
Imaginaries and invariant types in
existentially closed valued differential fields

Silvain Rideau*

August 31, 2015

We answer two open questions about the model theory of valued differential
fields introduced by Scanlon [Sca00]. We show that they eliminate imaginaries
in the geometric language introduced by Haskell, Hrushovski and Macpherson
and that they have the invariant extension property. These two result follow
from an abstract criterion for the density of definable types in enrichments of
algebraically closed valued fields. Finally, we show that this theory is metastable.

In [Sca00], Scanlon showed that the model theory of equicharacteristic zero fields equipped
with both a valuation and a contractive derivation (i.e. a derivation ∂ such that for all x,
val(∂(x)) ⩾ val(x)) is reasonably tractable. Indeed, Scanlon proved a quantifier elimina-
tion theorem for certain of these fields and showed the existence of an elementary class
of existentially-closed such valued differential fields, which we will, from now on, denote
VDFEC . In this paper, we wish to investigate further their model theoretic properties.
One of the model theoretic questions we address is the elimination of imaginaries. A theory
is said to eliminate imaginaries if for every ∅-definable set D and every ∅-definable equiv-
alence relation E ⊆ D2, there exists an ∅-definable function f such that xEy if and only if
f(x) = f(y); in other words, a theory eliminates imaginaries if the category of definable sets
is closed under quotients. In [HHM06], Haskell, Hrushovski and Macpherson proved that,
although algebraically closed valued fields (ACVF) cannot eliminate imaginaries in any of
the “usual” languages, it suffices to add certain quotients, the so-called “geometric sorts” to
obtain elimination of imaginaries. By analogy with the fact that differentially closed fields of
characteristic zero (DCF0) have no more imaginaries than algebraically closed fields (ACF),
it was conjectured thatVDFEC also eliminates imaginaries in the geometric language with a
symbol added for the derivation.
To prove their elimination results Haskell, Hrushovski and Macpherson developed the the-
ory of “stable domination” and “metastability”, an attempt at formalising the idea that, if we
ignore the value group, algebraically closed valued fields behave in a very stable-like way —
see Section 1.3 for precise definitions. Few examples of metastable theories are known, but
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VDFEC seemed like a promising candidate. Once again, the analogywith differentially closed
fields is tempting. Among stable fields, algebraically closed fields are extremely well under-
stood but are too tame (they are strongly minimal) for any of the more subtle behaviour of
stability to appear. The theory DCF0 of differentially closed fields in characteristic zero, on
the other hand, is still quite tame (it is ω-stable) but some pathologies begin to show and in
studyingDCF0 one gets a better understanding of stability. The theoryVDFEC could play a
similar role with respect to ACVF: it is a more complicated but still very tractable theory in
which to experiment with metastability, provided we prove it is metastable.
Nevertheless, it was quickly realised that the metastability ofVDFEC was still an open ques-
tion, one of the difficulties being to prove the invariant extension property. A theory has the
invariant extension property if, as in stable theories, every type over an algebraically closed
setA has a “nice” global extension: an extensionwhich is preserved under all automorphisms
that fix A (Definition (1.14)).
In Theorem (1.18), we solve these three questions, by showing thatVDFEC eliminates imagi-
naries in the geometric language, has the invariant extension property and ismetastable over
its value group.
Following the general idea of [Hru14; Joh], elimination of imaginaries relative to the geomet-
ric sorts is obtained as a consequence, on the one hand, of the density of definable types over
algebraically closed parameters and, on the other hand, of being able to control the canonical
basis of definable types inVDFEC . This second part of the problem is tackled in [RS]. More-
over, the invariant extension property is also a consequence of the density of definable types.
Hence, one of the goals of this paper (which will occupy us from Sections 6 to 9) is to prove
density of definable types in VDFEC : given any A-definable setX in a model of VDFEC , we
find a type inX which is definable over the algebraic closure of A.
To be precise, wewill beworking in themore general context of a theory T̃ enriching a theory
T which is itself aC-minimal enrichment ofACVF, see Section 6 for precise definitions. But
for the sake of clarity, in this introduction, we will focus on the example where T is ACVF
and T̃ is VDFEC .
Let us fix some notations. LetLdiv be the one sorted language forACVF andL∂,div ∶= Ldiv∪
{∂} be the one sorted language forVDFEC , where ∂ is a symbol for the derivation. It follows
from quantifier elimination in VDFEC that, to describe the L∂,div-type of x (denoted p), it
suffices to give theLdiv-type of ∂ω(x) ∶= (∂n(x))n<ω (denoted∇ω(p)) and that p is consistent
withX if and only if∇ω(p) is consistentwith ∂ω(X), the image ofX under themap ∂ω . Note
that∇ω(p) is the pushforward of p by ∂ω restricted to Ldiv and∇ω(p) is definable if and only
if p is. Therefore it will be enough to find a “generic” definable Ldiv-type q consistent with
∂ω(X).
A definable Ldiv-type is a consistent collection of definable∆-types where∆ is a finite set of
Ldiv-formulas and so we can ultimately reduce to finding, for any such finite ∆ a “generic”
definable∆-type consistent with someL∂,div(M)-definable set (see Proposition (9.5)). It fol-
lows that most of the preparatory work in the second part of this paper (Sections 6 to 8) will
attempt to better understand∆-types for finite∆ in ACVF.
An example of this somewhat convoluted back and forth between two languages Ldiv and
L∂,div is essentially underlying the proof of elimination of imaginaries inDCF0; in that case
the back and forth is between the language of rings and the language of differential rings,
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although, in the classical proof, it may not appear clearly. Onemight think that this example
is too simple, but it is, in fact, quite revealing of what is going on in what follows. Take
any set X definable in DCF0, let Xn ∶= ∂n(X) where ∂n(x) ∶= (∂i(x))0⩽i⩽n and let Yn be
the Zariski closure of Xn. Now, choose a consistent sequence (pn)n<ω of ACF-types such
that pn has maximal Morley rank in Yn. Because ACF is stable all the pn are definable and,
by elimination of imaginaries in ACF, they already have canonical bases in the fields itself.
Then the complete type of points x such that ∂n(x) ⊧ pn is also definable with a canonical
basis of field points and it is obviously consistent withX .
InACVF, we cannot use the Zariski closure because we also need to take into account valu-
ative inequalities. But the balls in ACVF are combinatorially well-behaved, and we can ap-
proximate sets definable in VDFEC by finite fibrations of balls over lower dimensional sets,
i.e. cells in the C-minimal setting (see Section 9). Because C-minimality is really the core
property ofACVFwhich we are using, the results presented here generalise naturally to any
C-minimal extension of ACVF. Although that might seem like unnecessary generalisation,
we hope it might lead in the future to a proof thatVDFEC with analytic structure has the in-
variant extension property and has no more imaginaries thanACVFwith analytic structure
(denotedACVFA), even though we know thatACVFA does not eliminate imaginaries in the
geometric language and we have no concrete idea of what those analytic imaginaries might
be (see [HHM13]).

The paper is organised as follows. The first part contains model theoretic considerations
aboutVDFEC . In Section 1, we give somebackground and stateTheorem (1.18), ourmainnew
theorem about VDFEC whose proof uses most of what appears later in the paper. Section 2
consists in an exploration of the properties of an analogue of the prolongations on the type
space. In Section 3, we prove that the constant field is stably embedded in models ofVDFEC .
In Section 4, we study the definable and algebraic closures and finally in Section 5, we prove
that metastability bases exist inVDFEC .
As announced earlier, Sections 6 to 9 contain the proof of Theorem (9.8), an abstract criterion
for the density of definable types. In Section 6 we study certain “generic” ∆-types, for ∆ fi-
nite, in aC-minimal expansion T ofACVF (see Definition (6.12)). In Section 7, we introduce
the notion of quantifiable types and we show that the previously defined “generic” types are
quantifiable. In Section 8, we consider definable families of functions into the value group,
inACVF andACVFA, and show that their germs are internal to the value group and in Sec-
tion 9, we put everything together to prove Theorem (9.8). Finally, in Section 10, we show
how this density result can be used to give a criterion for elimination of imaginaries and the
invariant extension property.
This paper also contains, as an appendix, improvements of known results on stable embed-
dedness in pairs of valued fields which are used in Section 3 and in order to apply the results
of [RS].

I would like to thank my PhD advisors, Tom Scanlon and Élisabeth Bouscaren, for our dis-
cussions, all their corrections, and, most importantly, their endless support. I would also like
to thank Pierre Simon and Martin Hils for our many enlightening discussions.
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Model theory of valued differential fields
1. Background and main results
Let us nowfix some notation. WheneverX is a definable set (or a union of definable sets) and
A is a set of parameters,X(A)will denoteX ∩A. Usually in this notation there is an implicit
definable closure, but we want to avoid that here because more often than not there will be
multiple languages around and hence multiple definable closures which could be implicit.
Similarly, if S is a set of definable sorts, we will write S(A) for⋃S∈S S(A).
Also, the symbol ⊂ will denote strict inclusion.

For all the definitions concerning stability or the independence property, we refer the reader
to [Sim].

1.1. Valued differential fields
We will mostly study equicharacteristic zero valued fields in the leading term language. It
consists of three sortsK,RV andΓwith the ordered group language onΓ, the ring language
onRV andK and maps rv ∶ K → RV and valRV ∶ RV → Γ. Note that, although the group
structure onRV will be denoted multiplicatively, on Γ it will be denoted additively.
A valued field (K,val) has a canonical LRV-structure given by interpreting Γ as its value
group andRV as (K⋆/(1 +M)) ∪ {0} whereM denotes the maximal ideal of the valuation
ringO ⊆K . Themap rv is interpreted as the canonical projectionK⋆ →RV⋆ ∶=K⋆/(1+M)
extended toK by rv(0) = 0. The function ⋅ onRV is interpreted as its group structure and
we have a short exact sequence 1→ k⋆ →RV⋆ → Γ→ 0where k ∶= O/M is the residue field.
The function + is interpreted as the function induced by the addition on the fibres RVγ ∶=
val−1RV(γ) ∪ {0} (and for all x and y ∈ RV such that valRV(x) < valRV(y), we define x + y =
y + x ∶= x). Note that (RVγ ,+, ⋅) is a one dimensional k-vector space and that RV0 = k.
Although valRV(0) is usually denoted +∞ ≠ γ, we consider here that 0 lies in eachRVγ . It is
in fact the unit of the group (RVγ ,+).
The valued fields we consider are also endowed with a derivation ∂ such that for all x ∈ K,
val(∂(x)) ⩾ val(x). They are usually called valued fields with a contractive derivation and
were first studied by Scanlon in [Sca00]. We denote LRV

∂ the language LRV enriched with
two new symbols ∂ ∶ K → K and ∂RV ∶ RV → RV. In a valued differential field with
contractive derivation, we interpret ∂ as the derivation and ∂RV as the function induced by ∂
on eachRVγ . This function ∂RV turnsRVγ into a differential k-vector space and, moreover,
for any x and y ∈RV, we have ∂RV(x ⋅y) = ∂RV(x) ⋅y+x ⋅∂RV(y). We will denote byL∂,RV

the restriction of LRV
∂ to the sortsRV and Γ.

The valued fields we will consider are also “sufficiently closed” in the sense that they are ∂-
Henselian. This notion can take many equivalent forms but we will give the one considered
in [Sca00]. Let ∂n(x) denote (x, ∂(x), . . . , ∂n(x)) and ∂ω(x) denote (∂i(x))i∈N.
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1. Background and main results

Definition 1.1 (∂-Henselian>):
Let (K,val, ∂) be a valued differential field. K is ∂-Henselian if for all P ∈ O(K)[X0, . . . ,Xn]
and a ∈ O(K) such that val(P (∂n(a))) > 0 and mini{val( ∂

∂Xi
P (∂n(a)))} = 0, there exists

c ∈ O such that P (∂n(c)) = 0 and res(c) = res(a).

Definition 1.2 (Enough constants):
Let (K,val, ∂) be a valued differential field. We say that K has enough constants if val(CK) =
val(K) where CK ∶= {x ∈K ∶ ∂(x) = 0} denotes the field of constants.

LetLdiv be the one sorted language for valued fields. It consists of the ring language enriched
with a predicate x∣y interpreted as val(x) ⩽ val(y). Let L∂,div ∶= Ldiv ∪ {∂} and VDFEC be
the L∂,div-theory of valued fields with a contractive derivation which are ∂-Henselian with
enough constants, such that the residue field is differentially closed of characteristic zero
and the value group is divisible. Note that we call it VDFEC and not VDFEC,0 or VDFEC,0,0
because we mostly work in equicharacteristic zero in this text. Similarly we will not spec-
ify the characteristic when speaking of ACVF, but it is understood that we are speaking of
ACVF0,0.

Example 1.3:
Let (k, ∂) ⊧ DCF0 and Γ be a divisible ordered Abelian group. We endow the Hahn field
K = k[[tΓ]] of power series∑γ∈Γ aγtγ with well ordered support and coefficients in k, with
the derivation ∂(∑γ∈Γ aγtγ) ∶= ∑γ∈Γ ∂(aγ)tγ . Then (K,val, ∂) ⊧ VDFEC .

As in the case ofACVF,VDFEC can also be considered in the one sorted, two sorted and the
three sorted languages which are enrichments of the valued field versions with symbols for
the derivation. For example, the three sorted language for valued differential fields consists
of the sorts K, Γ and k along with the differential ring language on K and k, the ordered
Abelian group language on Γ and maps val ∶ K → Γ and res ∶ K2 → k where res(x, y) is
interpreted as res(xy−1).
Recall that an L-definable setD in some L-theory T is said to be stably embedded if, for all
M ⊧ T and all L(M)-definable setX ,X ∩D is L(D(M))definable.

Theorem 1.4 ([Sca00; Sca03]):

(i) The theoryVDFEC eliminates quantifiers (and is complete) in the one sorted language,
the two sorted language, the three sorted language and the leading term language;

(ii) The value group Γ is stably embedded and a pure divisible ordered Abelian group;

(iii) The residue field k is stably embedded and a pure model ofDCF0;

(iv) The theory VDFEC is NIP (does not have the independence property).

Proof . By [Sca00, Theorem7.1] we have field quantifier elimination in the three sorted lan-
guage. The stable embeddedness and purity results for k and Γ follow (see, for example,
[Rid, RemarkA.10.2]). Now, the theory induced on k and Γ are, respectively, differentially
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1. Background and main results

closed fields and divisible ordered Abelian groups. Both of these theories eliminate quanti-
fiers. Quantifier elimination in the three sorted language follows and so does qualifier elim-
ination in the one sorted and two sorted languages.
As for the leading term structure, by [Sca03, Corollary 5.8 and Theorem6.3], VDFEC elimi-
nates quantifiers relative toRV and hence one can easily check thatRV is stably embedded
and it is a pure L∂,RV-structure. Quantifier elimination for VDFEC in the leading term lan-
guage now follows from quantifier elimination for the structure induced on RV which we
prove in the following lemma:

Lemma 1.5:
LetTRV be theL∂,RV-theory of short exact sequences of Abelian groups 1→ k⋆ →RV⋆ → Γ→ 0
where k ⊧ DCF0 and Γ is a divisible ordered Abelian group, for all γ ∈ Γ, (RVγ ,+, ⋅, ∂) is a
differential k-vector space and for all x and y ∈RV, ∂(x ⋅ y) = ∂(x) ⋅ y + x ⋅ ∂(y).
Then T eliminates quantifiers.

Proof . If suffices to prove that for allM , N ⊧ TRV such that N is ∣M ∣+-saturated and for
all partial isomorphism f ∶ M → N , there exists an isomorphism g ∶ M → N extending f
defined on all ofM .
LetA be the domain of f . We construct the extension step by step:

Claim 1.6: We may assume that Γ(A) = Γ(M)

Proof . By quantifier elimination in divisible ordered Abelian groups, there exists g ∶ Γ(M)→
Γ(N) defined on all of Γ(M) and extending f ∣Γ. It is easy to see that f ∪ g is a partial
isomorphism. ▲

Claim 1.7: We may assume that A is closed under inverses.

Proof . For all a and b ∈ RV(A), we define g(a−1 ⋅ b) ∶= f(a)−1 ⋅ f(b). One can check that
g ∪ f defines a partial isomorphism. ▲

Claim 1.8: We may assume that k(M) ⊆ A.

Proof . By elimination of quantifiers in DCF0, and saturation of N , f ∣kcan be extended to
h ∶ k(M) → k(N). Now define g(λ ⋅ a) = h(λ) ⋅ f(a) for all λ ∈ k and a ∈ A. As A is
closed under inverse, this is well-defined and one can check that f ∪ g is indeed a partial
isomorphism. ▲

Now, let a ∈M and γ = valRV(a). If a ∉ A, thenRVγ(A) = ∅.

Claim 1.9: There exists c ∈RV⋆γ (M) such that ∂(c) = 0.

This is an easy consequence of the fact that k ⊧ DCF0 and it is true of any finite dimensional
differential k-vector space. But let us give the proof in dimension one.

Proof . Pick any c ∈ RV⋆γ (M). We have ∂(c) = λ ⋅ c for some λ ∈ k(M). We want to find
µ ≠ 0 such that ∂(µ ⋅ c) = 0, i.e. ∂(µ) ⋅ c + µλ ⋅ c = 0 and equivalently, ∂(µ) + λµ = 0. But this
equation has a solution in k(M) as it is differentially closed. ▲
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1. Background and main results

Pick any such c ∈RV⋆γ (M). If there exist an n ∈N>0 such that cn ∈ A, let n0 be the minimal
such n, if such an n does not exist, let n0 = 0. In both cases, let b ∈ RVf(γ)(N) be such that
∂(b) = 0 and bn0 = f(cn0). Note that if n0 = 0, the last condition is empty and if n0 ≠ 0, the
first condition follows from the second one.
Now, for all a ∈ RV(A) and n ∈ N, define g(a ⋅ cn) = f(a) ⋅ bn. It is easy to check that g ∪ f
is a partial isomorphism. Applying this last construction repetitively, we obtain a morphism
g ∶M → N . ⧫

The fact that VDFEC is NIP is an easy consequence of elimination of quantifiers (in the one
sorted language for example) and the fact thatACVF is NIP. ∎

Remark 1.10:
1. IfM ⊧ VDFEC , K(M) and CK(M) are algebraically closed, but K(M) is not differ-

entially closed as the set {x ∈K(M) ∶ ∃y ∂(y) = xy} defines the valuation ring.

2. Scanlon also proved that VDFEC is the model completion of valued fields with a con-
tractive derivation (see [Sca00, Theorem7.1]). To be precise he proved that any struc-
ture A in the three sorted language for valued differential fields where k(A) is a dif-
ferential field, Γ(A) is an ordered Abelian group and (K(A),val, res) is a valued field
with a contractive derivation (val and res are not assumed to be onto) can be embedded
in a model of VDFEC .

A similar result in the leading term language holds: let A be an LRV
∂ -structure such

that Γ(A) is an Abelian ordered group, k(A) is a differential field, RV(A) is family
of dimension one differential k(A)-vector spaces indexed by a subgroup of Γ(A)with
a symmetric bilinear group law ⋅ such that ∂RV(x ⋅ y) = ∂RV(x) ⋅ y + x ⋅ ∂RV(y) and
(K(A), rv, ∂) is a valued field with a contractive derivation (rv is not assumed to be
onto). Then A can be embedded in a model of VDFEC .

1.2. Elimination of imaginaries
Let us now recall some facts about elimination of imaginaries. Amore thorough introduction
can be found in [Poi85, Sections 16.d and 16.e]. An imaginary is a point in an interpretable set
or equivalently a class of a definable equivalence relation. To every theory T we can associate
a theory T eq obtained by adding all the imaginaries. More precisely a new sort and a new
function symbol are added for every∅-interpretable set and they are interpreted respectively
as the interpretable set itself and the canonical projection to the interpretable set. A model
of T eq is usually denotedM eq. Wewrite dcleq and acleq to denote the definable and algebraic
closure inM eq.
To every setX definable (with parameters in some modelM of T ), we can associate the set
⌜X⌝ ⊆M eq which is the smallest definably closed set of parameters over whichX is defined.
We usually call ⌜X⌝ the code or canonical parameter ofX .
Let T be a theory in a languageL andR a set ofL-sorts. The theory T eliminates imaginaries
up toR if every setX definable with parameters is in fact definable overR(⌜X⌝); we say that
X is coded inR. If everyX is only definable overR(acleq(⌜X⌝)), we say that T weakly elimi-
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1. Background and main results

nates imaginaries. A theory eliminates imaginaries up toR if and only if it weakly eliminates
imaginaries up toR and every finite set from the sortsR is coded inR.
In [HHM06], Haskell, Hrushovski and Macpherson introduced the geometric language LG
for valued fields. It consists of a sort K for the valued field itself, equipped with the ring
language, for all n ∈N the sorts Sn = GLn(K)/GLn(O)whereO denotes the valuation ring
of K and the sorts Tn = GLn(K)/GLn,n(O) where GLn,n(O) ⩽ GLn(O) consists of the
matriceswhich are congruentmodulo themaximal idealM to thematrixwhose last columns
contains only zeroes except for a one on the diagonal, and finally the canonical projections
onto Sn and Tn. We will denote by G the sorts of the geometric language. Note that S1 is
exactly the value group and the canonical projection fromK⋆ onto S1 is the valuation.
The main “raison d’être” of this geometric language is the following theorem:

Theorem 1.11 ([HHM06, Theorem 1.0.1]):

The theory ACVFG of algebraically closed valued fields in the geometric language eliminates
imaginaries.

1.3. Metastability
Let T be a theory,M ⊧ T be sufficiently saturated andA ⊆M . Recall that anL(A)-definable
setX is said to be stably embedded if for all L(M)-definable set Y , Y (M) ∩X(M) is of the
form Z(M)∩X(M)where Z is L(A∪X(M))-definable. The setX is stable stably embed-
ded if it is stably embedded and the L(A)-induced structure on X is stable. We denote by
StA the structure whose sorts are the stable stably embedded sets which areL(A)-definable,
equipped with their L(A)-induced structure. We will denote by ⫝C forking independence
in StC .

Definition 1.12 (⋆-definable functions):
Let L be a language,M an L-structure and x = (xi)i∈I and y = (yj)j∈J be (potentially infinite)
tuples of variables. Let Si be the sort in which the variable xi lives, and similarly for Sj . A partial
function f ∶ ∏i∈I Si(M) → ∏j∈J Sj(M) is said to be (L, x, y)-definable (or simply an (L,⋆)-
definable function, if we do not want to specify x or y) if for all j ∈ J there exists an L-definable
function fj ∶∏i∈I Si → Sj such that f =∏j∈J fj .

Definition 1.13 (Stable domination):
LetM be someL-structure,C ⊆M , f an (L(C),⋆)-definable map to StC and p ∈ S(C). We say
that p is stably dominated via f if for every a ⊧ p andB ⊆M such that StC(dcl(CB)) ⫝C f(a),

tp(B/f(a)) ⊢ tp(B/Ca).

We say that p is stably dominated if it is stably dominated via some map f . It is then stably domi-
nated via any map enumerating StC(dcl(Ca)) for any a ⊧ p.

Definition 1.14 (Invariant extension property):
Let T be anL-theory that eliminates imaginaries,A ⊆M for someM ⊧ T . We say that T has the
invariant extension property over A if, for all N ⊧ T , every type p ∈ S(A) can be extended to an
Aut(N/A)-invariant type.
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1. Background and main results

We say that T has the invariant extension property if T has invariant extensions over any A =
acl(A) ⊆M ⊧ T .

Definition 1.15 (Metastability):
Let T be a theory and Γ an ∅-definable stably embedded set. We say that T is metastable over Γ
if:

(i) The theory T has the invariant extension property.

(ii) Existence of metastability bases: For all A ⊆ M , there exists C ⊆ M containing A such
that for all tuples a ∈M , tp(a/CΓ(dcl(Ca))) is stably dominated.

In [HHM08], Haskell, Hrushovski and Macpherson showed that maximally complete fields
are metastability bases inACVF. Recall that a valued field (K,val) is maximally complete if
every chain of ball contains a point or equivalently every pseudo-Cauchy sequence from K
(a sequence (xα)α∈κ such that for all α < β < γ, val(xγ − xβ) > val(xβ − xα)) have a limit in
K , i.e.there exists a ∈K such that for all α < β, val(a − xβ) > val(a − xα).

To finish this section, let us introduce two other kinds of types which coincide with stably
dominated types in NIPmetastable theories.

Definition 1.16 (Stable genericity):
LetM be some NIP L-structure and p ∈ S(M). The type p is said to be generically stable if it is
L(M)-definable and finitely satisfiable in some (small)N ≼M .

Definition 1.17 (Orthogonality to Γ):
Let M ⊧ T be sufficiently saturated, C ⊆ M , Γ be an L-definable set and p ∈ S(M) be an
Aut(M/C)-invariant type. The type p is said to be orthogonal to Γ if for all B ⊆M containing
A and a ⊧ p∣B , Γ(dcl(Ba)) = Γ(dcl(B)).

1.4. New results about VDFEC

Let LG∂ be the language LG enriched with a symbol for the derivation ∂ ∶ K → K and let
VDFGEC be the L

G
∂ -theory of models ofVDFEC . One of the goals of this paper is to prove the

following:

Theorem 1.18:
The theory VDFGEC eliminates imaginaries, has the invariant extension property and is
metastable. Moreover, over algebraically closed sets of parameters, definable types are dense.

By density of definable types, we mean that every definable setX is consistent with a global
LG∂ (acl

eq(⌜X⌝))-definable type p.

Proof . Density of definable types, elimination of imaginaries and the invariant extension
property follow from Theorems (9.8) and (10.7) taking T to be ACVFG and T̃ to be VDFGEC .
Hypothesis 9.8.(i) follows from Theorem 1.4.(ii) and 1.4.(iii). A theory eliminate ∃∞ if the
cardinality of finite definable sets is uniformly bounded. In DCF0, the algebraic closure is
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2. Prolongation of the type space

the field algebraic closure of the generated differential field. It follows that the cardinality
of finite definable sets is (uniformly) bounded by the degree of the polynomials whose roots
form the finite set. As for Γ, it is a pure model of DOAG which is an o-minimal theory and
o-minimal theories always eliminate ∃∞.
Hypothesis 9.8.(ii) is an easy consequence of elimination of quantifiers: let φ(x; s) be an
LG∂ -formula such that x and s are tuples of field variables, then there exists an Ldiv-formula
ψ(u; t) and n ∈N such that φ(x; s) is equivalent moduloVDFEC to ψ(∂n(x);∂n(s)), i.e. for
allm ∈ Ñ , ∂n is an L∂,div-definable bijection between φ(Ñ ;m) and ψ(x, ∂n(m))∩∂n(K∣x∣).
Hypothesis 9.8.(iii) follows from the fact that if k ⊧ DCF0 then the Hahn field k((tR)) with
the derivation ∂(∑i aiti) = ∑i ∂(ai)ti, i.e. ∂(t) = 0, is a model of VDFEC . By Corollary (A.8)
the underlying valued field is uniformly stably embedded in every elementary extension.
The fact thatACVFG admits Γ-reparametrisations is proved in Proposition (8.8).
Finally, as we have now proved the invariant extension property, to provemetastability, there
only remains to prove the existence of metastability basis. However, in Proposition (5.6), we
show that any algebraically closed maximally complete differential field C is a metastability
basis, hence there only remains to show that any A ⊆ M ⊧ VDFEC is contained in such a
(small) C ⊆K(M).
This follows from a classical proof, but for the sake of completeness, let us sketch the argu-
ment. Taking any lifting inK of the points inA, we may assume thatA ⊆ dclLG

∂
(K(A)). We

may also assume thatK(A) is algebraically closed. IfK(A) is not maximally complete, take
(xα) to be a maximal pseudo-convergent sequence with no pseudo-limit inK and such that
the order-degree of theminimal differential polynomial P pseudo-solved by (xα) is minimal
among all such pseudo-convergent sequences. Then the extension by any root of P which
is also a pseudo-limit a is immediate, see [Sca00, Proposition 7.32]. Iterating this last step as
many times as necessary, we obtain an immediate extensionC ofAwhich is maximally com-
plete. Becausek(C) = k(A) andΓ(C) = Γ(A),K(C) isHenselian andK(A) is algebraically
closed,K(C) is also algebraically closed. ∎

At the very end of [HHM08], an incorrect proof of themetastability ofVDFEC (and in partic-
ular of the invariant extension property) is sketched. Because it overlooks major difficulties
inherent to the proof of the invariant extension property, there can be no easy way to fix
this proof and new techniques had to be developed. Furthermore, it seems that proving the
existence of metastable bases in VDFEC is not as straightforward as one might hope either
and the proof we give in Proposition (5.6) is surprisingly convoluted as it relies on a good
understanding of the imaginaries of the structure induced onRV.

2. Prolongation of the type space
The goal of this section is to study the relation between types inVDFEC and types inACVF.
This construction plays a fundamental role in the rest of this paper, be it to prove that there
are metastability bases inVDFEC or that definable types are dense, although, in the proof of
Theorem (9.8), it appears in a more abstract setting.
For all x ∈ K or x ∈ RV, let ∂ω(x) denote, respectively, (∂n(x))n∈N and (∂nRV(x))n∈N. If
x ∈ Γ, let ∂ω(x) denote (x)n∈N. Ifx is a tuple of variables, we denote byx∞ the tuple (x(i))i∈N

10



2. Prolongation of the type space

where each x(i) is sorted like x.
LetM ⊧ VDFEC be sufficiently saturated and A⩽M be a substructure. We write SLx (A) for
the space of complete L-types over A in the variable x.

Definition 2.1:
Let us assume thatA ⊆K∪Γ∪RV. We define∇ω ∶ S

LRV
∂

x (A)→ SLRV

x∞ (A) to be the map which
sends a complete type p to the complete type

∇ω(p) ∶= {φ(x∞, a) ∶ φ is an LRV-formula and φ(∂ω(x), a) ∈ p}.

Proposition 2.2:
The function ∇ω is a homeomorphism onto its image (which is closed).

Proof . As SL
RV
∂

x (A) is compact and SLRV

x∞ (A) is Hausdorff, it suffices to show that ∇ω is
continuous and injective. Let us first show continuity. Let U = ⟨φ(x∞, a)⟩ ⊆ SL

RV

x∞ (A), then
∇−1ω (U) = ⟨φ(∂ω(x), a)⟩ ⊆ S

LRV
∂

x (A). As for ∇ω being injective, let p and q ∈ SL
RV
∂

x (A) and
let φ(x, a) be an LRV

∂ -formula in p∖ q. By quantifier elimination, we can assume that φ is of
the form θ(∂ω(x), a) for some LRV-formula θ. Then θ(x∞, a) ∈ ∇ω(p) ∖∇ω(q). ∎

In fact, we can describe exactly what the closed image is. For every differential ring R let
R{X1, . . . ,Xm} be the ring of differential polynomials in m variables (i.e. R[X(j)i ∶ j ∈
N and 1 ⩽ i ⩽m]). We also denote ∂ the derivation on this ring. When P ∈ R{X1, . . . ,Xm},
we will write P ⋆ ∈ R[X(j)i ∶ j ∈N and 1 ⩽ i ⩽m] for the underlying polynomial.

Proposition 2.3:
Let x be a tuple ofK-variables and Px be the following set of LRV(A)-formulas:

{val(∂(P )⋆(x∞)) ⩾ val(P ⋆(x∞)) ∶ P ∈K(A){x}}
∪ {a = rv((PQ)

⋆(x∞)) ∧ val(∂(PQ)
⋆(x∞)) = val((PQ)

⋆(x∞))
→ ∂(a) = rv(∂(PQ)

⋆(x∞)) ∶ a ∈RV(A) and P,Q ∈K(A){x}}
∪ {a = rv((PQ)

⋆(x∞)) ∧ val(∂(PQ)
⋆(x∞)) > val((PQ)

⋆(x∞))
→ ∂(a) = 0 ∶ a ∈RV(A) and P,Q ∈K(A){x}}

Let Px(A) ⊆ SL
RV

x∞ (A) be the set of types over A containing Px. Then ∇ω(S
LRV
∂

x (A)) = Px(A).

There is a slight abuse of notation in the above formulas. To be precise, the expression
rv(∂(PQ)

⋆(x∞)) should read instead

rv(Q
⋆(x∞)∂(P )⋆(x∞) − P ⋆(x∞)∂(Q)⋆(x∞)

(Q⋆(x∞))2
) .

A similar description of∇ω(S
LRV
∂

x (A)) can be givenwhenx also containsΓ andRV-variables
but it is much more cumbersome.
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2. Prolongation of the type space

Proof . For any P ∈ K(A){X} and tuple c ∈ K(M) of the right length, we have ∂(P (c)) =
∂(P )(∂ω(c)). It follows that ∇ω(S

LRV
∂

x (A)) ⊆ Px(A). Let us now show that this inclusion
is an equality. Let p ∈ Px(A) and c ⊧ p. In particular c = (cj,i)j∈N,0⩽i<∣x∣. Then, {P ∈
K(A){X} ∶ P ⋆(c) = 0} is a differential ideal as for all suchP , val(∂(P )⋆(c)) ⩾ val(P ⋆(c)) =
∞. Hence L =K(A)(c) can be endowed with a (unique) differential ring structure such that
∂(cj,i) = cj+1,i.
For any P,Q ∈K(A){X}, we have

val(∂(P )⋆(c)) ⩾ val(P ⋆(c)) and val(∂(Q)⋆(c)) ⩾ val(Q⋆(c)),

and hence

val(∂ (P
⋆(c)

Q⋆(c)
)) − val(P

⋆(c)
Q⋆(c)

) = val(∂(P )
⋆(c)

P ⋆(c)
− ∂(Q)

⋆(c)
Q⋆(c)

) ⩾ 0.

Then C = L ∪ A is a valued field with a contractive derivation — in the broader sense
where rv and val might not be onto. As VDFEC is the model completion of such struc-
tures (see Remark 1.10.2), we can find an embedding f ∶ C → M such that f fixes A. Let
q = tpLRV

∂
((f(c0,i))0⩽i<∣x∣/A), then ∇ω(q) = p. ∎

Wewill now look at how∇ω and its inverse behavewith respect to various properties of types.
One must beware though that however innocent these questions might seem, transferring
some properties from p to∇ω(p) actually presents real challenges. Proving Propositions (2.4)
and (2.5) required the development of [RS]. Note that in [RS] the variables of the type p are
inK, the same proof applies if the variables are inK,RV and Γ (we have to use elimination
of quantifiers in LRV

∂ instead).

Proposition 2.4 ([RS, Corollary 3.3]):
Let p ∈ SLRV

∂ (M). Assume A = acleqLRV
∂

(A). The following are equivalent:

(i) p is LRV,eq
∂ (A)-definable;

(ii) ∇ω(p) is LG(G(A))-definable;

(iii) p is LG∂ (G(A))-definable.

Proposition 2.5 ([RS, Corollary 3.5]):
Let p ∈ SLRV

∂ (M). Assume A = acleqLRV
∂

(A). The following are equivalent:

(i) p is AutLRV,eq
∂

(M/A)-invariant;

(ii) ∇ω(p) is AutLG(M/G(A))-invariant;

(iii) p is AutLG
∂
(M/G(A))-invariant.

12



2. Prolongation of the type space

Proposition 2.6:
Let p ∈ Px(A), f be an (LG(A),⋆)-definable map defined on p and let D be the image of
f . Assume that A ⊆ K ∪ Γ ∪ RV, p is stably dominated via f and that Deq(acleqLRV

∂

(A)) =
Deq(acleqLRV(A)). Then ∇−1ω (p) is also stably dominated (via f ○ ∂ω).

To be precise, it suffices to considerDeq relative to the LRV-induced structure (and not the
LRV
∂ -induced structure).

Proof . We will need the following result:

Claim2.7: Let D be LG(M)-definable. If D is stable and stably embedded in ACVF, then it is
also stable and stably embedded in VDFEC .

Proof . It follows from [HHM06, Lemma 2.6.2 and Remark 2.6.3] that D ⊆ dclLG(E ∪ k) for
some finite E ⊆ D. Because k also eliminates imaginaries, is stable and stably embedded in
VDFEC , it immediately follows thatD is stably embedded and stable in VDFEC too. ⧫

Now let c ⊧ ∇−1ω (p) andB ⊆K be such that

St
LRV
∂

A (dclLRV
∂
(AB)) ⫝L

RV
∂

A f(∂ω(c))

where ⫝L
RV
∂

A denotes independence in St
LRV
∂

A over A. By hypothesis, Deq(acleqLRV
∂

(A)) =
Deq(acleqLRV(A)), and hence

StL
RV

A (dclLRV(A∂ω(B))) ⫝L
RV

A f(∂ω(c))

where ⫝LRV

A denotes independence in StL
RV

A over A. Since ∂ω(c) ⊧ p and p is stably domi-
nated via f ,

tpLRV
∂
(B/f(∂ω(c))) ⊢ tpLRV(∂ω(B)/f(∂ω(c)))

⊢ tpLRV(∂ω(B)/A∂ω(c))
⊢ tpLRV

∂
(B/Ac).

Here the last implication comes from the fact that ∇ω is one to one on the space of types.
Hence, we have proved that ∇−1ω (p) is stably dominated via f ○ ∂ω . ∎

Proposition 2.8:

AssumeM sufficiently saturated and homogeneous and let p ∈ SL
RV
∂

x (M) beLRV
∂ (M)-definable.

The following are equivalent:

(i) p is stably dominated;

(ii) p is generically stable;

(iii) p is orthogonal to Γ;

(iv) ∇ω(p) is stably dominated;

(v) ∇ω(p) is generically stable;

(vi) ∇ω(p) is orthogonal to Γ;

Proof . The equivalence of (iv), (v) and (vi) is proved for ACVF in [HL, Proposition 2.8.1].
Moreover, the implications (i)⇒ (ii)⇒ (iii) hold in anyNIP theory where Γ is ordered.
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3. Stable embeddedness of the field of constants

We proved in Proposition (2.6) that (iv) implies (i). Let us now prove that (iii) implies (iv). By
Proposition (2.4), ∇ω(p) is LRV(A)-definable for some A ⊆ M . Let C ⊧ VDFEC be maxi-
mally complete, and contain A and let c ⊧ p∣C . As p is orthogonal to Γ, we have Γ(C) ⊆
Γ(dclLRV(Cc)) ⊆ Γ(dclLRV

∂
(Cc)) = Γ(C). Because C is maximally complete and max-

imally complete fields are metastability bases in ACVF (see [HHM08, Theorem 12.18.(ii)]),
tp(∂ω(c)/CΓ(dclLRV(Cc))) is stably dominated. But

tp(∂ω(c)/CΓ(dclLRV(Cc))) = tp(∂ω(c)/C) = ∇ω(p)∣C

and hence ∇ω(p) is also stably dominated. ∎

3. Stable embeddedness of the field of constants
In this section we wish to study the stable embeddedness of the field of constants CK in
VDFEC . We will be using the results of Appendix A and we will be working in the one sorted
language for valued differential fields L∂,div = Ldiv ∪ {∂}. Nevertheless, it is easy to see that
the results we obtain here are valid in any choice of language.
Recall Definition (A.1): an extension K ⊆ L of valued field is said to be separated if any
finite dimensional sub-K-vector space of L has a basis a such that for any tuple λ ∈ K ,
val(∑i λiai) =mini{val(λiai)}.

Proposition 3.1:
Any pair K ⊆ L which is elementarily equivalent to a pair K⋆ ⊆ L⋆, where K⋆ is maximally
complete, is separated. In particular, in models of VDFEC , the pair CK ⊆K is separated.

Proof . The first part of the corollary is an immediate consequence of Propositions (A.2) and
the fact that separation is preserved by elementary equivalence of the pair. The rest of the
corollary then follows because for any k ⊧ DCF0 and Γ ⊧ DOAG, k((tΓ)) equipped with
the derivation ∂(∑γ∈Γ aγtγ) = ∑γ∈Γ ∂(aγ)tγ is a model of VDFEC whose constant field is
Ck((tΓ)) which is maximally complete and, as VDFEC is complete, all the pairs CK ⊆K are
elementary equivalent. ∎

Proposition 3.2:
The field of constantsCK is stably embedded inmodels ofVDFEC . It follows that it is a puremodel
ofACVF.

Proof . LetM ⊧ VDFEC and φ(x,m) be a formula with parameters in K(M). By quanti-
fier elimination, we may assume that φ is of the form ψ(∂n(x), ∂n(m)) where ψ is an Ldiv-
formula and n ∈ N. For all x ∈ CK , φ(x,m) is equivalent to ψ(x,0, . . . ,0, ∂n(m)), i.e. an
Ldiv(K(M))-formula, hence it suffices to prove that CK(M) is stably embedded inK(M)
as a valued field. But K(M) is algebraically closed, the pair CK(M) ⊆ K(M)is separated
(Proposition (3.1)) and, because there are enough constants, val(K(M)) = val(CK(M)),
hence we can apply Theorem (A.6).
It now follows from quantifier elimination that any subset of CK definable in M is defin-
able by a quantifier-freeLdiv(CK(M))-formula and hence is defined inCK(M) by the same
formula. ∎
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4. Definable and algebraic closure inVDFEC

These results can be transposed easily to the Witt vectors over Fp
alg

with the lifting of the
Frobenius W(Frobp). Recall that in this field there are definable angular component maps
acn for all the residue rings Rn ∶= O/pnM which are compatible with the automorphism.
Indeed, Fix(W(Fp

alg)) = Qp where angular component maps acn are definable and for all

x ∈W(Fp
alg) define acn(x) ∶= resn(xy−1)acn(y) for any y ∈ Qp such that val(x) = val(y).

Thus we will consider the theory of this field in the three sorted language Lacσ,P with the
angular component maps described above and divisibility predicates Pn on the value group.
LetWFp denote ThLac

σ,P
(W(Fp

alg),W(Frobp),acn).

Theorem 3.3 ([BMS07]):
The theoryWFp eliminates quantifiers (and is complete).

Proof . By [BMS07, Theorem 11.4],WFp eliminates quantifiers inLacσ,P relative toR = ⋃nRn

andΓ. The theoremnow follows from the fact that algebraically closed fields eliminate quan-
tifiers and Z-groups eliminate quantifiers once we add divisibility predicates. ∎

Proposition 3.4:
The fixed fieldFix(K) is stably embedded inmodels ofWFp and is a pure valued field elementarily
equivalent toQp

Proof . It is essentially the same proof as in Proposition (3.2). Let M ⊧ WFp. By quanti-
fier elimination, the intersection of any definable set inM with Fix(K) is the intersection
with Fix(K) of a set definable in M as a valued field with angular components. Because
(W(Fp

alg),W(Frobp)) is a model of WFp whose fixed field is Qp (which is also maximally
complete), by Proposition (3.1), in models of WFp, the pair Fix(K) ⊆ K is separated. We
can now apply Theorem (A.7) to conclude. The fact that it is a pure valued field now follows
by elimination of quantifiers (and the fact that the angular component maps we chose are
definable in Th(Qp)). ∎

4. Definable and algebraic closure in VDFEC

In this section, we investigate the definable and algebraic closures in VDFEC . We show that
they are not as simple as one might hope. In DCF0, the definable closure of a is exactly the
field generated by ∂ω(a). In VDFEC , we have, at least, to take in account the Henselianisa-
tion, but we show that the definable closure of a can be even larger than the Henselianisa-
tion of the field generated by ∂ω(a). This fact was already known to Ehud Hrushovski and
Thomas Scanlon but was never written down.
We will, again, be working in the leading term language and all the set of parameters that
appear in this section will be living in the sorts K ∪ Γ ∪RV. We denote by ⟨A⟩∂ the LRV

∂ -
structure generated by A and ⟨A⟩−1,∂ the closure of A under both LRV

∂ -terms and inverses
onK,RV and Γ. Recall that ⊂ denotes strict inclusion.
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4. Definable and algebraic closure inVDFEC

Fact 4.1:
LetM ⊧ VDFEC be sufficiently saturated. For allC ⊆M , there existsA ⊆M , such thatC ⊆ A and

K(dclLRV(⟨A⟩∂)) =K(⟨A⟩−1,∂)
h
⊂K(dclL∂,div

(A)). In fact, there exists a ∈K(dclL∂,div
(A))

which is transcendental over ⟨A⟩∂ . In particular, we also have a ∉ aclLRV(⟨A⟩∂).

We show that certain (linear) differential equations which have infinitely many solutions in
differentially closed fields have only one solution in models of VDFEC , due to the valuative
restrictions imposed by having a contractive derivation. In other terms, we exhibit a two
dimensional ACVF-definable set which contains a unique prolongation type that has only
one realisation of the form ∂ω(x).
Proof . Let P (X) ∈ O(M)[X], a ∈ O(M) and ε ∈ M(M). Let Qa(∂ω(x)) = x − a +
εP (∂ω(x)), thenQa has a unique zero inM . Indeed val(Qa(a)) > 0, val(∂Qa

∂X0
(a)) = val(1) =

0 and val(∂Qa

∂Xi
(a)) = val(ε) + val( ∂P∂Xi

(a)) > 0, hence σ-Henselianity applies. If Qa(x) =
Qa(y) = 0, then res(x) = res(a) = res(y) and thus val(x − y) > 0. Let η ∶= x − y, we have

Qa(y) = x + η − a + εP (x + η) = x + η − ε(∑
I

PI(a)ηI) = η + ε(∑
∣I ∣>0

PI(a)ηI).

But, if η ≠ 0, val(εPI(a)ηI) > ∣I ∣val(η) ⩾ val(η) and hence val(Qa(y)) = val(η) ≠ ∞, a
contradiction. Hence the equation P (∂ω(x)) = 0 has a unique solution inM .
Let us now show that, in some cases, we do get new definable functions. We may assume
that C = dclLRV(K(C)). Let k be a differential field, ã ∈ k be differentially transcen-
dental and let us equip k[[ε]] with the usual contractive derivation (i.e. the one such that
val(ε) = 0). We embed k[[ε]] inM so that k and k(C) are independent and K(C)(ε) is a
transcendental ramified extension ofK(C). To avoid any confusion, let us denote by a the
image of ã by the embedding of k into k[[ε]] and intoM . One can check that for all n ∈ N,
res(K(C)(ε, ∂n(a))) = k(C)(∂n(ã)).
Let us now try to solve x − a − ε∂(x) = 0 in k[[ε]]. Let x = ∑xiεi where xi ∈ k, the equation
can then be rewritten as:

∑xiε
i = aε0 +∑∂(xi)εi+1,

and hence x0 = a and xi+1 = ∂(xi) = ∂i+1(a). If x ∈ ⟨C,a, ε⟩−1,∂
alg

then for some n ∈ N, we

must have x ∈ K(C)(∂n(a), ε)
alg
. Any automorphism of σ ∶ k ∪ k(C) fixing k(C) can be

lifted into an automorphism of k[[ε]]∪C fixingC and sending∑xiεi ∈ k[[ε]] to∑σ(xi)εi.
Because ∂n+1(ã) is transcendental over k(C)(∂n(ã)), it follows that x has an infinite orbit
overK(C)(∂n(a), ε), a contradiction. ∎
Nevertheless, by quantifier elimination, the definable closure in Γ, k andRV is exactly what
one could hope for. Let us begin with the easier cases of Γ and k.

Proposition 4.2:
LetM ⊧ VDFEC and A ⊆M , then

Γ(dclLRV
∂
(A)) = Γ(aclLRV

∂
(A)) = Q⊗Γ(⟨A⟩−1,∂),

k(dclLRV
∂
(A)) = k(⟨A⟩−1,∂) and k(aclLRV

∂
(A)) = k(⟨A⟩−1,∂)

alg
.
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4. Definable and algebraic closure inVDFEC

Proof . Let us first show that Γ(aclLRV
∂
(A)) = Q ⊗ val(⟨A⟩−1,∂). By quantifier elimination

in the leading term language, any formula with variables in Γ and parameters in A is of the
formφ(x, a)where a ∈ Γ(⟨A⟩∂). In particular, any γ ∈ Γ(M) algebraic overA is algebraic, in
Γ, over Γ(⟨A⟩∂)which is a pure divisible ordered Abelian group. It follows immediately that
γ ∈ Q ⊗ Γ(⟨A⟩−1,∂). Finally, as Q ⊗ val(⟨A⟩−1,∂) is rigid over val(⟨A⟩−1,∂) ⊆ Γ(dclLRV

∂
(A))

the equality Γ(dclLRV
∂
(A)) = Γ(aclLRV

∂
(A)) also holds.

As for the results concerning k, they are proved similarly. Indeed, any formula with variables
in k and parameters in A is of the form φ(x, a) where a ∈ k(⟨A⟩−1,∂) is a tuple. The proof
of this fact requires a little more work than for Γ because formulas of the form ∑i∈I aixi =
0 where ai ∈ RV(⟨A⟩−1,∂) are not immediately seen to be of the right form. But we may
assume that all ai have the same valuation (as only the monomials with minimal valuation
are relevant to this equation). Hence, it is equivalent to∑i∈I aia−1i0 x

i = 0which is of the right
form.
The results now follow from the fact that in DCF0 the definable closure is just the differen-
tial field generated by the parameters and the algebraic closure is its field theoretic algebraic
closure. ∎

Let us now tackle the case ofRV.

Proposition 4.3:
LetM ⊧ VDFEC and A ⊆M . Then

RV(dclLRV
∂
(A)) =RV(⟨A⟩−1,∂) andRV(aclLRV

∂
(A)) =RV(aclLRV(⟨A⟩∂)).

Proof . Let Ã ∶= (RV ∪ Γ)(⟨A⟩∂). By quantifier elimination for VDFEC in the leading term
language, any formula with variables inRV and parameters inA is of the formφ(x, a)where
a ∈ Ã is a tuple. In particular,RV(aclLRV

∂
(A)) ⊆ aclLRV

∂
(Ã).

Claim4.4: Let γ ∈ Γ∖Q⊗valRV(RV(Ã)). We haveRVγ(dclLRV
∂
(Ã)) =RVγ(aclLRV

∂
(Ã)) =

∅.

Proof . Pick any (di)i∈N ∈ k such that dnmn = dm and ∂(dm) = 0 for allm and n ∈ N. Let us
write Γ = (Q ⊗ Γ(Ã))⊕i∈I Qγi where one of the γi is γ. Define a group morphism σ ∶ Γ →
k(M) sending all of Q ⊗ Γ(Ã) and all γi ≠ γ to 0 and p/q ⋅ γ to dpq . For all x ∈ RV, we now
define τ(x) = σ(valRV(x)) ⋅ x. It is easy to check that τ is an L∂,RV-automorphism ofRV
and that τ fixes Ã.
On the fibreRVγ , τ sends x to d1 ⋅ x. It immediately follows that, because we have infinitely
many choices for d1 (as Ck is algebraically closed), the orbit of x under AutL∂,RV

(RV/Ã) is
infinite. ThusRVγ(dclLRV

∂
(Ã)) =RVγ(aclLRV

∂
(Ã)) = ∅. ⧫

Claim4.5: Let γ ∈ Q ⊗ valRV(RV(Ã)) ∖ valRV(RV(Ã)). Then RVγ(dclLRV
∂
(Ã)) = ∅ and

RVγ(aclLRV(Ã)) ≠ ∅.

Proof . Let n be minimal such that δ = γn ∈ valRV(RV(Ã)). Taking di as above, such that
d1 = 1, and defining σ such that σ(p/qδ) = dpq , we obtain an LRV

∂ -automorphism τ which
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4. Definable and algebraic closure inVDFEC

fixes Ã and acts onRVγ by multiplying by dn. As there are n choices for dn, we obtain that
RVγ(dclLRV

∂
(Ã)) = ∅.

Now, let us show that RVγ(aclLRV(Ã)) ≠ ∅. Let c ∈ RVγ . We have valRV(cn) = γn and
there exists λ ∈ k such that λ ⋅ cn ∈ Ã. Let µ ∈ k be such that µn = λ and let a = µ ⋅ c. Then
an = λ ⋅ cn ∈ Ã. As, the kernel of x↦ xn is finite, we have a ∈ aclLRV(Ã). ⧫

Now, let c ∈RV(dclLRV
∂
(Ã)). By Claims (4.5) and (4.4), valRV(c) = valRV(a) for some a ∈ Ã.

It follows that c ⋅a−1 ∈ k(dclLRV
∂
(Ã)), which, by Proposition (4.2) is equal to k(Ã), and hence

c = (c ⋅ a−1) ⋅ a ∈RV(Ã).
If c ∈RV(aclLG

∂
(Ã)), by Claim (4.4) and (4.5), valRV(c) = valRV(a) for some a ∈ aclLRV(Ã),

and hence that c ⋅ a−1 ∈ k(aclLRV
∂
(Ã)) = k(aclLRV(Ã)). ∎

Concerning the definable closure and algebraic closure in the sortK, although the situation
is not ideal, we nevertheless have some control over it:

Corollary 4.6:

LetM ⊧ VDFEC andA ⊆K(M), thenK(⟨A⟩−1,∂)
alg
⊆K(aclLRV

∂
(A)) is an immediate exten-

sion.

Proof . We have val(K(aclLRV
∂
(A))) ⊆ Γ(aclLRV

∂
(A)) = val(K(⟨A⟩−1,∂)

alg
) where the sec-

ond equality comes from Proposition (4.2). Similarly res(K(aclLRV
∂
(A))) ⊆ k(aclLRV

∂
(A)) =

res(K(⟨A⟩−1,∂)
alg
) and henceK(aclLRV

∂
(A)) is an immediate extension ofK(⟨A⟩−1,∂)

alg
. ∎

Corollary 4.7:
LetM ⊧ VDFEC andA ⊆K(M) thenK(⟨A⟩−1,∂) ⊆K(dclLRV

∂
(A)) is an immediate extension.

Proof . By Proposition (4.2), res(K(dclLRV
∂
(A))) ⊆ k(dclLRV

∂
(A)) = res(K(⟨A⟩−1,∂)) and

val(K(dclLRV
∂
(A))) ⊆ Γ(dclLRV

∂
(A)) = Q ⊗ val(K(⟨A⟩−1,∂)). Let L ∶= K(dclLRV

∂
(A))

and F ∶= K(⟨A⟩−1,∂)
h
. Let c ∈ L. We already know that val(c) ∈ Q ⊗ val(F ). Let n be

minimal such that n ⋅ val(c) = val(a) for some a ∈ F . Let us show that n = 1. We have
res(ac−n) ∈ res(L) = res(F ) and we can find u ∈ F such that res(ac−n) = res(u). As Lmust
be Henselian (indeed L

h = dclLdiv
(L) = L), we can find v ∈ L such that vn = ac−nu−1, i.e.

(cv)n = au−1 ∈ F . Hence we may assume that cn itself is in F .
But derivations have a unique extension to algebraic extensions and, as F is Henselian, the
valuation also has a unique extension to the algebraic closure. It follows that any algebraic
conjugate of c is also an L∂,div-conjugate of c. As K(M) is algebraically closed, it contains
non trivial n-th roots of the unit and it follows that we must have n = 1.
We have just proved that K(dclLRV

∂
(A)) is an immediate extension of K(⟨A⟩−1,∂)

h
and

hence ofK(⟨A⟩−1,∂). ∎

In the field of constants, though, we can describe both the definable closure and the algebraic
closure.
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5. Metastability inVDFEC

Proposition 4.8:

LetM ⊧ VDFEC and A ⊆ CK(M), then K(dclLRV
∂
(A)) = Frac(A)

h
and K(aclLRV

∂
(A)) =

Frac(A)
alg

.

Proof . It follows from the fact that the pair CK ⊆ K is separated (see Proposition (3.1))
that CK does not have any immediate extension in K. Hence dclLRV

∂
(A) ⊆ CK(M) and

aclLRV
∂
(A) ⊆ CK(M). The proposition now follows from the fact that, by Proposition (3.2)

CK is a pure model of ACVF. ∎

5. Metastability in VDFEC

In this section we prove that maximally complete models of VDFEC are metastability bases.
Together with our later work on the existence of invariant extensions in VDFEC , this will
allow us to conclude that this theory is metastable.
Asmentioned earlier, the existence ofmetastability bases inVDFEC is not as straightforward
as one might hope. The main issue is that we can only prove Proposition (2.6)when we con-
trol theLRV-algebraic closure of the parameters inside the stable part. Thuswe cannot apply
it blindly to sets of the form CΓ(dclLG

∂
(Cc)).

However, in ACVF, we have a more precise description of types over maximally complete
fields:

Proposition 5.1 ([HHM08, Remark 12.19]):
LetM ⊧ ACVF, C ⊆ M be maximally complete and algebraically closed, a ∈ K(M) be a tuple
and H ∶= Γ(dclLRV(Ca)). Then tp(a/CH) is stably dominated via rv(C(a)), where rv(x) is
seen as an element ofRVval(x) ⊂ StCH .

It follows that to prove the existence of metastability basis, we only have to study the LRV
∂ -

algebraic closure in RVeq. In Proposition (4.3), we showed that we have control over the
LRV
∂ -algebraic closure hence it suffices to prove that RV with its LRV

∂ -induced structure
eliminates imaginaries. As a matter of fact, we only need to prove elimination for the LRV

∂ -
structure induced onRVH = ⋃γ∈HRVγ where each fibre is a distinct sort.
In [Hru12], Hrushovski studies such structures. The main difference with [Hru12] is that,
here, each fibre will also be endowed with a derivation. Let us now give a precise definition
of these objects.

Definition 5.2 (Differential linear structure):
Let H be a group. We define LH,∂ to be the language with a sort RVγ for each γ ∈ H . The
sortRV0 ∶= k is equipped with the differential ring language and, for all other γ, the sortRVγ is
equipped with the language of k-vector spaces (i.e. a map +γ ∶ RV2

γ → RVγ , a constant 0γ and
maps −γ ∶ RVγ → RVγ , ⋅γ ∶ k ×RVγ → RVγ and ∂γ ∶ RVγ → RVγ ). Moreover, we ask that for
all γ and δ ∈H there is a map ⋅γ,δ ∶RVγ ×RVδ →RVγ+δ .
To avoid cluttering the notations, we usually will not write the indexes of +, 0, −, ∂ and ⋅ as they
should be clear from the context.
A differential linear structure is an LH,∂-structure such that RV0 = k is a differential field, each
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5. Metastability inVDFEC

RVγ is a one dimensional differential k-vector space and ⋅γ,ε is a bilinear map. Moreover, we ask
that:

(i) For all γ ∈ H , ⋅0,γ coincides with the scalar multiplication (equivalently, for all x ∈ RVγ ,
1 ⋅ x = x where 1 denotes the unit in k);

(ii) For all γ, ε ∈H , all x ∈RVγ and y ∈RVε, x ⋅ y = y ⋅ x;

(iii) For all γ, ε, η ∈H , all x ∈RVγ , y ∈RVε and z ∈RVη , (x ⋅ y) ⋅ z = x ⋅ (y ⋅ z);

(iv) For all γ, ε ∈H , all x ∈RVγ and y ∈RVε, x ⋅ y = 0 if and only if x = 0 or y = 0.

(v) For all γ, ε ∈H , all x ∈RVγ and y ∈RVε, ∂(x ⋅ y) = ∂(x) ⋅ y + x ⋅ ∂(y).

Let TH,∂ denote theLH,∂-theory of differential linear structures. We denote by TH,DCF0 the theory
of models of TH,∂ where k ⊧ DCF0

Remark 5.3:
1. Because all theRVγ have dimension 1, ⋅γ,ε induces a bijection betweenRVγ ⊗RVε and

RVγ+ε and ⋅−γ,γ induces a bijection betweenRV−γ and the dual ofRVγ .

2. It also follows that for all x ∈ RVγ ∖ {0} there exists (a necessarily unique) y ∈ RV−γ
such that y ⋅ x = 1. We will denote it x−1.

3. LetM be a model of VDFEC , and H ⩽Γ(M), then RVH(M) ⊧ TH,DCF0 . Moreover,
by quantifier elimination forVDFEC in the leading term language [Sca03, Corollary 5.8
and Theorem6.3],RVH(M) is stably embedded inM and a pure LH,∂-structure.

Proposition 5.4:
The theory TH,DCF0 eliminates quantifiers and k is stably embedded and a pure model ofDCF0.

Proof . The proof is the same as for Lemma (1.5), except that Claim (1.6) is not needed here.
As for the stable embeddedness and purity claim they follow from quantifier elimination. ∎

Proposition 5.5:
The theory TH,DCF0 eliminates imaginaries.

Proof . Let us first prove that TH,DCF0 is stable. LetM ⊧ TH,DCF0 , A ⊆ M . At the cost of
enlarging A, we may assume that for all γ ∈ H , RVγ(A) ≠ {0}. Then, for all γ ∈ H , RVγ is
in LH(A)-definable bijection with k ⊧ DCF0. It follows that TH,DCF0 is indeed stable. In
particular, (global) definable types are dense over any set of algebraically closed parameters.
Now, to prove the elimination of imaginaries in TH,DCF0 , by Proposition (10.2), it suffices
to show that (definable) types have real canonical bases. But, by quantifier elimination, the
canonical basis of tpLH

(c/M) is equal to the canonical basis of tpL⋆H(∂ω(c)/M)whereL
⋆
H ∶=

LH ∖ {∂γ ∶ γ ∈ H}; and this type has a real canonical basis by elimination of imaginaries in
ACF-linear structures with flags [Hru12, Lemma 5.6]. Note that, as everyRVγ is one dimen-
sional, models of TH,DCF0 trivially have flags. ∎
We can now show the existence of metastable bases in VDFEC .
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Proposition 5.6:
LetM ⊧ VDFEC , C ⊆ K(M) be a maximally complete algebraically closed differential subfield
and a ∈K(M). Then, the type tpLRV

∂
(a/CΓ(dclLRV

∂
(Ca))) is stably dominated.

Proof . LetH ∶= Γ(dclLRV
∂
(Ca)). By Proposition (5.1),

H = Q⊗Γ(⟨Ca⟩−1,∂) = Γ(dclLRV(C∂ω(a))).

By Proposition (5.1), tpLRV(∂ω(a)/CH) is stably dominated via rv(C(a)) ⊆RVH . By Propo-
sitions (4.3) and (5.5),

RVeq
H (acl

eq

LRV
∂

(CH)) =RVH(aclLRV
∂
(CH)) =RVH(aclLRV(CH)).

By Proposition (2.6), we can now conclude that tpLRV
∂
(a/CH) is stably dominated. ∎

Definable types in enrichments of ACVF

6. Types and uniform families of balls
Let L ⊇ Ldiv and T ⊇ ACVF be an L-theory that eliminates imaginaries. We assume that
T is C-minimal, i.e. every L-sort is the image of an L-definable map with domain someKn

(we say that K is dominant) and for allM ⊧ T , every L(M)-definable unary set X ⊆ K is
a Boolean combination of balls. For a more extensive introduction to C-minimal theories,
one can refer to [Cub14].
In this section, we wish to make precise the idea that in C-minimal theories, n + 1-types
can be viewed as generic types of balls parametrised by realisations of an n-type. This is an
obvious higher dimensional generalisation of the unary notion of genericity in a ball (see
[HHM06, Definition 2.3.4] or [HMR, Section 3]). To do so, we introduce a class of ∆-types
(see Definition (6.12)) for ∆ a finite set of L-formulas that will play a central role in the rest
of this text. We also show that at the cost of enlarging ∆, we may assume that all types are
of this specific form.
We take the convention that points inK are closed balls of radius +∞ andK itself is an open
ball of radius −∞.

Definition 6.1 (B[l] andB
[l]
st ):

Let B be the set of all closed balls (potentially with radius +∞), Ḃ be the set of all open balls
(potentially with radius −∞),B ∶= B ∪ Ḃ and l ∈ N>0. We defineB[l] ∶= {B ⊆ B ∶ ∣B∣ ⩽ l}. We
also defineB[l]st ∶= {B ∈ B[l] ∶ all the balls in B have the same radius and they are either all open
or all closed}.

Notation 6.2:
For allB ∈ B[l], we will be denoting by S(B) the set⋃b∈B b, i.e. the set of valued field points
in the balls of B. Because the balls can be nested, S is not an injective function. But in each
fibre of S there is a unique element with minimal cardinality — the one where there is no
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6. Types and uniform families of balls

intersection between the balls. We will denote by B this canonical section of S.

Remark 6.3:
1. As B is the disjoint union of the sets of codes for open balls and the set of codes for

closed ones, one can decide whether a given code is the code of an open or a closed ball
and henceB[l]st is indeed an interpretable set. In fact, one can also recognise if a ball b
is open or closed by looking if the set {val(x − y) ∶ x, y ∈ b} has a smallest element or
not.

2. Note that ∅ ∈ B[l]st

3. Points inB
[l]
st behave more or less like balls. For example if B1 and B2 ∈ B[l]st are such

that S(B1) ⊂ S(B2), where ⊂ denotes the strict inclusion, then either all the balls inB1

have smaller radius than the balls inB2 or if they have equal radiuses, then the balls in
B1 must be open and those in B2 must be closed, or else the inclusion would not be
strict.

Definition 6.4 (Generalised radius):
LetB ∈ B[l]st ∖{∅}. We define the generalised radius ofB (denoted grad(B)) to be the pair (γ,0)
when the balls in B are closed of radius γ and (γ,1) when they are open of radius γ. The set of
generalised radiuses, a subset of (Γ ∪ {−∞,+∞}) × {0,1}, is ordered lexicographically.
We also define the generalised radius of ∅ to be (+∞,1), i.e. greater than any generalised radius
of non emptyB ∈ B[l]st .

Proposition 6.5:
Let (Bi)i∈I ⊆ B[l]st . Assume that there exists i0 such that the balls in Bi0 have generalised radius
greater or equal than all the other Bi. In particular this holds if I is finite. Then B(⋂i S(Bi)) ⊆
Bi0 . Moreover, there exists (ij)0<j⩽l ∈ I such that⋂i S(Bi) = ⋂lj=0 S(Bij).

Proof . For any b ∈ Bi0 , if ⋂i S(Bi) ∩ b ≠ ∅ then b ⊆ ⋂i S(Bi). Hence ⋂i S(Bi) = S({b ∈ Bi0 ∶
b ∩ ⋂iBi ≠ ∅}) and B(⋂i S(Bi)) ⊆ Bi0 . Moreover, if ⋂i S(Bi) ∩ b = ∅, then there exists ib
such that b ∩ S(Bib) = ∅ and ⋂i S(Bi) can be obtained by intersecting Bi0 with the Bib of
which there are at most l. ∎

Definition 6.6 (di(B1,B2)):
Let b1 and b2 ∈ B. When b1 ∩ b2 = ∅, we define d(b1, b2) to be val(x1 − x2), where xi ∈ bi,
which does not depend on the choice of the xi. When b1 ∩ b2 ≠ ∅, we define d(b1, b2) =
min{rad(b1), rad(b2)}, where rad(b) is the radius of the ball b.
For allB1 andB2 ∈ B[l], let us defineD(B1,B2) ∶= {d(b1, b2) ∶ b1 ∈ B1 and b2 ∈ B2} and let us
list the elements inD(B1,B2) as d1 > d2 > ⋯ > dk . For all i ⩽ k, we define di(B1,B2) ∶= di.

This definition coincides with the definition in Section 8 for finite sets of points. When B1

andB2 ∈ B[l]st , we also define d0(B1,B2) ∶=min{rad(B1), rad(B2)}; it is equal to d1(B1,B2)
when S(B1)∩S(B2) ≠ ∅. Later, for coding purposes wemight want di(B1,B2) to be defined
for all i ⩽ l2 in which case, for i > k, we set di(B1,B2) = dk.
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6. Types and uniform families of balls

LetM ⊧ T , F = (Fλ)λ∈Λ be an L(M)-definable family of functionsKn → B
[l]
st (in particular

Λ is an L(M)-definable set) and∆(x, y; t) be a finite set of L-formulas where x ∈Kn, y ∈K
and t is a tuple of variables. To simplify notations, we will be denoting S(Fλ(x)) by F S

λ(x).
We defineΨ∆,F (x, y; t, λ) to be the set∆(x, y; t) ∪ {y ∈ Fλ(x) ∧ λ ∈ Λ}.
Note that if n = 0 all of what we prove in this section and in Section 7 still hold (and is in fact
much more straightforward because we are considering fixed balls instead of parametrised
balls).

Definition 6.7 (∆ adapted to F ):
We say that∆ is adapted to F if there are λ∅ and λK ∈ Λ such that for all x ∈ Kn, Fλ∅(x) = ∅
and FλK(x) = {K} and for all p ∈ S∆x,y(M), p(x, y) decides:

(i) For all◻ ∈ {=,⊆}, all λ and (µi)0⩽i<l ∈ Λ(M), whetherF S
λ(x)◻⋃0⩽i<l F

S
µi(x) (respectively

Fλ(x) ◻⋃i<l Fµi(x));

(ii) For all λ1, all λ2 and µ ∈ Λ(M), whether F S
µ(x) = F S

λ1
(x) ∩ F S

λ2
(x);

(iii) For all λ ∈ Λ(M), whether the balls in Fλ(x) are closed;

(iv) For all ◻ ∈ {=,⩽}, all λ, µ1 and µ2 ∈ Λ(M) and all i ⩽ l2, whether rad(Fλ1(x)) ◻
di(Fµ1(x), Fµ2(x)).

Note that none of the above formulas actually depend on y so what is really relevant is not p
but the closed set induced by p in SLx (M).

Until Proposition (6.15), let us assume that∆ is adapted to F and let p ∈ S∆x,y(M).

Definition 6.8 (Generic intersection):
We say that F is closed under generic intersection over p if for all λ1 and λ2 ∈ Λ(M), there exists
µ ∈ Λ(M) such that

p(x, y) ⊢ F S
µ(x) = F S

λ1
(x) ∩ F S

λ2
(x).

Let us assume, until Proposition (6.15), that F is closed under generic intersection over p.

Definition 6.9 (Generic irreducibility):
For all λ ∈ Λ(M), we say that Fλ is generically irreducible over p if for all µ ∈ Λ(M), if p(x, y) ⊢
Fµ(x) ⊆ Fλ(x) and p(x, y) ⊢ Fµ(x) ≠ ∅ then p(x, y) ⊢ Fµ(x) = Fλ(x).
We say that F is generically irreducible over p if for every λ ∈ Λ(M), Fλ is generically irreducible
over p.

Let us now show that generically irreducible families of balls behave nicely under generic
intersection.

Proposition 6.10:
Let λ1 and λ2 ∈ Λ(M) be such that Fλ1 and Fλ2 are generically irreducible over p and p(x, y)
implies that the balls in Fλ1(x) have smaller or equal generalised radius than the balls in Fλ2(x).
Then either p(x, y) ⊢ F S

λ1
(x) ∩ F S

λ2
(x) = ∅ or p(x, y) ⊢ F S

λ1
(x) ∩ F S

λ2
(x) = F S

λ1
(x).
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6. Types and uniform families of balls

Proof . Let (a, c) ⊧ p. By Proposition (6.5), we have that B(F S
λ1
(a) ∩ F S

λ2
(a)) ⊆ F S

λ1
(a). By

generic intersection, there exists µ such that p(x, y) ⊢ F S
µ(x) = F S

λ1
(x) ∩ F S

λ2
(x). Then

Fµ(a) ⊆ Fλ1(a) and hence, if Fµ(a) ≠ ∅, Fµ(a) = Fλ1(a). ∎

Corollary 6.11:
Assume p is L(M)-definable. Then Λp ∶= {λ ∈ Λ ∶ Fλ is generically irreducible over p} is L(M)-
definable and the L(M)-definable family (Fλ)λ∈Λp is closed under generic intersection over p.

Proof . The definability of Λp is a consequence of the definability of p and the closure of
(Fλ)λ∈Λp under generic intersection follows from Proposition (6.10). ∎

Until Proposition (6.15), let us also assume that F is generically irreducible over p.

Definition 6.12 ((∆, F )-generic type of E over p):
Let E ⊂ Λ(M). We define αE/p(x, y), the (∆, F )-generic type of E over p, to be the following
Ψ∆,F -type overM :

p(x, y) ∪ {y ∈ F S
λ(x) ∶ λ ∈ E}

∪ {y ∉ F S
µ(x) ∶ µ ∈ Λ(M) and for all λ ∈ E, p(x, y) ⊢ F S

µ(x) ⊂ F S
λ(x)}.

Note that most of the time, ∆ and F will be obvious from the context and it will not be an
issue that the notation αE/p mentions neither∆ nor F .

Proposition 6.13:
Let E ⊂ Λ(M) be such that αE/p is consistent, then αE/p generates a complete Ψ∆,F -type over
M .

Therefore, when it is consistent, we will identify αE/p with the type it generates.

Proof . Pick any µ ∈ Λ(M). Either there exists λ ∈ E such that p(x, y) ⊢ F S
µ(x) ∩F S

λ(x) = ∅,
in which case αE/p(x, y) ⊢ y ∉ F S

µ(x), or there exists λ ∈ E such that p(x, y) ⊢ F S
λ(x) ⊆

F S
µ(x), and then αE/p(x, y) ⊢ y ∈ F S

µ(x), or for all λ ∈ E, p(x, y) ⊢ F S
µ(x) ⊂ F S

λ(x) and
hence αE/p(x, y) ⊢ y ∉ F S

µ(x). ∎

Remark 6.14:
Any q ∈ SΨ∆,F

x,y (M) is of the form αE/p. Indeed let p ∶= q∣∆ and E = {λ ∈ Λ(M) ∶ q(x, y) ⊢
y ∈ Fλ(x)}, then, quite clearly, q = αE/p.

Although this will not be used afterwards, when y does not appear in∆, we can prove con-
sistency under some obvious hypothesis:

Proposition 6.15:
Assume that y does not appear in any of the formulas in∆ and letE ⊆ Λ(M) be such that for all
λ1 and λ2 ∈ E, p(x) ⊢ Fλ1(x) ∩ Fλ2(x) ≠ ∅. Then αE/p is consistent and generates a complete
Ψ∆,F -type overM .

Proof . Let us show consistency. Completeness then follows from Proposition (6.13). If this
type is not consistent, there exists finitely many λi ∈ E and finitely many µj ∈ Λ(M) such
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6. Types and uniform families of balls

that for all λ ∈ E, p(x) ⊢ F S
µj(x) ⊂ F

S
λ(x) and p(x) ⊢ ⋂i F

S
λi
(x) ⊆ ⋃j F S

µj(x). Replacing
⋂i F S

λi
(x) by their generic intersection, we find λ ∈ E such that p(x) ⊢ F S

λ(x) ⊆ ⋃j F
S
µj(x).

Let a ⊧ p and b be one of the balls in Fλ(a). This ball is covered by finitely many subballs
from ⋃j Fµj(a) and, as the residue field is infinite, it must be included in one of those balls.
Let us assume that b ⊆ F S

µ1(a). Then the balls of Fλ(a) must have smaller or equal gener-
alised radius than those of Fµ1(a). Hence by Proposition (6.10), F S

µ1(a)∩F
S
λ(a) = F

S
λ(a), i.e.

F S
λ(a) ⊆ F

S
µ1(a), a contradiction. ∎

Now that we have found finite sets Θ of L-formulas, namely those of the form Ψ∆,F , for
which we understand the Θ-types, let us show that any finite set of formulas with variables
inKn+1 can be decided by someΨ∆,F for well chosen∆ and F .

Proposition 6.16 (Reduction toΨ∆,F -types):
Let Θ(x, y; t) be a finite set of L-formulas where x ∈ Kn and y ∈ K. Then there exists an L-
definable family (Fλ)λ∈Λ of functionsKn → B[l] and a finite set ofL-formulas∆(x; s) such that
anyΨ∆,F -type decides all the formulas inΘ.

Proof . Let φ(x, y; t) be a formula in Θ. As T is C-minimal, for all tuples a ∈ K and c ∈
M , the set φ(a,M ; c) has a canonical representation as Swiss cheeses, i.e. it is of the form
⋃i(bi ∖ bi,j)where the bi and bi,j are algebraic over ac. In particular, there exists l ∈N>0 and
L(c)-definable functions Hφ,c ∶ Kn → B[l] and Gφ,c ∶ Kn → B[l] such thatM ⊧ ∀y (y ∈
HS
φ,c(a) ∖GS

φ,c(a) ⇐⇒ φ(a, y; c)). By compactness, we can find finitely many L-definable
families (Hi,φ,c)c∈M and (Gi,φ,c)c∈M of functionsKn → B[li,φ] such that for any choice of c
and a there is an i such that φ(a, y; c) ⇐⇒ y ∈ HS

i,φ,c(a) ∖GS
i,φ,c(a). Choosing l to be the

maximum of the li,φ and using any coding trick, one can find an L-definable family (Fλ)λ∈Λ
of functions Kn → B[l] such that for any φ ∈ Θ, i and c we find µ and ν ∈ Λ such that
Hi,φ,c = Fµ andGi,φ,c = Fν .
Now let ∆(x; t, µ, ν) = {∀y (φ(x, y; t) ⇐⇒ y ∈ F S

µ(x) ∖ F S
ν (x)) ∶ φ ∈ Θ}. Then for any

p ∈ SΨ∆,F
x,y (M), φ ∈ Θ and tuple c ∈ M , there exists µ and ν ∈ Λ(M) such that p(x, y) ⊢

φ(x, y; c) ⇐⇒ y ∈ F S
µ(x)∖F S

ν (x) and either p(x, y) ⊢ y ∈ F S
µ(x)∧ y ∉ F S

ν (x) in which case
p(x, y) ⊢ φ(x, y; c) or not, in which case p(x, y) ⊢ ¬φ(x, y; c). ∎
And now let us show that we can refine any ∆ and F into a family verifying all previous
hypotheses.

Proposition 6.17 (Reduction toB[l]st ):
Let A ⊆M and (Fλ)λ∈Λ be an L(A)-definable family of functionsKn → B[l]. Then there exists
anL(A)-definable family (Gω)ω∈Ω of functionsKn → B

[l]
st such that for allλ there exist (ωi)0⩽i<l

such that Fλ(x) = ⋃iGωi(x) and for all ω there exists λ such thatGω(x) ⊆ Fλ(x).

Proof . For all λ ∈ Λ, 0 < i ⩽ l and j = 0,1, we defineGλ,i,j(x) ∶= {b ∈ Fλ(x) ∶ b is open if j = 0,
closed otherwise and b has the i-th smallest radius among the balls inFλ(x)}. As i and j only
take finitely many values, G = (Gω)ω∈Ω can indeed be viewed as an L(A)-definable family.
Then for all x,Gω(x) ∈ B[l]st and for all x and λ,Gλ,i,j(x) ⊆ Fλ(x) and Fλ(x) = ⋃i,j Gλ,i,j(x)
and at most l of them are non empty. ∎
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6. Types and uniform families of balls

Definition 6.18 (Generic complement):
We say that F is closed under generic complement over p if for all λ and µ ∈ Λ(M) such that
p(x) ⊢ Fµ(x) ⊆ Fλ(x), there exists κ ∈ Λ(M) such that

p(x) ⊢ Fλ(x) = Fµ(x) ⊍ Fκ(x).

Note that p can indeed decide any such statement because it is equivalent toFλ(x) = Fµ(x)∪
Fκ(x) and F S

µ(x) ∩ F S
κ (x) = ∅.

Lemma6.19:
Let F = (Fλ)λ∈Λ be an L(M)-definable family of functions Kn → B

[l]
st , ∆(x; t) a finite set of

L-formulas adapted to F and p ∈ S∆x (M). Assume that F is closed under generic complement
over p. Let Λp ∶= {λ ∈ Λ ∶ Fλ is generically irreducible over p}, then for all λ ∈ Λ(M) there exists
(λi)0⩽i<l ∈ Λp(M) such that p(x) ⊢ Fλ(x) = ⋃i Fλi(x).

Proof . Let x ⊧ p. We work by induction on ∣Fλ(x)∣. If there exists µ ∈ Λ(M) such that
Fµ(x) ⊂ Fλ(x) andFµ(x) ≠ ∅, then there exists κ ∈ Λ(M) such thatFλ(x) = Fµ(x)⊍Fκ(x).
We now apply the induction hypothesis to Fµ(x) and Fκ(x). Finally, because ∣Fλ(x)∣ ⩽ l, we
cannot cut it in more than l distinct pieces. ∎

Proposition 6.20 (Reduction to irreducible families):
LetA ⊆M , (Fλ)λ∈Λ be anL(A)-definable family of functionsKn → B

[l]
st and∆(x; t) a finite set

ofL-formulas. Then, there exists anL(A)-definable family (Gω)ω∈Ω of functionsKn → B
[l]
st and

a finite set ofL-formulasΘ(x; t, s) ⊇∆(x; t) such thatΘ is adapted toG and for any p ∈ SΘx (M):

(i) G is closed under generic intersection and complement over p;

(ii) For all ω ∈ Ω(M) there exists λ ∈ Λ(M) such that p(x) ⊢ Gω(x) ⊆ Fλ(x);

(iii) For all λ ∈ Λ(M), there exists ω ∈ Ω(M) such that p(x) ⊢ Fλ(x) = Gω(x);

(iv) For all ω ∈ Ω(M), there exists (ωi)0⩽i<l ∈ Ωp(M) such that p(x) ⊢ Gω(x) = ⋃iGωi(x);

where Ωp ∶= {ω ∈ Ω ∶ Gω is generically irreducible over p}.

Proof . Adding them if necessary, we may assume that F contains the constant functions
equal to ∅ and {K} respectively. For all λ ∈ Λl+1, let Hλ(x) ∶= B(⋂0⩽i⩽l F

S
λi
(x)). It follows

from Proposition (6.5), that H = (Hλ)λ∈Λl+1 is well-defined and that 6.20.(ii) holds for H .
Adding finitely many formulas to∆(x; t), we obtain Ξ(x; s) which is adapted to H . Let p ∈
SΞx (M). Proposition (6.5) also implies that for a given x, the intersection of any number of
F S
λ(x) is given by the intersection of l + 1 of them and hence is an instance of H . As Ξ is

adapted toH , we have proved thatH is closed under generic intersection over any Ξ-type p.
Condition 6.20.(iii) also clearly holds forH .
Let B ∈ B[l]st , we define B1 to be B and B0 to be its complement (in B). As previously, to
simplify notations, for ε ∈ {0,1}, we will writeHε

µ(x) for (Hµ(x))ε.

Claim6.21: Let B ∈ B[l]st . Any Boolean combination of sets (Ci)i⩽r ⊆ B (where we take the
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7. Quantifiable types

complement inB, i.e. C0 ∩B) lives inB[l]st and can be written as⋂j<l⋃k<l(C
εj,k
j,k ∩B) where the

Cj,k are taken among the Ci and εj,k ∈ {0,1}.

Proof . Such a Boolean combination lives in B
[l]
st because it is a subset of B. The fact that

it can be written as ⋂j ⋃k(C
εj,k
j,k ∩ B) is just the existence of the conjunctive normal form.

Moreover, as in Proposition (6.5), any intersection ⋂kC
εj,k
j,k ∩ B for fixed j can be rewritten

as the intersection of at most l of then (for each ball from B missing from the intersection,
choose a k such that this ball is not inCεj,kj,k ∩B). Similarly, the union can be rewritten as the
union of at most l of them by choosing, for every b ∈ B which appears in the union a j such
that b appears in ⋃k(C

εj,k
j,k ∩B). ⧫

For all ν ∈ Λl+1, µ ∈ (Λl=1)l2 and ε ∈ 2l
2
, we define Gν,µ,ε(x) = ⋂i<l⋃j<l((H

εi,j
µi,j(x)) ∩

Hν(x)) whenever all the Hµi,j ⊆ Hν(x) and Gν,µ,ε(x) = Hν(x) otherwise. Adding some
more formulas to Ξ, we obtain a finite set of formulas Θ(x; t, s, u) which is adapted toG. It
is clear that 6.20.(ii) and 6.20.(iii) still hold. Furthermore,

GS
ν,µ,ε(x) ∩G

S
σ,τ ,η(x) =⋂

i,k
⋃
j,r

(S(Hεi,j
µi,j(x)) ∩ S(Hηk,r

τk,r (x)) ∩H
S
ν (x) ∩HS

σ(x)).

AsH is closed under generic intersection there exists ρ such thatHS
ρ(x) = HS

ν (x) ∩HS
σ(x).

By Proposition (6.5), we have both B(S(Hεi,j
µi,j(x)) ∩HS

ρ(x)) ⊆ Hρ(x) and B(S(Hηk,r
τk,r (x)) ∩

HS
ρ(x)) ⊆ Hρ(x) and we can conclude by Claim (6.21) that G is also closed under generic

intersection over p. Similarly we show that wheneverGν,µ,ε(x) ⊆ Gσ,τ ,η(x) thenG0
ν,µ,ε(x)∩

Gσ,τ ,η(x) is also an instance ofG, i.e. G is closed under generic complement over p and hence
6.20.(iv) is proved in Lemma (6.19). ∎

7. Quantifiable types
Let us begin with the example that motivates the definition of quantifiable types. Let b be an
open ball in some model ofACVF and αb be its generic type — the type of points which are
in b but avoid all its strict subballs. Let X be any set definable in an enrichment of ACVF.
Then all realisations of αb are in X , i.e. αb ⊢ x ∈ X , if and only if there exists b′ ∈ B such
that b′ ⊂ b and b ∖ b′ ⊆ X . Thus, although for most definable setsX , bothX and its comple-
ment are consistent with αb, if it happens that all realisations of αb are inX , then there is a
formulawhich says so. We have just shown thatαb is quantifiable as a partial L̃-type (seeDef-
inition (7.1)) for any enrichment L̃ of ACVF. If (bi)i∈I is a strict chain of balls, i.e. P ∶= ⋂i bi
is not a ball, the exact same proof shows that the generic type of P is also quantifiable as a
partial L̃-type.
If b is a closed ball, the situation is somewhat more complicated because αb(x) ⊢ x ∈ X if
and only if there exists finitely many maximal open subballs (bi)0⩽i<k of b such that for all
x ∈ K, x ∈ b ∖⋃i bi implies x ∈ X . Because the set of maximal open subballs of a given ball
is internal to the residue field, to obtain that αb is quantifiable (as a partial L̃-type), we need
to know that the L̃-induced structure on k eliminates ∃∞ to bound the number of maximal
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7. Quantifiable types

open subballs we have to remove. Recall that an L-theory T eliminates ∃∞ if for every L-
formula φ(x; s) there is an n ∈N such that for allM ⊧ T andm ∈M , if ∣φ(M ;m)∣ <∞ then
∣φ(M ;m)∣ ⩽ n.
The notion of quantifiable type will play a fundamental role in Section 9. The main result of
this section is Corollary (7.12) which says that, under some more hypothesis on the families
of parametrised balls we consider, the types of the form αE/p (see Definition (6.12)) are quan-
tifiable if E is definable and p is quantifiable. The proof is essentially a parametrised version
of the argument above. We then prove that we can refine families of parametrised balls so
that they have the necessary properties.
Let L be a language andM an L-structure.

Definition 7.1 (Quantifiable partial L-types):
Let p be a partial L(M)-type. We say that p is quantifiable if for all L-formulas φ(x; s) there
exists an L(M)-formula θ(s) such that for all tuplesm ∈M ,

M ⊧ θ(m) if and only if p(x) ⊢ φ(x;m).

Let A ⊆ M . If we want to specify that θ is an L(A)-formula, we will say that p is L(A)-
quantifiable.

Remark 7.2:
1. A type p(x) is quantifiable if we can quantifiy universally and existentially over realisa-

tions of p, that is for every formula φ(x), “for all x ⊧ p, φ(x) holds” and “there exists
an x ⊧ p such that φ(x) holds” are both first order formulas. Hence the name.

2. The notion of quantifiability of a type generalises definability of types to partial types.
If p is a complete L-type then it is definable if and only if it is quantifiable.

3. In fact, there are various possible ways in which to extend definability to partial types
depending on two things: dowewant the defining scheme to be open, closed or clopen
(i.e. ind-definable, pro-definable or definable) and do we want the closure under im-
plication of the partial type also to be definable? Quantifiable partial types correspond
to the case where the closure under implication of the type has a definable defining
scheme. Although these different notions have often been indistinctively called defin-
ability, we feel that it is better to try and distinguish them and quantifiability seems to
be a notion that naturally concerns the closure under implication of a partial type.

4. The partial types we will consider here are (complete)∆-types for some set∆(x; t) of
L-formulas. Note that if p ∈ S∆x (M) is L(A)-quantifiable, it is in particular L(A)-
definable as a ∆-type, i.e. for any formula φ(x; t) ∈ ∆, there is an L(A)-formula
dpxφ(x; t) = θ(t) such that for all tuples m ∈ M , φ(x;m) ∈ p if and only if M ⊧
dpxφ(x;m). In particular, p has a canonical extension p∣N to any N ≽ M defined us-
ing the same defining scheme, i.e. for all φ(x; t) ∈ ∆ and tuplem ∈ N , φ(x;m) ∈ p∣N
if and only ifN ⊧ dpxφ(x;m)

Let us now prove some results on quantifiable types which will not be needed afterwards but
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7. Quantifiable types

which shed some light on this notion.

Proposition 7.3:
Let∆(x; t) be a set ofL-formulas and p ∈ S∆x (M) be quantifiable. Assume thatM is (ℵ0+ ∣∆∣)+-
saturated, then for allN ≽M , p∣N is quantifiable, using the same formulas.

Proof . Let φ(x; s) be any L-formula. By quantifiability of p, there exists θ(s) such that for
all tuplesm ∈M ,M ⊧ θ(m) if and only if p(x) ⊢ φ(x;m), which in turn is equivalent to the
existence of a finite number of ψi(x;mi) ∈ p such thatM ⊧ ∀x ⋀iψi(x;mi)→ φ(x;m). Let
dpxψi(x; ti) be the L(M)-formula in the defining scheme of p relative to ψi, we have:

θ(s)→ ⋁
ψ∈∆

∃t (⋀
i<∣ψ∣

dpxψi(x; ti) ∧ (∀x ⋀
i<∣ψ∣

ψi(x; ti)→ φ(x; s))).

Because there are at most ℵ0 + ∣∆∣ parameters involved in the formulas above andM is (ℵ0 +
∣∆∣)+-saturated, there exists finitely many tuples (ψj)0⩽j<k such that

θ(s)→ ⋁
0⩽j<k

∃t ( ⋀
i<∣ψj ∣

dpxψj,i(x; tj,i) ∧ (∀x ⋀
i<∣ψj ∣

ψj,i(x; tj,i)→ φ(x; s))).

It follows that in anyN ≽M , the same implication holds and hence for allm ∈ N ,N ⊧ θ(m)
implies that p∣N ⊢ φ(x;m).
Now assume that there existsm ∈ N such that N ⊧ ¬θ(m) but p∣N ⊢ φ(x;m). Then there
exists (ψi(s;mi))0⩽i<k ∈ p∣N such thatN ⊧ ∀x ⋀ψi(x;mi)→ φ(x;m). Therefore

N ⊧ ∃s¬θ(s) ∧ ∃t (⋀
i

dpxφi(x; ti) ∧ (∀x ⋀ψi(x;mi)→ φ(x;m))).

BecauseN ≽M , this also holds inM , contradicting the quantifiability of p. ∎

Remark 7.4:
The saturation hypothesis is not superfluous. Indeed, letL ∶= E,M be theL-structurewhere
E is an equivalence relation with exactly one class of every finite cardinality. Let ∆(x; t) ∶=
{x = t} and p ∶= {x ≠ m ∶ m ∈ M}. Then by quantifier elimination and the fact that
{m ∈ M ∶ p(x) ⊢ xEm} = ∅ is definable, p is quantifiable. But for all N ≽ M , {n ∈ N ∶
p∣N(x) ⊢ ¬xEn} =M is not definable ifN ≠M .

Proposition 7.5:
LetA ⊆M . AssumeM is ∣A∣+-saturated and strongly ∣A∣+-homogeneous. If p is quantifiable and
Aut(M/A)-invariant, then it is L(A)-quantifiable.

Recall that a structureM is stronglyκ-homogeneous if every partial elementary isomorphism
whose domain has cardinality < κ can be extended to an automorphism ofM .

Proof . Letφ(x; s)be anyL-formula and θ(s)be theL-formula such that for all tuplesm ∈M ,
M ⊧ θ(m) if and only if p(x) ⊢ φ(x;m). Let σ ∈ Aut(M/A) and m ∈ M be such that
M ⊧ θ(m). Then p = σ(p) ⊢ θ(x;σ(m)) and henceM ⊧ θ(σ(m)), i.e. θ(M) is stabilised
globally by Aut(M/A). ∎
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As previously, let now L ⊇ Ldiv, T ⊇ ACVF be a C-minimal L-theory which eliminates
imaginaries,R be the set of L-sorts, L̃ be an enrichment of L, T̃ an L̃-theory containing T ,
M̃ ⊧ T̃ andM ∶= M̃ ∣L. We will also be assuming that k is stably embedded in T̃ and that the
induced theory on k eliminates ∃∞. Until the end of the section, quantifiability of types will
refer to quantifiability as partial L̃-types.
Let Ã ⊆ M̃ , A ∶= R(Ã), F = (Fλ)λ∈Λ be an L(A)-definable family of functions Kn → B

[l]
st

and∆(x, y; t) a finite set of L-formulas where x ∈ Kn and y ∈ K, p ∈ S∆x,y(M) be definable.
Assume that∆ is adapted to F and that F is closed under generic intersection over p and is
generically irreducible over p.

Definition 7.6 (Generic covering property):
We say that F has the generic covering property over p if for any E ⊆ Λ(M) and any finite set
(λi)0⩽i<k ∈ Λ(M) such that for all µ ∈ E, p(x, y) ⊢ F S

λi
(x) ⊂ F S

µ(x), there exists (κj)0⩽j<l ∈
Λ(M) such that:

(i) For all j, p(x, y) ⊢ “the balls in Fκj(x) are closed”;

(ii) For all µ ∈ E and j, p(x, y) ⊢ F S
κj(x) ⊆ F

S
µ(x);

(iii) For all i, p(x, y) ⊢ F S
λi
(x) ⊆ ⋃j F S

κj(x);

Note that ifE = {λ0} and p(x, y) ⊢ “the balls inFλ0(x) are closed”, then the generic covering
property holds trivially as it suffices to take all κj = λ0. It will only be interesting if p(x, y) ⊢
“the balls in Fλ0(x) are open” or E does not have a smallest element over p, i.e. for all λ ∈ E
there exists µ ∈ E such that p(x, y) ⊢ F S

µ(x) ⊂ F S
λ(x).

Let E ⊆ Λ be L̃(Ã)-definable.

Proposition 7.7:
Assume that one of the following holds:

(i) E(M̃) does not have a smallest element over p;

(ii) there is a λ0 ∈ E(M̃) such that for all λ ∈ E(M̃) , p(x, y) ⊢ F S
λ0
(x) ⊆ F S

λ(x) and p(x, y) ⊢
“the balls in Fλ0(x) are open”.

Assume also that p is L̃(Ã)-quantifiable and F has the generic covering property over p, then
αE(M̃)/p is L̃(Ã)-quantifiable.

Proof . Let φ(x, y; t) be an L̃-formula. Then, for all tuplesm ∈ M̃ such that αE(M̃)/p(x, y) ⊢
φ(x, y;m), there exists λ0 ∈ E(M̃) and a finite number of (λi)0<i<k ∈ Λ(M) such that for all
µ ∈ E(M̃) and i > 0, p(x, y) ⊢ F S

λi
(x) ⊂ F S

µ(x) and p(x, y) ⊢ y ∈ F S
λ0
(x) ∖ ⋃i>0 F S

λi
(x) →

φ(x, y;m). By the generic covering property, we can find (κj)0⩽j<l ∈ Λ(M) such that, for all
j, p(x, y) ⊢ “the balls inFκj(x) are closed”, for all µ ∈ E(M̃) and j, p(x, y) ⊢ F S

κj(x) ⊆ F
S
µ(x)

and for all i > 0, p(x, y) ⊢ F S
λi
(x) ⊆ ⋃j F S

κj(x).
If E(M̃) does not have a smallest element over p, for all µ ∈ E(M̃) and j, we have that
p(x, y) ⊢ F S

κj(x) ⊂ F
S
µ(x). If E(M̃) has a smallest element, because the balls in Fλ0(x)
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are open and those in Fκi(x) are closed, we also have p(x, y) ⊢ F S
κj(x) ⊂ F

S
λ0
(x). As the

⋃j F S
κj(x) covers⋃i F

S
λi
(x), it follows that:

p(x, y) ⊢ y ∈ F S
λ0
(x) ∖ ⋃

0⩽j<l
F S
κj(x)→ φ(x, y;m).

By L̃(Ã)-quantifiability of p there exists an L̃(Ã)-formula δ1(κ,µ) equivalent to p(x, y) ⊢
F S
κ(x) ⊂ F S

µ(x) and an L̃(Ã)-formula δ2(λ0, κ,m) equivalent to p(x, y) ⊢ y ∈ F S
λ0
(x) ∖

⋃j<l F S
κj(x) → φ(x, y;m). We have just shown that, for all tuples m ∈ M̃ , αE(M̃)/p(x, y) ⊢

φ(x, y;m) implies that:

M̃ ⊧ ∃λ0 ∈ E ∃κ ∈ Λ ⋀
j<l
∀µ ∈ E δ1(κj , µ) ∧ δ2(λ0, κ,m).

The converse is trivial. ∎

Definition 7.8 (Maximal open subball property):
We say thatF has the maximal open subball property over p if for all λ1 and λ2 ∈ Λ(M) such that
p(x, y) ⊢ F S

λ1
(x) ⊂ F S

λ2
(x), there exists (µi)0⩽i<l ∈ Λ(M) such that:

(i) For all i, p(x, y) ⊢ “the balls in Fµi(x) are open”;

(ii) For all i, p(x, y) ⊢ rad(Fλ2(x)) = rad(Fµi(x)).

(iii) p(x, y) ⊢ F S
λ1
(x) ⊆ ⋃i F S

µi(x);

Note thatwhen the balls inFλ2(x) are open, it suffices to take allµi = λ2. Hence this property
is only useful when the balls in Fλ2(x) are closed.

Proposition 7.9:
Assume that there is a λ0 ∈ E(M̃) such that for all λ ∈ E(M̃), p(x, y) ⊢ F S

λ0
(x) ⊆ F S

λ(x) and
that p(x, y) ⊢ “the balls in Fλ0(x) are closed”. Assume also that p is L̃(Ã)-quantifiable and that
F has the maximal open subball property over p, then the type αE(M̃)/p is L̃(Ã)-quantifiable.

Proof . If the balls in Fλ0(x) have radius +∞, they are singletons. By irreducibility, Fλ0(x)
does not have any strict subset of the form Fλ(x) and αE(M̃)/p ⊢ φ(x, y;m) if and only if

p(x, y) ⊢ y ∈ F S
λ0
(x)→ φ(x, y;m). We can conclude immediately by L̃(Ã)-quantifiable of p.

We may now assume that the balls in Fλ0(x) have a radius different from +∞. Let us begin
with some preliminary results.

Claim7.10: Let (Yω,x)ω∈Ω,x∈Kn be a definable family of sets such that for allω andx,Yω,x ⊆ {b ∶ b
is a maximal open subball of some b′ ∈ Fλ0(x)}. Then there exists k ∈ N such that for all ω ∈ Ω
and x ∈Kn, either ∣Yω,x∣ ⩾∞ or ∣Yω,x∣ ⩽ k.

Let Bγ(a) denote the closed ball of radius γ around a.

Proof . Let Y1,ω,x,a,c ∶= {b ∈ B ∶ b ∈ Yω,x, b is a maximal open subball of Bval(c)(a)}. Note
that for any maximal open subball b of Bval(c)(a), the set {(x − a)/c ∶ x ∈ b} is a coset ofM
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in O, i.e. an element of k which we denote resa,c(b). The function resa,c is one to one. Let
Y2,ω,x,a,c ∶= resa,c(Y1,ω,x,a,c).
Then Y2 = (Y2,ω,x,a,c)ω,x,a,c is an L̃(M̃)-definable family of subsets of k and hence by stable
embeddedness of k in T (as well as compactness and some coding) there exists an L̃(k(M̃))-
definable family (Xd)d∈D where D ⊆ kr for some r such that for all (ω,x, a, c), there exists
d ∈ D such that Y2,ω,x,a,c = Xd. Moreover as the theory induced on k eliminates ∃∞, there
exists s ∈ N such that for all d ∈ D, either ∣Xd∣ ⩾ ∞ or ∣Xd∣ ⩽ s. It follows that for all
(ω,x, a, c), either ∣Y1,ω,x,a,c∣ ⩾∞ or ∣Y1,ω,x,a,c∣ ⩽ s. But, as there are at most l balls in Fλ0(x)
and that each of these balls contains infinitely or at most smaximal open subballs from Yω,x,
we have that for all x and ω, ∣Yω,x∣ ⩾∞ or ∣Yω,x∣ ⩽ ls. ⧫

Let Xm ∶= {λ ∈ Λ ∶ p(x, y) ⊬ y ∈ F S
λ(x) → φ(x, y;m) and p(x, y) ⊢ “the balls in Fλ(x)

are maximal open subballs of the balls in Fλ0(x)” }. By quantifiability of p,Xm is an L̃(M̃)-
definable family. Let Ym,x ∶= {b ∶ ∃λ ∈ Xm, b ∈ Fλ(x)}. Then by Claim (7.10), there exists k
such that for allm and x, ∣Ym,x∣ <∞ implies ∣Ym,x∣ ⩽ k.
Let us now assume that αE(M̃)/p(x, y) ⊢ φ(x, y;m). Then there exists a finite number
of (µi)0⩽i<r ∈ Λ(M) such that p(x, y) ⊢ F S

µi(x) ⊂ F
S
λ0
(x) and p(x, y) ⊢ y ∈ F S

λ0
(x) ∖

⋃i F S
µi(x)→ φ(x, y;m). AsF has themaximal open subball property over p and is closed un-

der generic intersection, we may assume that p(x, y) ⊢ “the balls in the Fµi(x) are maximal
open subballs of the balls in Fλ0(x)”.

Claim7.11: Xm(M) ⊆ {λ ∈ Λ(M) ∶ for some i, p(x, y) ⊢ Fλ(x) = Fµi(x)}. In particular
∣Ym,x∣ <∞ and hence ∣Ym,x∣ ⩽ k.

Proof . Let λ ∈Xm. There exists x, y ⊧ p such that y ∈ F S
λ(x), the balls in Fλ(x) are maximal

open subballs of the balls inFλ0(x) and⊧ ¬φ(x, y;m). Hence y ∈ ⋃i F S
µi(x). Wemay assume

that y ∈ F S
µ0(x) and hence that F S

µ0(x) ∩ F
S
λ(x) ≠ ∅. By Proposition (6.10), we must have

F S
µ0(x)∩F

S
λ(x) = F

S
κ (x) for both κ = λ and κ = µ0, i.e. Fλ(x) = Fµ0(x) and because such an

equality is decided by p this holds for all realisations of p.
It follows that Ym,x ⊆ ⋃i Fµi(x) and ∣Ym,x∣ ⩽ rl <∞. ⧫

Thus for all (x, y) ⊧ p, only k balls among the ones in ⋃i Fµi(x) cover φ(x,F S
λ0
(x);m). By

similar arguments as in Proposition (6.5), wemay assume that for all i, Fµi(x) ⊆ ⋃kj=1 Fµj(x).
It follows that:

p(x, y) ⊢
k

⋀
j=1

F S
µj(x) ⊂ F

S
λ0
(x) ∧ (y ∈ F S

λ0
(x) ∖

k

⋃
i=1
F S
µi(x)→ φ(x, y;m))

where k does not depend onm. We can now conclude as in Proposition (7.7). ∎

Corollary 7.12:
If p is L̃(Ã)-quantifiable and F has the generic covering property and the maximal open subball
property over p, then αE(M̃)/p is L̃(Ã)-quantifiable.

Proof . This follows immediately from Propositions (7.7) and (7.9) and the fact that either
E(M̃) is non empty and has no smallest element or it has a smallest element which consists
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of open balls or it has a smallest element which consists of closed balls or it is empty in which
case we could also take E to consist of all the λ ∈ Λ such that Fλ is constant equal toK. ∎

Let us conclude this section by showing that, as previously, we can find families of balls ver-
ifying all the necessary hypotheses. But because both the generic covering property and the
maximal open subball property are instances of, more generally, being able to find large balls
in the family, let us first consider the following definition. Recall that di(B1,B2) is the i-th
distance between balls ofB1 and balls ofB2 (see Definition (6.6))

Definition 7.13 (Generic large ball property):
We say that F has the generic large ball property over p if for all λ1 and λ2 ∈ Λ(M) and i ∈ N,
there exists (µj)0⩽j<l ∈ Λ(M) such that:

(i) For all j, p(x, y) ⊢ “the balls in Fµj(x) are closed”;

(ii) For all j, p(x, y) ⊢ rad(Fµj(x)) = di(Fλ1(x), Fλ2(x)).

(iii) p(x, y) ⊢ F S
λ1
(x) ⊆ ⋃j F S

µj(x);

and, if p(x, y) ⊢ “the balls in Fλ1(x) are open” or p(x, y) ⊢ rad(Fλ1(x)) < di(Fλ1(x), Fλ2(x)),
there exists (ρj)j<l ∈ Λ(M) such that:

(i) For all j, p(x, y) ⊢ “the balls in Fρj(x) are open”;

(ii) For all j, p(x, y) ⊢ rad(Fρj(x)) = di(Fλ1(x), Fλ2(x)).

(iii) p(x, y) ⊢ F S
λ1
(x) ⊆ ⋃j F S

ρj(x);

Definition 7.14 (Good representation):
Let ∆(x, y; t) and Θ(x, y; s) be two finite sets of L-formulas where x ∈ Kn and (Fλ)λ∈Λ and
(Gω)ω∈Ω be two L-definable families of functions Kn → B

[l]
st . We say that (Θ,G, x) is a good

representation of (∆, F, x) if for all L(M)-definable p ∈ SΘx (M):

(i) Θ is adapted toG;

(ii) (Gω)ω∈Ωp is closed under generic intersection over p;

(iii) (Gω)ω∈Ωp has the generic large ball property over p;

(iv) p decides all formulas in∆;

(v) For all λ ∈ Λ(M), there exists a finite number of (ωi)0⩽i<l ∈ Ωp(M) such that p(x, y) ⊢
Fλ(x) = ⋃iGωi(x).

where Ωp ∶= {ω ∈ Ω ∶ Gω is generically irreducible over p}.

If we only want to say that 7.14.(i) to 7.14.(iii) hold we will say that (Θ,G, x) is a good repre-
sentation.
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7. Quantifiable types

Proposition 7.15 (Existence of good representations):
Let (Fλ)λ∈Λ be any L-definable family of functions Kn → B

[l]
st and ∆(x; t) any finite set of L-

formulas where x ∈Kn. Then, there exists a good representation (Ψ,G, x) of (∆, F, x).

Proof . Let us begin with some lemmas.

Lemma7.16:
There exists (Hρ)ρ∈P an L-definable family of functions Kn → B

[l]
st and Ξ(x; t, s) ⊇ ∆(x; t) a

finite set of L-formulas adapted to H such that H has the generic large ball property over any
Ξ-type and for all λ ∈ Λ, there exists ρ ∈ P such thatHρ = Fλ.

Proof . For all λ, µ and η ∈ Λ and i ⩽ l2, defineHλ,µ,η,i,1(x) to be the closed balls with radius
min{di(Fµ(x), Fη(x)), rad(Fλ(x))} around the balls inFλ(x). If the balls inFλ(x) are open
or if they are closed of radius strictly smaller than di(Fµ(x), Fη(x)), defineHλ,µ,η,i,0(x) to be
the set open balls with radius di(Fµ(x), Fη(x)) around the balls inFλ(x). Otherwise, define
Hλ,µ,η,i,0(x) to be the closed balls with radius min{di(Fµ(x), Fη(x)), rad(Fλ(x))} around
the balls in Fλ(x). By usual coding tricks, we may assume thatH is an L-definable family of
functions. Adding finitely many formulas to ∆ we obtain Ξ(x; t, s) which is adapted to H .
Let p ∈ SΞx (M) and x ⊧ p.
Let us first show the closed ball case of the generic large ball property. For all λk, µk and ηk ∈
Λ(M) and ik and jk ∈N for k ∈ {1,2} and r ∈N, d ∶= dr(Hλ1,µ1,η1,i1,j1(x),Hλ2,µ2,η2,i2,j2(x))
is either the radius of the balls inHλk,µk,ηk,ik,jk(x), i.e. dik(Fµk(x), Fηk(x)) or rad(Fλk(x)),
or the distance between two disjoint balls from theHλk,µk,ηk,ik,jk(x) in which case it is also
the distance between some disjoint balls in the Fλk(x). If d = dik(Fµk(x), Fηk(x)), it is easy
to check thatHλ1,ηk,µk,ik,1 has all the suitable properties; and that this one instance suffices.
Otherwise there exists somem such thatHλ1,λ1,λ2,m,1(x) is suitable.
The same reasoning applies to the open ball case (the extra conditions under which we have
to work are just here to ensure that the balls in Fλ1(x) are indeed smaller than those we are
trying to build around them). ⧫

Lemma7.17:
Assume that F has the generic large ball property over any ∆-type. Let (Gω)ω∈Ω be any L(M)-
definable family of functions Kn → B

[l]
st and Θ(x; s) be any finite set of L-formulas adapted to

G such that for all p ∈ SΘx (M), we have:

(i) For all ω ∈ Ω(M), there exists λ ∈ Λ(M) such that p(x) ⊢ Gω(x) ⊆ Fλ(x);

(ii) For all λ ∈ Λ(M), there exists (ωi)0⩽i<l ∈ Ω(M) such that p(x) ⊢ Fλ(x) = ⋃iGωi(x).

ThenG also has the generic large ball property over anyΘ-type.

Proof . Let ω1 and ω2 ∈ Ω(M), i ∈ N>0 and x ⊧ p. Then there exists λ1 and λ2 ∈ Λ(M)
such that Gωk

(x) ⊆ Fλk(x). Then di(Gω1(x),Gω2(x)) is either the radius of one of the
balls involved and hence is the radius of one of Fλk(x) or the distance between a ball in
Gω1(x) and a ball in Gω2(x), i.e. the distance between a ball in Fλ1(x) and one in Fλ2(x).
In both cases, the large closed ball property in F allows us to find (µj)0⩽j<l ∈ Λ(M) such
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7. Quantifiable types

that GS
ω1
(x) ⊆ F S

λ1
(x) ⊆ ⋃j F S

µj(x), for all j, the balls in Fµj(x) are closed and their radius
is di(Gω1(x),Gω2(x)). But, by hypothesis there are (ρj,k)0⩽k<l ∈ Ω(M) such that Fµj(x) =
⋃kGρj,k(x). By picking one ρj,k per ball inGω1(x), we see that l of them are enough to cover
Gω1(x) and we are done. The open ball case is proved similarly as the extra conditions hold
forGω1 andGω2 if and only if they hold for Fλ1 and Fλ2 . ⧫

Adding them if we have to, wemay assume that there is an instance of F constant equal to∅
and another constant one equal to {K}. Let (Hρ)ρ∈P and Ξ be as in Lemma (7.16), (Gω)ω∈Ω
and Θ(x;u) be as given by Proposition (6.20) applied to H . Let p ∈ SΘx (M). Then Condi-
tions 7.14.(i), 7.14.(iv) and 7.14.(v) hold. Condition 7.14.(ii) also holds, by Corollary (6.11), and
by Lemma (7.17) applied to (Gω)ω∈Ωp , 7.14.(iii) also holds. ∎

Proposition 7.18:
Let (∆(x; t), (Fλ)λ∈Λ, x) be a good representation and p ∈ S∆x (M) be L(M)-definable. Then
Fp ∶= (Fλ)λ∈Λp has the generic covering property and the maximal open subball property over p,
where Λp ∶= {λ ∈ Λ ∶ Fλ is generically irreducible over p}

Proof . Let x ⊧ p, λ1 and λ2 ∈ Λp(M) be such that F S
λ1
(x) ⊂ F S

λ2
(x). Then by the generic

large ball property (because F S
λ1
(x) ⊂ F S

λ2
(x), the necessary conditions hold), there exists

µj ∈ Λp(M) such that the balls in Fµj(x) are open of radius rad(Fλ2(x)) and F S
λ1
(x) ⊆

⋃j F S
µj(x). We have proved the maximal open subball property.

Let now E ⊆ Λp(M) and (λi)0⩽i<k ∈ Λp(M) be such that for all µ ∈ E, F S
λi
(x) ⊂ F S

µ(x).
For any two µ1 and µ2 ∈ E, if the balls in Fµ1(x) are smaller than the balls in Fµ2(x), by
irreducibility, as F S

µ1(x) ∩ F
S
µ2(x) ⊇ Fλ0(x) ≠ ∅, we must have F S

µ1(x) ⊆ F
S
µ2(x). Let us

define the following equivalence relation on ⋂λ∈E F S
λ(x): y1 ≡ y2 if for all µ ∈ E, y1 and y2

are in the same ball from Fµ(x). If we take two non equivalent points y1 and y2, there exists
µ ∈ E such that y1 and y2 are not in the same ball from Fµ(x) and in fact this also holds for
any η such that F S

η (x) ⊆ F S
µ(x). In particular it follows that there are at most l equivalence

classes and that there exists µ0 such that each equivalence class is contained in a different
ball from Fµ0(x). Moreover each of these equivalence classes is in fact the intersection of
balls from the Fµ(x) for µ ∈ E. We will denote these equivalence classes by (Pj)j∈J .
For any j, let Bj = {b ∈ ⋃i Fλi(x) ∶ b ⊆ Pj}. Then the set Rj ∶= {d(b1, b2) ∶ b1, b2 ∈ Bj} ∪
{rad(b) ∶ b ∈ Bj} is finite and hence has a minimum γ. By the generic large ball property,
there exists µj ∈ Λp(M) such that the balls in Fµj(x) are closed of radius γ and one of its
balls (call it b0) contains one of the balls in Bj . In fact b0 contains all of them as γ is the
minimum of Rj . For all κ ∈ E, all b ∈ Bj are such that b ⊂ F S

κ(x). If rad(b0) = d(b1, b2) for
some some b1 and b2 ∈ Bj then , because b1 and b2 are in the same ball from Fκ(x), rad(b0) =
d(b1, b2) ⩽ rad(Fκ(x)). If rad(b0) = rad(b) for some b ∈ Bj , then because b is inside one
of the balls from Fκ(x), rad(b0) = rad(b) ⩽ rad(Fκ(x)). In both cases, b0 ⊆ F S

µ(x). Let ηj
be such that F S

ηj(x) = F
S
µj(x) ∩ ⋂κ∈E F

S
κ (x). Such an ηj exists by generic intersection and

because, by Proposition (6.5), this intersection is given by the intersection of a finite numbers
of its elements.
Then, as Fηj(x) ⊆ Fµj(x), the balls in Fηj(x) are closed. Obviously, for all κ ∈ E, F S

ηj(x) ⊆
F S
κ(x). Moreover, for all i, F S

λi
(x) ⊆ ⋃j F S

µj(x) and for all κ ∈ E, F
S
λi
(x) ⊆ F S

κ (x), hence we
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8. Γ-reparametrisations

also have F S
λi
(x) ⊆ ⋃j F S

ηj(x). As there are at most l of the ηj , we are done. ∎

8. Γ-reparametrisations
Let L ⊇ Ldiv, T ⊇ ACVF be an L-theory which eliminates imaginaries. Assume that T is C-
minimal. The twomain examples of such theories areACVFG andACVFeq

A whereA is some
separated Weierstrass system (for example ⋃m,nZ[[X0, . . . ,Xn]][Y0, . . . , Ym]) and ACVFA
denotes the theory of algebraically closed valued fields withA-analytic structure (see [CL11]
or [Rid, Section 3]). This structure is considered in the language LA,Q ∶= Ldiv ∪A ∪ {−1}.

Remark 8.1:
The value group Γ is stably embedded and o-minimal in T . As Γ is an o-minimal group, the
induced structure on Γ eliminates imaginaries.

Proof . LetM ⊧ T and X ⊆ Γ be a unary L(M)-definable set. The set val−1(X) is both a
(potentially infinite) union of annuli around 0 and a finite union of Swiss cheeses, hence it is
a finite union of annuli around 0 and X must be a finite union of intervals. Therefore, Γ is
o-minimal in T and by [HO10], Γ is stably embedded in models of T . ∎

LetM ⊧ T , f = (fλ)λ∈Λ be an L(M)-definable family of functions Kn → Γ, ∆(x; t) be a
finite set of L-formulas and p ∈ S∆x (M). We wish to study the family f and in particular its
germs over p (see Definition (8.4)), to show that they are internal to Γ. This is later used as a
partial elimination of imaginaries result in enrichments T̃ of T where Γ is stably embedded:
any subset of these germs definable in T̃ is coded in Γeq (where eq is taken relative to the
theory induced by T̃ ). We only achieve this goal in ACVFG and ACVFeq

A . The idea of the
proof is to reparametrise the family of functions (see Definition (8.2)).
Let g = (gγ)γ∈G be an L(M)-definable family of functionsKn → Γ, whereG ⊂ Γk for some
k.

Definition 8.2 (Γ-reparametrisation):
We say that g Γ-reparametrises f over p if for all λ ∈ Λ(M), there is γ ∈ G(M) such that

p(x) ⊢ fλ(x) = gγ(x).

We say that T admits Γ-reparametrisations if for every L(M)-definable family f = (fλ)λ∈Λ of
functions Kn → Γ there exists a finite set of L-formulas ∆(x; s) such that for allM ⊧ T and
p ∈ S∆x (M), there exists an L(M)-definable family g = (gγ)γ∈G of functions Kn → Γ which
Γ-reparametrises f over p.

We will also be needing a stronger form of reparametrisation. Let g = (gω,γ)ω∈Ω,γ∈G be an
L(M)-definable family of functionsKn → Γ whereG ⊆ Γk for some k.

Definition 8.3 (Uniform Γ-reparametrisation):
We say that g uniformly Γ-reparametrises f over ∆-types if for every p ∈ S∆x (M) there exists
ω0 ∈ Ω(M) such that for all λ ∈ Λ(M), there is γ ∈ G(M) such that

p(x) ⊢ fλ(x) = gω0,γ(x).
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We say that T admits uniform Γ-reparametrisations if for every L(M)-definable family f =
(fλ)λ∈Λ of functions Kn → Γ there exists a finite set of L-formulas ∆(x; s) and an L(M)-
definable family g = (gω,γ)ω∈Ω,γ∈G of functions Kn → Γ which uniformly Γ-reparametrises f
over∆-types.

Wewill say that∆ is adapted to f (respectively to g) when any∆-type decides when fλ1(x) =
fλ2(x) (respectively gγ1(x) = gγ2(x)).

Definition 8.4 (p-germ):
Assume that∆ is adapted to f and that p is L(M)-definable. We say that fλ1 and fλ2 have the
same p-germ if p(x) ⊢ fλ1(x) = fλ2(x). Let us denote ∂pfλ ∈M the code of the equivalence class
of λ under the equivalence relation “having the same p-germ”.

Proposition 8.5:
Let us assume that g is a Γ-reparametrisation of f over p, that∆ is adapted to both f and g and
that p is L(M)-definable. The set {∂pfλ ∶ λ ∈ Λ} is internal to Γ, i.e. there is an L(M)-definable
one to one map from this set into some Cartesian power of Γ.

Proof . As γ is a tuple from Γ and Γ is stably embedded in T and eliminates imaginaries (see
Remark (8.1)), we may assume that ∂pgγ ∈ Γ. Now pick any λ. Let γ be such that p(x) ⊢
fλ(x) = gγ(x). Then ∂pgγ only depends on ∂pfλ and not on λ or γ. It follows that the set
{∂pfλ ∶ λ ∈ Λ} is in L(M)-definable one to one correspondence with a subset of the set
{∂pgγ ∶ γ ∈ G} which is itself a subset of some Cartesian power of Γ. ∎

If Z1 and Z2 ⊆ K are finite sets, we will denote D(Z1, Z2) ∶= {val(z1 − z2) ∶ z1 ∈ Z1 and
z2 ∈ Z2}. Let us order the elements inD(Z1, Z2) as d1 > d2 > ⋯ > dk and let di(Z1, Z2) ∶= di.
If Z1 = {z} is singleton we will write di(z,Z2).

Proposition 8.6:
Let t(x, y, λ) ∶Kn+1+l →K be an L∣K(M)-term polynomial in y, i.e. t = ∑di=0 ti(x,λ)yi, where
∣x∣ = n, ∣y∣ = 1 and ∣λ∣ = l. LetZλ(x) ∶= {y ∶ t(x, y, λ) = 0}. Then there exists anL(M)-definable
family q = (qη)η∈H of functions Kn → Γ such that for all N ≽ M , x ∈ Kn(N) and y ∈ K(N),
there exists µ0 ∈ Λ(M) such that for all λ ∈ Λ(M) there exists η ∈ H(M) and n smaller than the
degree of t in y such that:

val(t(x, y, λ)) = qη(x) + n ⋅ d1(y,Zµ0(x)).

Proof . For all α ∈ Zλ(x), letmα be its multiplicity and let us define:

u(x,λ) ∶= t(x, y, λ)
∏

α∈Zλ(x)
(y − α)mα

which is L-definable and does not depend on y, and

qλ,k,j,η(x) ∶= val(u(x,λ)) +
k

∑
i=0
dji(Zλ(x), Zη(x)).
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where k is at most the degree of t in y and ji ⩽ l2. Note that because we can code disjunctions
on a finite number of integers, q can be considered as anL(M)-definable family of functions
Kn → Γ.
Let N ≽ M , x ∈ Kn(N) and y ∈ K(N) and let us first assume that there exists µ0 ∈ Λ(M)
such thatd1(y,Zµ0(x)) =maxµ{d1(y,Zµ(x))} and letα0 ∈ Zµ0(x)be such thatval(y−α0) =
d1(y,Zµ0(x)). Now pick any λ ∈ Λ(M) and α ∈ Zλ(x).

Claim8.7: Either val(y −α) = d1(y,Zµ0(x)) or val(y −α) = djα(Zλ(x), Zµ0(x)) for some jα.

Proof . If val(y − α) ≠ d1(y,Zµ0(x)), then val(y − α) < d1(y,Zµ0(x)) and val(y − α) =
val(α − α0) = dj(Zλ(x), Zµ0(x)) for some j. ⧫

Let Z1 ∶= {α ∈ Zλ(x) ∶ val(y − α) = d1(y,Zµ0(x))} and n ∶= ∑α∈Z1
mα. We have:

val(t(x, y, λ)) = val(u(x,λ)) + ∑
α∈Zλ(x)

mαval(y − α)

val(u(x,λ)) + ∑
α∉Z1

mαdjα(Zλ(x), Zµ0(x)) + n ⋅ d1(y,Zµ0(x))

qλ,k,j,η(x) + n ⋅ d1(y,Zµ0(x))

for some k and j.
In the other case, if there does not exist a maximum in {d1(y,Zµ(x))}, for any λ ∈ Λ(M),
there exists η ∈ Λ(M) such that d1(y,Zη(x)) > d1(y,Zλ(x)). Let α0 be such that val(y −
α0) = d1(y,Zη(x)), then for all α ∈ Zλ(x), val(y −α) = val(α−α0) = djα(Zλ(x), Zη(x)) for
some jα. It follows that:

val(t(x, y, λ)) = val(u(x,λ)) + ∑
α∈Zλ(x)

mαdjα(Zλ(x), Zη(x))

= qλ,k,j,µ0(x)

for some k and j. ∎

Proposition 8.8:
The theories ACVFG and ACVFeq

A admit uniform Γ-reparametrisations.

Proof . Let f = (fλ)λ∈Λ be an L(M)-definable family of functions Kn → Γ. We work by
induction on n. The case n = 0 is trivial as f is nothingmore than a family of points inΓ that
can be reparametrised by themselves. Let us now assume that n =m+1 and x = (y, z)where
∣z∣ = 1. BecauseK is dominant, wemay assume up to reparametrisation that λ is a tuple from
K. If T = ACVFG , the graph of fλ is given by an LG(M)-formula. If T = ACVFeq

A , by [Rid,
Corollary 5.5] there exists an LG(M)-formula ψ(z,w, γ) and L∣K-terms r(x,λ) such that
M ⊧ fλ(y, z) = γ if and only ifM ⊧ ψ(z, r(y, λ), γ). Taking r to be the identity, the graph
of fλ also has this form when T = ACVFG . By elimination of quantifiers in ACVFG (or in
the two sorted language), we know that ψ(z,w, γ) is of the form χ((val(Pi(z,w)))0⩽i<k, γ)
where χ is an LG ∣

Γ
-formula and Pi ∈ K(M)[Y,W ]. We may also assume that χ defines a

function h ∶ Γk → Γ.
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Let ti(y, z, λ) = Pi(z, r(y, λ)) and qi = (qi,η)η∈Hi be an L(M)-definable family of functions
Km → Γ as in Proposition (8.6)with respect to ti. By the usual coding tricks we may assume
that there is only one family q = (qη)η∈H such that for all i and η ∈ Hi there exists ε ∈ H such
that qi,η = qε. By induction, there exists a uniform Γ-reparametrisation for q, i.e. there exist
a finite set of L-formulas Ξ(y; s) and an L(M)-definable family (uε,δ)ε∈E,δ∈D of functions
Km → Γ, where D ⊆ Γl for some l, such that for any p ∈ SΞy (M), for some ε0 ∈ E(M),
(uε0,δ)δ∈D is a Γ-reparametrisation of q. Let Zi,λ(y) ∶= {z ∶ Pi(y, z, λ) = 0} and

gε,µ,δ,n(y, z) ∶= h((uε,δi(x) + ni ⋅ d1(z,Zi,µi(y)))0⩽i<k).

Let also φn(y, z;λ, ε, µ, δ):=“fλ(y, z) = gε,µ,δ,n(y, z)” and∆(y, z; s, λ, ε, µ, δ, n) ∶= Ξ(y; s) ∪
{φn(y, z;λ, ε, µ, δ) ∶ n ∈N}. For all p ∈ S∆y,z(M), there exists ε0 ∈ E(M) such that (uε0,δ)δ∈D
Γ-reparametrises q over p∣Ξ. Let (y, z) ⊧ p. By Proposition (8.6) there exists a tuple µ0 ∈
Λ(M) such that for all λ ∈ Λ(M), there exists tuples η ∈ H(M) and n such that

val(ti(y, z, λ)) = qηi(y) + ni ⋅ d1(y,Zi,µ0,i(x)).

As y ⊧ p∣Ξ, there exists δi ∈D(M) such that qηi(y) = uε0,δi(y) and hence

fλ(y, z) = h((val(ti(y, z, λ)))0⩽i<k)
= h((uε0,δi(y) + ni ⋅ d1(y,Zi,µ0,i(x)))0⩽i<k)
= gε0,µ0,δ,n(y, z).

Because p decides such equalities, this holds in fact for all realisations of p. We have just
shown that (gε0,µ0,δ,n,)δ∈D,n∈N reparametrises f over p. But because δ is a tuple from Γ and
disjunctions on a finite number of bounded integers can be coded in Γ, it is in fact a Γ-
reparametrisation. ∎

Question 8.9: Do allC-minimal extensions ofACVF admit uniformΓ-reparametrisations?

9. Approximating sets with balls
As before, let L̃ ⊇ L ⊇ Ldiv be languages,R be the set of L-sorts, T ⊇ ACVF be a C-minimal
L-theory which eliminates imaginaries and admits Γ-reparametrisations, T̃ a complete L̃-
theory containing T , Ñ ⊧ T̃ , N ∶= Ñ ∣L and Ã = acl

eq

L̃
(Ã) ⊆ Ñ eq. Let us assume that k and

Γ are stably embedded in T̃ and that the induced theories on k andΓeq eliminate ∃∞ (where
“eq” is taken relative to the L̃-induced structure on Γ).
In this section we bring together all the work we have done in Sections 6, 7 and 8 to actually
construct definable types, in order to prove Theorem (9.8). The core of the work is done in
Lemma (9.1) where we show that we can enrich a quantifiable partial L̃-type with formulas
of the form y ∈ Fλ(x), where Fλ is an L-definable family of functions Kn → B

[l]
st , while

maintaining consistency with a given L̃-definable set. Once this is done, it is only a question
of proving the various reductions sketched in the introduction. In Proposition (9.5), we show
that we can enrich a quantifiable partial L̃-type with arbitrary formulas while maintaining

39



9. Approximating sets with balls

consistency with a given L̃-definable set. Finally, in Proposition (9.7), we show that every
strict (L̃,⋆)-definable setX (see Definition (9.6)) is consistent with a definable L-type.
Note that, even though all the type which are constructed in this section are L-types (or
∆-types for some set ∆ of L-formulas), they are definable using L̃(Ñ)-formulas: for every
φ(x; t) ∈ ∆, there exists an L̃(Ñ)-formula dpxφ(x; t) such φ(x;m) ∈ p if and only if Ñ ⊧
dpxφ(x;m). One of the goals of [RS] is to show that, under some more hypotheses, such
types are indeed L(N)-definable.

Lemma9.1:
Let Y ⊂ Kn+1 be a non empty L̃eq(Ã)-definable set. Let (∆(x, y; t), (Fλ)λ∈Λ, x) be a good
representation where x ∈ Kn. Let p(x, y) ∈ S∆x,y(N) be L̃eq(Ã)-quantifiable (as a partial L̃eq-
type) and consistent with Y . Assume that there exists an L(N)-definable family g = (gγ)γ∈G of
functionsKn → Γ which Γ-reparametrises the family (rad ○ Fλ)λ∈Λ over p.
Then there exists a type q(x, y) ∈ SΨ∆,F

x,y (N) which is L̃eq(Ã)-quantifiable and consistent with p
and Y .

We are looking for a type q = αE/p (see Definition (6.12)) so most of the work consists in
finding the right E.

Proof . We define the preorder P on Λp ∶= {λ ∈ Λ ∶ Fλ is generically irreducible over p} by
λ P µ if and only if p(x, y) ⊢ (y ∈ F S

λ(x) ∧ (x, y) ∈ Y ) → y ∈ F S
µ(x). Note that, by L̃eq(Ã)-

quantifiability of p, P is L̃eq(Ã)-definable. Let ∼ be the associated equivalence relation, i.e
λ ∼ µ if and only if p(x, y) ⊢ (y ∈ F S

λ(x)∧(x, y) ∈ Y ) ⇐⇒ (y ∈ F
S
µ(x)∧(x, y) ∈ Y ). ThenP

induces a (partial) order onΛp/∼ that wewill also denoteP. For anyλ, let us denote by λ̂ ⊆ Λp
the ∼-class of λ. The setΛp/∼ has a greatest element given by the class of any λ ∈ Λp(N) such
that Fλ(x) = {K} for all x and a smallest element given by the class of any λ ∈ Λp(N) such
thatFλ(x) = ∅ for all x. Let K̂ be the greatest element ofΛp/∼ and ∅̂ be its smallest element.
Because p is consistent with Y , K̂ ≠ ∅̂.

Claim9.2: Let λ ∈ Λp ∖ ∅̂, then P totally orders {µ̂ ∶ µ ∈ Λp ∧ λ P µ}.

Proof . Let µ1 and µ2 ∈ Λp(N) such that λ P µi. Because λ ∉ ∅̂ there exists (x, y) ⊧ p such
that y ∈ F S

λ(x) and (x, y) ∈ Y . As λ P µi, we also have y ∈ F S
µi(x) and hence F S

µ1(x) ∩
F S
µ2(x) ≠ ∅. By Proposition (6.10), we have F

S
µ1(x) ⊆ F

S
µ2(x) or F

S
µ2(x) ⊆ F

S
µ1(x) and we

may assume that the first one holds. Then µ1 P µ2. ⧫

Hence ((Λp/∼)∖{∅̂},P) is a treewith the root on the top. Let us now show that the branches
of this tree are internal to Γ. Let h(λ) ∶= (∂prad(Fλ),0) if p(x, y) implies that the balls in
Fλ(x) are closed andh(λ) ∶= (∂prad(Fλ),1)otherwise (the p-germ∂p of a function is defined
in Definition (8.4)). By Proposition (8.5), we may assume (after adding some parameters) that
the image of h is in some Cartesian power of Γ. Let us also define h⋆ ∶ λ̂↦ ⌜h(λ̂)⌝. By stable
embeddedness of Γ, h⋆ takes its values in Γeq.

Claim9.3: Pick any λ ∈ Λp ∖ ∅̂, then the function h⋆ is injective on {µ̂ ∶ λ P µ}.

Proof . Let µ1 and µ2 be such that λ P µi. We have seen in Claim (9.2), that we may assume
for all (x, y) ⊧ p, F S

µ1(x) ⊆ F
S
µ2(x). Let (x, y) ⊧ p. If µ̂1 ≠ µ̂2 then we must have F S

µ1(x) ⊂
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9. Approximating sets with balls

F S
µ2(x). Hence either rad(Fµ1(x)) < rad(Fµ2(x)) or the balls in Fµ1(x) are open and those

in Fµ2(x) are closed. In any case, h(µ1) ≠ h(µ2).
In fact for allωi ∈ µ̂i we obtain by the same argument that h(ω1) ≠ h(ω2) and hence h⋆(µ̂1) ≠
h⋆(µ̂2). ⧫

Let λ ∈ Λp(N) be such that ⌜λ̂⌝ ∈ Ã. If αλ̂(Ñ)/p, the generic type of λ̂(Ñ) over p, is consistent
with Y , it is, in particular, consistent and consistent with p. By Proposition (6.13), it is a com-
plete Ψ∆,F -type. By Corollary (7.12), αλ̂(Ñ)/p is L̃

eq(Ã)-quantifiable. It follows that taking
q = αλ̂(Ñ)/p works. Therefore, it suffices to find a λ ∈ Λp(N) such that ⌜λ̂⌝ ∈ Ã and αλ̂(Ñ)/p
is consistent with Y .

Claim9.4: Let λ ∈ Λp(N). If λ̂ ≠ ∅̂ and αλ̂(Ñ)/p is not consistent with Y , there exists µ such

that µ̂ is an immediate P-predecessor of λ̂ and ⌜µ̂⌝ ∈ acleq
L̃
(Ã⌜λ̂⌝).

Proof . If αλ̂(Ñ)/p is not consistent with Y , there exists µ0 ∈ λ̂(Ñ) and (µi)0<i<k ∈ Λp(N)
such that for all µ ∈ λ̂(Ñ), p(x, y) ⊢ F S

µi(x) ⊂ F
S
µ(x) and

p(x, y) ⊢ y ∈ F S
µ0(x) ∧ (x, y) ∈ Y → y ∈

k

⋃
i=1
F S
µi(x).

In particularµi◁λ. Removing someµi, wemay assume that for all i,µi ∉ ∅̂ and that p(x, y) ⊢
F S
µi(x) ∩ F

S
µj(x) = ∅ for all i ≠ j.

Let κ ∈ Λp(N) be such that µi0 P κ P λ for some i0. As κ P λ, we have p(x, y) ⊢ (y ∈
F S
κ(x) ∧ (x, y) ∈ Y ) → (y ∈ F S

λ(x) ∧ (x, y) ∈ Y ) → ⋁
k
i=1(y ∈ F S

µi(x) ∧ (x, y) ∈ Y ). Because
µi0 P κ, we have p(x, y) ⊢ F S

κ(x) ∩ F S
µi0
(x) ≠ ∅. If p(x, y) ⊢ F S

κ (x) ⊆ F S
µi0
(x) then κ P µi0

and hence κ ∼ µi.
Otherwise, for any i ≠ i0, if p(x, y) ⊢ F S

κ (x) ∩ F S
µi(x) ≠ ∅ then we must have p(x, y) ⊢

F S
µi(x) ⊆ F

S
κ (x) and hence for I = {i ∶ F S

µi(x) ∩ Fκ(x)
S ≠ ∅} we have p(x, y) ⊢ (y ∈

F S
κ(x) ∧ (x, y) ∈ Y ) ⇐⇒ ⋁i∈I(y ∈ F S

µi(x) ∧ (x, y) ∈ Y ).
It follows that the set {κ̂ ∶ µi P κ P λ for some i} is finite. In particular we could choose
µi such that there is no κ such that µ̂i ◁ κ̂◁ λ̂. The µ̂i are then the (finitely many) directP-predecessors of λ̂ and for all i, µ̂i ∈ acleqL̃ (Ã⌜λ̂⌝). ⧫

Let us assume that there does not exist λ such that ⌜λ̂⌝ ∈ Ã and αλ̂(Ñ)/p is consistent with Y .

Pick any λ0 ∈ K̂(Ñ), then λ̂0 = K̂ ∈ Ã and we can construct by induction, using Claim (9.4),
a sequence (λi)i∈ω such that λ̂i+1 is a direct P-predecessor of λ̂i. For all i, we have ∣{µ̂ ∶ λ̂i P
µ̂}∣ = i + 1 = ∣h⋆({µ̂ ∶ λ̂i P µ̂})∣ and that contradicts the elimination of ∃∞ in Γeq. This
concludes the proof. ∎

In the following proposition, the most general case is when ∣x∣ = 0, but we need this more
complicated statement to carry out the induction.

Proposition 9.5:
Let Y ⊆ Kn+m be an L̃eq(Ã)-definable set, ∆(x, y; t) and Θ(y; s) be finite sets of L-formulas
where ∣x∣ = n and ∣y∣ =m. Let p ∈ S∆x,y(N) be L̃eq(Ã)-quantifiable and consistent with Y . Then
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9. Approximating sets with balls

there exists a finite set of L-formulas Ξ(x, y; s, t, r) ⊇ ∆ ∪ Θ and a type q ∈ SΞx,y(N) which is
L̃eq(Ã)-quantifiable and consistent with p and Y .

As noted in Remark 7.2.4, q is in particular L̃eq(Ã)-definable as a Ξ-type.

Proof . We proceed by induction on ∣y∣. The case ∣y∣ = 0 is trivial. Let us now assume that
y = (z,w) where ∣w∣ = 1. By Proposition (6.16) there exists Φ(z;u) a finite set of L-formulas
and F = (Fλ)λ∈Λ an L-definable family of functions Km−1 → B[l] such that ΨΦ,F decides
any formula in Θ. By Propositions (6.17) and (7.15) we can assume that Fλ ∶ Km−1 → B

[l]
st

and (Φ, F, z) is a good representation. We can easily make F into an L-definable family of
functions Kn+m−1 → B

[l]
st by setting Gλ(x, z) = Fλ(z). As T admits Γ-reparametrisations,

there existsΥ(x, z; v) such that for any p ∈ SΥy (N), there exists aΓ-reparametrisation (gγ)γ
of (rad ○Gλ)λ∈Λ over p.
By induction applied to∆0((x,w), z; t) ∶=∆(x, z,w; t),Θ0(z;u, v) ∶= Φ(z;u) ∪Υ(z; v) and
p, we obtain a finite set of L-formulas Ω(x,w, z; r) ⊇ ∆ ∪ Φ ∪Υ and a type q1 ∈ SΩx,z,w(N)
which is L̃eq(Ã)-quantifiable and consistent with p and Y . Let g = (gγ)γ Γ-reparametrise
(rad ○Gλ)λ∈Λ over q1∣Υ. We can now apply Lemma (9.1) to Y , (Ω,G, (x, z)), q1 and g to find
a type q2 ∈ S

ΨΩ,G
x,w,z (N) which is L̃eq(Ã)-quantifiable and consistent with q1 and Y . As all the

formulas in Θ are decided by ΨΦ,F and hence by ΨΩ,G, we may assume that q2 is in fact a
(ΨΩ,G ∪Θ)-type and we can take Ξ = ΨΩ,G ∪Θ and q = q2. ∎

Definition 9.6 (Strict ⋆-definable sets):
Let L be a language, N an L-structure and x = (xi)i∈I a (potentially infinite) tuple of variables.
Let P be a set of L-formulas with variables x. The set P (N) ∶= {m ∈ Nx ∶ ∀φ ∈ P, N ⊧ φ(m)}
is said to be (L, x)-definable, or simply (L,⋆)-definable if we do not want to specify x. We say
that an (L,⋆)-definable set is strict (L,⋆)-definable if the projection on any finite subset of x is
L-definable.

When x is finite and P is infinite, P (N) is usually called an∞-definable set.

Proposition 9.7:
LetX be non empty strict (L̃eq(Ã), x)-definable where all the variables in x areK-variables and
∣x∣ ⩽ ℵ0. Assume also that ∣L∣ ⩽ ℵ0. Then there exists an L̃eq(Ã)-definable type p ∈ SLx (N)
consistent withX .

Note that this is the only proof where we need a cardinality hypothesis on L.

Proof . Let {φj(xj ; tj) ∶ j < ω} be an enumeration of all L-formulas such that xj is a tuple of
variables from x. Let ∆−1 ∶= ∅ and p−1 ∶= ∅ and we construct by induction on j a finite set
∆j(x⩽j ; sj) of L-formulas and a type pj ∈ S

∆j

⩽xj(N) such that for all j < ω,∆j ∪ {φj} ⊆∆j+1,

pj+1 is L̃eq(Ã)-quantifiable and consistent with pj and X . Let us assume that pj and ∆j

have been constructed. Let Yj+1 be the projection of X on the variables x⩽j+1. Then Yj+1
is L̃eq(Ã)-definable. We can then apply Proposition (9.5) to ∆j(x⩽j ; sj), {φ(xj+1; tj+1)}, pj
and Yj+1 in order to obtain pj+1. As Yj+1 is the projection ofX on the variables which appear
in pj and pj+1, and that p1, pj+1 and Y are consistent, it follows that pj , pj+1 andX are also
consistent.
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We can now take p ∶= ⋃j<ω pj . As each pj is L̃eq(Ã)-definable (as ∆j-type), so is p (as a
complete L-type). ∎

Note that p might not be quantifiable anymore (as a L̃eq-type). Although the fact that pj
is L̃eq(Ã)-quantifiable is necessary to carry out the induction, we will not need L̃eq(Ã)-
quantifiability afterwards, except if we were to continue the induction. This is exactly why
we cannot prove Proposition (9.7), and hence Theorem (9.8), ifL is not countable. Neverthe-
less, we will see later that Theorem (9.8) is stronger than what is needed to prove elimination
of imaginaries which we will be able to show even when L is not countable.
We now prove the main result we have been aiming for.

Theorem9.8:

Let L̃ ⊇ L ⊇ Ldiv be languages such that ∣L̃∣ ⩽ ℵ0, R be the set of L-sorts, T ⊇ ACVF be a
C-minimal L-theory which eliminates imaginaries and admits Γ-reparametrisations and T̃
a complete L̃-theory containing T such thatK is dominant in T̃ and:

(i) The sets k and Γ are stably embedded in T̃ and the induced theories on k and Γeq

eliminate ∃∞;

(ii) For any Ñ ⊧ T̃ , A = K(dclL̃(A)) ⊆ Ñ and any L̃(A)-definable set X ⊆ Kn, there
exists an L̃-definable bijection f ∶Kn → Y such that f(X) = Y ∩Z where Z is L(A)-
definable; note that f has to be defined without parameters.

Then for all Ñ ⊧ T̃ and every non empty L̃(Ñ)-definable setX , there exists p ∈ SL̃(Ñ)which
is consistent withX and L̃eq(acleq

L̃
(⌜X⌝))-definable.

If, moreover, the following also holds:

(iii) There exists M̃ ⊧ T̃ such that M̃ ∣L is uniformly stably embedded in every elementary
extension;

then, the type p can be assumed to be L̃(R(acleq
L̃
(⌜X⌝)))-definable

This really is a result on the density of definable types with canonical basis inR. Indeed let
Ã = acleq

L̃
(Ã), the conclusion of Theorem (9.8) states that the set {p ∈ SL̃(Ã) ∶ p is L̃(R(Ã))-

definable} is dense in SL̃(Ã).

Proof . Let Ã ∶= acleq
L̃
(⌜X⌝). We may assume thatX ⊂ Kn for some n. Indeed, let Si be the

sorts such thatX ⊆ ∏Si. SinceK is dominant, there is an L̃-definable surjection π ∶ Kn →
∏Si. If we find p consistent with Y ∶= π−1(X) and L̃(acleq

L̃
(⌜Y ⌝))-definable, then π⋆p is

consistent withX and L̃(Ã)-definable.
Let F ∶= {f is an L̃-definable bijection whose domain isKn} and ∂ω(x) ∶= (f(x))f∈F . Then
∂ω(X) is strict (L̃eq(Ã), I)-definable for some I with ∣I ∣ ⩽ ℵ0. By Proposition (9.7), there
exists an L(Ã)-definable type p ∈ SLI (N) consistent with ∂ω(X).
Let q = {x ∶ ∂ω(x) ⊧ p}. Then q is consistent with X . There only remains to show that it
is a complete type and that it is L̃(Ã)-definable. Let φ(x; s) be an L̃-formula where x ∈Kn.
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AsK is dominant we may assume s is a tuple of variables fromK too. By (iii), for all tuples
m ∈ K(Ñ), there exists (f ∶ Kn → Y ) ∈ F and an L̃-definable map g (into Kl for some l)
such that f(φ(Ñ ;m)) = Y (Ñ)∩Z(Ñ)whereZ isL(g(m))-definable. As Ñ is arbitrary, we
may assume that it is sufficiently saturated and by compactness there exists a finite number
of (fi ∶ Kn → Yi) ∈ F , L̃-definable maps gi and L-formulas ψi(yi; t) such that for any tuple
m ∈K(Ñ) there exists i0 such that fi0(φ(Ñ ;m)) = ψi0(Ñ ; gi0(m)) ∩ Yi0(Ñ).
Let c1 and c2 ⊧ q (i.e. ∂ω(cj) ⊧ p, for j ∈ {1,2}) and assume that ⊧ φ(c1;m). Then
fi0(c1) ∈ ψi0(Ñ ; gi0(m)) ∩ Yi0(Ñ). As fi0(c1) ≡L(N) fi0(c2) and fi0(c2) ∈ Yi0(Ñ) we
also have fi0(c2) ∈ ψi0(Ñ ; gi0(m)) ∩ Yi0(Ñ) = fi0(φ(Ñ ;m)) and, because fi0 is a bijec-
tion, ⊧ φ(c2;m). As for definability, we have just shown that φ(x;m) ∈ q if and only if
ψi0(yi; gi0(m)) ∈ p for some i0 such that fi0(φ(Ñ ;m)) = ψi0(Ñ ; gi0(m)) ∩ Yi0(Ñ) but that
can be stated with an L̃(Ã)-formula.
Moreover, if Hypothesis 9.8.(iii) holds, by [RS, Corollary 1.6], the type q is in fact L(R(Ã))-
definable and hence, p is L̃(R(Ã))-definable ∎

10. Imaginaries and invariant extensions
In this section, we investigate the link between the density of definable types, elimination
of imaginaries and the invariant extension property (see Definition (1.14)). I am very much
indebted to [Hru14; Joh] for making me realise that the density of definable types could play
an important role in proving elimination of imaginaries. To be precise, we will show that
both the elimination of imaginaries and the invariant extension property follow from the
density of types invariant over real parameters.

Remark 10.1:
Because types definable over some parameters A are also A-invariant, the density of defin-
able types over some parameters implies the density of invariant types. But the converse is
false even inNIP theories. ConsiderM ≡ Qp in the three sorted language with angular com-
ponents. AssumeM is ℵ0-saturated. Let γ ∈ Γ(M) be such that γ > n ⋅ val(p) for all n ∈ N
and b ∶= {x ∈ K(M) ∶ val(x) = γ ∧ ac1(x) = 1}. Note that b is a ball. Because the residue
field is finite, in acl(⌜b⌝) there are all the balls b′ ⊆ b such that rad(b′) − rad(b) ∈ Z ⋅ val(p).
Let (bi)i∈N be a chain of balls such that bi ⊆ b and rad(bi) = rad(b) + ival(p). Then for all x,
y ∈ ⋂i bi, val(x) = val(y) = γ and acn(x) = acn(y).
Let P = ∑i aiXi ∈ Q[X], let i0 be minimal such that ai ≠ 0, then for all i ≠ i0, val(ai0xi0) =
val(ai0yi0) < val(aixi) = val(aiyi). In fact, val(aixi) − val(ai0xi0) ⩾ n ⋅ val(p) for all n ∈
N. Thus val(P (x)) = val(P (y)) and acn(P (x)) = acn(P (y)). It now follows from field
quantifier elimination that x ≡∅ y and because any automorphism sending x to y must fix b
they have the same type over b. Thus, there cannot be any ball in ⋂i bi algebraic over b and
hence, by [HMR, Proposition 3.9], x and y have the same type over acl(b). Every type in b is
of this form and none of them can be definable because ⋂i bi is a strict intersection.
Nevertheless, by [HMR, Remark 4.7],Th(Qp)has the invariant extension property and hence
by Proposition (10.5), invariant types are dense over algebraically closed sets.

In the following proposition, we show that the density of∆-types invariant over real param-
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eters for finite∆ suffices to prove weak elimination of imaginaries.

Proposition 10.2:
Let T be an L-theory and R a set of its sorts such that for all N ⊧ T , all non empty L(N)-
definable sets X and all L-formulas φ(x; s) (where x is sorted as X), there exists p ∈ Sφx (N)
which is consistent with X and Aut(N/R(acleq(⌜X⌝)))-invariant. Then T weakly eliminates
imaginaries up toR.

Proof . LetM be a sufficiently saturated and homogeneousmodel of T ,E be anyL-definable
equivalence relation, X be one of its classes inM , φ(x, y) be an L-formula defining E and
A = R(acleq

L̃
(⌜X⌝)). By hypothesis, there exists an Aut(N/A)-invariant type p ∈ Sφx (M)

consistent with X . Because X is defined by an instance of φ, we have in fact p(x) ⊢ x ∈
X . For all σ ∈ Aut(N/A), σ(X) is another E-class and σ(p) = p ⊢ x ∈ X . It follows
that X ∩ σ(X) ≠ ∅ and hence X = σ(X). We have just proved that ⌜X⌝ ∈ dcleq(A) =
dcleq(R(acleq

L̃
(⌜X⌝))), i.e. X is weakly coded inR. ∎

Corollary 10.3:
In the setting of Theorem (9.8), T̃ eliminates imaginaries.

Proof . It follows fromTheorem (9.8), that the hypothesis of Proposition (10.2) holds in T̃ and
hence that T̃ weakly eliminates imaginaries up to the sortsR. But because any finite sets in
R are also definable in T and hence are coded in T , T̃ eliminates imaginaries up to the sorts
R. ∎

In view of further applications (to valued fields with analytic structure for example), on may
note that the cardinality assumption of Theorem (9.8) is not needed to obtain elimination of
imaginaries (it is only needed to construct complete types and hence to obtain the invariant
extension property).

Proposition 10.4:
In the setting of Theorem (9.8), without any cardinality assumption on L̃, T̃ eliminates imaginar-
ies.

Proof . As in Corollary (10.3), it suffices to prove weak elimination of imaginaries. Let Ñ
be a sufficiently saturated and homogeneous model of T̃ , N ∶= Ñ ∣L, E be any L̃-definable
equivalence relation, X be one of its classes in Ñ , φ(x, y) be an L̃-formula defining E, Ã =
acleq
L̃
(⌜X⌝) and A = R(Ã). By domination of K, we may assume that X ⊆ Kn for some n

and by Hypothesis 9.8.(ii), there exists an L̃-definable bijection f ∶ Kn → Y and and L(N)-
definable set Z = ψ(M ;m) such that f(X) = Y ∩Z . Note that ⌜Y ∩Z⌝ ∈ Ã.
By Proposition (9.5), there exists an L̃eq(Ã)-definable type p ∈ Sψy (N) which is consistent
with Y ∩ Z . By Hypothesis 9.8.(iii) and by [RS, Corollary 1.6], the type p is in fact L(A)-
definable. Let c realise p ∩ Y ∩ Z and a ∈ X be such that f(a) = c. For all σ ∈ AutL̃(Ñ/A),
σ(c) ⊧ σ(p) = p ⊢ y ∈ Z . Because Y is L-definable, we also have σ(c) ∈ Y . It immediately
follows that σ(a) = f−1(σ(c)) ∈ X and thus that X ∩ σ(X) ≠ ∅. Because both are E-
equivalence classes, wemust haveX = σ(X) and henceX is L̃(A)-definable, i.e. it is weakly
coded. ∎
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Let us now consider the invariant extension property.

Proposition 10.5:
Let T be an L-theory, A ⊆M for someM ⊧ T . The following are equivalent:

(i) For all L(A)-definable non empty sets X and N ⊧ T , N ⊆ A, there exists p ∈ S(N) such
that p is Aut(N/A)-invariant and is consistent withX ;

(ii) T has the invariant extension property over A.

Proof . Let us first show that (ii) implies (i). Let N ⊧ T , X be L(A)-definable and p ∈ S(A)
be any type containingX . Let q ∈ S(N) be an Aut(N/A)-invariant extension of p. Then q
is consistent withX .
Let us now assume (i) and let Inv(N/A) = {p ∈ S(N) ∶ p is Aut(N/A)-invariant }.

Claim 10.6: The set Inv(N/A) ⊆ S(N) is closed and hence compact.

Proof . Let p ∈ S(N) ∖ Inv(N/A). There exists φ(x; s), a tuplem ∈ N and σ ∈ Aut(N/A)
such that φ(x;m) ∈ p and φ(x;σ(m)) ∉ p. Then, the set {q ∈ S(N) ∶ φ(x;m) ∈ q and
φ(x;σ(m)) ∉ q} = {q ∈ S(N) ∶ φ(x;m) ∧ ¬φ(x;σ(m)) ∈ q} is open and has empty intersec-
tion with Inv(N/A). ⧫

Let p ∈ S(A). By hypothesis, for all L(A)-definable setsX ≠ ∅, there exists qX ∈ Inv(N/A)
which is consistent withX . It follows that for allL(A)-definable setsX , the closed setFX ∶=
⟨X⟩ ∩ Inv(N/A) ≠ ∅. Moreover, for any finite number of Xi ∈ p, ∩iFXi = F⋀iXi is non
empty. As Inv(N/A) is compact, there exists q ∈ ⋂X∈p FX . Then q ∈ Inv(N/A) and for all
X ∈ p, q ∈ FX ⊆ ⟨X⟩ so q does extend p. ∎

To conclude:

Theorem 10.7:

In the setting of Theorem (9.8), T̃ eliminates imaginaries and has the invariant extension prop-
erty.

Proof . Elimination of imaginaries is proved in Corollary (10.3) and the invariant extension
property then follows from Theorem (9.8) and Proposition (10.5). ∎

Appendix
A. Uniform stable embeddedness of Henselian valued fields
The goal of this section is to study stable embeddedness in pairs of valued fields and, in par-
ticular, to show that there exist models of ACVF uniformly stably embedded in every ele-
mentary extension. These models are used to prove that there are models of VDFEC whose
underlying valued field is stably embedded in every elementary extension in the proof of The-
orem (1.18). Not all the results proved in this section are necessary to attain this goal though,
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but they are of a similar nature and are used in Section 3. Some of these results are valid in
all characteristic, so unless explicitly stated, we do not assume that we are working in char-
acteristic zero.

Following Baur, let us first introduce the notion of a separated pair of valued fields.

DefinitionA.1 (Separated pair):
LetK ⊆ L be an extension of valued fields. Call a tuple a ∈ LK-separated if for any tuple λ ∈K ,
val(∑i λiai) =mini{val(λiai)}. The pairK ⊆ L is said to be separated if any finite dimensional
sub-K-vector space of L has aK-separated basis.

Recall that a maximally complete field is a field where every chain of balls has a point. Let us
now recall a well known result of [Bau82].

PropositionA.2:
LetK be a maximally complete field. Then any extensionK ⊆ L is separated.

Following [CD;Del89], let us give the links between separation of the pairK ⊆ L anduniform
stable embeddedness ofK in L. But first let us define this last notion.

DefinitionA.3 (Uniform stable embeddedness):
Let M be an L-structure and A ⊆ M . We say that A is uniformly stably embedded if for all
formulas φ(x; t) there exists a formula χ(x; s) such that for all tuples b ∈ M there exists a tuple
a ∈ A such that φ(A, b) = χ(A,a).

The proof of Proposition (A.4) is taken almost word for word from the one in [CD], although
we have slightly different assumptions and we put more emphasis on uniformity here. Let
L be anRV-extension of LRV and letTHen be the LRV-theory of Henselian valued fields of
characteristic zero. Recall thatRV⋆n = K⋆/(1 + nM) and that THen resplendently eliminates
field quantifiers (see [Bas91; BK92]).

PropositionA.4:
Let M ⊧ THen be an L-structure and φ(x; s) an L-formula. There exists an L∣RV-formula
ψ(y;u) and polynomialsQi ∈ Z[X,T ] such that for anyN ⩽M , where the pairK(N) ⊆K(M)
is separated, and any a ∈ M there exists b ∈ K(N) and c ∈ RV(M) such that φ(N ;a) =
ψ(rvn(Q(N, b)); c).

Proof . By (resplendent) elimination of field quantifiers (and the fact thatK is dominant), we
may assume that φ(x;a) is of the form θ(RVn(P (x))) where P ∈ K(M)[X], n ∈ N and
ψ is an L∣RV-formula. Let us write each Pi as ∑µ ai,µX

µ
. As the pair K(N) ⊆ K(M) is

separated, the K(N)-vector space generated by the ai,µ is generated by a K(N)-separated
tuple d ∈ K(M). Note that ∣d∣ ⩽ ∣a∣ and adding zeros to d we may assume ∣d∣ = ∣a∣. For
each i and µ, find λi,µ,j ∈ K(N) such that ai,µ = ∑j λi,µ,jdj . We can rewrite each Pi as
∑j djQi,j(X,λ), where Qi,j ∈ Z[X,T ] does not depend on a, and for all x ∈ K(N) we
have val(Pi(x)) = minj{val(djQi,j(x,λ))}. As rvn(x + y) = rvn(x) +n,n rvn(y) whenever
val(x + y) =min{val(x),val(y)}, it follows immediately that

rvn(Pi(x)) = ∑
j∈Ji(x)

rvn(dj)rvn(Qi,j(x,λ))
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where Ji(x) = {j ∶ val(dj)val(Qi,j(x,λ)) is minimal}.
The proposition now follow easily with b = λ and c = rvn(d). ∎

Let Log be the language of ordered groups. If M is algebraically closed, we can obtain a
stronger statement.

PropositionA.5:
LetM ⊧ ACVF andφ(x, y) anLdiv-formula. There is anLog-formulaψ(y;u) and polynomials
Qi ∈ Z[X,T ] such that for any N ⩽M , where the pair K(N) ⊆ K(M) is separated, and any
a ∈M there exists b ∈K(N) and c ∈ Γ(M) such that φ(N ;a) = ψ(val(Q(N, b)); c).

Proof . The proof is essentially the same as for Proposition (A.5) except that we use the quan-
tifier elimination for algebraically closed valued fields in the two sorted language. ∎

Let us now give the two consequences of these computations which we use in the paper.

TheoremA.6 (Algebraically closed case in any characteristic):
Let K ⊆ L be a separated pair of valued fields such that L is algebraically closed. Then K is
stably embedded in L if and only if Γ(K) is stably embedded in Γ(L), as an ordered Abelian
group.
Moreover, if Γ(K) is uniformly stably embedded in Γ(L), thenK is uniformly stably embed-
ded in L.

Proof . This follows immediately from Proposition (A.5). ∎

We will now be considering angular components in mixed characteristic (0, p). Recall that
Rn = O/(pnM), R = ⋃nRn and that angular component maps are compatible systems of
group morphisms acn ∶K⋆ →R⋆n such that acn∣O⋆ = resn∣O⋆ .

TheoremA.7 (Unramified mixed characteristic with ac):
Let K ⊆ L be a separated pair of unramified mixed characteristic valued fields with angular
component maps such that L is Henselian andR0(L) is perfect. ThenK is stably embedded
inL if and only ifΓ(K) is stably embedded inΓ(L) (as an ordered Abelian group) andR0(K)
is stably embedded inR0(L) (as a ring).
Moreover if Γ(K) is uniformly stably embedded inΓ(L) andR0(K) is uniformly stably em-
bedded inR0(L), thenK is uniformly stably embedded in L.

Proof . An angular component is nothing more than a section of the short exact sequence
R⋆n → RV⋆n → Γ. Therefore, it follows from Proposition (A.4) that we only need to prove
that R ∪ Γ(K) is (uniformly) stably embedded in R ∪ Γ(L). Because L is unramified, it
follows from the quantifier elimination in the language with angular components thatΓ and
R are orthogonal, i.e. any definable subset ofRn × Γm is a union of productsX × Y where
X ⊆Rn is definable inR and Y ⊆ Γm is definable in Γ. Hence it suffices to prove that Γ(K)
is (uniformly) stably embedded in Γ(L) and that R(K) is (uniformly) stably embedded in
R(L).
For all n, the canonical projection res0,n ∶Rn →R0 has a definable section defined by τn(x)
is the only y such thatR0,n(y) = x and y is a pn-th power. Using this residual version of the
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Teichmüller liftings, one can show thatRn(L) is∅-definably isomorphic toWn(R0(L)) and
hence thatR(K) is (uniformly) stably embedded inR(L) if and only ifR0(K) is (uniformly)
stably embedded inR0(L). ∎

Corollary A.8:
Let k be any algebraically closed field. The Hahn fieldK ∶= k((tR)) is uniformly stably embedded
(as a valued field) in any elementary extension.

Proof . The fieldK ismaximally complete, as are all Hahn fields, and so it isHenselian. More-
over its residue field k is algebraically closed and its value groupR is divisible. It follows that
K is algebraically closed. By Proposition (A.2), any extension K ⊆ L is separated. By Theo-
rem (A.6), it suffices to show thatR is uniformly stably embedded (as an ordered group) in any
elementary extension. But that follows from the fact that (R,<) is complete and (R,+,<) is
o-minimal, see [CS15, Corollary 64]. ∎
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