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Let T be an NIP L-theory and T̃ be an enrichment. We give a sufficient
condition on T̃ for the underlying L-type of any definable (respectively invari-
ant) type over a model of T̃ to be definable (respectively invariant). These
results are then applied to Scanlon’s model completion of valued differential
fields.

Let T be a theory in a language L and consider an expansion T ⊆ T̃ in a language L̃.
In this paper, we wish to study how invariance and definability of types in T relate to
invariance and definability of types in T̃ . More precisely, let U ⊧ T̃ be a monster model
and consider some type p̃ ∈ S(U) which is invariant over some small M ⊧ T̃ . Then the
reduct p of p̃ to L is of course invariant under the action of the L̃-automorphisms of
U that fix M (which we will denote as L̃(M)-invariant), but there is, in general, no
reason for it to be L(M)-invariant. Similarly, if p̃ is L̃(M)-definable, p might not be
L(M)-definable.
When T is stable, and φ(x; y) is an L-formula, φ-types are definable by Boolean com-
binations of instances of φ. It follows that if p̃ is L̃(M)-invariant then p is both L(M)-
invariant and L(M)-definable. Nevertheless, when T is only assumed to be NIP, then
this is not always the case. For example one can take T to be the theory of dense
linear orders and L̃ = {⩽, P (x)} where P (x) is a new unary predicate naming a con-
vex non-definable subset of the universe. Then there is a definable type in T̃ lying at
some extremity of this convex set whose reduct to L = {⩽} is not definable without the
predicate.
In the first section of this paper, we give a sufficient condition (in the case where T
is NIP) to ensure that any L̃(M)-invariant (resp. definable) L-type p is also L(M)-
invariant (resp. definable). The condition is that there exists a model M of T̃ whose
reduct to L is uniformly stably embedded in every elementary extension of itself. In the
case where T is o-minimal for example, this happens whenever the ordering on M is
complete.

∗Partially supported by ValCoMo (ANR-13-BS01-0006)

1



1 External separability

The main technical tool developed in this first section is the notion of external separa-
bility (Definition (1.2)). Two sets X and Y are said to be externally separable if there
exists an externally definable set Z such that X ⊆ Z and Y ∩Z = ∅. In Proposition (1.3),
we show that in NIP theory, external separability is essentially a first order property.
The results about definable and invariant sets then follow by standard methods along
with a “local representation” of φ-types from [Sim15b].
The motivation for these results comes from the study of expansions of ACVF and
in particular the model completion VDFEC defined by Scanlon [Sca00] of valued dif-
ferential fields with a contractive derivation, i.e. a derivation ∂ such that for all x,
val(∂(x)) ⩾ val(x). In the third section, we deduce, from the previous abstract results,
a characterisation of definable (resp. invariant) types in models of VDFEC in terms of
the definability (resp. invariance) of the underlying ACVF-type. This characterisation
also allows us to control the canonical basis of definable types in VDFEC , an essential
step in proving elimination of imaginaries for that theory in [Rid].
The authors wish to thank Jean-François Martin for pointing out an error in a earlier
draft of this work.

0.1 Notation
Let us now define some notation that will be used throughout the paper. When φ(x; y)
is a formula, we implicitly consider that y is a parameter of the formula and we define
φopp(y;x) to be equal to φ(x; y).
We write N ≺+ M to denote that M is a ∣N ∣+-saturated and (strongly) ∣N ∣+-homogeneous
elementary extension of N .
Let X be an L(M)-definable set (or a union of definable sets) and A ⊆M . We denote
by X(A) the set of realisations of X in A, i.e. the set {a ∈ A ∶M ⊧ a ∈X}. If R is a set
of definable sets (in particular a set of sorts), we define R(A) ∶= ⋃R∈RR(A).

1 External separability

Definition 1.1 (Externally φ-definable):
Let M be an L-structure, φ(x; t) be an L-formula and X a subset of some Cartesian
power of M . We say that X is externally φ-definable if there exist N ≽M and a tuple
a ∈ N such that X = φ(M ;a).

Definition 1.2 (Externally φ-separable):
Let M be an L-structure, φ(x; t) be an L-formula and X, Y be subsets of some Cartesian
power of M . We say that X and Y are externally φ-separable if there exist N ≽M and
a tuple a ∈ N such that X ⊆ φ(M ;a) and Y ∩ φ(M ;a) = ∅.

We will say that X and Y are φ-separable if a can be chosen in M . Note that a set X
is externally φ-definable if X and its complement are externally φ-separable.
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1 External separability

Proposition 1.3:
Let T be an L-theory and φ(x; t) an NIP L-formula. Let U(x) and V (x) be new predicate
symbols and let LU,V ∶= L ∪ {U,V }. Then, there is an LU,V -sentence θU,V and an L-
formula ψ(x; s) such that for all M ⊧ T and any enrichment MU,V of M to LU,V , we
have:

if U and V are externally φ-separable, then MU,V ⊧ θU,V
and

if MU,V ⊧ θU,V , then U and V are externally ψ-separable.

Proof . Let k1 be the VC-dimension of φ(x; t). By the dual version of the (p, q)-theorem
(see [Mat04] and [Sim15a, Corollary 6.13]) there exists q1 and n1 such that for any set
X, any finite A ⊆ X and any S ⊆ P(X) of VC-dimension at most k1, if for all A0 ⊆ A
of size at most q1 there exist S ∈ S containing A0, then there exists S1 . . . Sn1 ∈ S such
that A ⊆ ⋃i⩽n1

Si. Let k2 be the VC-dimension of ⋃n1
i=1φ(x; ti) and q2 and n2 the bounds

obtained by the dual (p, q)-theorem for families of VC-dimension at most k2. Let

θU,V ∶= ∀x1 . . . xq1 , y1 . . . yq2 ⋀
i⩽q1

U(xi) ∧ ⋀
j⩽q2

V (yj)⇒ ∃t ⋀
i⩽q1

φ(xi; t) ∧ ⋀
i⩽q2

¬φ(yj ; t).

Now, let M ≺+ N ⊧ T , U and V be subsets of M ∣x∣ and d ∈ N be a tuple. If U ⊆ φ(M ;d)
and V ⊆ ¬φ(M ;d) then for any A ⊆ U and B ⊆ V finite there exists d0 ∈ M such that
A ⊆ φ(M ;d0) and B ⊆ ¬φ(M ;d0). In particular, MU,V ⊧ θU,V .
Suppose now that MU,V ⊧ θU,V . Let B0 ⊆ V have cardinality at most q2. The family
{φ(M ;d) ∶ d ∈M a tuple and B0 ⊆ ¬φ(M ;d)} has VC-dimension at most k1 (a subfamily
always has lower VC-dimension). Because MU,V ⊧ θU,V , for any A0 ⊆ U of size at most
q1, there exists d ∈ M such that A0 ⊆ φ(M ;d) and B0 ⊆ ¬φ(M ;d). It follows that for
any finite A ⊆ U there are tuples d1 . . . dn1 ∈M such that A ⊆ ⋁i⩽n1

φ(M ;di) and for all
i ⩽ n1, B0 ⊆ ¬φ(M ;di), in particular, B0 ⊆ ¬(⋁i⩽n1

φ(M ;di)). By compactness, there
exists tuple d1 . . . dn1 ∈ N such that U ⊆ ⋁i⩽n1

φ(M ;di) and B0 ⊆ ¬(⋁i⩽n1
φ(M ;di)).

The family {¬(⋁i⩽n1
φ(M ;di)) ∶ di ∈ N tuples and U ⊆ ⋁i⩽n1

φ(M ;di)} has VC-dimension
at most k2. We have just shown that for any B0 of size at most q2, there is an el-
ement of that family containing B0. It follows by the (p, q)-property and compact-
ness that there exists tuples di,j ∈ N ≽ M such that V ⊆ ⋁j⩽n2

¬(⋁i⩽n1
φ(M ;di,j)) =

¬(⋀j⩽n2 ⋁i⩽n1
φ(M ;di,j)) and U ⊆ ⋀j⩽n2 ⋁i⩽n1

φ(M ;di,j). Hence U and V are externally
⋀j⩽n2 ⋁i⩽n1

φ(x; ti,j)-separable. ∎

We would now like to characterise enrichments T̃ of NIP theories that do not add new
externally separable definable sets, i.e. L̃-definable sets that are externally L-separable
but not internally L-separable. We show that if there is one model of T̃ where this
property holds uniformly, then it holds in all models of T .

Proposition 1.4:
Let T be an NIP L-theory (with at least two constants), L̃ ⊇ L be some language, T̃ ⊇ T
be a complete L̃-theory and χ1(x; s) and χ2(x; s) be L̃-formulas. The following are
equivalent:
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1 External separability

(i) For all L-formulas φ(x; t), all M ⊧ T̃ and all a ∈ M there exists an L-formula
ξ(x; z) such that if χ1(M ;a) and χ2(M ;a) are externally φ-separated then they
are ξ-separated;

(ii) For all L-formulas φ(x; t), there exists an L-formula ξ(x; z) such that for all M ⊧
T̃ and all a ∈ M , if χ1(M ;a) and χ2(M ;a) are externally φ-separated then they
are ξ-separated;

(iii) For all L-formulas φ(x; t), there exists an L-formula ξ(x; z) and M ⊧ T̃ such that
for all a ∈ M , if χ1(M ;a) and χ2(M ;a) are externally φ-separated then they are
ξ-separated.

Proof . The implications (ii) ⇒ (i) and (ii) ⇒ (iii) are trivial.
Let us now show that (iii) implies (ii). By Proposition (1.3), there exists an L̃-formula
θ(s) and an L-formula ψ(x;u) such that for all N ⊧ T̃ and a ∈ N :

χ1(N ;a) and χ2(N ;a) externally φ-separated implies N ⊧ θ(a)

and
N ⊧ θ(a) implies χ1(N ;a) and χ2(N ;a) externally ψ-separated.

Let M and ξ be as in condition (iii) with respect to ψ. We have:

M ⊧ ∀s θ(s)⇒ ∃u (∀x (χ1(x; s)⇒ ξ(x;u)) ∧ (χ2(x; s)⇒ ¬ξ(x;u))).

As T̃ is complete, this must hold in any N ⊧ T̃ . Thus, if χ1(N ;a) and χ2(N ;a) are
externally φ-separated, we have N ⊧ θ(a) and hence χ1(N ;a) and χ2(N ;a) are ξ-
separated.
There remains to prove that (i) ⇒ (iii). Pick any M ≺+ U ⊧ T̃ . By (i), it is impossible
to find, in any elementary extension (U⋆,M⋆) of the pair (U,M), a tuple a ∈ M⋆ and
b ∈ U⋆ such that χ1(M⋆;a) and χ2(M⋆;a) are separated by φ(M⋆; b), but they are not
separated by any set of the form ξ(M⋆; c) where ξ is an L-formula and c ∈ M⋆. By
compactness, there exists ξi(x;ui) for i ⩽ n such that for all a ∈ M if χ1(M ;a) and
χ2(M ;a) are externally φ-separated, there exists an i such that they are ξi-separated.
By classic coding tricks, we can ensure that i = 1. ∎

Definition 1.5 (Uniform stable embeddedness):
Let M be an L-structure and A ⊆M . We say that A is uniformly stably embedded in M
if for all formulas φ(x; t) there exists a formula χ(x; s) such that for all tuples b ∈ M
there exists a tuple a ∈ A such that φ(A, b) = χ(A,a).

Remark 1.6:
If there exists M ⊧ T̃ such that M ∣L is uniformly stably embedded in every elementary
extension, then such an M witnesses Condition 1.4.(iii) for every choice of formulas χ1

and χ2.
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1 External separability

Corollary 1.7:
Let T be an NIP L-theory that eliminates imaginaries, L̃ ⊇ L be some language and
T̃ ⊇ T be a complete L̃-theory. Suppose that there exists M ⊧ T̃ such that M ∣L is
uniformly stably embedded in every elementary extension. Let φ(x; t) be an L-formula,
N ⊧ T̃ , A = dcleq

L̃
(A) ⊆ N eq and p ∈ Sφx (N). If p is L̃eq(A)-definable, then it is in fact

L(R(A))-definable where R denotes the set of all L-sorts.

Proof . Let a ⊧ p. Then X ∶= {m ∈ N ∶ φ(x;m) ∈ p} = {m ∈ N ∶ ⊧ φ(a;m)} is L-externally
definable and L̃eq(A)-definable (by some L̃-formula χ). It follows from Remark (1.6)
that Condition 1.4.(iii) holds and hence, by Condition 1.4.(i), taking χ1 = χ and χ2 =
¬χ, it follows that X is L-definable.
Because T eliminates imaginaries, we have just shown that we can find ⌜X⌝L ∈ R. But
X is also L̃eq(A)-definable, hence any L̃eq(A)-automorphism of N eq stabilises X(N)
globally and therefore fixes ⌜X⌝L. If we assume that N is strongly ∣A∣+-homogeneous
(and we can), it follows that ⌜X⌝L ∈ dcleq

L̃
(A) = A. Thus ⌜X⌝L ∈ A ∩R =R(A) and X is

L(R(A))-definable. ∎

We will need the following result, which is [Sim15b, Proposition 2.11].

Proposition 1.8:
Let T be any theory, φ(x; y) an NIP formula, M ≺+ N ⊧ T and p(x) a global M -invariant
φ-type. Let b, b′ ∈ U ≽ N such that both tp(b/N) and tp(b′/N) are finitely satisfiable in
M and tpφopp(b/N) = tpφopp(b′/N). Then we have p∣U ⊢ φ(x; b) ⇐⇒ φ(x; b′).

Proposition 1.9:
Let T be an NIP L-theory, L̃ ⊇ L be some language and T̃ ⊇ T be a complete L̃-theory.
Let R denote the set of L-sorts. Suppose that there exists M ⊧ T̃ such that M ∣L is
uniformly stably embedded in every elementary extension. Let φ(x; t) be an L-formula,
N ⊧ T̃ be sufficiently saturated, A ⊆ N and p ∈ Sφx (N) be L̃(A)-invariant. Assume that
every L̃(A)-definable set (in some Cartesian power of R) is consistent with some global
L(R(A))-invariant type. Then p is L(R(A))-invariant.

Proof . Let us first assume that A ⊧ T̃ . Let b1 and b2 be such p(x) ⊢ φ(x, b1)∧¬φ(x, b2).
We have to show that tpL(b1/A) ≠ tpL(b2/A). Let pi = tpL̃(bi/A), Σ(t) be the set of
L̃(N)-formulas θ(t) such that ¬θ(A) = ∅ and ∆(t1, t2) be the set:

p1(t1) ∪ p2(t2) ∪Σ(t1) ∪Σ(t2) ∪ {φ(n, t1) ⇐⇒ φ(n, t2) ∶ n ∈ N}.

If ∆ were consistent, there would exist b⋆1 and b⋆2 such that bi ≡L̃(A) b
⋆
i , tpL̃(b

⋆
i /N) is

finitely satisfiable in A and tpφopp(b⋆1/N) = tpφopp(b⋆2/N). Applying Proposition (1.8) it
would follow that p(x) ⊢ φ(x; b⋆1) ⇐⇒ φ(x; b⋆2). But, because p is L̃(A)-invariant and
p(x) ⊢ φ(x, b1)∧¬φ(x, b2), we also have that p(x) ⊢ φ(x; b⋆1)∧¬φ(x; b⋆2), a contradiction.
By compactness, there exists ψi ∈ pi, θi ∈ Σ, n ∈ ω and (ci)i∈n ∈ N such that

∀t1, t2 θ1(t1) ∧ θ2(t2) ∧ (⋀
i

φ(ci, t1) ⇐⇒ φ(ci, t2)) ∧ ψ1(t1)⇒ ¬ψ2(t2).
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2 Valued differential fields

In particular, because ¬θi(A) = ∅, for all m1 and m2 ∈ A, (⋀iφ(ci,m1) ⇐⇒ φ(ci,m2))∧
ψ1(m1) ⇒ ¬ψ2(m2). For all ε ∶ n → 2, let φε(t, c) ∶= ⋀iφ(ci, t)ε(i) where φ1 = φ and
φ0 = ¬φ. It follows that if φε(A, c) ∩ ψ1(A) ≠ ∅, then φε(A, c) ∩ ψ2(A) = ∅. Let

θ(t, c) ∶= ⋁
φε(A,c)∩ψ1(A)≠∅

φε(c, t).

We have ψ1(A) ⊆ θ(A, c) and ψ2(A) ∩ θ(A, c) = ∅, i.e. ψ1(A) and ψ2(A) are externally
θ-separable. By Proposition (1.4) and Remark (1.6), ψ1(A) and ψ2(A) are in fact ξ-
separable for some L(R(A))-formula ξ. It follows that N ⊧ ∀t1, t2 (ψ1(t1) ⇒ ξ(t1)) ∧
(ψ2(t2)⇒ ¬ξ(t2)) and, in particular N ⊧ ξ(b1) ∧ ¬ξ(b2). So tpL(b1/A) ≠ tpL(b2/A).
Let us now conclude the proof when A is not a model. Let M ⊧ T̃ contain A and pick
any a and b ∈ N such that a ≡L(R(A)) b.

Claim 1.10: There exists M⋆ ≡L̃(A) M (in particular it is a model of T̃ containing A)
such that a ≡L(R(M⋆)) b.

Proof . By compactness, it suffices, given χ(y, z) ∈ tpL̃(M/A), where y is a tuple of
R-variables, and ψi(t; y) a finite number of L-formulas, to find tuples m, n such that
⊧ χ(m,n) ∧ ⋀iψ(a;m) ⇐⇒ ψ(b;m). By hypothesis on A, there exists q ∈ Sy(N ∣L)
which is L(R(A))-invariant and consistent with ∃z χ(y, z). Let m ⊧ q∣R(A)ab ∪ {χ(y)}.
Then tpL(a/m) = tpL(b/m) and ⊧ ∃z χ(m,z). In particular, we can also find n. ⧫

As p is L̃(A)-invariant it is in particular L̃(M⋆)-invariant. But, as shown above, p is
then L(R(M⋆))-invariant. It follows that p ⊢ φ(x;a) ⇐⇒ φ(x; b). ∎

The assumption that all L̃(A)-definable sets are consistent with some global L(A)-
invariant type may seem like a surprising assumption. Nevertheless, considering a coheir
(in the sense of T̃ , whose restriction to L is also a coheir in the sense of T ), this assump-
tion always holds when A is a model of T̃ .

2 Valued differential fields
The main motivation for the results in the previous sections was to understand definable
and invariant types in valued differential fields and more specifically those with a con-
tractive derivation, i.e. for all x, val(∂(x)) ⩾ val(x). In [Sca00], Scanlon showed that the
theory of valued fields with a valuation preserving derivation has a model completion
named VDFEC . It is the theory of ∂-Henselian fields whose residue field is a model of
DCF0, whose value group is divisible and such that for all x there exists a y with ∂(y) = 0
and val(y) = val(x).
The main result that we will be needing here is that the theory VDFEC eliminates
quantifiers in the one sorted language L∂,div consisting of the language of rings enriched
with a symbol ∂ for the derivation and a symbol x∣y interpreted as val(x) ⩽ val(y).
This result implies that for all substructures A ⩽ M ⊧ VDFEC the map sending p =
tpL∂,div

(c/A) to ∇ωp ∶= tpLdiv
((∂i(c))i∈ω/A) is injective, where Ldiv ∶= L∂,div∖{∂} denotes

the one sorted language of valued fields.

6



2 Valued differential fields

Lemma 2.1:
Let k ⊧ DCF0. The Hahn field k((tR)), with derivation ∂(∑i aiti) = ∑i ∂(ai)ti and
its natural valuation, is a models of VDFEC and its reduct to Ldiv is uniformly stably
embedded in every elementary extension.

Proof . The fact that k((tR)) ⊧ VDFEC follows from the fact that its residue field k is a
model of DCF0, its value group R is a divisible ordered Abelian group and that Hahn
fields are spherically complete, cf. [Sca00, Proposition 6.1].
The fact that k((tR)) is uniformly stably embedded in every elementary extension is
shown in [Rid, Corollary A.7]. ∎

Recall that Haskell, Hrushovski and Macpherson [HHM06] showed that algebraically
closed valued fields eliminate imaginaries provided the geometric sorts are added. We
will be denoting by G the set of all geometric sorts.

Proposition 2.2:
Let A = acleqL∂,div

(A) ⊆ M ⊧ VDFEC. A type p ∈ SLdiv(M) is Leq∂,div(A)-definable if and
only if it is Leqdiv(G(A))-definable.

Proof . If p is Leqdiv(G(A))-definable then it is in particular Leq∂,div(A)-definable. The re-
ciprocal implication follows immediately from Corollary (1.7) and Lemma (2.1). ∎

An immediate corollary of this proposition is an elimination of imaginaries result for
canonical bases of definable types in VDFEC :

Corollary 2.3:
Let A = acleqL∂,div

(A) ⊆M ⊧ VDFEC and p ∈ SL∂,div(M). The following are equivalent:

(i) p is Leq∂,div(A)-definable;

(ii) ∇ω(p) is Leqdiv(G(A))-definable;

(iii) p is Leq∂,div(G(A))-definable.

Proof . The implication (iii) ⇒ (i) is trivial. Let us now assume (i). An Ldiv(M)-formula
φ(x;m) is in ∇ω(p) if and only if φ(∂ω(x);m) ∈ p, where ∂ω(x) = (∂i(x))i∈ω. It follows
that ∇ω(p) is Leq∂,div(A)-definable. By Proposition (2.2), ∇ω(p) is in fact Leqdiv(G(A))-
definable.
Let us now assume (ii) and let ψ(x;m) be any L∂,div(M)-formula. By quantifier elimina-
tion, ψ(x;m) is equivalent to φ(∂ω(x);∂ω(m)) for some Ldiv-formula φ(x; t). Therefore
ψ(x;m) ∈ p if and only if φ(x;∂ω(m)) ∈ ∇ω(p) and hence p is Leq∂,div(G(A))-definable. ∎

In [Rid], it is shown that there are enough definable types to use this partial elimination
of imaginaries result to obtain elimination of imaginaries to the geometric sorts for
VDFEC .
Thanks to the result in Section 1 and results from [Rid], we can also characterise invariant
types in VDFEC . Note that, although the main results in [Rid] depend on the results
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2 Valued differential fields

proved in the present paper, the result from [Rid] that we will be using in what follows
does not.

Proposition 2.4:
Let M ⊧ VDFEC and A = acleqL∂,div

(A) ⊆M eq. A type p ∈ SLdiv(M) is Leq∂,div(A)-invariant
if and only if it is Leqdiv(G(A))-invariant.

Proof . To prove the non obvious implication, by Proposition (1.9), we have to show
that VDFEC has a model whose underlying valued field is uniformly stably embedded in
any elementary extension — that is tackled in Lemma (2.1) — and that any Leq∂,div(A)-
definable set (in the sort K) is consistent with an Leqdiv(G(A))-invariant Ldiv-type. It
follows from [Rid, Proposition 9.7] (applied to T = ACVF and T̃ = VDFEC) that any
Leq∂,div(A)-definable set (in the sort K) is consistent with an Leq∂,div(A)-definable Ldiv-
type. But, by Proposition (2.2), such a type is Leqdiv(G(A))-definable. ∎

Corollary 2.5:
Let A = acleqL∂,div

(A) ⊆M ⊧ VDFEC and p ∈ SL∂,div(M). The following are equivalent:

(i) p is Leq∂,div(A)-invariant;

(ii) ∇ω(p) is Leqdiv(G(A))-invariant;

(iii) p is Leq∂,div(G(A))-invariant.

Proof . This is proved as in Corollary (2.3), except that Proposition (2.4) is used instead
of Proposition (2.2). ∎

We can now give a characterisation of forking in VDFEC .

Corollary 2.6:
Let M ⊧ VDFEC be ∣A∣+-saturated, A = acleqL∂,div

(A) ⊆ M and φ(x) be an L∂,div(M)-
formula. Then φ(x) does not fork over A if and only if for all Ldiv(M)-formulas such
that φ(x) is equivalent to ψ(∂ω(x)), ψ(x) does not fork over G(A) (in ACVF).

Proof . Let us first assume that φ(x) does not fork over A and let p be a global non
forking extension of φ(x). As VDFEC is NIP, by [HP11, Proposition 2.1], p is invariant
under all automorphisms that fix Lascar strong type over A. But, because VDFEC has
the invariant extension property (cf. [Rid, Theorem 2.14]), Lascar strong type and strong
type coincide in VDFEC (see [HP11, Proposition 2.13]), hence p is Leq∂,div(A)-invariant.
It follows from Corollary (2.5) that ∇ω(p) is Leqdiv(G(A))-invariant and hence ψ(x) does
not fork over G(A).
Let us now assume that no ψ(x) such that φ(x) is equivalent to ψ(∂ω(x)) forks over
G(A). Then there exists q ∈ SLdiv

x (M) which is Leqdiv(G(A))-invariant and consistent
with all such formulas ψ(x). Now, the image of the continuous map ∇ω ∶ S

L∂,div
x (M) →

SLdiv
x (M) is closed and if χ(x) is an Ldiv(M)-formula containing the image of ∇ω and
ψ(x) is as above, χ(∂ω(x)) ∧ ψ(∂ω(x)) is also equivalent to φ(x). Therefore, q = ∇ω(p)
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for some Leq∂,div(A)-invariant p ∈ SL∂,div
x (M). This type p implies φ(x) and hence φ(x)

does not fork over A. ∎

Remark 2.7:
The previous corollary is somewhat unsatisfying as one needs to consider all possible ways
of describing φ(x) as the prolongation points of an Ldiv-formula ψ (with parameters in
a saturated model) to conclude whether φ forks or not.
Considering only one such ψ cannot be enough. For example, consider any definable set
φ(x) forking (in VDFEC) over A and let ψ(x0, x1) = (val(x0) ⩾ 0 ∧ val(x1) < 0) ∨ φ(x0).
Then the set {x ∈M ∶M ⊧ ψ(x, ∂(x))} = φ(M) but ψ does not fork over A (in ACVF).
The obstruction here might seem frivolous, but it is the core of the problem. Indeed, it
is not clear if there is a way, given φ to find a formula ψ as above that does not contain
“large” subsets with no prolongation points.
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