imaginaries and invariant extensions

In this section, we investigate the link between the density of definable types, elimination
of imaginaries and the invariant extension property (see Definition (1.14)). 1 am very much
indebted to [Hrui4; Joh] for making me realise that the density of definable types could play
an important role in proving elimination of imaginaries. To be precise, we will show that
both the elimination of imaginaries and the invariant extension property follow from the
density of types invariant over real parameters.

Remark 10.1:
Because types definable over some parameters A are also A-invariant, the density of defin-

able types over some parameters implies the density of invariant types. But the converse is
false even in NIP theories. Consider M = Q,, in the three sorted language with angular com-
ponents. Assume M is Rg-saturated. Let v € I'(M) be such that v > n - val(p) for all n € N
and b := {z e K(M) : val(z) = vy Aaci(z) = 1}. Note that b is a ball. Because the residue
field is finite, in acl("b") there are all the balls b’ ¢ b such that rad(d) — rad(b) € Z - val(p).
Let (b;)en be a chain of balls such that b; € b and rad(b;) = rad(b) + ival(p). Then for all z,
y € N; by, val(x) = val(y) = v and ac, (x) = ac,(y).

Let P = ¥, a; X' € Q[X], let 59 be minimal such that a; # 0, then for all i # i, val(a;,z") =
val(a;,y™) < val(a;z') = val(a;y®). In fact, val(a;z®) — val(a;,xi,) > n - val(p) for all n €
N. Thus val(P(z)) = val(P(y)) and ac,(P(z)) = ac,(P(y)). 1t now follows from field
quantifier elimination that = =4 y and because any automorphism sending x to y must fix b
they have the same type over b. Thus, there cannot be any ball in N; b; algebraic over b and
hence, by [HMR, Proposition 3.9],  and y have the same type over acl(b). Every type in b is
of this form and none of them can be definable because N; b; is a strict intersection.
Nevertheless, by [HMR, Remark 4.7], Th(Q,) has the invariant extension property and hence
by Proposition (10.5), invariant types are dense over algebraically closed sets.

In the following proposition, we show that the density of A-types invariant over real param-
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eters for finite A suffices to prove weak elimination of imaginaries.

Proposition 10.2:

Let T be an L-theory and R a set of its sorts such that for all N & T, all non empty L(N)-
definable sets X and all L-formulas ¢(x;s) (where x is sorted as X), there exists p € Sf(N)
which is consistent with X and Aut(N /R (acl®d("X")))-invariant. Then T' weakly eliminates
imaginaries up to R.

Proof. Let M be a sufficiently saturated and homogeneous model of 7', E be any £-definable
equivalence relation, X be one of its classes in M, ¢(x,y) be an £L-formula defining E and
A= R(aclezq(rX ")). By hypothesis, there exists an Aut(N/A)-invariant type p € Sf (M)
consistent with X. Because X is defined by an instance of ¢, we have in fact p(z) + z €
X. Forall 0 € Aut(N/A), o(X) is another E-class and o(p) = p + = ¢ X. It follows
that X no(X) # @ and hence X = o(X). We have just proved that "X € dcl®*i(A) =
dcleq(R(acleg( "X"))),ie. X isweakly coded in R. [

Corollary10.3:
In the setting of Theorem (9.8), T' eliminates imaginaries.

Proof . 1t follows from Theorem (9.8), that the hypothesis of Proposition (10.2) holds in 7" and
hence that 7" weakly eliminates imaginaries up to the sorts R. But because any finite sets in
‘R are also definable in 7" and hence are coded in T, T' eliminates imaginaries up to the sorts
R. ]

In view of further applications (to valued fields with analytic structure for example), on may
note that the cardinality assumption of Theorem (9.8) is not needed to obtain elimination of
imaginaries (it is only needed to construct complete types and hence to obtain the invariant
extension property).

Proposition 10.4:
In the setting of Theorem (9.8), without any cardinality assumption on L, T eliminates imaginar-
ies.

Proof. As in Corollary (10.3), it suffices to prove weak elimination of imaginaries. Let N
be a sufficiently saturated and homogeneous model of ', N := N | » E be any L-definable

equivalence relation, X be one of its classes in N, ¢(x,y) be an £-formula defining F, A =
aclezq(rX ")and A = R(A). By domination of K, we may assume that X ¢ K" for some n

and by Hypothesis 9.8.(ii), there exists an £-definable bijection f : K™ — Y and and £L(N)-
definable set Z = ¢)(M;m) such that f(X) =Y n Z. Note that Y n Z" ¢ A.

By Proposition (9.5), there exists an £°4( A)-definable type p ¢ SZf (N') which is consistent
with Y n Z. By Hypothesis 9.8.(iii) and by [RS, Corollary 1.6], the type p is in fact L(A)-
definable. Let c realise pn'Y n Z and a € X be such that f(a) = ¢. Forall o € AutZ(N/A),
o(c) e o(p) =pt+ye Z. Because Y is L-definable, we also have o(¢) € Y. It immediately
follows that o(a) = f'(o(c)) € X and thus that X no(X) # @. Because both are E-
equivalence classes, we must have X = o(X) and hence X is £( A)-definable, i.e. it is weakly
coded. ]
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Let us now consider the invariant extension property.

Proposition 10.5:
Let T be an L-theory, A ¢ M for some M = T. The following are equivalent:

(i) Forall L(A)-definable non empty sets X and N = T, N ¢ A, there exists p € S(N) such
that p is Aut(N | A)-invariant and is consistent with X;

(ii) T has the invariant extension property over A.

Proof . Let us first show that (ii) implies (i). Let N = T', X be L(A)-definable and p € S(A)
be any type containing X. Let ¢ € S(IV) be an Aut(/N/A)-invariant extension of p. Then ¢
is consistent with X.

Let us now assume (i) and let Inv(N/A) = {p € S(N) : pis Aut(NN/A)-invariant }.

Claim 10.6: The set Inv(N/A) € S(N) is closed and hence compact.

Proof. Letp € S(N) \ Inv(N/A). There exists ¢(x;s), a tuple m € N and o € Aut(N/A)
such that p(z;m) € p and p(z;0(m)) ¢ p. Then, the set {¢ € S(N) : p(x;m) € ¢ and
o(xz;o(m)) ¢qt ={qe S(N) : o(x;m) A —~p(z;0(m)) € q} is open and has empty intersec-
tion with Inv(N/A). ¢
Let p € S(A). By hypothesis, for all L(A)-definable sets X # &, there exists ¢x € Inv(N/A)
which is consistent with X. 1t follows that for all £( A)-definable sets X, the closed set Fx :=
(X) nInv(N/A) # @. Moreover, for any finite number of X; € p, n;Fx, = Fj, x, is non
empty. As Inv(IN/A) is compact, there exists g € Nx¢, Fix. Then g € Inv(IN/A) and for all
X ep,qe Fx ¢ (X) soqdoes extend p. ]

To conclude:

Theorem 10.7:

In the setting of Theorem (9.8), T eliminates imaginaries and has the invariant extension prop-
erty.

Proof. Elimination of imaginaries is proved in Corollary (10.3) and the invariant extension
property then follows from Theorem (9.8) and Proposition (10.5). ]

Appendix

A. Uniform stable embeddedness of Henselian valued fields

The goal of this section is to study stable embeddedness in pairs of valued fields and, in par-
ticular, to show that there exist models of ACVF uniformly stably embedded in every ele-
mentary extension. These models are used to prove that there are models of VDF¢c whose
underlying valued field is stably embedded in every elementary extension in the proof of The-
orem (1.18). Not all the results proved in this section are necessary to attain this goal though,
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A. Uniform stable embeddedness of Henselian valued fields

but they are of a similar nature and are used in Section 3. Some of these results are valid in
all characteristic, so unless explicitly stated, we do not assume that we are working in char-
acteristic zero.

Following Baur, let us first introduce the notion of a separated pair of valued fields.

Definition A.1 (Separated pair):

Let K ¢ L be an extension of valued fields. Call a tuple a € L K -separated if for any tuple \ € K,
val(}; Aia;) = min;{val(\;a;)}. The pair K ¢ L is said to be separated if any finite dimensional
sub- K -vector space of L has a K -separated basis.

Recall that a maximally complete field is a field where every chain of balls has a point. Let us
now recall a well known result of [Bau82].

Proposition A.2:
Let K be a maximally complete field. Then any extension K C L is separated.

Following [CD; Del89], let us give the links between separation of the pair K ¢ L and uniform
stable embeddedness of K in L. But first let us define this last notion.

Definition A.3 (Uniform stable embeddedness):
Let M be an L-structure and A € M. We say that A is uniformly stably embedded if for all

formulas p(x;t) there exists a formula x(x; s) such that for all tuples b € M there exists a tuple
a € A such that p(A,b) = x(A,a).

The proof of Proposition (A.4) is taken almost word for word from the one in [CD], although
we have slightly different assumptions and we put more emphasis on uniformity here. Let
L be an RV -extension of LBV and let Ty, be the LBV -theory of Henselian valued fields of
characteristic zero. Recall that RV," = K*/(1 + n9t) and that Ty, resplendently eliminates
field quantifiers (see [Basg1; BK92]).

Proposition A.4:

Let M = Then be an L-structure and p(x;s) an L-formula. There exists an L|gy,-formula
Y(y; w) and polynomials Q; € Z[ X, T'] such that for any N < M, where the pair K(N) ¢ K(M)
is separated, and any a € M there exists b € K(N) and ¢ € RV (M) such that ¢(N;a) =
P(rvn(Q(N,D)); ).

Proof . By (resplendent) elimination of field quantifiers (and the fact that K is dominant), we
may assume that ¢(z;a) is of the form §(RV,,(P(x))) where P ¢ K(M)[X],n € N and
¢ is an L|gy-formula. Let us write each P; as ¥, aWY“. As the pair K(N) ¢ K(M) is
separated, the K(N)-vector space generated by the a; ,, is generated by a K(/V)-separated
tuple d € K(M). Note that |d| < [a| and adding zeros to d we may assume |d| = [a|. For
each i and y, find \; ;, ; € K(N) such that a;, = ¥; A\, jd;. We can rewrite each P; as
> diQi; (X, \), where Q; ; € Z[X,T] does not depend on @, and for all z € K(N) we
have val(P;(z)) = min;{val(d;Q; ;(x,\))}. As v, (z +y) = 1V, () +nn 1V, (y) Whenever
val(z +y) = min{val(x), val(y)}, it follows immediately that

I'Vn(Pz‘(l')): Z I'Vn(dj)rVn(Qi7j($,X))

jedi(x)
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where J;(x) = {j : val(d;)val(Q; ; (z, \)) is minimal}.
The proposition now follow easily with b = X and ¢ = rv,, (d). ]

Let L, be the language of ordered groups. If M is algebraically closed, we can obtain a
stronger statement.

Proposition A.5:

Let M = ACVF and p(x,y) an Lqiy-formula. There is an L,4-formula 1 (y; v) and polynomials
Q; € Z[X,T] such that for any N < M, where the pair K(N) ¢ K(M) is separated, and any
a € M there exists b e K(N) and ¢ € T'(M) such that o(N;a) = 1 (val(Q(N,b)); c).

Proof. The proof is essentially the same as for Proposition (A.5) except that we use the quan-
tifier elimination for algebraically closed valued fields in the two sorted language. ]

Let us now give the two consequences of these computations which we use in the paper.

Theorem A.6 (Algebraically closed case in any characteristic):

Let K < L be a separated pair of valued fields such that L is algebraically closed. Then K is
stably embedded in L if and only if T'(K) is stably embedded in T'( L), as an ordered Abelian
group.

Moreover, if I'( K') is uniformly stably embedded in T'(L), then K is uniformly stably embed-
dedin L.

Proof . This follows immediately from Proposition (A.5). ]

We will now be considering angular components in mixed characteristic (0, p). Recall that
R, = O/(p"M), R = U, R,, and that angular component maps are compatible systems of
group morphisms ac,, : K* - R such that ac,

oO* = I'eSn O*

Theorem A.7 (Unramified mixed characteristic with ac):

Let K < L be a separated pair of unramified mixed characteristic valued fields with angular
component maps such that L is Henselian and R(L) is perfect. Then K is stably embedded
in Lifand only if T'( K) is stably embedded in T'( L) (as an ordered Abelian group) and Ry (K)
is stably embedded in Ry (L) (as a ring).

Moreover if T'( K) is uniformly stably embedded in T'( L) and Ry (K ) is uniformly stably em-
bedded in Ry(L), then K is uniformly stably embedded in L.

Proof. An angular component is nothing more than a section of the short exact sequence
R; — RV, — TI. Therefore, it follows from Proposition (A.4) that we only need to prove
that R u I'(K) is (uniformly) stably embedded in R u T'(L). Because L is unramified, it
follows from the quantifier elimination in the language with angular components that I" and
R are orthogonal, i.e. any definable subset of R™ x I'"" is a union of products X x Y where
X cR"isdefinablein R and Y ¢ I'"™ is definable in I'. Hence it suffices to prove that I'( K')
is (uniformly) stably embedded in I'(L) and that R(K) is (uniformly) stably embedded in
R(L).

For all n, the canonical projection resp 5, : R, = Ry has a definable section defined by 7,,(z)
is the only y such that Ry ,,(y) = « and y is a p"-th power. Using this residual version of the
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Teichmiiller liftings, one can show that R,, (L) is @-definably isomorphic to W,,(Ro (L)) and
hence that R(K) is (uniformly) stably embedded in R(L) if and only if R (K) is (uniformly)
stably embedded in Rg(L). []

CorollaryA.8:
Let k be any algebraically closed field. The Hahn field K := k((t?)) is uniformly stably embedded
(as a valued field) in any elementary extension.

Proof. The field K is maximally complete, as are all Hahn fields, and so it is Henselian. More-
over its residue field k is algebraically closed and its value group R is divisible. It follows that
K is algebraically closed. By Proposition (A.2), any extension K ¢ L is separated. By Theo-
rem (A.0), it suffices to show that R is uniformly stably embedded (as an ordered group) in any
elementary extension. But that follows from the fact that (R, <) is complete and (R, +, <) is
o-minimal, see [CS15, Corollary 64]. ]
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