Definable and invariant types in enrichments of NIP theories

Silvain Rideau^{*} Pierre Simon^{*}

June 29, 2018

Let T be an NIP \mathcal{L} -theory and \widetilde{T} be an enrichment. We give a sufficient condition on \widetilde{T} for the underlying \mathcal{L} -type of any definable (respectively invariant) type over a model of \widetilde{T} to be definable (respectively invariant). These results are then applied to Scanlon's model completion of valued differential fields.

Let T be a theory in a language \mathcal{L} and consider an expansion $T \subseteq \widetilde{T}$ in a language $\widetilde{\mathcal{L}}$. In this paper, we wish to study how invariance and definability of types in T relate to invariance and definability of types in \widetilde{T} . More precisely, let $\mathfrak{U} \models \widetilde{T}$ be a monster model and consider some type $\widetilde{p} \in \mathcal{S}(\mathfrak{U})$ which is invariant over some small $M \models \widetilde{T}$. Then the reduct p of \widetilde{p} to \mathcal{L} is of course invariant under the action of the $\widetilde{\mathcal{L}}$ -automorphisms of \mathfrak{U} that fix M (which we will denote as $\widetilde{\mathcal{L}}(M)$ -invariant), but there is, in general, no reason for it to be $\mathcal{L}(M)$ -invariant. Similarly, if \widetilde{p} is $\widetilde{\mathcal{L}}(M)$ -definable, p might not be $\mathcal{L}(M)$ -definable.

When T is stable, and $\varphi(x; y)$ is an \mathcal{L} -formula, φ -types are definable by Boolean combinations of instances of φ . It follows that if \tilde{p} is $\tilde{\mathcal{L}}(M)$ -invariant then p is both $\mathcal{L}(M)$ invariant and $\mathcal{L}(M)$ -definable. Nevertheless, when T is only assumed to be NIP, then this is not always the case. For example one can take T to be the theory of dense linear orders and $\tilde{\mathcal{L}} = \{\leqslant, P(x)\}$ where P(x) is a new unary predicate naming a convex non-definable subset of the universe. Then there is a definable type in \tilde{T} lying at some extremity of this convex set whose reduct to $\mathcal{L} = \{\leqslant\}$ is not definable without the predicate.

In the first section of this paper, we give a sufficient condition (in the case where T is NIP) to ensure that any $\tilde{\mathcal{L}}(M)$ -invariant (resp. definable) \mathcal{L} -type p is also $\mathcal{L}(M)$ -invariant (resp. definable). The condition is that there exists a model M of \tilde{T} whose reduct to \mathcal{L} is uniformly stably embedded in every elementary extension of itself. In the case where T is o-minimal for example, this happens whenever the ordering on M is complete.

^{*}Partially supported by ValCoMo (ANR-13-BS01-0006)

The main technical tool developed in this first section is the notion of external separability (Definition (1.2)). Two sets X and Y are said to be externally separable if there exists an externally definable set Z such that $X \subseteq Z$ and $Y \cap Z = \emptyset$. In Proposition (1.3), we show that in NIP theory, external separability is essentially a first order property. The results about definable and invariant sets then follow by standard methods along with a "local representation" of φ -types from [Sim15b].

The motivation for these results comes from the study of expansions of ACVF and in particular the model completion $VDF_{\mathcal{EC}}$ defined by Scanlon [Sca00] of valued differential fields with a contractive derivation, i.e. a derivation ∂ such that for all x, $val(\partial(x)) \ge val(x)$. In the third section, we deduce, from the previous abstract results, a characterisation of definable (resp. invariant) types in models of $VDF_{\mathcal{EC}}$ in terms of the definability (resp. invariance) of the underlying ACVF-type. This characterisation also allows us to control the canonical basis of definable types in $VDF_{\mathcal{EC}}$, an essential step in proving elimination of imaginaries for that theory in [Rid].

The authors wish to thank Jean-François Martin for pointing out an error in a earlier draft of this work.

0.1 Notation

Let us now define some notation that will be used throughout the paper. When $\varphi(x; y)$ is a formula, we implicitly consider that y is a parameter of the formula and we define $\varphi^{\text{opp}}(y; x)$ to be equal to $\varphi(x; y)$.

We write $N \prec^+ M$ to denote that M is a $|N|^+$ -saturated and (strongly) $|N|^+$ -homogeneous elementary extension of N.

Let X be an $\mathcal{L}(M)$ -definable set (or a union of definable sets) and $A \subseteq M$. We denote by X(A) the set of realisations of X in A, i.e. the set $\{a \in A : M \models a \in X\}$. If \mathcal{R} is a set of definable sets (in particular a set of sorts), we define $\mathcal{R}(A) := \bigcup_{R \in \mathcal{R}} R(A)$.

1 External separability

Definition 1.1 (Externally φ -definable):

Let M be an \mathcal{L} -structure, $\varphi(x;t)$ be an \mathcal{L} -formula and X a subset of some Cartesian power of M. We say that X is externally φ -definable if there exist $N \ge M$ and a tuple $a \in N$ such that $X = \varphi(M;a)$.

Definition 1.2 (Externally φ -separable):

Let M be an \mathcal{L} -structure, $\varphi(x;t)$ be an \mathcal{L} -formula and X, Y be subsets of some Cartesian power of M. We say that X and Y are externally φ -separable if there exist $N \ge M$ and a tuple $a \in N$ such that $X \subseteq \varphi(M;a)$ and $Y \cap \varphi(M;a) = \emptyset$.

We will say that X and Y are φ -separable if a can be chosen in M. Note that a set X is externally φ -definable if X and its complement are externally φ -separable.

Proposition 1.3:

Let T be an \mathcal{L} -theory and $\varphi(x;t)$ an NIP \mathcal{L} -formula. Let U(x) and V(x) be new predicate symbols and let $\mathcal{L}_{U,V} \coloneqq \mathcal{L} \cup \{U,V\}$. Then, there is an $\mathcal{L}_{U,V}$ -sentence $\theta_{U,V}$ and an \mathcal{L} formula $\psi(x;s)$ such that for all $M \models T$ and any enrichment $M_{U,V}$ of M to $\mathcal{L}_{U,V}$, we have:

if U and V are externally
$$\varphi$$
-separable, then $M_{U,V} \vDash \theta_{U,V}$

and

if $M_{U,V} \vDash \theta_{U,V}$, then U and V are externally ψ -separable.

Proof. Let k_1 be the VC-dimension of $\varphi(x; t)$. By the dual version of the (p, q)-theorem (see [Mat04] and [Sim15a, Corollary 6.13]) there exists q_1 and n_1 such that for any set X, any finite $A \subseteq X$ and any $S \subseteq \mathcal{P}(X)$ of VC-dimension at most k_1 , if for all $A_0 \subseteq A$ of size at most q_1 there exist $S \in S$ containing A_0 , then there exists $S_1 \dots S_{n_1} \in S$ such that $A \subseteq \bigcup_{i \leq n_1} S_i$. Let k_2 be the VC-dimension of $\bigcup_{i=1}^{n_1} \varphi(x; t_i)$ and q_2 and n_2 the bounds obtained by the dual (p, q)-theorem for families of VC-dimension at most k_2 . Let

$$\theta_{U,V} \coloneqq \forall x_1 \dots x_{q_1}, y_1 \dots y_{q_2} \bigwedge_{i \leqslant q_1} U(x_i) \land \bigwedge_{j \leqslant q_2} V(y_j) \Rightarrow \exists t \bigwedge_{i \leqslant q_1} \varphi(x_i; t) \land \bigwedge_{i \leqslant q_2} \neg \varphi(y_j; t).$$

Now, let $M <^+ N \models T$, U and V be subsets of $M^{|x|}$ and $d \in N$ be a tuple. If $U \subseteq \varphi(M; d)$ and $V \subseteq \neg \varphi(M; d)$ then for any $A \subseteq U$ and $B \subseteq V$ finite there exists $d_0 \in M$ such that $A \subseteq \varphi(M; d_0)$ and $B \subseteq \neg \varphi(M; d_0)$. In particular, $M_{U,V} \models \theta_{U,V}$.

Suppose now that $M_{U,V} \models \theta_{U,V}$. Let $B_0 \subseteq V$ have cardinality at most q_2 . The family $\{\varphi(M;d): d \in M \text{ a tuple and } B_0 \subseteq \neg \varphi(M;d)\}$ has VC-dimension at most k_1 (a subfamily always has lower VC-dimension). Because $M_{U,V} \models \theta_{U,V}$, for any $A_0 \subseteq U$ of size at most q_1 , there exists $d \in M$ such that $A_0 \subseteq \varphi(M;d)$ and $B_0 \subseteq \neg \varphi(M;d)$. It follows that for any finite $A \subseteq U$ there are tuples $d_1 \dots d_{n_1} \in M$ such that $A \subseteq \bigvee_{i \leq n_1} \varphi(M;d_i)$ and for all $i \leq n_1, B_0 \subseteq \neg \varphi(M;d_i)$, in particular, $B_0 \subseteq \neg(\bigvee_{i \leq n_1} \varphi(M;d_i))$. By compactness, there exists tuple $d_1 \dots d_{n_1} \in N$ such that $U \subseteq \bigvee_{i \leq n_1} \varphi(M;d_i)$ and $B_0 \subseteq \neg(\bigvee_{i \leq n_1} \varphi(M;d_i))$.

The family $\{\neg(\bigvee_{i \leq n_1} \varphi(M; d_i)) : d_i \in N \text{ tuples and } U \subseteq \bigvee_{i \leq n_1} \varphi(M; d_i)\}$ has VC-dimension at most k_2 . We have just shown that for any B_0 of size at most q_2 , there is an element of that family containing B_0 . It follows by the (p,q)-property and compactness that there exists tuples $d_{i,j} \in N \geq M$ such that $V \subseteq \bigvee_{j \leq n_2} \neg(\bigvee_{i \leq n_1} \varphi(M; d_{i,j})) =$ $\neg(\bigwedge_{j \leq n_2} \bigvee_{i \leq n_1} \varphi(M; d_{i,j}))$ and $U \subseteq \bigwedge_{j \leq n_2} \bigvee_{i \leq n_1} \varphi(M; d_{i,j})$. Hence U and V are externally $\bigwedge_{j \leq n_2} \bigvee_{i \leq n_1} \varphi(x; t_{i,j})$ -separable.

We would now like to characterise enrichments \widetilde{T} of NIP theories that do not add new externally separable definable sets, i.e. $\widetilde{\mathcal{L}}$ -definable sets that are externally \mathcal{L} -separable but not internally \mathcal{L} -separable. We show that if there is one model of \widetilde{T} where this property holds uniformly, then it holds in all models of T.

Proposition 1.4:

Let T be an NIP \mathcal{L} -theory (with at least two constants), $\widetilde{\mathcal{L}} \supseteq \mathcal{L}$ be some language, $\widetilde{T} \supseteq T$ be a complete $\widetilde{\mathcal{L}}$ -theory and $\chi_1(x;s)$ and $\chi_2(x;s)$ be $\widetilde{\mathcal{L}}$ -formulas. The following are equivalent:

- (i) For all \mathcal{L} -formulas $\varphi(x;t)$, all $M \models \widetilde{T}$ and all $a \in M$ there exists an \mathcal{L} -formula $\xi(x;z)$ such that if $\chi_1(M;a)$ and $\chi_2(M;a)$ are externally φ -separated then they are ξ -separated;
- (ii) For all \mathcal{L} -formulas $\varphi(x;t)$, there exists an \mathcal{L} -formula $\xi(x;z)$ such that for all $M \models \widetilde{T}$ and all $a \in M$, if $\chi_1(M;a)$ and $\chi_2(M;a)$ are externally φ -separated then they are ξ -separated;
- (iii) For all \mathcal{L} -formulas $\varphi(x;t)$, there exists an \mathcal{L} -formula $\xi(x;z)$ and $M \models \widetilde{T}$ such that for all $a \in M$, if $\chi_1(M;a)$ and $\chi_2(M;a)$ are externally φ -separated then they are ξ -separated.

Proof. The implications (ii) \Rightarrow (i) and (ii) \Rightarrow (iii) are trivial. Let us now show that (iii) implies (ii). By Proposition (1.3), there exists an $\widetilde{\mathcal{L}}$ -formula $\theta(s)$ and an \mathcal{L} -formula $\psi(x; u)$ such that for all $N \vDash \widetilde{T}$ and $a \in N$:

 $\chi_1(N;a)$ and $\chi_2(N;a)$ externally φ -separated implies $N \vDash \theta(a)$

and

$$N \models \theta(a)$$
 implies $\chi_1(N; a)$ and $\chi_2(N; a)$ externally ψ -separated.

Let M and ξ be as in condition (iii) with respect to ψ . We have:

$$M \vDash \forall s \,\theta(s) \Rightarrow \exists u \,(\forall x \,(\chi_1(x;s) \Rightarrow \xi(x;u)) \land (\chi_2(x;s) \Rightarrow \neg \xi(x;u))).$$

As \widetilde{T} is complete, this must hold in any $N \models \widetilde{T}$. Thus, if $\chi_1(N;a)$ and $\chi_2(N;a)$ are externally φ -separated, we have $N \models \theta(a)$ and hence $\chi_1(N;a)$ and $\chi_2(N;a)$ are ξ -separated.

There remains to prove that (i) \Rightarrow (iii). Pick any $M \prec^+ \mathfrak{U} \models \widetilde{T}$. By (i), it is impossible to find, in any elementary extension (\mathfrak{U}^*, M^*) of the pair (\mathfrak{U}, M) , a tuple $a \in M^*$ and $b \in \mathfrak{U}^*$ such that $\chi_1(M^*; a)$ and $\chi_2(M^*; a)$ are separated by $\varphi(M^*; b)$, but they are not separated by any set of the form $\xi(M^*; c)$ where ξ is an \mathcal{L} -formula and $c \in M^*$. By compactness, there exists $\xi_i(x; u_i)$ for $i \leq n$ such that for all $a \in M$ if $\chi_1(M; a)$ and $\chi_2(M; a)$ are externally φ -separated, there exists an i such that they are ξ_i -separated. By classic coding tricks, we can ensure that i = 1.

Definition 1.5 (Uniform stable embeddedness):

Let M be an \mathcal{L} -structure and $A \subseteq M$. We say that A is uniformly stably embedded in M if for all formulas $\varphi(x;t)$ there exists a formula $\chi(x;s)$ such that for all tuples $b \in M$ there exists a tuple $a \in A$ such that $\varphi(A, b) = \chi(A, a)$.

Remark 1.6:

If there exists $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension, then such an M witnesses Condition **1.4.(iii)** for every choice of formulas χ_1 and χ_2 .

Corollary 1.7:

Let T be an NIP \mathcal{L} -theory that eliminates imaginaries, $\widetilde{\mathcal{L}} \supseteq \mathcal{L}$ be some language and $\widetilde{T} \supseteq T$ be a complete $\widetilde{\mathcal{L}}$ -theory. Suppose that there exists $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension. Let $\varphi(x;t)$ be an \mathcal{L} -formula, $N \models \widetilde{T}$, $A = \operatorname{dcl}_{\widetilde{\mathcal{L}}}^{\operatorname{eq}}(A) \subseteq N^{\operatorname{eq}}$ and $p \in S_x^{\varphi}(N)$. If p is $\widetilde{\mathcal{L}}^{\operatorname{eq}}(A)$ -definable, then it is in fact $\mathcal{L}(\mathcal{R}(A))$ -definable where \mathcal{R} denotes the set of all \mathcal{L} -sorts.

Proof. Let $a \models p$. Then $X := \{m \in N : \varphi(x; m) \in p\} = \{m \in N : \models \varphi(a; m)\}$ is \mathcal{L} -externally definable and $\widetilde{\mathcal{L}}^{eq}(A)$ -definable (by some $\widetilde{\mathcal{L}}$ -formula χ). It follows from Remark (1.6) that Condition 1.4.(ii) holds and hence, by Condition 1.4.(i), taking $\chi_1 = \chi$ and $\chi_2 = \neg \chi$, it follows that X is \mathcal{L} -definable.

Because T eliminates imaginaries, we have just shown that we can find ${}^{r}X^{\mathcal{L}} \in \mathcal{R}$. But X is also $\widetilde{\mathcal{L}}^{eq}(A)$ -definable, hence any $\widetilde{\mathcal{L}}^{eq}(A)$ -automorphism of N^{eq} stabilises X(N) globally and therefore fixes ${}^{r}X^{\mathcal{L}}$. If we assume that N is strongly $|A|^+$ -homogeneous (and we can), it follows that ${}^{r}X^{\mathcal{L}} \in \operatorname{dcl}^{eq}_{\widetilde{\mathcal{L}}}(A) = A$. Thus ${}^{r}X^{\mathcal{L}} \in A \cap \mathcal{R} = \mathcal{R}(A)$ and X is $\mathcal{L}(\mathcal{R}(A))$ -definable.

We will need the following result, which is [Sim15b, Proposition 2.11].

Proposition 1.8:

Let T be any theory, $\varphi(x; y)$ an NIP formula, $M \prec^+ N \models T$ and p(x) a global M-invariant φ -type. Let $b, b' \in \mathfrak{U} \ge N$ such that both $\operatorname{tp}(b/N)$ and $\operatorname{tp}(b'/N)$ are finitely satisfiable in M and $\operatorname{tp}_{\varphi^{\operatorname{opp}}}(b/N) = \operatorname{tp}_{\varphi^{\operatorname{opp}}}(b'/N)$. Then we have $p|_{\mathfrak{U}} \vdash \varphi(x; b) \iff \varphi(x; b')$.

Proposition 1.9:

Let \widetilde{T} be an NIP \mathcal{L} -theory, $\widetilde{\mathcal{L}} \supseteq \mathcal{L}$ be some language and $\widetilde{T} \supseteq T$ be a complete $\widetilde{\mathcal{L}}$ -theory. Let \mathcal{R} denote the set of \mathcal{L} -sorts. Suppose that there exists $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension. Let $\varphi(x;t)$ be an \mathcal{L} -formula, $N \models \widetilde{T}$ be sufficiently saturated, $A \subseteq N$ and $p \in \mathcal{S}_x^{\varphi}(N)$ be $\widetilde{\mathcal{L}}(A)$ -invariant. Assume that every $\widetilde{\mathcal{L}}(A)$ -definable set (in some Cartesian power of \mathcal{R}) is consistent with some global $\mathcal{L}(\mathcal{R}(A))$ -invariant type. Then p is $\mathcal{L}(\mathcal{R}(A))$ -invariant.

Proof. Let us first assume that $A \models \widetilde{T}$. Let b_1 and b_2 be such $p(x) \vdash \varphi(x, b_1) \land \neg \varphi(x, b_2)$. We have to show that $\operatorname{tp}_{\mathcal{L}}(b_1/A) \neq \operatorname{tp}_{\mathcal{L}}(b_2/A)$. Let $p_i = \operatorname{tp}_{\widetilde{\mathcal{L}}}(b_i/A)$, $\Sigma(t)$ be the set of $\widetilde{\mathcal{L}}(N)$ -formulas $\theta(t)$ such that $\neg \theta(A) = \emptyset$ and $\Delta(t_1, t_2)$ be the set:

$$p_1(t_1) \cup p_2(t_2) \cup \Sigma(t_1) \cup \Sigma(t_2) \cup \{\varphi(n, t_1) \iff \varphi(n, t_2) : n \in N\}.$$

If Δ were consistent, there would exist b_1^* and b_2^* such that $b_i \equiv_{\widetilde{\mathcal{L}}(A)} b_i^*$, $\operatorname{tp}_{\widetilde{\mathcal{L}}}(b_i^*/N)$ is finitely satisfiable in A and $\operatorname{tp}_{\varphi^{\operatorname{opp}}}(b_1^*/N) = \operatorname{tp}_{\varphi^{\operatorname{opp}}}(b_2^*/N)$. Applying Proposition (1.8) it would follow that $p(x) \vdash \varphi(x; b_1^*) \iff \varphi(x; b_2^*)$. But, because p is $\widetilde{\mathcal{L}}(A)$ -invariant and $p(x) \vdash \varphi(x, b_1) \land \neg \varphi(x, b_2)$, we also have that $p(x) \vdash \varphi(x; b_1^*) \land \neg \varphi(x; b_2^*)$, a contradiction. By compactness, there exists $\psi_i \in p_i, \ \theta_i \in \Sigma, \ n \in \omega$ and $(c_i)_{i \in n} \in N$ such that

$$\forall t_1, t_2 \,\theta_1(t_1) \wedge \theta_2(t_2) \wedge (\bigwedge_i \varphi(c_i, t_1) \iff \varphi(c_i, t_2)) \wedge \psi_1(t_1) \Rightarrow \neg \psi_2(t_2).$$

2 Valued differential fields

In particular, because $\neg \theta_i(A) = \emptyset$, for all m_1 and $m_2 \in A$, $(\bigwedge_i \varphi(c_i, m_1) \iff \varphi(c_i, m_2)) \land \psi_1(m_1) \Rightarrow \neg \psi_2(m_2)$. For all $\varepsilon : n \to 2$, let $\varphi_{\varepsilon}(t,c) \coloneqq \bigwedge_i \varphi(c_i,t)^{\varepsilon(i)}$ where $\varphi^1 = \varphi$ and $\varphi^0 = \neg \varphi$. It follows that if $\varphi_{\varepsilon}(A,c) \cap \psi_1(A) \neq \emptyset$, then $\varphi_{\varepsilon}(A,c) \cap \psi_2(A) = \emptyset$. Let

$$\theta(t,c) \coloneqq \bigvee_{\varphi_{\varepsilon}(A,c) \cap \psi_{1}(A) \neq \emptyset} \varphi_{\varepsilon}(c,t)$$

We have $\psi_1(A) \subseteq \theta(A, c)$ and $\psi_2(A) \cap \theta(A, c) = \emptyset$, i.e. $\psi_1(A)$ and $\psi_2(A)$ are externally θ -separable. By Proposition (1.4) and Remark (1.6), $\psi_1(A)$ and $\psi_2(A)$ are in fact ξ -separable for some $\mathcal{L}(\mathcal{R}(A))$ -formula ξ . It follows that $N \models \forall t_1, t_2(\psi_1(t_1) \Rightarrow \xi(t_1)) \land (\psi_2(t_2) \Rightarrow \neg \xi(t_2))$ and, in particular $N \models \xi(b_1) \land \neg \xi(b_2)$. So $\operatorname{tp}_{\mathcal{L}}(b_1/A) \neq \operatorname{tp}_{\mathcal{L}}(b_2/A)$.

Let us now conclude the proof when A is not a model. Let $M \models \widetilde{T}$ contain A and pick any a and $b \in N$ such that $a \equiv_{\mathcal{L}(\mathcal{R}(A))} b$.

Claim 1.10: There exists $M^* \equiv_{\widetilde{\mathcal{L}}(A)} M$ (in particular it is a model of \widetilde{T} containing A) such that $a \equiv_{\mathcal{L}(\mathcal{R}(M^*))} b$.

Proof. By compactness, it suffices, given $\chi(y,z) \in \operatorname{tp}_{\widetilde{\mathcal{L}}}(M/A)$, where y is a tuple of \mathcal{R} -variables, and $\psi_i(t;y)$ a finite number of \mathcal{L} -formulas, to find tuples m, n such that $\vDash \chi(m,n) \wedge \bigwedge_i \psi(a;m) \iff \psi(b;m)$. By hypothesis on A, there exists $q \in \mathcal{S}_y(N|_{\mathcal{L}})$ which is $\mathcal{L}(\mathcal{R}(A))$ -invariant and consistent with $\exists z \, \chi(y,z)$. Let $m \vDash q|_{\mathcal{R}(A)ab} \cup \{\chi(y)\}$. Then $\operatorname{tp}_{\mathcal{L}}(a/m) = \operatorname{tp}_{\mathcal{L}}(b/m)$ and $\vDash \exists z \, \chi(m,z)$. In particular, we can also find n.

As p is $\widetilde{\mathcal{L}}(A)$ -invariant it is in particular $\widetilde{\mathcal{L}}(M^*)$ -invariant. But, as shown above, p is then $\mathcal{L}(\mathcal{R}(M^*))$ -invariant. It follows that $p \vdash \varphi(x; a) \iff \varphi(x; b)$.

The assumption that all $\mathcal{L}(A)$ -definable sets are consistent with some global $\mathcal{L}(A)$ invariant type may seem like a surprising assumption. Nevertheless, considering a coheir
(in the sense of \widetilde{T} , whose restriction to \mathcal{L} is also a coheir in the sense of T), this assumption always holds when A is a model of \widetilde{T} .

2 Valued differential fields

The main motivation for the results in the previous sections was to understand definable and invariant types in valued differential fields and more specifically those with a contractive derivation, i.e. for all x, $val(\partial(x)) \ge val(x)$. In [Sca00], Scanlon showed that the theory of valued fields with a valuation preserving derivation has a model completion named VDF_{*EC*}. It is the theory of ∂ -Henselian fields whose residue field is a model of DCF₀, whose value group is divisible and such that for all x there exists a y with $\partial(y) = 0$ and val(y) = val(x).

The main result that we will be needing here is that the theory $\text{VDF}_{\mathcal{EC}}$ eliminates quantifiers in the one sorted language $\mathcal{L}_{\partial,\text{div}}$ consisting of the language of rings enriched with a symbol ∂ for the derivation and a symbol x|y interpreted as $\text{val}(x) \leq \text{val}(y)$. This result implies that for all substructures $A \leq M \models \text{VDF}_{\mathcal{EC}}$ the map sending $p = \text{tp}_{\mathcal{L}_{\partial,\text{div}}}(c/A)$ to $\nabla_{\omega}p \coloneqq \text{tp}_{\mathcal{L}_{\text{div}}}((\partial^i(c))_{i\in\omega}/A)$ is injective, where $\mathcal{L}_{\text{div}} \coloneqq \mathcal{L}_{\partial,\text{div}} \setminus \{\partial\}$ denotes the one sorted language of valued fields.

2 Valued differential fields

Lemma 2.1:

Let $k \models \text{DCF}_0$. The Hahn field $k((t^{\mathbb{R}}))$, with derivation $\partial(\sum_i a_i t^i) = \sum_i \partial(a_i) t^i$ and its natural valuation, is a models of $\text{VDF}_{\mathcal{EC}}$ and its reduct to \mathcal{L}_{div} is uniformly stably embedded in every elementary extension.

Proof. The fact that $k((t^{\mathbb{R}})) \models \text{VDF}_{\mathcal{EC}}$ follows from the fact that its residue field k is a model of DCF₀, its value group \mathbb{R} is a divisible ordered Abelian group and that Hahn fields are spherically complete, cf. [Sca00, Proposition 6.1].

The fact that $k((t^{\mathbb{R}}))$ is uniformly stably embedded in every elementary extension is shown in [Rid, Corollary A.7].

Recall that Haskell, Hrushovski and Macpherson [HHM06] showed that algebraically closed valued fields eliminate imaginaries provided the geometric sorts are added. We will be denoting by \mathcal{G} the set of all geometric sorts.

Proposition 2.2:

Let $A = \operatorname{acl}_{\mathcal{L}_{\partial,\operatorname{div}}}^{\operatorname{eq}}(A) \subseteq M \vDash \operatorname{VDF}_{\mathcal{EC}}$. A type $p \in \mathcal{S}^{\mathcal{L}_{\operatorname{div}}}(M)$ is $\mathcal{L}_{\partial,\operatorname{div}}^{\operatorname{eq}}(A)$ -definable if and only if it is $\mathcal{L}_{\operatorname{div}}^{\operatorname{eq}}(\mathcal{G}(A))$ -definable.

Proof. If p is $\mathcal{L}_{div}^{eq}(\mathcal{G}(A))$ -definable then it is in particular $\mathcal{L}_{\partial,div}^{eq}(A)$ -definable. The reciprocal implication follows immediately from Corollary (1.7) and Lemma (2.1).

An immediate corollary of this proposition is an elimination of imaginaries result for canonical bases of definable types in $VDF_{\mathcal{EC}}$:

Corollary 2.3:

Let $A = \operatorname{acl}_{\mathcal{L}_{\partial,\operatorname{div}}}^{\operatorname{eq}}(A) \subseteq M \vDash \operatorname{VDF}_{\mathcal{EC}}$ and $p \in \mathcal{S}^{\mathcal{L}_{\partial,\operatorname{div}}}(M)$. The following are equivalent:

- (i) p is $\mathcal{L}^{eq}_{\partial \operatorname{div}}(A)$ -definable;
- (ii) $\nabla_{\omega}(p)$ is $\mathcal{L}^{eq}_{div}(\mathcal{G}(A))$ -definable;
- (iii) p is $\mathcal{L}^{eq}_{\partial,div}(\mathcal{G}(A))$ -definable.

Proof. The implication (iii) \Rightarrow (i) is trivial. Let us now assume (i). An $\mathcal{L}_{div}(M)$ -formula $\varphi(\overline{x};m)$ is in $\nabla_{\omega}(p)$ if and only if $\varphi(\partial_{\omega}(x);m) \in p$, where $\partial_{\omega}(x) = (\partial^{i}(x))_{i\in\omega}$. It follows that $\nabla_{\omega}(p)$ is $\mathcal{L}^{eq}_{\partial,div}(A)$ -definable. By Proposition (2.2), $\nabla_{\omega}(p)$ is in fact $\mathcal{L}^{eq}_{div}(\mathcal{G}(A))$ -definable.

Let us now assume (ii) and let $\psi(x;m)$ be any $\mathcal{L}_{\partial,\text{div}}(M)$ -formula. By quantifier elimination, $\psi(x;m)$ is equivalent to $\varphi(\partial_{\omega}(x);\partial_{\omega}(m))$ for some \mathcal{L}_{div} -formula $\varphi(\overline{x};\overline{t})$. Therefore $\psi(x;m) \in p$ if and only if $\varphi(\overline{x};\partial_{\omega}(m)) \in \nabla_{\omega}(p)$ and hence p is $\mathcal{L}_{\partial,\text{div}}^{\text{eq}}(\mathcal{G}(A))$ -definable.

In [Rid], it is shown that there are enough definable types to use this partial elimination of imaginaries result to obtain elimination of imaginaries to the geometric sorts for $VDF_{\mathcal{EC}}$.

Thanks to the result in Section 1 and results from [Rid], we can also characterise invariant types in $VDF_{\mathcal{EC}}$. Note that, although the main results in [Rid] depend on the results

2 Valued differential fields

proved in the present paper, the result from [Rid] that we will be using in what follows does not.

Proposition 2.4:

Let $M \models \text{VDF}_{\mathcal{EC}}$ and $A = \operatorname{acl}_{\mathcal{L}_{\partial, \operatorname{div}}}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}}$. A type $p \in \mathcal{S}^{\mathcal{L}_{\operatorname{div}}}(M)$ is $\mathcal{L}_{\partial, \operatorname{div}}^{\operatorname{eq}}(A)$ -invariant if and only if it is $\mathcal{L}_{\operatorname{div}}^{\operatorname{eq}}(\mathcal{G}(A))$ -invariant.

Proof. To prove the non obvious implication, by Proposition (1.9), we have to show that $VDF_{\mathcal{EC}}$ has a model whose underlying valued field is uniformly stably embedded in any elementary extension — that is tackled in Lemma (2.1) — and that any $\mathcal{L}_{\partial,\mathrm{div}}^{\mathrm{eq}}(A)$ definable set (in the sort **K**) is consistent with an $\mathcal{L}_{\mathrm{div}}^{\mathrm{eq}}(\mathcal{G}(A))$ -invariant $\mathcal{L}_{\mathrm{div}}$ -type. It follows from [Rid, Proposition 9.7] (applied to $T = \mathrm{ACVF}$ and $\widetilde{T} = \mathrm{VDF}_{\mathcal{EC}}$) that any $\mathcal{L}_{\partial,\mathrm{div}}^{\mathrm{eq}}(A)$ -definable set (in the sort **K**) is consistent with an $\mathcal{L}_{\mathrm{div}}^{\mathrm{eq}}(\mathcal{G}(A))$ -definable $\mathcal{L}_{\mathrm{div}}$ type. But, by Proposition (2.2), such a type is $\mathcal{L}_{\mathrm{div}}^{\mathrm{eq}}(\mathcal{G}(A))$ -definable.

Corollary 2.5:

Let $A = \operatorname{acl}_{\mathcal{L}_{\partial,\operatorname{div}}}^{\operatorname{eq}}(A) \subseteq M \vDash \operatorname{VDF}_{\mathcal{EC}}$ and $p \in \mathcal{S}^{\mathcal{L}_{\partial,\operatorname{div}}}(M)$. The following are equivalent:

- (i) p is $\mathcal{L}^{eq}_{\partial, div}(A)$ -invariant;
- (*ii*) $\nabla_{\omega}(p)$ is $\mathcal{L}^{eq}_{div}(\mathcal{G}(A))$ -invariant;
- (iii) p is $\mathcal{L}^{eq}_{\partial \operatorname{div}}(\mathcal{G}(A))$ -invariant.

Proof. This is proved as in Corollary (2.3), except that Proposition (2.4) is used instead of Proposition (2.2).

We can now give a characterisation of forking in $VDF_{\mathcal{EC}}$.

Corollary 2.6:

Let $M \models \text{VDF}_{\mathcal{EC}}$ be $|A|^+$ -saturated, $A = \operatorname{acl}_{\mathcal{L}_{\partial,\operatorname{div}}}^{\operatorname{eq}}(A) \subseteq M$ and $\varphi(x)$ be an $\mathcal{L}_{\partial,\operatorname{div}}(M)$ -formula. Then $\varphi(x)$ does not fork over A if and only if for all $\mathcal{L}_{\operatorname{div}}(M)$ -formulas such that $\varphi(x)$ is equivalent to $\psi(\partial_{\omega}(x)), \psi(\overline{x})$ does not fork over $\mathcal{G}(A)$ (in ACVF).

Proof. Let us first assume that $\varphi(x)$ does not fork over A and let p be a global non forking extension of $\varphi(x)$. As $VDF_{\mathcal{EC}}$ is NIP, by [HP11, Proposition 2.1], p is invariant under all automorphisms that fix Lascar strong type over A. But, because $VDF_{\mathcal{EC}}$ has the invariant extension property (cf. [Rid, Theorem 2.14]), Lascar strong type and strong type coincide in $VDF_{\mathcal{EC}}$ (see [HP11, Proposition 2.13]), hence p is $\mathcal{L}^{eq}_{\partial,div}(A)$ -invariant. It follows from Corollary (2.5) that $\nabla_{\omega}(p)$ is $\mathcal{L}^{eq}_{div}(\mathcal{G}(A))$ -invariant and hence $\psi(\overline{x})$ does not fork over $\mathcal{G}(A)$.

Let us now assume that no $\psi(\overline{x})$ such that $\varphi(x)$ is equivalent to $\psi(\partial_{\omega}(x))$ forks over $\mathcal{G}(A)$. Then there exists $q \in \mathcal{S}_{\overline{x}}^{\mathcal{L}_{\operatorname{div}}}(M)$ which is $\mathcal{L}_{\operatorname{div}}^{\operatorname{eq}}(\mathcal{G}(A))$ -invariant and consistent with all such formulas $\psi(\overline{x})$. Now, the image of the continuous map $\nabla_{\omega} : \mathcal{S}_{x}^{\mathcal{L}_{\partial,\operatorname{div}}}(M) \to \mathcal{S}_{\overline{x}}^{\mathcal{L}_{\operatorname{div}}}(M)$ is closed and if $\chi(\overline{x})$ is an $\mathcal{L}_{\operatorname{div}}(M)$ -formula containing the image of ∇_{ω} and $\psi(\overline{x})$ is as above, $\chi(\partial_{\omega}(x)) \wedge \psi(\partial_{\omega}(x))$ is also equivalent to $\varphi(x)$. Therefore, $q = \nabla_{\omega}(p)$

References

for some $\mathcal{L}_{\partial,\text{div}}^{\text{eq}}(A)$ -invariant $p \in \mathcal{S}_x^{\mathcal{L}_{\partial,\text{div}}}(M)$. This type p implies $\varphi(x)$ and hence $\varphi(x)$ does not fork over A.

Remark 2.7:

The previous corollary is somewhat unsatisfying as one needs to consider all possible ways of describing $\varphi(x)$ as the prolongation points of an \mathcal{L}_{div} -formula ψ (with parameters in a saturated model) to conclude whether φ forks or not.

Considering only one such ψ cannot be enough. For example, consider any definable set $\varphi(x)$ forking (in VDF_{*EC*}) over A and let $\psi(x_0, x_1) = (val(x_0) \ge 0 \land val(x_1) < 0) \lor \varphi(x_0)$. Then the set $\{x \in M : M \models \psi(x, \partial(x))\} = \varphi(M)$ but ψ does not fork over A (in ACVF). The obstruction here might seem frivolous, but it is the core of the problem. Indeed, it is not clear if there is a way, given φ to find a formula ψ as above that does not contain "large" subsets with no prolongation points.

References

- [HHM06] Deirdre Haskell, Ehud Hrushovski, and Dugald Macpherson. Definable sets in algebraically closed valued fields: elimination of imaginaries. J. Reine Angew. Math., 597:175–236, 2006.
- [HP11] Ehud Hrushovski and Anand Pillay. On NIP and invariant measures. J. Eur. Math. Soc. (JEMS), 13(4):1005–1061, 2011.
- [Mat04] Jiří Matoušek. Bounded VC-dimension implies a fractional Helly theorem. Discrete Comput. Geom., 31(2):251–255, 2004.
- [Rid] Silvain Rideau. Imaginaries in valued differential fields. arXiv:1508.07935.
- [Sca00] Thomas Scanlon. A model complete theory of valued *D*-fields. J. Symb. Log., 65(4):1758–1784, 2000.
- [Sim15a] Pierre Simon. A Guide to NIP Theories. Number 44 in Lect. Notes Log. Cambridge Univ. Press, Cambridge, Assoc. Symbol. Logic, Chicago, IL edition, 2015.
- [Sim15b] Pierre Simon. Invariant types in NIP theories. J. Math. Log, 15(2), 2015.