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Abstract. Pseudo algebraically closed, pseudo real closed, and pseudo
p-adically closed fields are examples of unstable fields that share many
similarities, but have mostly been studied separately. In this text, we
propose a unified framework for studying them: the class of pseudo
T -closed fields, where T is an enriched theory of fields. These fields verify
a “local-global” principle for the existence of points on varieties with
respect to models of T . This approach also enables a good description
of some fields equipped with multiple V -topologies, particularly pseudo
algebraically closed fields with a finite number of valuations. One impor-
tant result is a (model theoretic) classification result for bounded pseudo
T -closed fields, in particular we show that under specific hypotheses on
T , these fields are NTP2 of finite burden.

Keywords: Model theory, valued fields, ordered fields, NTP2, PAC, PRC
and PpC fields.
Mathematics Subject Classification: 03C98, 03C45, 12L12, 12J10, 12J15.

1. Introduction

One of the main examples (and motivation) for the development of unstable
theories, especially simple theories, was that of pseudo algebraically closed
fields (PAC fields), and especially those that have a small Galois group —
i.e. those with finitely many extensions of any given degree d, usually called
bounded fields. This class of fields was introduced by Ax in [Ax68] to describe
the theory of finite fields. A PAC field is a field K such that any geometrically
integral variety over K admits a K-rational point; in other words, they are
existentially closed (in the language of rings) in any regular extension.
This notion has proven to be very fruitful, whether from a model theoretic
point of view where it continues to be the source of many examples of
moderate structures, see for example [Cha02], or from the arithmetic point
of view. It was eventually reinterpreted as a special case of a wide range of
local-global principles for the existence of rational points with the emergence
of the pseudo real closed fields (PRC) of Prestel [Pre81] (the existence of
smooth points in any real closure implies the existence of rational points) and
pseudo p-adically closed fields (PpC) [Gro87; HJ88] (the analogous notion
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for p-adic valuations) and, eventually, the pseudo classically closed fields of
Pop [Pop03] or the regularly T -closed fields of Schmid [Sch00].
Despite the great activity in model theory surrounding PAC fields, for quite
some time, the model theoretic study of these fields was mostly confined to
questions of completeness and decidability. In [Mon17b], the first author
initiated the classification (in the sense of Shelah) of bounded PRC and PpC
fields by showing, among other things, that bounded PRC and PpC fields
are NTP2 of finite burden. This was followed by further work on imaginaries
[Mon17a] and [MR21] and definable groups [MOS20].
Notwithstanding an apparent similarity in techniques, PRC fields and PpC
fields are studied separately in those works. The purpose of this text is to
propose a common framework for the study of these fields. This has, of
course, already been attempted before, and our approach is closely related
to that of Schmid [Sch00]: given a theory T of (large) fields, we say that
a field K is pseudo T -closed if every geometrically integral variety over K
with a smooth point in every model of T containing K has a point in K (see
Definition 3.4). This class generalizes several of the notions that appear in
the literature (see Example 3.6).
What sets this work apart, however, is that we aim for a more model theoretic
flavor both in our definitions and in our goals. In particular, we also aim to
describe pseudo algebraically closed fields endowed with a finite number of
valuations, a family of structure that has, to the best of our knowledge escaped
scrutiny so far, despite its apparent similarities with the aforementioned
examples.
One striking phenomenon that seems to arise in the study of all these
“local-global” principles is the fact that an apparently arithmetic hypothesis,
phrased uniquely in terms of existence of rational points in varieties has
strong topological implications on the density of points for a priori unrelated
topologies. In other words, existential closure as a topological field comes for
free from existential closure as a field. This was first observed for PRC fields
by Prestel [Pre81], and was later generalized to other classes. However, in
all of these examples, that behavior is not completely surprising since the
topologies considered can be defined in the field structure alone. Somewhat
more surprisingly, this is also true of algebraically closed fields by the historic
theorem of Robinson [Rob77] which states that algebraically closed fields are
existentially closed as valued fields despite the valuation very much not being
definable. This was generalized much later to PAC fields by Kollar [Kol07]
and was also noticed by Johnson [Joh22] who showed that this happens as
well when adding independent valuations to a Henselian valued field.
This stronger form of existential closure has been shown to have model
theoretic consequences [GJ13; Hon23], and plays a central (albeit somewhat
hidden) role in the first author’s work. It is therefore natural, given a set I
of completions of T — which we think of as “localizations of T ” and come
with their topologies — to define the notion of I-pseudo T -closed fields (see
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Definition 4.4) which isolates this stronger notion of existential closure. Two
obvious questions then arise:

● Are all pseudo T -closed fields I-pseudo T -closed?
● Are I-pseudo T -closed fields interesting from a model theoretic per-
spective?

The first half of this text gives a positive answer to the first question (under
some finiteness hypothesis), showing that earlier instances of this phenomenon
were not isolated incidents and that, indeed, I-pseudo T -closure is essentially
just independence of the involved topologies on top of pseudo T -closure —
cf. Theorem 5.11 for a precise statement. For example, PAC fields remain
existentially closed when endowed with independent valuations.
The second half of the text aims at giving a partial answer to the second
question by showing that, at least in the bounded perfect case, I-pseudo
T -closed display tame model theoretic behavior, in line with what we could
expect from generalized PAC fields. The presence of topologies is an obvious
obstruction to the simplicity of these fields, but we show that they are essen-
tially the only obstructions and that they are essentially only as complicated
as their “localizations”. For example, we show that their burden is the sum
of the burden of the “localizations” (Theorem 7.9).
Paired with the positive answer to the first question, this provides a wealth
of new examples of finite burden, strong and NTP2 fields. One of the most
natural finite burden example is the aforementioned case of bounded perfect
PAC fields with several independent valuations. In the appendix, we also
explain how get rid of the independence assumption.

The organization of the text is as follows. In section 2, we give some pre-
liminaries on burden, forking, large fields and V -topologies. In section 3, we
define the class of pseudo T -closure fields for a given theory T of (enriched)
large fields and give several equivalent definitions in terms of “local-global”
principle and existential closure. We then proceed to prove an approximation
theorem for rational points of varieties (Theorem 3.17) under some finiteness
hypothesis.
In section 4, we define, given a set I of completions of T , the class of I-
pseudo T -closed fields, and we give several equivalent definitions in terms
of approximation properties and existential closure. We also prove that
this is an elementary class under some mild hypotheses that will always be
verified when the theories in I are theories of Henselian valued (or real closed)
fields. In section 6, we initiate the model theoretic study of perfect bounded
I-pseudo T -closed fields. We show that the theory is model complete once
the Galois group is fixed, and types are given by the isomorphism type of
their algebraic closures (Proposition 6.7). We then deduce that these fields
enjoy a form of quantifier elimination “up to density” (cf. Corollary 6.13).
This last property can also be naturally rephrased as an “open core” property
that is typical of generic topological structure: any open definable set is
quantifier free definable (Theorem 6.12). Note that our methods are, in
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fact, more general and also allow proving such “open core” properties for
topological fields with additional non-topological generic structure.
In section 7, generalizing work of the first author, we prove that, although the
presence of topologies is an obvious obstruction to the simplicity of these fields,
it is essentially the only obstruction. For example, 3-amalgamation holds
up to quantifier free obstructions (cf. Theorem 7.1). Along with the earlier
density result, this allows us to compute burden in perfect bounded I-pseudo
T -closed fields (Theorem 7.9) and characterize forking (Corollary 8.5).
We conclude with a short appendix describing how, although I-pseudo T -
closure forces all the considered topologies to ve independent, following an
approach of Johnson [Joh19], we can also describe what happens for dependent
valuations.

2. Preliminaries

In this section we will recall some notions (and fix some notation) that will
be used throughout the paper.

2.1. Model Theory. Most of the structures in this paper, if not all, will
be fields that we consider in (some expansion of) the ring language Lrg ∶=
{+,−, ⋅,0,1}.

Notation 2.1. Let L be a language and M an L-structure. We write acl
and dcl for the model theoretic algebraic and definable closure in M . If a
and b are tuples in M and A ⊆M , then we say that a ≡A b (a ≡qf

A b) if a and
b have the same (quantifier-free) type over A. We will write S(A) for the
space of L-types with parameters in A.

Definition 2.2. If K is a field (considered as a structure in some expansion
of Lrg), and X is a L(K)-definable set, we will write dim(X) for the algebraic
dimension of X:

dim(X) ∶= max{trdeg(a/K) ∶ a ∈X(M) where K ≼M}.

Definition 2.3. Let X be definable in some L-structure M and κ a cardinal.
(1) An inp-pattern of depth κ inX consists of definable subsets φl(M,alj)

of X, with l < κ and j < ω, such that:
● for every l < κ, (φl(x, alj))j<ω is kl-inconsistent, for some kl ≥ 1;
● for every f ∶ κ→ ω, (φl(x, alf(l)))l<κ is consistent.

(2) The burden of X, denoted bdn(X) is greater or equal to κ, if there
exists an inp-pattern of depth κ in X and

bdn(X) = sup{κ ∶ bdn(X) ≥ κ}.
To keep track of finer estimates, burden can be computed in Card⋆,
cf. [Tou18, Definition 1.27].

(3) The burden ofM , or equivalently the burden of Th(M), is the burden
of the home sort (provided M has a unique dominant sort).
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Remark 2.4. (1) By Lemma 2.2 of [Che14] if φl(M,alj) is an inp-
pattern, then you can always assume that the sequences (alj)j<ω
are mutually indiscernible over any given A ⊆ M , meaning that
(alj)j<ω is indiscernible over A ∪ {al′j ∶ l′ ≠ l, j < ω}.

(2) By Lemma 7.1 of [Che14] if φl,0(M,al,0,j) ∨ φl,1(M,al,1,j) is an inp-
pattern, then φl,f(l)(M,al,f(l),j) is an inp-pattern for some f ∶ λ →
{0,1}.

(3) If X,Y are definable, then bdn(X) + bdn(Y ) ≤ bdn(X × Y ).
(4) If X,Y are definable, then bdn(X ∪ Y ) = max(bdn(X),bdn(Y )).
(5) If f ∶ Y →X is definable and surjective, then bdn(Y ) ≥ bdn(X).
(6) If f ∶ Y →X is definable and finite-to-one, then bdn(X) ≥ bdn(Y ).

Definition 2.5. A theory T is called strong if there are no inp-pattern of
infinite depth in its models. It is NTP2 if there is a (cardinal) bound on the
depth of inp-pattern in its models.

The burden of a real closed field (in the ring language, or equivalently the
ordered ring language) is 1. In examples, We will also consider valued
fields. Given a valued field (K,v), we denote O its valuation ring with
maximal ideal m, k = O/m its residue field, Γ = v(K×) its valuation group
and RV = K/(1 +m) its leading terms. We refer the reader to [Tou18] for
a very throughout introduction to their model theory and the proof of the
following burden computations:

Fact 2.6 ([Tou18, Corollary 3.13 and Theorem 3.21]). Let (K,v) be a valued
field.

(1) If K eliminates quantifiers relatively to RV1, is elementary equivalent
to a maximally complete valued field and the k/k⋆n are finite, then

bdn(K) = max{bdn(k),bdn(Γ)}.
(2) If K eliminates quantifiers relatively to ⋃nRVn, is elementary equiv-

alent to a maximally complete valued field and K is finitely ramified —
that is, for all n ≥ 1, (0, v(n)) is finite — then

bdn(K) = max{ℵ0 ⋅ bdn(k),bdn(Γ)}.
These equalities hold resplendently for Γ-expansions of k-expansions.

In [Tou18], the results are stated under stronger assumptions, but as noted
there, they hold at this level of generality — up to the fact that Touchard
considers unramified mixed characteristic fields (and not finitely ramified
ones), but the proof there also applies since the higher residue rings Rn =
O/nm are also interpretable in k in that case.

Definition 2.7. Let M be a (sufficiently saturated) L-structure and A ≤M .
(1) We say that the formula φ(x, a) divides over A if there exists an

indiscernible sequence (aj)j∈ω over A such that a0 = a and {φ(x, aj) ∶
j ∈ ω} is k-inconsistent.
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(2) We say that the formula φ(x, a) forks over A if there is an integer m
and formulas ψj(x, aj) for j < m such that φ(x, a) ⊢ ⋁j<mψj(x, aj)
and ψj(x, aj) divides over A for every j <m.

(3) A partial type p forks (respectively divides) over A if there is a
formula in p which forks (respectively divides) over A.

(4) We say that A is an extension base if for all tuples a in M , tp(a/A)
does not fork over A.

By Theorem 1.2 of [CK12], in an NTP2 theory, forking equals dividing over
extension bases.

2.2. Large fields. In this text, by a variety V over a field K, we mean a
separated integral scheme of finite type over K. We denote by V (K) the
set of its K-rational points. We also denote by Vsm(K) the set of smooth
K-rational points.

Remark 2.8 (cf. [Stacks, Tag 01V7]). A point x ∈ V (K) is smooth if there
exists an affine neighborhood U ⊆ V of x and an étale morphism U → Ad
— that is U is isomorphic to Spec(S) where S =K[x1, . . . , xc+d]/(f1, . . . , fc)
and the matrix (dfixj )i≤c,j≤c is invertible in S.

Definition 2.9. A field K is large if for every irreducible variety V , if
Vsm(K) /= ∅, then V (K) is Zariski dense in V .

We know that algebraically closed fields, real closed fields, p-adically closed
fields and, more generally, Henselian fields are large; as well as pseudo
algebraically closed fields, pseudo real closed fields and pseudo p-adically
closed fields, and further generalizations of these notions.
Finally, given two extensions M and K of a field F , we write M ⫝`F K if
the field M is linearly disjoint from K over F and L ⫝a

F K if M and K are
algebraically independent over F . We also denote by Ka the algebraic closure
of K and by Ks its separable closure. Recall that a variety V over K is
geometrically integral (equivalently absolutely irreducible defined over K) if
the extension K ≤K(V ) is regular — that is K(V ) ⫝`K Ka.

2.3. V-topological fields.

Definition 2.10. Let (K,τ) be a (non-discrete) topological field.
(1) A subset S ⊆K is said to be bounded if for every open U ⊂K, there

exists x ∈ K× such that xS = {x ⋅ y ∶ y ∈ S} ⊆ U — equivalently,
{x ∈K ∶ xS ⊆ U} is a (non-trivial) neighborhood of zero.

(2) A subset S ⊆ K is said to be bounded away from 0 if there exists a
neighborhood U of zero such that S ∩U = ∅.

(3) The topology τ is said to be a V -topology if, whenever S−1 = {x−1 ∶
x ∈ S} is bounded away from 0, S is bounded.

(4) The topology τ is said to be Henselian if every integer n ≥ 1 there
is a neighborhood U of zero such that every polynomial in Xn+1 +
Xn +U[X]n−1 has a zero in K — where U[X]n−1 denotes the set of
polynomials of degree at most n − 1 with coefficients in U .

https://stacks.math.columbia.edu/tag/01V7
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By a theorem of Dürbaum-Kowalsky, and independently Fleischer, a topology
is a V -topology if and only if it is induced by either an order or a valuation.
We refer the reader to [PZ78] for further detail on V -topologies.
In this text, the most useful consequence of Henselianity (and an equivalent
characterization) is the inverse function theorem:

Fact 2.11 ([HHJ20, Proposition 2.8]). Let (K,τ) be a Henselian V -topolo-
gical field and f ∶ V → W be an étale morphism of varieties. Then any
x ∈ V (K) admits a neighborhood U such that f ∣U is a homeomorphism onto
its open image.

Definition 2.12. A V -topology on a field K is said to be definable if it
admits a uniformly definable basis — equivalently if there exists one definable
bounded open set.

Remark 2.13. In fact, by (the proof of) [EP05, Lemma B.2], if τ is a
definable V -topology on K, then there exists an open bounded definable
neighborhood U of 0 such that K = U ∪ (U ∖ {0})−1.

For more details on definable V -topologies, we refer the reader to [HHJ20,
Section 3].

3. The class of pseudo T -closed fields

Let L enrich the language of rings, T be an L-theory of large fields and K be
an L-structure that is a field — we will refer to those as L-fields from now
on. We write TK for the theory of models of T containing K.

Definition 3.1. ● We say that a field extension K ≤ F is totally T if,
for every M ⊧ TK , F can be Lrg(K)-embedded in some M⋆ ≽M .

● We say that a variety V over K is totally T if, for every M ⊧ TK ,
Vsm(M) ≠ ∅.

Note that, since models of T are large, an irreducible variety V over K is
totally T if and only if K ≤K(V ) is totally T .

Remark 3.2. Observe that if T is RCF in Lrg, we have that K ≤ F is totally
T if and only if it is a totally real extension, meaning that every order on
K extends to some order on F . Similarly, if T is pCF in Lrg, then K ≤ F is
totally T if every p-adic valuation on K extends to some p-adic valuation on
F .

Proposition 3.3. The following are equivalent:
(i) for every geometrically integral (affine) totally T variety V over K,

we have V (K) ≠ ∅;
(ii) for every geometrically integral (affine) totally T variety V over K,

V (K) is Zariski dense in V ;
(iii) Any regular totally T extension K ≤ F is Lrg-existentially closed.

Proof. We obviously have that (ii) implies (i).
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(i)⇒(iii) Let F be as in (iii) and let φ(x) be some quantifier free Lrg-formula
such that F ⊧ ∃xφ(x). Adding existential quantifiers, we may assume
that φ is of the form ⋀i<n Pi(x) = 0 where Pi ∈ K[x]. Let a ⊧ φ
in F and V be the locus of a over K. Since K ≤ K(a) ≤ F is
regular, V is geometrically integral. Moreover, by hypothesis on
F , for every M ⊧ TK , there exists M⋆ ≽ M such that F ≤ L⋆ and
hence Vsm(M⋆) ≠ ∅. So Vsm(M) ≠ ∅. By (i), we find c ∈ V (K). In
particular, K ⊧ ⋀i Pi(c) = 0.

(iii)⇒(ii) Let V be as in (ii). Any M ⊧ TK is large and hence, if Vsm(M) ≠ ∅,
then some M⋆ ≽M contains a K-generic point a — that is a is not
in any proper sub-variety of V over K. In other terms, F ∶= K(V )
is Lrg(K)-embeddable in M⋆. By (iii), F is Lrg(K)-embeddable in
K⋆ ≽K, equivalently, V (K) is Zariski dense in V . �

Definition 3.4. The L-field K is said to be pseudo T -closed (PTC) if the
statements of Proposition 3.3 hold.

Remark 3.5. (1) It follows from Proposition 3.3.(ii), that PTC fields
are large.

(2) The class of PTC fields is inductive in L, cf. Proposition 4.9.

Example 3.6. For different choices of T , the following are examples of PTC
fields :

● If T = ACF in Lrg, then PTC fields are exactly PAC fields.
● If T = RCF in Lrg, then PTC fields are exactly PRC fields.
● If T = RCF< in Lrg ∪ {<}, then PTC fields are exactly 1−PRC fields,
i.e. PRC fields whose only order is <. The equivalence of those
two classes is not obvious from the definition and relies crucially on
Proposition 3.12 to show the only order on a PTC field is <.

● Let L = Lrg ∪ {<1, . . . ,<n} and T = ⋁iRCF<i , whose models are the
L-structures M with M ∣Li ⊧ RCF<i , for some i. Then PTC fields
where the <i define distinct orders are exactly n −PRC fields. This
equivalence relies again on Proposition 3.12.

● If T = pCF in Lrg, then PTC-fields are exactly PpC fields.
● For i < n, let Li be copies of Macintyre’s language sharing the ring
language and pCFvi the Li-theory of p-adically closed fields. Then
PTC fields whose Li-structure induces distinct p-adic valuations
are exactly n − PpC fields. Once again the equivalence relies on
Proposition 3.12.

● Fehm’s pseudo S-closed fields [Feh13] also fit in this framework.

Lemma 3.7. Let F,K be L-fields, F ≤ M be regular and totally T , and
f ∶ F →K be an L-embedding. Then K ≤K ⊗F M is regular and totally T .

Proof. We may assume that M is finite type over F . Then M = F (V ),
where V is a geometrically integral totally T variety over F . Let E ⊧ TK .
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Then E ⊧ TF and hence Vsm(E) ≠ ∅. Since E is large, we find an Lrg(E)-
embedding g ∶ E ⊗F M ≃ E(V ) → E⋆ ≽ E — in particular, we have an
Lrg(K)-embedding K(V ) ≃K ⊗F M → E⋆. �

Convention 3.8. Replacing T by the theory whose models are either models
of T or algebraically closed does not change the notion of pseudo T -closed
fields: algebraically closed fields always have rational smooth points in any
variety. So, from now on, we will assume that any algebraically closed field is
a model of T .

We will now study the topological properties of PTC fields. We fix K a PTC
field.

Notation 3.9.
● For every M ⊧ TK , let KM ∶=M ∩Ks.
● For every V -topology τ on K, let Cτ ∶= {KM that can be endowed
with a Henselian V -topology that induces τ on K}.

● We say that F ∈ Cτ is minimal if any Lrg(K)-embedding E → F ,
with E ∈ Cτ , is surjective.

● For every V -topology τ on K, let Kτ = (̂K,τ) ∩Ks, where (̂K,τ) is
the completion of (K,τ).

Note that, by convention, Ka ⊧ T and hence Ks ∈ Cτ , for every τ . Also,
by uniqueness of the Henselian V -topology on a non-separably closed field
— cf. [PZ78, Theorem 7.9] — if τ and τ ′ are distinct V -topologies on K,
Cτ ∩Cτ ′ = {Ks}.

Lemma 3.10. For every τ , Cτ admits minimal elements.

Proof. By Zorn’s lemma, it suffices to show that any decreasing chain (Ki)i∈I
in Cτ admits a lower bound. LetMi ⊧ TK such that Ki =Mi∩Ks. The theory
TK ∪ {∀x P (x) ≠ 0 ∶ P ∈ K[x] such that, for some i ∈ I, Mi ⊧ ∀x P (x) ≠ 0}
is consistent since any finite subset is realized in an Mi and let M be a
model. For all i ∈ I and P ∈ K[x], if KM ⊧ ∃x P (x) = 0, then we also have
Mi ⊧ ∃x P (x) = 0, so KM can be embedded in Mi over K, i.e. it is a lower
bound. �

As in [Sch00, Proposition 4.5], we will see that minimal elements are unique
(up to isomorphism) under the following hypothesis:

Hypothesis 3.11. Until the end of Section 3, we assume :
(H) For every M ⊧ TK , KM can be endowed with at least one Henselian

V -topology.

Proposition 3.12. Let τ be a V-topology on K and F ∈ Cτ be minimal.
Then F is Lrg(K)-homeomorphic to Kτ , in particular, K is τ -dense in F .

Proof. We start with two intermediary results:

Claim 3.12.1. There exists a τ -continuous Lrg(K)-embedding σ ∶Kτ → F .
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Proof. There is a continuous Lrg(K)-embedding σ ∶ (̂K,τ) → (̂F, τ), by
universality of the completion. Since K ⊆ Kτ is separable and F , being
topologically Henselian, is separably closed in (̂F, τ), cf. [PZ78, Corollary 7.6],
we have σ(Kτ) ≤ (̂F, τ) ∩Ks = F . �

Claim 3.12.2. There exists M ⊧ TK and an Lrg(K)-embedding ρ ∶ KM →
(̂K,τ).

Proof. If no KM embeds in (̂K,τ), then, by compactness, there exists a (non-
trivial) separable P ∈ K[x] with a zero in each KM but no zero in (̂K,τ).
Then there exists a neighborhood U ⊆ K of 0 such that P ((̂K,τ)) ∩U = ∅.
In particular, P (K) ∩U = ∅. It follows that P (K)−1 is bounded and hence
so is 1 −P (0)P (K)−1. Let c ∈K⋆ be such that c(1 −P (0)P (K)−1) ⊆ U . Let
Q(x, y) = P (x)(1 − c−1P (y)) − P (0) ∈ K[x, y]. By [HP84, Proposition 1.1],
the zero locus V of Q is geometrically integral. For every M ⊧ T , one can
check that (0, a) ∈ Vsm(M), where a ∈ M is a zero of P . So there exists
(b, a) ∈ V (K), i.e. P (b) = c(1 − P (0)P (a)−1) ∈ U , a contradiction. �

Note that, since K ≤ KM is separable, ρ(KM) ≤ Kτ . If KM ∈ Cτ ′ , for
some τ ′ ≠ τ , then τ ′ extends to a Henselian V -topology on Kτ , distinct
from τ . Moreover, Kτ is, by definition, separably closed in its τ -completion.
It follows by [PZ78, Improved Theorem 7.9], that Kτ = Ks, and hence F
Lrg(K)-embeds in Kτ . So we may assume that KM ∈ Cτ .
Now, the Lrg(K)-embedding σ ○ ρ ∶ KM → Kτ → F must be surjective by
minimality of F and hence so is σ. Since σ is τ -continuous, K is τ -dense in
F . So (̂F, τ) is also a completion of (K,τ) and thus, there exists an Lrg(K)-
homeomorphism (̂F, τ)→ (̂K,τ) which, restricted to the relative separable
closure on both sides yields an Lrg(K)-homeomorphism F →Kτ . �

Notation 3.13. Fix (τi)0≤i<n distinct V -topologies on K and Ki =Kτi ∈ Cτi
minimal.

Since, by Stone’s approximation theorem (see [PZ78, Theorem 4.1]), distinct
V -topologies are independent, we deduce the following approximation result
on the affine line:

Corollary 3.14. For every non-empty τi-open Oi ≤Ki, ⋂iOi ∩K ≠ ∅.

Our goal now is to extend this approximation result to arbitrary geometrically
integral totally T varieties. We don’t know, however, if we can do so without
the following finiteness hypothesis:

Hypothesis 3.15. Until the end of Section 3, we assume :
(F1) There are only finitely many non-separably closed Kτ .

Proposition 3.16. Let C be a totally T smooth projective geometrically
integral curve over K. For every non-empty τi-open sets Oi ⊆ C(Ki), ⋂i<nOi∩
C(K) is infinite.
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This statement (and its proof) is inspired by similar statements in two
important and orthogonal subcases: Henselian fields enriched with further
valuations [Joh22, Theorem 4.1] (see also [HHJ20, Proposition 4.2]) and PAC
fields with a valuation [Kol07, Theorem 2].

Proof. We proceed by induction on n. If n = 0, since C(K) is Zariski dense
in C, it is, in particular, infinite. Let us now assume n > 0. By induction,
⋂i>0Oi∩C(K) contains a finite set P of size d larger than the genus of C. By
Riemann-Roch, there exists a non-constant rational function f on C over K,
whose set of poles is contained in P and whose poles are all simple. This gives
rise to a morphism f ∶ C → P1 over K with f−1(1 ∶ 0) ⊆ P ⊆ ⋂i<mOi ∩C(K)
and which is étale above (1 ∶ 0).
Let τ be any V -topology on K distinct from τ0. If τ = τi, let Oτ = Oi and
otherwise, let Oτ = V (Kτ). By the inverse function theorem, Fact 2.11, for
every p ∈ P ⊆ Oτ there exists a τ -open neighborhood Wp,τ ⊆ Oτ of p such
that f ∣Wp,τ

is a homeomorphism unto its open image. We may assume that
the Wp,τ do not intersect when p varies. Let Uτ ∶= ⋂p∈P f(Wp,τ). It is open
(and hence Zariski dense) in P1(Kτ). For every y ∈ Uτ , f−1(y) consists of
d distinct elements of Oτ . In particular, the extension K(P1) ≤ K(C) is
separable and its Galois closure F = K(yj ∶ j < d), where f(yj) = f(y1) for
all y, can be embedded in an ultrapower of Kτ .
Let e ≥ 1 be maximal such that K(yj ∶ j < e) can be embedded in an
ultrapower of K0, with y0 ∈ O0. Note that e is maximal such that {t ∈
P(K0) ∶ ∃≠y0 . . . ye−1 ∈ C(K0) f(yj) = t and y0 ∈ O0} is infinite. Let D be the
normalization of the irreducible component of the e-fold product of C over P1

containing y<e. Then K ≤K(D) =K(y<e) is regular and D is geometrically
integral. Let g ∶D → C be the projection on the first coordinate and h = f ○g.
Let Wτ0 ∶= {x ∈ O0 ∶ ∃y ∈ D(K0) ∶ g(y) = x and g is smooth a y} and
Uτ0 = f(Wτ0). Both sets are infinite, so they have non-empty τ0-interior and,
shrinking them, we may assume that they are τ0-open and that Uτ0 is a ball.
Let J ∶= {τ ∶Kτ ≠Ks

τ}∪{τi ∶ i < n}, which is finite by (F1). By Corollary 3.14,
there exists a ∈ ⋂τ∈J Uτ ∩K. Composing f with a degree one morphism, we
may assume that a = (1 ∶ 0). For every s ∈ A1, let Bs ⊆ D ×D be defined
by (s2u1u2 − v1v2) ○ (h × h) = 0, where ([u1 ∶ v1], [u2, v2]) are coordinates on
P1×P1. By [Kol07, Lemma 15], for all but finitely many s, Bs is geometrically
integral. Applying Corollary 3.14 again, we find s ∈ K× such that Bs is
geometrically integral and (1 ∶ s) ∈ ⋂τ∈J Uτ . Then, for every τ ∈ J and
y ∈ D(Kτ) with h(y) = (1, s), (y, y) is a smooth point of Bs(Kτ) — with
(h × h)(y, y) ∈ Uτ ×Uτ . Note that for every M ⊧ TK , if KM is not separably
closed, it contains some non-separably closed Kτ and hence there is a smooth
M -point on Bs. If KM is separably closed, Bs also has a smooth M -point,
so Bs is totally T .
By induction, we can find infinitely many (y1, y2) ∈ Bs(K) with h(yk) ∈
⋂0<iUτi ∖ {(0 ∶ 1)}. Considering the affine coordinates v/u on P1, we see that
one of the h(yk) is τ0-closer to 0 than s and hence h(yk) ∈ Uτ0 . In other
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words, we have found infinitely many t ∈ ⋂i<nUτi(K) and (xt,i)i<e ∈ C(K)
with f(xt,i) = t. By construction there exist xt ∈ O0 with f(xt) = t. By
maximality of e, xt is distinct from the xt,i for at most finitely many t. So
we may assume that xt,0 = xt ∈ O0(K). Moreover, for every i > 0, since
f(xt) = t ∈ Uτi , we have xt ∈ f−1(Uτi) ⊆ Oi and hence xt ∈ ⋂iOi(K). �

Theorem 3.17. Let V be a geometrically integral K-variety. Let Oi ⊆
Vsm(Ki) be non-empty τi-open sets, for every i < n. Then ⋂i<nOi∩V (K) ≠ ∅.

Proof. For every i < n, fix an ai ∈ Oi ⊆ V (Ks). By [JR98, Lemma 10.1] there
exists a smooth geometrically integral affine K-curve C ⊆ V containing the
ai. Let Ui = Oi ∩ C which is a τi-open non-empty subset of C(Ki). Let
C be a smooth projective model of C. By Proposition 3.16, there exists
y ∈ ⋂iUi ∩C(K) ⊆ ⋂iOi ∩ V (K). �

Remark 3.18. Schmidt proved a similar result, [Sch00, Theorem 4.9], with-
out any finiteness hypothesis, but requiring that no minimal KM is separably
closed — a case that we certainly do not want to omit if we want to say
anything about valued pseudo algebraically closed fields.

4. The class of I-pseudo T -closed fields

Let us fix the following notation for the rest of the text. As before, let L
enrich the language of rings, T be an L-theory of large fields.
Let I be a (potentially infinite) set of theories which eliminate quantifiers in
(disjoint) relational expansions of the language of rings. We will often denote
by Ti the element i ∈ I and Li its language. From now on, all Li-formulas
will be assumed to be quantifier free. Let LI = ⋃iLi and TI = ⋃i Ti,∀.
For every K ⊧ Ti,∀, we denote by Ti,K the theory of models of Ti containing
K. We will also assume that any Mi ⊧ Ti,K can be expanded to a model of
TK . When I is finite, this can always be assumed by replacing T by T ∨⋁i Ti
whose models are the L ∪LI -structures M such that M ∣L ⊧ T or M ∣Li ⊧ Ti
for some i.
For each i ∈ I, we will denote by acli and dcli the algebraic and definable
closure in models of Ti. We will also write Si(K) for the space of (quantifier
free) Li-types with parameters in K. We will use the notation tpi(a/A) for
the type of a over A in the language Li.
Let us fix some L-field K ⊧ TI and Mi ⊧ Ti,K , for all i ∈ I.

Lemma 4.1. Let V be an irreducible variety over K and let us assume that
dcli(K) ⊆ Ka. Then, for any Li(K)-definable X ⊆ V , X(Mi) is Zariski
dense in V if and only if it is K-Zariski dense in V ( i.e. is not contained in
any proper sub-variety of V over K).

Proof. Note first that this statement is clear for K = Mi — i.e. X(Mi) is
Zariski dense in V if and only if it is Mi-Zariski dense in V . Let us now
assume thatX(Mi) isK-Zariski dense in V . We may assumeMi is sufficiently
saturated and homogeneous. Let W ⊆ V be the Zariski closure of X(Mi).



PSEUDO T -CLOSED FIELDS 13

Then W is aut(Mi/K)-invariant and hence it is defined over dcli(K) ⊆Ka.
Let (Wj)j≤n be the K-conjugates of W . Then X(Mi) ⊆ ⋃iWi ⊆ V . So
V = ⋃iWi =W . �

Remark 4.2. Since finite sets in fields can be coded using symmetric poly-
nomials, we have that acli(K) ⊆ dcli(K)a. It follows that acli(K) ⊆ Ka if
and only if dcli(K) ⊆Ka.

Proposition 4.3. The following are equivalent:
(i) any regular totally T extension K ≤ F ⊧ TI is LI-existentially closed;
(ii) for every geometrically integral (affine) totally T variety V over K,

and, for all i ∈ I, every pi ∈ Si(K) K-generic in V , ⋃i pi is realized
in some K⋆ ≽K;

(iii) for every geometrically integral (affine) totally T variety V over K,
and, for all i ∈ I0 ⊆ I finite, every Li(K)-definable K-Zariski dense
Xi(Mi) ⊆ V , ⋂iXi(K) ≠ ∅ — equivalently, is Zariski dense in V ;

(iv) for all i ∈ I, dcli(K) ⊆Ka and for every geometrically integral (affine)
totally T variety V over K, and, for all i ∈ I ′ ⊆ I finite, every Li(K)-
definable Zariski dense Xi(Mi) ⊆ V , ⋂iXi(K) ≠ ∅ — equivalently, is
Zariski dense in V ;

Proof.(i)⇒(ii) Let pi and V be as in (ii) and let ai ⊧ pi (in some M⋆
i ≽Mi).

Note that K ≤ K(ai) is isomorphic to K(V ). These isomorphisms
allow us to make K(V ) into a model of T where all the ai coincide.
Since K ≤K(V ) is regular and totally T , we find an L(K)-embedding
f ∶ K(V ) → K⋆ ≽ K. The common image of the ai in K⋆ is a
realization of ⋃i pi.

(ii)⇒(iii) Let Xi and V be as in (iii). If i ∉ I0, let Xi(Mi) = V (Mi). Note
that since Mi can be made into a model of TK , V is totally T ,
V (Mi) is Zariski dense in V . For all i ∈ I, by compactness, we find
ai ∈Xi(M⋆

i ), where M⋆
i ≽Mi which is K-generic in V . Applying (ii)

to pi = tpi(ai/K), we find a ⊧ ⋃i pi in some K⋆ ≽ K; in particular,
a ∈ ⋂i∈I0 Xi ∖W where W ⊆ V is any K-subvariety.

(iii)⇔(iv) Let us first assume (iii) and prove that dcli(K) ⊆ Ka. By contra-
diction, consider some a ∈ acli(K) ∖Ka. Let Xi be Li(K)-definable
such that Xi(Mi) is minimal finite containing a. Then Xi(Mi) is
K-Zariski dense in A1. So Xi(K) ≠ ∅, contradicting the minimality
of Xi. The equivalence now follows from Lemma 4.1.

(iii)⇒(i) Let F be as in (i) and X be a quantifier free L(K)-definable set with
X(F ) ≠ ∅. We may assume that X = ⋂i∈I0 Xi, where I0 ⊆ I finite
and Xi is Li(K)-definable. Fix some a ∈X(F ). Let V be the locus
of a over K. Since K ≤ F is regular and totally T , V is geometrically
integral and totally T . By construction, Xi(Mi) is K-Zariski dense
in V . By (iv), X(K) = ⋃iXi(K) ≠ ∅. �

Definition 4.4. The L-field K is said to be I-pseudo T -closed (PTCI) if
the statements of Proposition 4.3 hold.
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Conditions (i) and (ii) have a similar flavor to the interpolative fusion of
[KTW21], although the main difference here is that K is not required to be
a model of the Ti but only of Ti,∀.

Example 4.5. The following are example of PTCI fields for different choice
of Ti and T :

● By [Pre81, Theorem 1.7], n-PRC fields are PTCI , for Ti = RCF<i and
T = ⋁i Ti, as in Example 3.6.

● By [MR21, Theorem 2.17], n-PpC fields are PTCI , for Ti = pCFvi
and T = ⋁i Ti, as in Example 3.6.

● More generally, it follows from [Sch00, Theorem 4.9] that, if K is PRC
and (<i)i∈I are distinct orders onK, then it is PTCI , for T = RCF and
Ti = RCF<i . Similarly, for PpC fields with named p-adic valuations.

● It follows from [Kol07, Theorem 2], that a PAC field with one valuation
is PTCI , for T = ACF and T0 = ACVF.

● In the present paper we generalize this result by showing that a PAC
field with n distinct valuations is PTCI , for T = ACF and (Ti)i<n
copies of ACVF. This is a consequence Theorem 5.11.

● By [Joh22, Theorem 4.1], if K is real closed (respectively p-adically
closed or algebraically closed), and the (vi)0<i≤n are distinct valuations,
then it is PTCI , for T0 = RCF<0 (respectively pCFv0 or ACVF),
Ti = ACVF, for 0 < i < n and T = ⋁i Ti.

● As a consequence of Theorem 5.11, we also generalize this result by
showing that if I = {Th(Ki) ∶ i < n} where Ki is either real closed or a
characteristic zero Henselian valued field — in an adequate language
to eliminate quantifiers — and T = ⋁i Ti, then every PTC field where
the Ti induce distinct topologies is PTCI . Note that if all Ti but T0

are equal to ACVF, then any model of T0 is PTC.

Lemma 4.6. Fix an i ∈ I and let K,M ⊧ Ti,∀, F ≤ M be regular with
acli(F ) ∩M ⊆ F and f ∶ F →K be an Li-embedding. Then K ⊗F M can be
made into a model of Ti,∀, extending the Li-structure on both K and M .

Proof. By quantifier elimination we can extend f to some g ∶M → N ⊧ Ti.
Since acli(F ) ∩M ⊆ F , we may assume that K ⫝a

F g(M), and hence, since
F ≤M is regular, K ⫝`F M . Then K ⊗F M ≃Kg(M) ⊧ Ti,∀. �

Corollary 4.7. Let K,M ⊧ TI , F ≤ M be regular and totally T , with
acli(F ) ∩M ⊆ F , for all i ∈ I, and f ∶ F → K be an LI-embedding. Then
K ≤K ⊗F M is a regular totally T extension that can be made into a model
of TI extending the LI-structure on K and M .

Proof. This follows from Lemmas 3.7 and 4.6. �

We will also need the following case of free amalgamation:

Lemma 4.8. Fix an i ∈ I and let K,M ⊧ Ti,∀, F ≤ M be algebraic and
f ∶ F →K be an Li-embedding with M ⊗F K integral. Then K ⊗F M can be
made into a model of Ti,∀, extending the Li-structure on both K and M .
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Proof. By quantifier elimination we can extend f to some g ∶M → N ⊧ Ti.
Since F ≤M is algebraic andK⊗FM is integral, we haveK⊗FM ≃Kg(M) ⊧
Ti,∀. �

Let us now prove that, in the cases which we will later consider, PTCI is
elementary:

Proposition 4.9. Assume that, for all i ∈ I:
(Ai) for every F ⊧ Ti,∀, acli(F ) ⊆ F a;
(Zi) maximal Zariski dimension is definable in family: for every Li defin-

able sets X ⊆ An+m, the set {s ∈ An ∶ dim(Xs) = m} is Li-definable,
where Xs is the fiber of X in s.

Then the class of PTCI fields is elementary — in fact, inductive — in L∪LI .
Remark 4.10. Instead of assuming hypothesis (Ai), we can allow the
following generalization. For all i ∈ I, let T ′i ⊇ Ti,∀ be such that for every
F ⊧ T ′i , dcli(F ) ⊆ F a. Then the class of PTCI models of T ′I ∶= ⋃i T ′i is
elementary.
For example, one could take T ′i to be the class of dcli-closed models of Ti,∀.

Proof of Proposition 4.9. Let us first show that if F ≤ K ⊧ TI,∀ is LI -
existentially closed and K is PTCI , then so is F . Let F ≤ M ⊧ TI be
regular and totally T . By (Ai), for all i, acli(F ) ∩M ⊆ F a ∩M = F and
hence, by Corollary 4.7, M ≤M ⊗K F ⊧ TI is regular and totally T and the
LI -structure on M ⊗K F extends both that of M and K. Since K is PTCI ,
it follows that this extension is LI -existentially closed and hence so is F ≤M .
Now, we let J be a set of indices and let Kj be PTCI , for all j ∈ J , and U
be an ultrafilter on J . We wish to show that K ∶=∏j→UKj is PTCI . Let V
be a smooth geometrically integral totally T variety over K such that for all
M ⊧ TK , V (M) ≠ ∅. By definability of irreducibility in ACF, we can find
smooth geometrically irreducible varieties Vj over Kj such that V =∏j→U Vj .
Let Y ∶= {j ∶ for allMj ⊧ TKj , Vj(Mj) ≠ ∅}. If Y ∉ U, then for every j ∉ Y , let
Mj ⊧ TKj such that Vj(Mj) = ∅. Then M ∶=∏j→UMj ⊧ TK , but V (M) = ∅,
a contradiction. So, we may assume that Y = J . For i ∈ I0 ⊆ I finite, let now
Mi ⊧ Ti,K and Xi(Mi) ⊆ V Li(K)-definable and Zariski dense — in other
words dim(Xi) = dim(V ) or equivalently, any coordinate projection which
is dominant from V is dominant from Xi. By (Zi), we find Mji ⊧ Ti,Kj and
Xji(Mji) ⊆ Vj Li(K)-definable and Zariski dense with ∏j→UXji =Xi. Since
Ki is PTCI , ⋂iXji(Kj) ≠ ∅. Hence, ⋂iXi(K) ≠ ∅.
It follows that the class PTCI is elementary in L ∪LI . Note that, since it is
in fact closed under existentially closed substructures, it is, in fact, inductive
this can be seen, e.g. by working in the enrichment of L∪LI by all existential
formulas which yields a class closed under all substructures, i.e. a universal
class. �

5. V-Topological theories

We now fix an i ∈ I and Mi ⊧ Ti.
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Hypothesis 5.1. In this section, we will assume that:
(Hi) Ti admits a definable Henselian V -topology τi and, for every Mi ⊧ Ti,

any Li(Mi)-definable set Xi has non-empty τi-interior in (the Mi-
points of) its Zariski closure.

Example 5.2. (1) Hypothesis (Hi) holds if Ti is the theory of real closed
fields. Indeed, the order topology is a definable Henselian V -topology
and any definable set is a disjoint union of sets of the form V ∩ U
where V is Zariski closed and U is open.

(2) Similarly, hypothesis (Hi) also holds if Ti is a theory of (RV1-enriched)
Henselian valued fields which eliminates quantifiers relatively to RV1

— or, more generally, relatively to ⋃nRVn in characteristic zero.

Remark 5.3. (1) Whenever (Hi) holds, hypothesis (Zi) of Proposi-
tion 4.9 also holds since a definable set is Zariski dense in An if and
only if it has non-empty τi-interior.

(2) As we will see in Lemma 5.6, hypothesis (Ai) of Proposition 4.9 also
holds provided dcli(∅) ⊆ F a where F is the field generated by the
constants — constants that we may add for this exact purpose.

Lemma 5.4. Let F ≤ Mi be such that, for any non-empty open Li(F )-
definable subset of A1(Mi) has an F -point. Then the topology generated by
the X(F ), where X ⊆Mi is open and Li(F )-definable, is a V -topology. If,
moreover, F s ∩Mi ⊆ F , then it is Henselian.

We will also denote this topology on F by τi even if it might not be the
induced topology, per se.

Proof. Let S be Li(F )-definable and bounded (in Mi) and let U be Li(F )-
definable neighborhood of zero. Then {x ∈Mi ∶ xS ⊆ U} is a Li(F )-definable
neighborhood of 0. So, by hypothesis, its τi interior contains a point distinct
from 0; in other terms, S(F ) is bounded in F . So, if U ⊆ Mi is an Li(F )-
definable neighborhood of 0, (Mi ∖U)−1 is bounded in Mi and hence in F ,
proving that the topology is a V -topology.
The second statement follows from the fact that Henselianity states the
existence of roots to certain separable polynomials. �

Lemma 5.5. Let F ≤ Mi ⊧ Ti be such that F s ∩Mi ⊆ F and any non-
empty τi-open Li(F )-definable subset of A1(Mi) has an F -point. Let V be a
geometrically irreducible variety over F and X(Mi) ⊆ V (Mi) be τi-open and
Li(F )-definable.

(i) X(Mi) is Zariski dense in V ;
(ii) X(Mi) ∩ Vsm ≠ ∅;
(iii) X(F ) ∩ Vsm ≠ ∅.

Proof. Note that (i) obviously implies (ii), and so does (iii). Also, shrinking
V , we may assume (Remark 2.8) that it is affine smooth and that there exists
an étale map f ∶ V → An over F .
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(ii)⇒(iii) By Fact 2.11, f(X) ⊆ An has non-empty interior, so there exists
y ∈ f(X) ∩ An(F ) and hence x ∈ X(Mi) with f(x) = y. Then
x ∈ F (f(x))s ∩Mi = F .

(ii)⇒(i) By Fact 2.11 we can find a non-empty Li(Mi)-definable τi-open
U ⊆X(Mi) such that f ∣U is a homeomorphism onto its open image.
Since open subset of An are Zariski dense, (i) follows. �

We will now consider theories Ti where the Li-definable sets are essentially
open. Along with (Hi) (see Hypothesis 5.1), this is closely related to the
notion of “t-theory” in [Dri78, Chapter III].
In fact, we can almost control the parameters in hypothesis (Hi):

Lemma 5.6. Let F ≤Mi, the following are equivalent:
(i) dcli(∅) ⊆ F a;
(ii) acli(F ) ⊆ F a;
(iii) any Li(F )-definable set X has non-empty τi-interior in its F -Zariski

closure.

Proof. It is clear that (ii) implies (i).
(i)⇒(ii) Let E = dcli(∅). We prove, by induction on dim(V ), that for any

variety V over E and X ⊆ V ×A1 Li-definable with Xa ∶= {y ∈ A1 ∶
(a, y) ∈ X} finite for every a ∈ X(Mi), we have Xa(Mi) ⊆ E(a)a.
We may assume that V is irreducible. By finiteness of Xa, X is not
τi-open in V × A1 and hence is not Zariski dense. So there exists
P = ∑j pj(x)yj ∈ E[x, y] with P (V ×A1) ≠ 0 but P (X) = 0. Let Vj
be the zero locus of pj in V and J ∶= {j ∶ Vj ⊂ V } ≠ ∅. By induction,
for any j ∈ J and a ∈ Vj , Xa(Mi) ⊆ E(a)a and by construction, for
any a ∈ V ∖⋃j Vj , P (a, y) ≠ 0 and P (a,Xa) = 0.

(ii)⇒(iii) By Lemma 4.1, X(Mi) is Zariski dense in its F -Zariski closure V . It
now follows from (Hi) that X has non-empty interior in V .

(iii)⇒(ii) Let X be a minimal finite Li(F )-definable set. Then X has open
interior in its F -Zariski closure V . By minimality, it is open and
by F -Zariski density, it intersects Vsm. By Lemma 5.5 (applied
with F = Mi), X is Zariski dense in V and hence dim(V ) = 0; i.e.
X(Mi) ⊆ F a. �

Lemma 5.7. Let F ≤Mi, with dcli(∅) ⊆ F a, and X ⊆ V be Li(F )-definable.
The following are equivalent:

(i) X(Mi) is Zariski dense in V ;
(ii) X(Mi) is F -Zariski dense in V ;
(iii) the τi-interior of X(Mi) in V contains a smooth point.

Proof. It is clear that (i) implies (ii) and, by Lemma 5.5, (iii) implies (i). So
let us prove that (ii) implies (iii) and assume that X(Mi) is F -Zariski dense
in V and let U be its τi-interior in V . Since X ∖U has empty interior in V ,
by Lemma 5.6, it is not F -Zariski dense in V . It follows that U is F -Zariski
dense in V . In particular U ∩ Vsm ≠ ∅. �
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Remark 5.8. Note that Hypothesis (Zi) of Proposition 4.9 follows from
(Hi) (see Hypothesis Hypothesis 5.1). Indeed, by Lemma 5.7, a definable set
X ⊆ An is Zariski dense if and only if it is open.
Also, if F ⊧ Ti,∀ is such that dcli(∅) ⊆ F a, then, by Lemma 5.6, Ti,F,∀ satisfies
the conditions of Remark 4.10. Therefore, for topological theories, the condi-
tions for PTCI to be elementary given in Proposition 4.9 and Remark 4.10
are easy to ensure.

We will now show the remarkable fact that, under some finiteness hypothesis,
LI -existential closure comes essentially from independence of the τi topologies.

Hypothesis 5.9. We will consider the following hypothesis:
(F2) The set I is finite and for every M ⊧ TK , there exists i ∈ I and an

Lrg(K)-embedding Mi →M⋆ ≽M .

In particular, the minimal fields of the form M ∩Ks, where M ⊧ TK are
among the Ki = Mi ∩Ks, where Mi ⊧ Ti,K . Note that it also follows that
every extension K ≤M ⊧ TI is totally T .
It follows that a field is then I-pseudo T -closed if and only if it is I-pseudo
⋁i∈I Ti-closed, so the mention of T is now redundant.

Definition 5.10. If I is finite, we will say that K is pseudo I-closed (PIC)
if it is I-pseudo ⋁i∈I Ti-closed.
Theorem 5.11. Assume (Hi) for all i ∈ I (see 5.1) and (F2). The following
are equivalent:

(i) K ⊧ PIC;
(ii) the following hold:

(a) K ⊧ PTC;
(b) for all i ∈ I, dcli(∅) ⊆Ka;
(c) the τi induce distinct topologies on K as i ∈ I varies;
(d) for all i ∈ I, any non-empty open Li(K)-definable X ⊆ A1 con-

tains a K-point.

Proof. Assuming (i), (a) obviously follows. Condition (b) follows from Proposi-
tion 4.3.(iv) and conditions (c) and (d) follow from Proposition 4.3.(iii) applied
to A1. Conversely, let us assume (ii). By Proposition 4.3 and Lemmas 5.5
and 5.7, it suffices to prove that, given V a geometrically integral totally T
variety over K and Xi ⊆ V Li(K)-definable τi-open with Xi(Ki) ∩ Vsm ≠ ∅,
we have ⋂iXi(K) ≠ ∅.
Note that, by (F2), any KM = M ∩ Ks, where M ⊧ TK , is an algebraic
extension of some Ki, which, by Lemma 5.4 admits a Henselian V-topology
extending τi. So (H) holds and if KM is minimal in some Cτ and not
separably closed, then τ = τi and KM ≃Ki — in particular, (F1) holds. Since
the τi are all distinct, it also follows that every Ki is minimal in Cτi . We can,
therefore, conclude with Theorem 3.17. �

Remark 5.12. If (F2) does not hold but, instead, (H) holds and noM ⊧ TK
contains Ks, then, by [Sch00, Theorem 4.9], Theorem 5.11 also holds.
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6. Bounded PIC fields

From now on, we assume that I is finite and that T = ⋁i∈I Ti. In particular,
any extension K ≤ M ⊧ TI is totally T , and we will therefore prefer the
terminology pseudo I-closed (see Definition 5.10).
We fix some Iτ ⊆ I, and we assume that, for every i ∈ Iτ , (Hi) holds (see
Hypothesis 5.1). By Remark 5.3, hypotheses (Zi) and (Ai) of Proposition 4.9
holds for every i ∈ τ (provided we add constants). We also assume that (Zi)
holds for every i ∉ Iτ , and we fix T ′i as in Remark 4.10.

Definition 6.1. A field K is called bounded if for any integer n, K has
finitely many extensions of degree n.

Notation 6.2. Fix d ∶ Z>0 → Z>0. Let Ld ∶= LI ∪ {cj ∶ j > 0 and ∣cj ∣ = d(j)}.
We denote by Td the Ld-theory of fields such that Pi ∶=Xd(i) +∑j<d(i) ci,jXj

is irreducible and every separable polynomial of degree i is split modulo Pi.
Let PICd be the (elementary) class of PIC models of Td ∪⋃i∉Iτ T ′i .
From now on, we will always work in the language Ld, so if K is PICd and
A ≤K, then acl(A),dcl(A),acli(A),dcli(A) always contains the constants.

Remark 6.3. Any model of Td is bounded. Conversely, any bounded model
of T can be made into a model of Td for some well-chosen d.

Lemma 6.4. Let K ⊧ T and F ≤K. The following are equivalent:
(1) K ⊧ Td and res ∶ Gal(K)→ Gal(F ) is surjective;
(2) F ⊧ Td and res ∶ Gal(K)→ Gal(F ) is a homeomorphism;
(3) K ⊧ Td and F ⊧ Td.

This is rather standard, but we could not find a reference, so we sketch the
proof.

Proof. Let us first assume (1) and prove (3). The polynomial Pn is clearly
irreducible over F . Let Q ∈ F [X] be an irreducible separable polynomial of
degree n and a one of its roots. Since Q is split in K[X]/Pn, Pn admits a
root e ∈ F s de Pn such that a ∈ K[e]. Then Gal(F [e]) = res(Gal(K[e])) ≤
res(Gal(K[a])) = Gal(F [a]) where the equalities follow from surjectivity;
and hence F [a] ≤ F [e].
If (3) holds, then every separable extension of K is included by one generated
by an element of F s and hence res ∶ Gal(K) → Gal(F ) is injective. Also,
any separable extension of F , is contained in one generated by a root of a
Pn which is also irreducible over K. It follows that F s is linearly disjoint
from K over F and hence res ∶ Gal(K)→ Gal(F ) is surjective, so (2) holds.
Conversely, if (2) holds, then, by Galois correspondence, the Pn are irreducible
over K and Ks =KF s so K ⊧ Td and (1) holds. �

Lemma 6.5. Let K,M ⊧ PICd, with K perfect, and F ≤K with acli(F )∩K ⊆
F , for all i ∈ I. Then any Ld-embedding f ∶ F →M can be extended to an
Ld-embedding g ∶K →M⋆ ≽M with acli(g(K)) ∩L⋆ ⊆ g(K), for all i ∈ I.
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Proof. Note that F is perfect and hence F ≤ K is regular. So g exists
by Corollary 4.7 and the fact that M ⊧ PIC. There remains to show that
acli(g(K))∩M⋆ ⊆ g(K). Since acli(K) ⊆Ka, it suffices to show that g(K)a∩
M⋆ ⊆ g(K). By Lemma 6.4, since K ⊧ Td and F ≤K is regular, F ⊧ Td and
hence, by Lemma 6.4 again, Gal(M⋆)→ Gal(g(F )) is a homeomorphism. It
factorizes through the homeomorphism res ∶ Gal(K) → Gal(F ) and hence
res ∶ Gal(M⋆)→ Gal(g(K)) is surjective; i.e. g(K)a ∩M⋆ = g(K). �

Definition 6.6. For every K ⊧ PICd and A ⊆ K, let aclI(A) ⊆ K be the
smallest subset C ⊆K containing A such that acli(C) ⊆ C, for all i ∈ I.

Proposition 6.7. Let K,M ⊧ PICd be perfect, F ≤K and f ∶ F →M be an
Ld-embedding. The following are equivalent:

(1) f extends to an Ld-embedding g ∶ aclI(F ) ∩K →M ;
(2) f is Ld-elementary (from K to M).

Proof.
(1) ⇒ (2) Let g ∶ aclI(F ) ∩K → M extend f . By a standard back and forth

argument using Lemma 6.5, we build K ≼ K⋆, M ≼ M⋆ and an
Ld-isomorphism h ∶K⋆ →M⋆ extending g. Elementarity of f follows
immediately.

(2) ⇒ (1) This is immediate. �

Corollary 6.8. Any K ≤M , with both fields PICd perfect, is Ld-elementary.

Proof. By Lemma 6.4, the morphism res ∶ Gal(K) → Gal(F ) is surjective.
Since acli(K) ⊆Ka, it follows that aclI(K) ∩M ⊆K and hence, by Proposi-
tion 6.7 the inclusion is elementary. �

For the rest of the section we fix a perfect K ⊧ PICd and Mi ⊧ Ti,k.

Proposition 6.9. Let F ≤K. Then acl(F ) = aclI(F ) ∩K.

Proof. Let E = aclI(F ) ∩K ⊆ acl(F ). By Corollary 4.7, we find an Ld(E)-
embedding f ∶ K → K⋆ ≽ K with f(K) ⫝`E K. By Corollary 6.8, f is
elementary. It follows that acl(F ) ⊆K ∩ f(K) = E. �

Notation 6.10. For every p ∈ S(F ), where F ≤K, let pi denote the under-
lying (quantifier free) Li-type.

Proposition 6.11. Let F = acl(F ) ≤ K, V an irreducible variety over F ,
p ∈ S(F ) F -generic in V and, for i ∈ Iτ , let Oi ⊆ V (Mi) be Li(K)-definable
τi-open sets consistent with pi (modulo Ti,K). Then p is consistent with
⋂i∈Iτ Oi(K).

Proof. Let a ⊧ p (in some K⋆ ≽K). Let ac enumerate acl(Fa). By Proposi-
tion 6.7, it suffices to find de ≡qf

F ac with d ∈ ⋂i∈Iτ Oi. By compactness, we
may assume c is finite. Let qi = tpi(ac/F ), for every i ∈ I, and W be the
geometrically integral algebraic locus of ac. For every i ∈ Iτ , we also denote
by Oi the corresponding open subset of W .
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Let us fix some i ∈ Iτ . For every Li(F )-definable X, by (Hi), qi ⊢X if and
only if qi ⊢ X̊ ∩Wsm, where X̊ denotes the τi-interior of X ∩W in W . In
particular, X̊∩Wsm∩Oi ≠ ∅ and, by Lemma 5.5, X∩Oi is consistent with the
K-generic of W . So, by compactness, we find aici ⊧ qi K-generic in W with
ai ∈ Oi. If i ∉ Iτ , by Lemma 4.6 we can also find aici ⊧ qi K-generic in W .
Let ri ∶= tpi(aici/K) ⊇ qi. Note that since tp(ac/F ) is finitely satisfiable in
K, Wsm(K) ≠ ∅. By Proposition 4.3, there exists de ⊧ ⋃i ri in some K⋆ ≽K.
By construction, for every i ∈ Iτ , we have d ∈ Oi and, for every i ∈ I, we have
de ⊧ pi, concluding the proof. �

Let τ be the topology generated by the τi, for i ∈ Iτ .

Theorem 6.12. Let F = acl(F ) ≤ K, and X be Ld(F )-definable and τ -
closed (respectively τ -open) in its Zariski closure V . Then X is quantifier
free ⋃i∈Iτ Li(F )-definable.

Proof. Let assume that X is τ -closed. Let x ∈X(K) and y ∈ V (K) be such
that ⋃i∈Iτ tpi(x/F ) = ⋃i∈Iτ tpi(y/F ). By compactness, it suffices to show
that y ∈X. For every i ∈ Iτ , Oi ⊆ V (Mi) τi-open containing y. Let W be the
locus of x (and hence y) over F . By Proposition 6.11, tp(x/F ) is consistent
with W ∩ ⋂iOi, In particular, there exists z ∈ X ∩ ⋂iOi. So y is in the
τ -closure of X, which is X itself. �

Considering the τ -closure of a definable set, we have generalized the “density
theorem” of [Mon17b, Theorem 3.17]:

Corollary 6.13. Let F = acl(F ) ≤K, and X be Ld(F )-definable with Zariski
closure V . Then there exists an integer m, Li(F )-definable τi-open sets
Yij ⊆ V , for i ∈ Iτ and j < m, and a quantifier free Ld(F )-definable set Y ,
with dim(Y ) < dim(X), such that

X ⊆⋃
j
⋂
i

Yij ∪ Y is τ -dense.

Proof. Applying Theorem 6.12 to the τ -closure of X, we find Li(F )-definable
sets Yij such that X ⊆ ⋃j ⋂i Yij is τ -dense. Further dividing, we may as-
sume that Yi is either τi-open or has empty τi-interior (and hence has lower
dimension by (Hi)). �

Remark 6.14. The previous result generalizes the common pattern, that,
when adding a “generic” topology to some structure, the “open core” will
consist only of sets definable in the topology on its own. In fact, this result
provides a broad setting in which to consider these questions, which does not
depend on the initial structure and allows for more than one topology.

Generic derivations. To illustrate that point, let us consider the follow-
ing example: let T1 = DCF0 the (Morleyized) theory of characteristic zero
differentially closed fields with a derivation, T2 = ACVF, I ∶= {T1, T2}. Then
existentially closed valued fields with a derivation are PIC. Hence, definable
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closed sets in such fields are definable using only the valued field structure,
recovering a special case of [CP23, Theorem 3.1.11].
The proof given here would extend immediately to bounded perfect PAC fields
with independent valuations and generic commutative derivations (which are
PIC for T1 = DCFn and T2, . . . Tm = ACVF), if we knew that this class is
indeed closed under elementary extensions. Proposition 4.9 does not apply
in that context, but a geometric axiomatization seems plausible, along the
lines of [Tre05].
There is another issue if we wish to consider fields that are not PAC, which
is our reliance on relational languages. If T2 = RCF< and T1 = DCF0 (Morley-
ized), then existentially closed ordered differential fields might not be PIC.
Indeed, the order on a subfield of a differential field might not extend to the
whole field. However, the setup presented here can be adapted to allow for
non-relational Li; the main issue being, again, the elementarity of the class.

7. Amalgamation and Burden in PICd

Recall that we now assume that I is finite and that T = ⋁i∈I Ti. In particular,
any extension K ≤ M ⊧ TI is totally T . We now work with Iτ = I and
therefore assume that (Hi) holds for every i ∈ I (see Hypothesis 5.1) and
τ will denote the topology generated by the τi for all i ∈ I. Finally, we fix
K ⊧ PICd perfect sufficiently saturated and homogeneous (see Notation 6.2)
and Mi ⊧ Ti,K .
We start by proving that obstructions to 3-amalgamation only arise from the
quantifier free structure.

Theorem 7.1. Let F ≤K and a1, a2, c1, c2, c ∈K. Suppose that dcli(∅) ⊆ F a,
for all i, F = acl(F ), aj enumerates Aj ∶= acl(Faj) and cj enumerates
Cj ∶= acl(Fcj), for j = 1,2. Assume also that A1 ∩ A2 = F , c ⫝a

F a1a2,
c1 ≡F c2 and c ≡qf

Aj
cj, for j = 1,2. Then

tp(c1/A1) ∪ tp(c2/A2) ∪ qftp(c/A1A2)
is consistent.

This is a minor variation on [Mon17b, Theorem3.21].

Proof. First note that, since A1A2 is a regular extension of A1 and of A2, by
[Cha02, Lemma 2.1], we have that Aa

1 ∩Aa
2 = (A1 ∩A2)a = F a. Note also that

for any F ≤ E ≤K, by Lemma 5.6, acl(E) = Ea ∩K.
Let C ∶= F (c) and A ∶= acl(A1A2). Since c ≡qf

aj cj , we have an LI(Aj)-
isomorphism fj ∶ AjCj → AjC sending cj to c. This map extends to an
Lrg(Aj)-embedding Bj ∶= acl(AjCj) → (AjC)a. We endow Dj ∶= fj(Bj)
with the LI -structure making fj into an LI(Aj)-isomorphism. This structure
extends the LI -structure on AjC.
Note that both A2 ≤ A and A2 ≤D2 ≃ B2 are regular and that, since a1 ⫝a

a2 c,
we have A ⫝a

A2
D2. So A ≤ D2A, A2 ≤ D2A and F ≤ D2A are regular. So
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D2A ⫝`F F a and hence D2A ⫝`CA1
F aCA1. Moreover, since Ca ⫝`F a Aa

1A
a
2, by

[Cha02, lemma 2.5.(2)] we have:

(CA1)a ∩ (CA2)a(A1A2)a = (Ca(Aa
1 ∩Aa

2))aAa
1 = CaAa

1.

Since, by Lemma 6.4, Gal(C) ≃ Gal(F ) and hence, Ca = F aC. Similarly,
Aa

1 = F aA1 and thus CaAa
1 = F aCA1. So, (CA1)a ∩D2A = F aCA1 ∩D2A =

CA1; i.e. CA1 ≤D2A is regular. By symmetry, CA2 ≤D1A is also regular.
Since Dj ⫝`CAj CA ≤ DkA, for k ≠ j, by Lemma 4.6, DjA can be made
into a model of T whose LI -structure extends that of Dj and CA. Since
D1 ⫝`CA1

D2A, we also have D1A ⫝`CA D2A and, by Lemma 4.8, D1D2A
can be made into a model of T whose LI -structure extends that of CA, D1

and D2. Also, since CA1 ≤D2A is regular and D1 ≤ (CA1)a, it follows that
D1 ≤ D1D2A, and thus F ≤ D1D2A, are regular. So D1D2A ⫝`A F aA = Aa

and A ≤D1D2A is regular.
By Corollary 4.7, there exists an LI(A)-embedding g ∶ D1D2A → K⋆ ≽ K.
Let c⋆ = g(c). We have c⋆ ≡qf

LI(a1a2)
c. Moreover, by Proposition 6.7, g ○ fj is

a LI(Aj)-elementary isomorphism sending cj to c⋆. �

7.1. Burden. We will now study the burden of perfect bounded PIC fields
in terms of the burden of each theory Ti.

Notation 7.2. We denote by bdni the burden computed in models of Ti,K .

Lemma 7.3. Let X be an Li(Mi)-definable set of dimension d. Then

bdni(X) = bdni(Ad).
Proof. By Remark 2.13, here exists an Li(Mi)-definable bounded τi-open
neighborhood Oi of 0 such that Mi ⊆ Oi ∪ (Oi ∖ {0})−1. Then Ad(Mi) =
⋃ε∈2d∏j<dO

εj
i where O1

i = Oi and O0
i = (Oi ∖ {0})−1. Since bdni(∏j<dOi) =

∏j<dO
εj
i for every ε, it follows that bdni(∏j<dOi) = bdni(Ad). If U ⊆ Ad is

an Li(Mi)-definable open, it contains a definable subset of the form ∏j<dUj
where Uj ⊆ Mi is in (affine) Li(Mi)-definable bijection with Oi. It follows
that

bdni(Ad) = bdni(∏
j<d

Oi) = bdni(∏
j<d

Ui) ≤ bdni(U) ≤ bdni(Ad).

Now, since dim(X) = d, there exists an Li(Mi)-definable finite to one map
f ∶X → Ad whose image is Zariski dense and hence has non-empty interior.
So, we have bdni(X) = bdni(f(X)) = bdni(Ad). �

Proposition 7.4. Let A = acl(A) ⊆K, X be quantifier free LI(A)-definable
and non-empty, φ(x, y) be an Ld-formula and (aj)j∈ω ∈Ky an indiscernible
sequence over A. Suppose that φ(K,a0) is τ -dense in X. Then ⋀j φ(x, aj)
is consistent.

Proof. By compactness, extend (aj)j∈ω to an A-indiscernible sequence indexed
by some sufficiently large cardinal κ. For every finite J ⊆ κ, let aJ enumerate
acl(Aaj ∶ j ∈ J) — in a way compatible with inclusions: if f ∶ J1 → J2 is an
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increasing bijection, then for any J ⊆ J1, aJ and af(J) appear in the same
place in aJ1 and aJ2 respectively.

Claim 7.4.1. There exists c ∈ X such that c ⫝a
A ⋃j<ω aj and, for all finite

J ⊆ ω, tp(aJ/Ac) only depends on ∣J ∣.
Proof. Note that, by invariance, the Zariski closure of X is over A and hence
we can find c ∈ X with c ⫝a

A ⋃j aj . By iterated applications of Erdös-Rado
and at the cost of reducing κ (exactly as when extracting an indiscernible
sequence), we find J0 ⊆ κ, with order type ω, such that for all finite J ⊆ J0,
tp(aJ/Ac) only depends on ∣J ∣. By homogeneity (and changing c), we may
assume that J0 = ω. �

Note that if J1, J2 ⊆ ω are disjoint of the same cardinality, if e ∈ aJ1 ∩ aJ2 ,
then there is some n,m with aJ1,n = e = aJ2,m. Spreading J1 and J2 apart,
we can find J3 such that J1 ∪ J2, J1 ∪ J3 and J2 ∪ J3 are ordered in the same
way. It follows that aJ1,n = aJ3,m = aJ2,n. So e appears in the same place in
all aJ , with J of the given cardinality, and tp(aJ/Ace) only depends on ∣J ∣.
So we may assume that for disjoint J1, J2 ⊆ ω, aJ1 ∩ aJ2 = A.
Claim 7.4.2. There exists c ∈ φ(K,a0) such that c ⫝a

A ⋃j<ω aj and, for all
finite J ⊆ ω, qftp(aJ/Ac) only depends on ∣J ∣.
Proof. Let Σi(x) be the (closure under consequence of the) partial type
expressing that tpi(aJ/Ax) only depends on ∣J ∣. By compactness, it suffices,
given ψi(x) ∈ Σi(x) for every i and U ⊆ V Zariski open over A(aj)j<ω, to
find e ∈ U realizing φ(x, a0) and the ψi.
Let c be such as in Claim 7.4.1 and let V be its algebraic locus over A, which
is also its algebraic locus over Aaj<ω. Then c is in the τi-interior of ψi(K)
in V and, since c ∈ ψi(K) ∩X, ψi(K) has non-empty τi-interior in X. The
existence of e as above now follows from the τ -density of φ(K,a0) in X and
the fact U is τ -open (in V and hence in X). �

Note that if E is an Li(Ac)-definable finite equivalence relation, for some
finite J1, J2 ⊆ ω we have aJ1EaJ2 and hence this holds for all J1, J2. In
other words, tpi(aJ/acli(Ac)) only depends on ∣J ∣ and hence, since acl(Ac) ⊆
A(c)a ⊆ acli(Ac), for all i, qftp(aJ/acl(Ac)) only depends on ∣J ∣. Let d
enumerate acl(Ac).

Claim 7.4.3. For all n > 0, there exists dn ≡qf
a{0,...,2n−1} d such that K ⊧

⋀j<2n φ(dn, aj).
Proof. We proceed by induction on n and let us assume we have found dn —
note that d0 = d works. Let a1 = a{0,...,2n−1} and a2 = a{2n,...,2n+1−1}, d1 = dn
and d2 be such that d2a2 ≡A d1a1, in particular, d2 ⊧ ⋀2n≤j<2n+1 φ(x, aj).
Then a1 ∩ a2 = A, d ⫝a

A a1a2, d1 ≡A d2, d1a1 ≡qf
A da1 and d2a2 ≡A d1a1 ≡qf

A

da1 ≡qf
A da2. By Theorem 7.1, we find dn+1 such that dn+1a

j ≡A djaj — and
hence dn+1 ∈ ⋂j<2n+1 φ(K,aj) — and dn+1 ≡qf

a1a2
d. �
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So ⋀j φ(x, aj) is indeed consistent. �

Proposition 7.5. Let X be Ld(K)-definable of dimension d. If for every
i ∈ I, bdni(Ad) ≤ κi for some cardinal κi, then

bdn(X) ≤∑
i∈I

κi.

Moreover, if bdni(Ad) < κ, where κ is an infinite cardinal, then

bdn(X) <∑
i∈I

κ.

Proof. We proceed by induction on d and assume K is sufficiently satu-
rated. Let φl(x, alj)l<κ,j<ω be an inp-pattern of depth κ in X — where
κ > ∑i bdn(Ad) in the first case. Let A = acl(A) ≤K be such that the φl and
X are all over A. We may assume that the (alj)j<ω are mutually indiscernible
over A. Let V be the Zariski closure of X.
By [Che14, Lemma 7.1] (see Remark 2.4(2)), Theorem 6.12 and indiscern-
ability, we find (uniformly) Li(alj)-definable Ylji ⊆ V such that φl(K,alj)
is τ -dense in Ylj ∶= ⋂i Ylji. If any Yl0j0i0 has dimension smaller than d,
then, by induction, bdn(Yl0j0i0) ≤ ∑i∈I λi, where λi + 1 = κi. However, the
φl(x, alj)l≠l0,j<ω is an inp-pattern of depth λ in Yl0j0i0 , where λ + 1 = κ. So
κ = λ + 1 ≤ bdn(Yl0j0i0) + 1 ≤ ∑i∈I λi + 1 ≤ ∑i∈I κi < κ, a contradiction. In the
second case, by induction, we would have κ ≤ bdn(Yl0j0i0) < κ, which is also
a contradiction.
So we may assume that all the Ylji have dimension d. In particular, they
have non-empty τi-interior in V . Since the border of Ylji in V has lower
dimension, by [Che14, Lemma 7.1] and induction, we may further assume
that the Ylji are τi-open in V .
Since φl(x, alj) is an inp-pattern, for all f ∶ κ→ ω we have that ⋀l Yl,f(l),i is
consistent. It follows that there are at most κi many l (respectively strictly
less than κ in the second case) such that ⋀l Ylji is inconsistent. In both cases,
it follows that we can find an l such that, for all i, ⋀j Ylji is consistent.
Since the Ylji are τi-open (in V ), by compactness, ⋀j Ylji contains some
Li(K)-definable τi-open Ui ⊆ V . Let U = ⋂iUi. Then, for every j, φ(K,alj)
is τ -dense in U . Let B ⊇ A be such that U is quantifier free LI(B)-definable.
We may assume that alj is B-indiscernible. By Proposition 7.4, ⋀j φ(K,alj)
is consistent — contradicting that φl(x, alj)l<κ,j<ω is an inp-pattern. �

We also have the following qualitative corollary:

Corollary 7.6. Suppose that, for all i ∈ I, Ti is NTP2 (respectively strong),
then any perfect K ⊧ PICd also is.

The bound in Proposition 7.5 is actually tight (although the argument is
surprisingly more involved than we expected at first).

Lemma 7.7. If, for some i ∈ I, bdni(Ad) ≥ κ for some cardinal κ, then there
exists an inp-pattern (φl(x, alj))l<κ,j<ω of depth κ in any τi-open Li(K)-
definable set X ⊆ Ad such that alj ∈K and φl(x, alj) defines a τi-open set.
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Proof. Note first that, at the cost of reducing X, we may assume that
X =∏k<dXk is a product of open (bounded) subsets of A1. By Lemma 7.3,
we find Mi ⊧ Ti,K and (φl(x, alj))l<κ,j<ω an inp-pattern of depth κ in X(Mi).
Writing φ(Mi, alj) as the union of its interior and a lower dimension set,
by Remark 2.4.(2), we may assume that either φ(Mi, alj) is τi-open or
dim(φ(Mi, alj)) < d. In the latter case, it follows by Remark 2.4.(6), that
bdn(Ad−1) ≥ λ, where λ + 1 = κ. By induction, we find an inp-pattern of
depth λ in ∏k<d−1Xk with ψl(Mi, clj) consisting of τi-open sets. Together
with a uniformly definable family of disjoint τi-open subsets of Xd−1, they
yield an inp-pattern of depth κ in X.
So we may assume that the φl(Mi, alj) are τi-open and there only remains
to prove that we can choose the alj in K. Let clj be generic in some Ad
such that alj ∈ acl(clj). We may assume that alj enumerates acli(clj), that
(cljalj)j are mutually indiscernible sequences and that it is middle part of
a sequence indexed by ω + ω + ω⋆. Let Al consist of the union of K, the ω
initial segment and the ω⋆ final segment of the sequence. For each j, let Elj
be the set of Li(Alclj)-conjugates of alj .
Claim 7.7.1. For every j0 < ω, Elj0 is a complete type over Al(clj)j(alj)j≠j0 .
Proof. Assume there exists E ⊂ Elj non-empty defined over Al(clj)j(alj)j≠j0 .
Then, by indiscernability, moving the parameters to the initial and final
segment, such a set also exists with parameters in A. �

Let Xlj = ⋃a∈Elj φl(x, a). If the Xlj are consistent, then, for every k

and j < k there exists elj ∈ Elj such that ⋀j<k φl(x, elj) is consistent.
But, by Claim 7.7.1, ∏j<kElj is a complete type. This would imply that,
⋀j<k φl(x, alj) is consistent, contradicting that the φl(x, alj) form an inp-
pattern. It follows that the Xlj form an inp-pattern (of depth κ in X).
So, at the cost of allowing φl(x, y) to be an Li(A)-formula for some A ⊆Mi

containing K, we may assume the alj to be generic in some Am (over A).
Let C be a transcendence basis of A over K and b ∈ A ⊆ acli(C) be such that
φl(x, y) = ψ(x, y, b), where ψ is an Li(K(C))-formula. As above, possibly
enlarging C, we may assume that the set E of Li(K(C))-conjugates of b is
a complete type over K(C, clj). Then, for every e ∈ E, the ψ(x, alj , e) are
inconsistent. It follows that the θ(x, alj) = ⋁e∈E ψ(x, alj , e) are inconsistent
and hence form an inp-pattern (of depth κ in X). So we may assume that
A =K(C) is generated over K by a (finite) set of algebraically independent
elements. Then C(alj)l<κ,j<ω is a tuple of algebraically independent elements
over K, in other words any finite sub-tuple is K-generic in the affine space
of the right dimension. It follows, e.g. by Proposition 4.3.(ii), that its
Li(K)-type can be realized in K. �

Proposition 7.8. Let X be Ld(K)-definable of dimension d. If, for every
i ∈ I, bdni(Ad) ≥ κi for some cardinal κi, then

bdn(X) ≥∑
i∈I

κi.
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Proof. By Remark 2.4.(6), we may assume that X ⊆ Ad. By Corollary 6.13,
we may further assume thatX is τ -dense in ⋂iXi whereXi is Li(K)-definable
and τi-open. By Lemma 7.7, assuming that K is sufficiently saturated, for
every i ∈ I, we find an inp-pattern φi,l(x, ai,l,j)l<κi,j<ω of τi-open sets in
Xi,with ai,l,j ∈K.
Note that for any finite Yi ⊆ κi and fi ∶ Yi → ω, ⋂l∈Yi φi,l(Mi, ai,l,f(i,l)) is
τi-open and hence, by τ density, X ∩⋂i,l∈Yi φi,l(Mi, ai,l,f(i,l)) ≠ ∅. It follows
that together, the φi,l(x, ai,l,j) form an inp-pattern of depth ∑i κi in X. �

We have thus proved the following equality:

Theorem 7.9. For every perfect K ⊧ PICd and Ld(K)-definable set X of
dimension d, we have

bdn(X) =∑
i

bdni(Ad).

The equality holds in Card∗, cf. [Tou18, Definition 1.29].

Corollary 7.10. Let K ⊧ PAC be perfect and bounded and vi be n independent
non-trivial valuations on K. Then

bdn(K,v1, . . . , vn) = n.

A similar corollary holds for PRC and PpC fields, but we refer the reader to
the more general statement Corollary A.3.

8. Forking and dividing

In this section we will study the relationship between forking (and dividing)
in the theories Ti and in the theory PICd.
Let us recall our conventions and notation. We assume that I is finite and that
T = ⋁i∈I Ti. We also assume that (Hi) holds for every i ∈ I (see Hypothesis
5.1). We denote by τ the topology generated by the τi, and we fix K ⊧ PICd

perfect sufficiently saturated and homogeneous. We fix some Mi ⊧ Ti,K .

Proposition 8.1. Let A = acl(A) ≤K and X be a Ld(K)-definable subset of
K such that X ⊆ ⋂iXi is τ -dense, where Xi is Li(K)-definable and τi-open.
Then X does not divide over A if and only if for all i, Xi does not divide
over A (in Mi).

Proof. (⇐) We assume that, for every i, Xi ∶= θi(Mi, b) does not divide over
A inMi, and we write X as ψ(K,b). Let κ be a sufficiently large cardinal and
(bj)j<κ be an indiscernible sequence over A with b0 = b. Let Xij = θi(Mi, bj).
By indiscernability Xj = ψ(K,bj) ⊆ ⋂iXij is τ -dense. Since Xi does not
divide over A, we have ⋂jXij ≠ ∅ and, by compactness, it contains some non-
empty Li(K)-definable τi-open Ui. Enlarging A and taking an appropriate
subsequence of the bj , we may assume that Ui is Li(A)-definable.
Note that since U ∶= ⋂iUi is τ -open, X is τ -dense in U . It follows, by
Proposition 7.4, that ⋂j(Xj ∩U) ≠ ∅, and hence X does not divide over A.
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(⇒) We now assume that, for some fixed i, Xi ∶= θi(Mi, b) divides over A and
let (bj)j<ω be an A-indiscernible sequence such that b0 = b and ⋀j θ(x, bj)
is inconsistent. We may assume that the bj are algebraically independent
over A. For all j, A(Bj) ≃ A(b) ≤ K. Since A ≤ A(bj) is regular, we
have A(bj+1) ⫝lA A(b0 . . . bj) and, by Lemma 4.6 and induction, we see that
A(bj ∶ j < ω) ⊧ Ti,∀. By Corollary 4.7, K ≤K(bj ∶ j < ω) ≃K ⊗AA(bj ∶ j < ω)
is LI -existentially closed, so we may assume that the bj are in K. It follows
that Xi ∩K divides over A in K, and hence, so does X ⊆Xi ∩K. �

Corollary 8.2. Let a be a tuple of K and A ⊆ B ⊆K such that A = acl(A)
and B = acl(B). Then tp(a/B) does not divide over A if and only if, for all
i ∈ {1, . . . , n}, tpi(a/B) does not divide over A (in Mi).

Proof. This follows from Proposition 8.1 and Corollary 6.13. �

Theorem 8.3. Let A = acl(A) ≤K. If A is an extension base of Ti, for all
i ∈ I, then A is an extension base of K.

Proof. By transitivity of forking, it suffices to show that no Ld(A)-definable
set X ⊆K forks over A. So, if X ⊆ ⋃j<m Yj , where the Yj are Ld(K)-definable,
we have to show that one of the Yj does not divide over A. To do so, we may
assume:

(i) X ⊆ ⋂iXi is τ -dense, where the Xi are Li(A)-definable.
(ii) X ∖⋃j Yj is finite.
(iii) Yj ⊆ ⋂i Yji is τ -dense, where Yji ⊆Xi is τi-open and Li(K)-definable.
(iv) For every i and j1, j2, Yj1i = Yj2i or Yj1i ∩ Yj2i = ∅.
(v) Xi ∖⋃j Yji is finite and does not contain any element of A.

Indeed, by Corollary 6.13, X is τ -dense in ⋃l⋂iXil ∪ Z where the Xil are
Li(A)-definable and Z is finite and Ld(A)-definable. If Z is non-empty, it
does not fork over A, and we are done. Otherwise, it suffices to show that
any of the X ∩⋂iXil does not fork over A. Similarly, by Corollary 6.13, Yj
is τ -dense in ⋃l⋂i Yjil ∪Zj where the Yjil are Li(K)-definable τi-open and
Zj is finite. Replacing the Yj by the Yj ∩⋂i(Yjil ∩Xi) and setting the finite
sets aside, we can ensure (ii) and (iii).
Replacing the Yji by the τi-interior of the atoms of Boolean algebra that
they generate (for fixed i), we can further assume (iii). Now, for some
finite set Z, we have X ⊆ ⋃j Yji ∪ Z ⊆ Xi and since X is τi-dense in Xi,
Zi ∶= Xi ∖ (⋃j Yji ∪Z) has empty τi-interior and is therefore finite. Now, if
(Zi ∪ Z) ∩A ≠ ∅, we can remove those points from X and the Xi without
losing any of the other properties.
There remains to show that one of the Yj does not divide over A. Note first
that, for every f ∶ I →m, by τ -density, there exists an a ∈X ∩⋂i Yf(i)i. Let
j be such that a ∈ Yj ⊆ ⋂i Yji. Then, by (iv), for all i we have Yf(i)i = Yji.
Now, by hypothesis, Xi does not fork over A and since any finite set that
does not divide over A = acl(A) must contain a point from A, there is an
f(i) < m such that Yf(i)i does not divide over A. As noted above, we may
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assume that f(i) = j is constant. It now follows from Proposition 8.1, that
Yj does not divide over A. �

Definition 8.4. Let a be a tuple of K and A,B ⊆ K. We write a ⫝A B if
tp(a/AB) does not fork over A (in K) and a ⫝iA B if tpi(a/AB) does not
fork over A (in Mi).

Corollary 8.5. Suppose that Ti is NTP2 for all i ∈ I and that forking equals
dividing in Ti. Then forking equals dividing in K and if a,A,B are in K,
then a ⫝iA B for all i ∈ I if and only if a ⫝A B.

Proof. Since K is NTP2 (Corollary 7.6) to show that forking equals dividing
in K it’s enough to show that any set in K is an extension base, but this is
trivial by Theorem 8.3.
The last equivalence is clear from Proposition 8.1 and the fact that forking
equals dividing in K. �

Appendix A. Dependent topologies

Following the approach of [Joh19] we can also understand dependent valua-
tions and orders by reduction to the case of independent topologies.
We now fix a finite tree I — that is a filtered partial order such that for all
i ∈ I, the set {j ∈ I ∶ i ≤ j} is totally ordered. Let r be its maximal element —
its root. To every leaf i — that is every minimal element — we associate:

● An integer pi which is either prime or zero.
● A theory complete Ti of fields of characteristic pi which eliminates
quantifiers in a relational expansion of the ring language such that
(Hi) holds (see hypothesis 5.1).

To every non-leaf i ∈ I, we associate:
● An integer pi which is either prime or zero. We assume that for all
daughters j of i, the pj are equal. Moreover, they are equal to pi if it
is non-zero. We also assume that pr is equal to its daughter pj .

● A theory complete Ti,Γ of (enriched) ordered Abelian group. We
assume that it is the theory of the trivial group if and only if i = r. If
pi is non-zero, we assume that models of Ti,Γ are pi-divisible. If pi
is zero and daughter pj are non-zero, we require Ti,Γ to come with
a constant ci for a positive element. We then assume that[−ci, ci]
is either pj-divisible or finite — in the latter case, we say that i is
finitely ramified.

For every non-leaf i ∈ I, we define the theories Ti,k and Ti, by induction:
● The theory Ti,k (the residual theory of i) is the theory of pseudo
Ii-closed fields without finite extensions of degree divisible by pi (if it
is non-zero), where Ii = {Tj ∶ j daughter of i}.

● The theory Ti is a Morleyization of the theory of characteristic pi
algebraically maximal complete fields with residue field a model of
Ti,k and value group a model of Ti,Γ. If pi is zero and the daughter
pj are non-zero, then we also require that ci = val(pj).
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Note that, by [HH19, Corollary A.3], if i is not finitely ramified, the reduct
of Ti to the valued field language eliminates quantifiers relative to RV1; and
it eliminates quantifiers relative to ⋃nRVn if i is finitely ramified, by [Bas91,
Theorem B]. Moreover, each of completion admits maximally complete
models. In particular, (Hi) holds in every Ti.

Definition A.1. We say that a field is pseudo I-closed if it is pseudo Ir-
closed.

This is coherent with our earlier notation, provided we identify a set of
independent valuations to the tree of height one with trivial valuation at the
root, and the independent valuations as leaves.
We also define:

κi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

bdn(Ti) if i is a leaf,
max(ℵ0 ⋅∑j∈Ij κj ,bdn(Ti,Γ)) if i is finitely ramified,
max(∑j∈Ij κj ,bdn(Ti,Γ)) otherwise.

Once again, for a finer estimate, κi can be computed in Card⋆, cf. [Tou18,
Definition 1.29].

Theorem A.2. Let K be a bounded perfect pseudo I-closed field. Then

bdn(K) = κr.
Proof. We proceed by induction on i. By Theorem 7.9, bdn(Ti,k) = ∑j∈Ii κi
(by Theorem 7.9) and, by Fact 2.6, bdn(Ti) = κi. �

Corollary A.3. Let K be a bounded perfect PAC, m-PRC or m-PpC field
(setting m = 0 if K is PAC) and v1, . . . , vl be valuations on K. Let n be the
maximal number of non-dependent valuations among the vi, that are also not
dependent from the m orders (respectively p-adic valuations) if K is PRC
(respectively PpC). Then

bdn(K,v1, . . . , vl) =m + n.
Proof. We assume K is PAC. Let I be the tree of valuations generated by
the vi, in other words the nodes of I are the valuation rings ∏i∈J Oi, where
J ⊆ I and Oi is the valuation ring of vi (and the trivial valuation at the root).
For any node i ∈ I we also write vi for the associated valuation. Since K is
PAC, the residue field of any of the vi is algebraically closed and its value
group is divisible — this follows, for example, from Proposition 3.12. We
annotate I with a copy of ACVF on each leaf and with the theory of divisible
ordered Abelian groups on each non-leave node (except for the root), as well
as the relevant characteristics and constants.
It follows from Theorem 5.11 that K ⊧ PIC and this structure is bi-
interpretable with (K,v1, . . . , vn). By induction on i we see that κi is the
number of leaves below the node i. The corollary follows.
The PRC and PpC cases follow in a similar manner, noting that orders
(respectively p-adic valuations) can only be leaves in the tree. �
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