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The subject of this text is the model theory of valued fields. Model theory studies structures
and first order definable sets in these structures. We often distinguish between pure model
theory, which studies abstract theories and the combinatorics of definable sets, and applied
model theory, whose goal is to study specific structures that appear in other areas of mathe-
matics; in these pages, these structures will be valued fields. But the distinction is somewhat
arbitrary. Questions in pure model theory often arise from applications to specific struc-
tures and “purer” considerations often allow us to better understand the concrete cases we
are interested in.
In fact, this text is clearly an example of applied model theory but some of the results pre-
sented here are of a much “purer” nature.

Valued fields and the Ax-Kochen-Eršov principle
Among the early results in the model theoretic study of valued fields, the Ax-Kochen-Eršov
principle [AK65; Erš65] heralds much of the subject’s later developments. Neglecting the
fundamental role of Abraham Robinson’s work [Rob77] on algebraically closed valued fields
(ACVF) would be certainly be unreasonable, nevertheless, the Ax-Kochen-Eršov theorem
contains the seed of an idea that is central in the model theoretic study of valued fields: a
valued field is a structure “controlled”, on the one hand, by an ordered group (its value group),
and, on the other hand, by a field (its residue field). Hahn fields illustrate this idea perfectly.
From any field k and any Abelian ordered groupΓ, onemay construct the valued field k((tΓ))
whose elements are formal power series∑γ∈Γ aγt

γ whose coefficients are in k and such that
the set {γ ∈ Γ ∶ aγ ≠ 0} is well-ordered. The residue field of k((tΓ)) is exactly k and its value
group is Γ.
Admittedly, not every valued fieldK whose value group is Γ and residue field is k is isomor-
phic to k((tΓ)). But according to the Ax-Kochen-Eršov theorem, if it is Henselian (i.e. the
valuation can be extended in a unique way to any algebraic extension) and if k has character-
istic zero, the first order theory ofK is controlled by that of k and Γ:
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Theorem0.1 (Ax-Kochen-Eršov theorem, 1965):
LetK and L be two Henselian valued fields of equicharacteristic zero. They are elementarily
equivalent1if and only if their valued fields and their value groups, respectively, are elementarily
equivalent.

Hence, ifK is Henselian of equicharacteristic zero with residue field k and value group Γ, it
is elementarily equivalent to k((tΓ)).
The Ax-Kochen-Eršov theorem can be extended as is to unramified mixed characteristic, i.e.
whenK has characteristic zero, k has positive characteristic p and val(p) is the smallest pos-
itive element of Γ. With some more complications it also extends to finitely ramified mixed
characteristic (i.e. when val(p) is a finite multiple of the smallest positive element in Γ). In
what follows, we will say that a field is finitely ramified if its residue characteristic is zero or
if its a finitely ramified mixed characteristic field.
One of the most striking corollaries of the Ax-Kochen-Eršov theorem is that for every choice
of non principal ultrafilter U on the set of prime numbers, the ultraproducts ∏pQp/U and
∏pFp((t))/U are elementarily equivalent as valued fields. In other words, a (first order) sen-
tence is true in allQp for sufficiently large p if and only if it is true in allFp((t)) for sufficiently
large p. Ax and Kochen’s motivation to prove this theoremwas to answer the following ques-
tion of Artin’s: is it true that every homogeneous polynomial over Qp of degree d with at
least d2 + 1 variables has a non trivial root? By a theorem of Lang’s, this result is true in
Fp((t)) for all p and hence for all d there is some prime p0 such that the answer to Artin’s
question is positive in allQp with p ⩾ p0. We now know that this result is “optimal” as there
are counter-examples for small p.
Recently this kind of results have been extended, beyond the scope of first order sentences, to
equalities of p-adic integrals containing additive characters [CL10], usingmotivic integration.
This allowed, for example, Cluckers, Hales and Loeser [CHL11] to transfer the fundamental
lemma of Langlands program form positive characteristic to mixed characteristic.

The idea underlying the Ax-Kochen-Eršov theorem that an Henselian valued fields is con-
trolled by its value group and its residue field has many avatars in the model theory of valued
fields as it has been developed since. One of them is a result by Delon [Del81] (in equicharac-
teristic zero) and Bélair [Bél99] (in finitely ramifiedmixed characteristic) on the “moderation”
of finitely ramified valued fields.
Before explaining that result, let us explicit was is meant here by moderation. In the sev-
enties, while working on classification, Shelah introduced a certain number of more or less
moderate classes of theories, determined by the absence of certain combinatorial configura-
tions in their models. The first one he defined, and, by far, the most studied of moderation
classes is that of stable theories:

Definition 0.2 (Stable theory):
Let φ(x, y) be an L-formula andM an L-structure. We say that φ has the order property inM if
there exists tuples (ai)i∈N and (bi)i∈N ∈M such thatM ⊧ φ(ai, bj) if and only if i ⩽ j.
A theory T is said to be stable if no L-formula has the order property in any model of T .

1Meaning that every first order sentence in the language of valued fields is true in one of those fields if and only
if it is also true in the other.
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This particularly combinatorial condition has, in fact, a large number of consequence that
make stable theories a model theoretic “paradise” in which numerous tools where developed
(definable types, forking, independence, etc.). The most classical example of a stable theory
is the theory of algebraically closed fields (ACF) but there are many others. Some have very
little algebraic content as the theory of infinite sets in the equality language or the theory of
an equivalence relation with infinitely many infinite classes. But others, modules on a given
ring, separably closed fields (SCF) or differentially closed fields in characteristic zero (DCF0),
are algebraic structures. Nevertheless, numerous structures that appear in mathematics are
unstable, thus restricting the possible applications of stability theory.
For example, neither the field R nor any valued fields can be stable as they contain a de-
finable order. But since the definition of stability, other notions of moderation have been
introduced. In this text, we will only be interested in one of those, which is compatible with
the existence of a definable order: NIP. This class was also defined by Shelah but had not
been studied much until ten years ago. It has since been the target of a growing interest.

Definition 0.3 (NIP theory):
Let φ(x, y) be an L-formula and M be an L-structure. We say that φ has the independence
property inM if there exists tuples (ai)i∈N and (bJ)J⊆N ∈M such thatM ⊧ φ(ai, bJ) if and only
if i ∈ J .
An L-theory T is said to be NIP (not the independence property) or dependent, if no L-formula
has the independence property in any model of T .

Among NIP theories, numerous algebraic examples can be found. First of all, all stable the-
ories are NIP. The theory of real closed fields (RCF), or more generally every o-minimal
theory like the theory of the real field equipped with the exponential map and restricted an-
alytic functions, is also NIP, and so are many theories of valued fields: algebraically closed
valued fields, the theory of the field of p-adic numbersQp and more generally the theory of
any finite extension ofQp.
These last examples bring us back to the aforementioned “Ax-Kochen-Eršov” principle rela-
tive to moderation:

Theorem0.4 ([Del81; Bél99]):
Let T be a theory of characteristic zero finitely ramified Henselian valued fields. The theory T
is NIP if and only if the theory induced by T on the residue field is NIP.

This theorem is an instance of amore general principle according towhich any characteristic
zero finitely ramifiedHenselian valued field is asmoderate as its value group and residue field
are. The value group does not appear in the above theorem as, by a theorem of [GS84], all
Abelian ordered groups areNIP.
As was mentioned earlier, stable theories are very well behaved. One of their nice proper-
ties is that every type is definable. Recall that a type p on a structure M is an ultrafilter on
the Boolean algebra of sets definable with parameters in M . It is definable if for every for-
mula φ(x; s), there exists a formula θ(s) such that, for all tuple m, θ(m) holds if and only
if φ(x;m) ∈ p. Equivalently, in every model M of a stable theory, every externally defin-
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able set2 is in fact definable inM (with parameters). This property characterises stability and
therefore cannot hold in an NIP theory. But externally definable sets are still well behaved
in those theories. One of their properties, introduced by Chernikov and Simon [CS13; CS], is
the existence of (uniform) honest definitions which will appear in Section III.1.
It is often considered that anNIP theory is controlled by a stable part and an ordered part. In
the case of valued fields, this principle, whose similarity to the Ax-Kochen-Eršov principle is
striking, can be made precise. In local fields of characteristic zero3, the residue field is finite
and hence the structure is essentially controlled by the value group. Wewould like to say that
those theories are “purely unstable” and that is formalised by Simon [Sim13] as being distal.
On the contrary, algebraically closed valued fields contain both an ordered part (the value
groupΓ) and an extremely stable part (the residue fieldwhich is algebraically closed). Haskell,
Hrushovski andMacpherson [HHM06; HHM08] formalised the intuition that these two sets
control models of ACVF by introducing the notion ofmetastability: for all tuple a, the type
of a over Γ is “dominated” by the stable part. In [Hrub], Hrushovski uses metastability to
deconstruct groups definable inACVF in terms of groups internal to the value group, groups
internal to the residue field and group schemes over the valuation ring.
Lastly, note that a form of the Ax-Kochen-Eršov principle is also underlying motivic inte-
gration, one of whose goal is to find additive invariants of algebraic varieties defined on val-
ued fields. Following Hrushovski and Kazhdan [HK06], one can find such an invariant by
mapping varieties to their classes in the Grothendieck semi-ring of sets definable inACVF4

and this semi-ring can be shown to be essentially isomorphic to the tensor product of the
Grothendieck semi-ring of the residue field and that of the value group.

Quantifier elimination
The Ax-Kochen-Eršov theorem (0.1) is, in fact, a natural consequence of quantifier elimina-
tion results, although Ax, Kochen and Eršov never explicitly state those results.
More generally, the question of the elimination of quantifier is fundamental when studying a
specific theory. Indeed, the class of definable sets in a given structure is obtained from basic
definable sets, (determined by the choice of language) by finite Boolean combinations and
projections. But projections are more complicated than Boolean combinations and, ideally,
to get a good understanding of the class of definable sets, one would prefer that Boolean
combinations suffice. That is exactly the content of a quantifier elimination theorem. For
example, in the case ofACF, the basic definable sets are algebraic varieties and their Boolean
combinations are sets constructible in the Zariski topology. Quantifier elimination forACF
which says that the family of constructible sets are closed under projections is therefore
equivalent to a theorem of Chevalley according to which the image of a constructible set
by a regular function is still constructible.

2That is, the intersection of M with a set definable with parameters in an elementary extension ofM .
3Here, by a local field we mean non Archimedian local field, i.e. a finite extension ofQp for some prime p.
4That is, the semi-ring of definable isomorphism classes of definable sets in ACVF equipped with the disjoint
sum and the Cartesian product.
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In valued fields, there exist a great variety of quantifier elimination results. The first one is es-
sentially due to Abraham Robinson [Rob77] and states that algebraically closed valued fields
eliminate quantifiers in the most simple possible language for valued fields5. In that case,
as in many others, this quantifier elimination result implies moderation results. Robinson’s
result, for example, can be used to show that the theory ACVF is C-minimal. C-minimality
is a notion which generalises both strong minimality and o-minimality and which, as all no-
tions ofminimality, concerns the sets definable in one variable. In stronglyminimal theories,
one asks that all unary definable sets be the same as in the infinite set with equality (in other
words, they are either finite or cofinite). In o-minimal theories, one asks that the unary defin-
able sets are the same as those defined without quantifiers in an order (in other words, finite
unions of intervals). Finally, inC-minimal theories, one asks that the unary definable sets be
a Boolean combination of balls. But a notion of moderation is only as interesting as the tools
it provides. For example, C-minimality implies the existence of a cell decomposition and an
associated dimension.

In the case of the theory of the p-adic fieldQp, Robinson’s language does not suffice to elimi-
nate quantifiers and new basic definable sets have to be added to obtain elimination of quan-
tifiers. Macintyre [Mac76] showed that it suffices to add the sets of the form Pn(K) ∶= {x ∈
K ∶ ∃y, x = yn} for all n.
Since then, quantifier elimination results have been proved for a larger class of valued fields:
characteristic zero (unramified)Henselian fields. These results come in two flavors according
to the basic definable sets which are chosen: results with angular component maps and results
with leading terms. Following thehistoric development of the subject, let us startwith angular
component maps. An angular component map of a valued field K is a group morphism ac ∶
K⋆ → k⋆ such that the restriction of ac toO⋆ coincides with residual map res ∶ O → k, where
O ∶= {x ∈K ∶ val(x) ⩾ 0} is the valuation ring ofK . Laurent series over k (or more generally
any Hahn series field), local fields and Witt vectors over a perfect field can all be equipped
with an angular component map. But not every field can. Nevertheless, it suffices to assume
that the valued field is ℵ1-saturated to be able to construct one.
According to a theorem of Pas [Pas89], equicharacteristic zero Henselian valued fields elimi-
nate field quantifiers in the three sorted language (whose sorts areK,k andΓ) of valued fields
with an angular component map. This language is usually called the Denef-Pas language. If
one adds “higher order angular component maps”, this theorem extends to finitely ramified
mixed characteristic Henselian valued fields.
The main issue with the Denef-Pas language is that, in general, even when natural angular
component maps exist, they are not definable in the language of valued fields; characteristic
zero local fields are the most notable exception in which “higher order angular component
maps” are definable. The main goal of languages with leading terms, also known as amc con-
gruences or RV-functions, is to give an alternative to angular component maps that does
not add any new definable sets of the valued field sort. LetRV ∶=K⋆/(1+M). In any valued
field, a short exact sequence 1→ k⋆ →RV → Γ→ 0 can be defined. By work of Basarab and
Kuhlmann [Bas91; BK92], if one adds a sort for RV, equicharacteristic zero Henselian val-

5Basic sets in this language are of the form {x ∶ val(P (x)) ⩾ val(Q(x))}, where P and Q are polynomial in
many variables

5



ued fields eliminate field quantifiers. As previously, if one adds “higher order leading terms”,
mixed characteristic (possibly infinitely ramified) Henselian valued fields also eliminate field
quantifiers.
In the past twenty five years, these quantifier elimination results have been extended to all
kind of enriched valued fields which appear naturally in mathematics. First of all, most val-
ued fields we consider, be it local fields or formal series fields, are complete6. Hence they
are naturally equipped with an analytic structure given by specialising formal power series
on their convergence domain. The first quantifier elimination results for valued fields with
analytic structure are due to Denef and van denDries [DD88] for the field of p-adic numbers.
They were followed by many results in broader and broader contexts, among which work
of van den Dries, Haskell, Macpherson, Lipshitz, Robinson and Cluckers [Dri92; DHM99;
LR00; LR05; CLR06; CL11]. In [Dri92], for example, van den Dries proves field quantifier
elimination for all equicharacteristic zero Henselian valued fields with an analytic structure
and an angular component map. He then deduces an analytic Ax-Kochen-Eršov theorem.
The other valuedfield enrichment that it is natural to consider consists in adding an operator,
be it a derivation or an automorphism of valued fields7. The first results (construction of a
model completion and elimination of field quantifiers) were proven by Scanlon in [Sca00].
In that paper, he studies, under certain technical hypothesis, valued fields equipped with
a D-operator (a notion which generalises both the derivation and the automorphism case)
that preserve the valuation; that is, such that for all x, val(D(x)) ⩾ val(x). Among many
other things, he proves the existence of a model completion VDFEC of the theory of valued
differential fields whose derivation preserves the valuation. Studying this theory motivates
Chapters III and IV of this text.
In later work, Bélair, Macintyre, Scanlon, Durhan and van den Dries [Sca03; BMS07; AD10]
extended the field quantifier elimination result to isometries: field automorphisms such that
for all x, val(σ(x)) = val(x). Automorphisms which are not isometries also appeared in
Hrushovski’s work [Hrua] on twisted Lang-Weil approximations. These automorphism are
such that for all x and n ∈ N, if val(x) > 0 then val(σ(x)) > nval(x) (they are said to be
ω-increasing). Elimination of field quantifiers for valued fields with such an automorphism
was showed by Durhan in [Azg10]. Pal [Pal12] then extended this result to more general au-
tomorphisms and finally Durhan and Onay [DO] recently proved that this result also holds
for any valued field automorphism.
Chapter II of this text aims at merging these two possible enrichments and studying valued
fields with both an analytic structure and a valued field automorphism. The main result is a
field quantifier elimination result for characteristic zero analytic σ-Henselian valued fields.
The first motivation for this result is to understand the model theory of the field of Witt
vectors on Fp

alg
equipped with both its analytic structure and the lifting of the Frobenius.

A good understanding of this theory could, for example, allow us to give a model theoretic
version of Buium’s p-differential geometry and to consider certain problems in Diophantine
geometry (see [Sca06]).
One last word about differential valued fields, two relatively distinct cases have also been

6Although completeness is not a first order property.
7A field automorphism σ such that σ(O) = O.
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studied. The first one, the study of transseries fields (see, for example, [ADH13]), led people
to consider valued differential fields that are not ∂-Henselian and whose derivation, albeit
continuous, does not preserve the valuation. The second case is valued differential fields in
which there is no interaction between the valuation and the derivation. In particular such
a derivation is highly discontinuous (see, for example, [GP10]). But, apart from some tech-
niques essentially linked to the fact that we are considering valued fields, these two other
cases have very little in common with Scanlon’s case or with the valued field automorphism
case which are, in fact, closely related.

Elimination of imaginaries
When studying a given theory, once the question of quantifier elimination has been taken
care of, another question follows: the description of the definable quotients. Indeed, for
multiple reasons, definable equivalence relations, and hence the quotients by these equiva-
lence relations, appear naturally. But these quotients, that we call interpretable sets, do not
belong to the category of definable sets andmost of the results wemight have obtained until
then on definable sets cannot be applied.
For example, definable equivalence relations appear in the following manner. LetX ⊆ Y ×Z
be ∅-definable sets in some structure M . We can see X as the family (Xy)y∈Y of its fibers
above Y . One can then ask if there exists another parametrisation (Uw)w∈W of that family
such that every set in the family X appears exactly one time in the family U . This notion,
quite close to that of a moduli space, is fundamental as it allows us to identify the family
(Xy) with the setW . We then say that the point inW corresponding to a fiberXy ofX is a
canonical parameter for Xy . This canonical parameter is the “smallest” set over which Xy is
defined; such a set does not exist in the structure itself in general.
The sets W and U can be constructed in a “canonical” way by considering the equivalence
relation y1Ey2 on Y defined by ∀z, z ∈ Xy1 ⇐⇒ z ∈ Xy2 and taking W = Y /E and
U = {(z, ŷ) ∶ x ∈Xy}where ŷ is theE-class of y. But the setsW andU are interpretable and,
a priori, not definable. Such a construction is therefore only possible in M if interpretable
sets inM also happen to be definable (or, to be precise, definably isomorphic to a definable
set). This is exactly what is called elimination of imaginaries in M , and that is equivalent to
the existence inM of a smallest set of definition for every definable set.
The notion of elimination of imaginaries was introduced by Poizat in [Poi83] and is much
more recent than elimination of quantifiers that has, for many years, been fundamental in
every application of model theory. Thus, it is not very surprising that fewer elimination of
imaginaries results are known. Among the examples of theories that eliminate imaginaries,
one can find the two theories that led Poizat to define the notion: ACF andDCF0. Elimina-
tion of imaginaries in these theories follows from the existence, for all algebraic (respectively
differential) variety, of a smallest (respectively differential) field of definition and from the
definability of symmetric polynomials. Among other notable examples, one should men-
tion divisible ordered Abelian groups, real closed fields (that is, the fields that are elementary
equivalent to R) and more generally, all o-minimal theories of ordered groups.
In general, if a theory does not eliminate imaginaries, the question becomes: which canoni-
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cal parameters of definable sets are sufficient to get all the others? Obviously, by adding the
canonical parameters of all sets definable in a theory T , one gets a theory, named T eq, de-
fined by Shelah, which eliminates imaginaries8. But, although this construction is very useful
from an abstract point of view, it is of little interest as far as understanding a given theory is
concerned, as it does not give any information on the interpretable sets. For example, one
can check that the theory of structureless infinite sets does not eliminate imaginaries; indeed
except for singletons, no finite sets has a canonical parameter. But one can also check that it
suffices to add, for all n ∈ N>0, a sort Sn whose elements are the finite subsets of cardinal n
in the main sort, in order to eliminate imaginaries.
Let us now consider algebraically closed valued fields in the language with a single sort for
the valued field itself. It follows from elimination of quantifiers that every infinite definable
set has the same cardinality as the valued field. But there exists algebraically closed valued
fields of cardinality continuum whose value group Γ is countable. It is therefore impossible
that the interpretable set Γ = K⋆/O⋆ be in bijection with a definable subset of the valued
field. More elaborate counterexamples show that adding the value group, the residue field or
even the set of balls of the valued field does not suffice to obtain elimination of imaginaries.
The same considerations apply to characteristic zero local fields.
The first elimination of imaginaries result for valued fields is due to Haskell, Hrushovski and
Macpherson in [HHM06]. They show that in algebraically closed valued fields, it suffices to
add the canonical parameters of certain sets that can be seen as higher order equivalents of
balls. These sets are, on the one hand, the rank n free O-submodules ofKn, also known as
lattices, and, on the other hand, for every lattice s, the sets of the form a +Ms where a ∈ s.
The language in which we have added canonical parameters for these two families of sets is
called the geometric language.
Since then, Mellor [Mel06] proved that real closed valued fields also eliminate imaginaries in
the geometric language. In Chapter I of this text, we show new elimination of imaginaries
results in the geometric language: one for characteristic zero local fields and another for
equicharacteristic zero pseudo-local fields (that is, ultraproducts of local fields).
As far as enriched valued fields are concerned, results are even rarer. In the case of alge-
braically closed valued fields with an analytic structure, it is proved in [HHM13], that they
do not eliminate imaginaries in the geometric language. But no concrete description of
the canonical parameters one should add is known. In the present text, we prove a result
for the other family of enrichments described earlier: valued fields with operators. More
precisely, Chapter III contains general considerations on the imaginaries in enrichments of
ACVF which are then applied in Chapter IV to show that VDFEC eliminates imaginaries in
the geometric language enriched with a symbol for the derivation.
We noted earlier that elimination of quantifiers results can be used to prove moderation re-
sults. As far as elimination of imaginaries is concerned, the relation is reversed: moderation
of a theory can help understand its imaginaries. For example, stability of ACF, DCF0 and
SCF plays a considerable part in proving the respective elimination of imaginaries results.
Similarly, the theory of stably dominated types and metastability was developed to study the
imaginaries inACVF. In a more recent proof of that result [Hru14; Joh], density of definable

8every modelM of T naturally expands to a modelMeq of T eq.
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types plays a central part. Finally, in the proof of elimination of imaginaries for VDFEC in
the geometric language that can be found in this text, definable types are also fundamental,
but a new crucial ingredient of the proof is the good behaviour of externally definable sets in
NIP theories.

Beyond elimination
Once elimination of quantifiers and imaginaries is known for a given theory, a whole array of
choices opens up and there is no “canonical” next step. For example, as far as ACVF is con-
cerned, Hrushovski and Loeser [HL] studied the space of stably dominated types and showed
that not only can it be used to give an alternative definition of Berkovich spaces, but it also al-
lows them to prove new result about their topology. More classically, one may want to study
groups and fields interpretable in a theory: classify them, but also show how some geometric
properties of definable sets can give rise to these algebraic structures. These considerations
are central to geometric stability theory and, applied toDCF0 and SCF, allowed Hrushovski
[Hru96] to prove certain Diophantine results like the Mordell-Lang conjecture for function
fields.
Let us now state some of the group classification results mentioned in the previous para-
graph. In algebraically closed fields, by a result ofWeil, or,more precisely, themodel theoretic
interpretation of this result by Hrushovski (cf. [Poi87, Section 4.e]) or van den Dries [Dri90],
every definable group is definably isomorphic to an algebraic group. By a result of Bouscaren
and Delon [BD01], groups definable in a separably closed field K of finite imperfection de-
gree are definably isomorphic to theK-points of an algebraic group. In pseudo-finite fields,
according to Hrushovski and Pillay [HP94],the situation is essentially the same up to certain
finite groups: every group definable in a pseudo-finite fieldK contains a finite index defin-
able subgroup isogenous to theK-points of an algebraic group. In differentially closed fields
of characteristic zero, by a theorem of Pillay’s [Pil97], all definable groups are embedded in al-
gebraic groups. Finally, in algebraically closed fields with an automorphism, Chatzidakis and
Hrushovski [CH99], in the finite rank case, and Kowalski and Pillay [KP02], in the general
case, showed a similar result up to finite groups. Section IV.5 of this text contains the first
steps of such a classification for groups definable in valued differential fields à la Scanlon.

Overview of the results
Themain results contained in this text are elimination of quantifiers and imaginaries results
for certain valued fields: pure valued fields as characteristic zero local fields or equicharacter-
istic zero pseudo-local fields, and valued fields enriched with a derivation, an automorphism
or an analytic structure.
The first chapter, joint with Ehud Hrushovski and Ben Martin, contains [HMR]. Its main
model theoretic results are the elimination of imaginaries in the geometric language for
characteristic zero local fields (TheoremA) and for equicharacteristic zero pseudo-local fields
(TheoremB). We then deduce in Corollary (I.2.7) that elimination of imaginaries in charac-
teristic zero local fields is uniform when the residual characteristic grows.
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These elimination results are then applied to counting classes in a family of equivalence rela-
tions parametrised by the value group and definable in a characteristic zero local field. Using
techniques, developed amongothers byDenef, that relate these problems to the computation
of certain p-adic integrals, we prove TheoremC which states that zeta functions associated
to these counting problems are uniformly rational. This chapter also contains applications
of TheoremC to certain zeta functions that appear in subgroup and representation growth
theory.

In Chapter II, we prove field quantifier elimination (TheoremD) in valued fields equipped
with both an analytic structure and an automorphism. Although themotivation was to study
the field of Witt vectors on Fp

alg
equipped with its analytic structure and the lifting of the

Frobenius (which is an isometry), TheoremD is proved for all automorphisms of valuedfields.
This chapter also attempts, in Sections II.A and II.B, to give a more systematic approach to
quantifier elimination proofs in enriched valued fields, via some abstract considerations.

The subject of Chapter III is the elimination of imaginaries in certain enrichments ofACVF.
The theory VDFEC is the main example. More precisely, we prove a result about the den-
sity of definable types (TheoremE) that implies both the elimination of imaginaries and the
existence of global invariant extensions. The chapter begins, in Section III.1, by some work,
joint with Pierre Simon, on more abstract considerations on externally definable sets inNIP
theories. These considerations are essential in proving the other results in this chapter. I
wish to thank Pierre for allowing me to present these results here.

Finally, Chapter IV contains numerous results onVDFEC . Themain result (Theorem F) is the
elimination of imaginaries and the invariant extension property forVDFEC in the geometric
language. This is an immediate consequence of the results in the previous chapter. We also
show that the field of constants is stably embedded in models of VDFEC , and we study the
definable and algebraic closures. The link between types in VDFEC and those in ACVF is
formalised by defining a notion similar to that of prolongations in differential algebraic ge-
ometry. The last section of this chapter is devoted to studying groups definable in VDFEC
and how they relate to groups definable in ACVF.

Detailled description of the results
Chapter I. Imaginaries in p-adic fields: In addition to their interest for model theorists,
ourmainmotivation in proving those resultswas to better understand certain counting func-
tions that arise in group theory. Let us begin with some historic perspective on these issues
and their link to model theory.
First, let us consider the Poincaré series associated to p-adic points of varieties. LetX be an
affine variety defined over Zp. Let an be the number of its Z/pnZ-points and ãn the number
of points in the image of the canonical map X(Zp) → X(Z/pnZ). To study the growth of
these sequences, we define the twoPoincaré seriesPX(t) ∶= ∑i ait

i and P̃X(t) ∶= ∑i ãit
i. The

main question one can ask about these series is the question of their rationality. In the case of
PX(t), thiswas showedby Igusa in the seventies. As for P̃X(t), the use of a quantifier (coming
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from taking the image of a set under some function) makes this series more complicated to
study. Denef proved its rationality in [Den84] using Macintyre’s quantifier elimination for
Qp [Mac76].
In his proof, Denef considers the sets An ∶= {x ∈ Zp ∶ x is in X modulo pnZp} and Ãn ∶=
{x ∈ Zp ∶ there exists y ∈ X(Zp) such that x ≡ y mod pnZp}, which are definable in Qp,
and showed that an = µ(An)pnd and ãn = µ(Ãn)pnd where d ∈ N depends on X and µ is
the Haar measure on Qp normalised so that µ(Zp) = 1. He then shows that the Q-algebra
generated by functions f ∶ Qp × Z → Z and x ↦ pf(x) where f is definable in Qp is closed
under integration. The rationality theorem then follows easily. Using a uniform quantifier
elimination theorem for Qp, Pas [Pas91] and Macintyre [Mac90] showed that, when X is
defined over Z, rationality of these series is uniform.
Later, Grunewald, Segal and Smith [GSS88] used Denef’s result on definability of p-adic in-
tegrals to study a counting problem coming from group theory. LetG be a nilpotent, finitely
generated, torsion free group. The number of indexn subgroup ofG is finite; we denote it bn.
we then find a family of functions, definable inQp and parametrised by the value group, such
that the integral of the index n function is exactly bpn . Using Denef’s result, we obtain that
the series ζG,p(t) ∶= ∑i bpit

i is rational. By considerations similar to those of Pas and Macin-
tyre, or more generally the p-adic specialisation of results from motivic integration, we also
obtain information about the behaviour of this function as p grows. One of the interest of
these uniform results is to study the global zeta function associated to G, ζG(s) = ∑i bii

−s.
As for Riemann’s zeta function, which is none other than the global zeta function of Z, we
have a Euler decomposition in local zeta functions:

ζG(s) =∏
p

ζG,p(p−s).

Hence a uniform understanding of the local zeta function can lead to results on the global
zeta function.
The method used to associate to each bpn a function definable in Qp goes as follows. We
find, uniformly in p and n, a set Dn/En interpretable in Qp whose cardinal is bpn and we
find a function fn definable inQp such that for all x ∈ Dn, if x̂En denotes the En-class of x,
then µ(x̂En) = p−val(fn(x)). Hence Grunewald, Segal and Smith’s result, as well as Denef’s
result on Poincaré series, can be seem as special instances of a more general problem that
consists in counting classes in a family (En)n∈N of equivalence relations, definable inQp. In
the results that we mentioned above, the equivalence classes are sufficiently simple to find
the fn explicitly. Nevertheless, in the general case, as long as we do not know exactly how
interpretable sets might look like, it is impossible to find such fn. Proving (uniform in p)
elimination of imaginaries forQp thus becomes necessary.
In that chapter, we prove two elimination of imaginaries results. One about local fields:

TheoremA:
LetK be a local field of mixed characteristic (0, p). If we add a constant for a generator
ofK ∩Qalg

over Qp ∩Q
alg
, then the theory ofK in the geometric language eliminates

imaginaries.

11



And a theorem about their ultraproducts:

TheoremB:
The theory of equicharacteristic zero pseudo-local fields eliminates imaginaries in the
geometric language, if one adds countably many well-chosen constants.

In both cases, as the valuation is discrete, canonical parameters of sets of the form a +Ms,
where s is a lattice, are not, in fact, necessary. From the second theorem, we deduce, in
Corollary (I.2.7), that elimination of imaginaries for local fields is uniform when the residual
characteristic grows.
It follows that every set interpretable in a local field K of characteristic zero can be identi-
fied with definable subset of Kn × (GLm(K)/GLm(O))for some m and n ∈ N, uniformly
in p. One can then easily find functions fn such as previously, using the fact that the Haar
measure on GLm(K) has a density relative to the Haar measure on Kn2

which is a defin-
able function, and deduce TheoremC, an abstract uniform rationality result for families of
equivalence relations uniformly definable in characteristic zero local fields.
This theoremnot only allowsus to reprove the aforementioned results on local zeta functions
that arise in group theory, but also to prove new results for which the equivalence relations
that come into play are more complicated, like counting representations “up to isotwist”.
The elimination results themselves are proved using abstract criteria, Proposition (I.2.11) and
Corollary (I.2.15), that allow to transfer an elimination of imaginaries results fromone theory,
ACVF, in that case, to another. Here, the transfer is made possible by the fact that definable
functions in those theories inwhichwewish to prove elimination of imaginaries, are covered
by finite correspondences definable inACVF. The existence of invariant extensions of types
on small sets of algebraically closed parameters as well as a description of all 1-types play are
central to this proof.

Chapter II. Analytic difference fields: As previously mentioned, the goal of this chapter
is to study valued fields enriched with both an analytic structure and a valued field automor-
phism. However, studying those structures is not solely motivated by a wish to understand
the interactions between two well-understood types of valued field enrichments and give a
model theoretic account of more and more complex structures. It is also motivated by the
fact that this is the correct setting in which to consider certain Diophantine and number
theoretic problems. For example, it is the model theoretic setting of Buium’s p-differential
geometry. Indeed, every p-differential function defined over W(Fp

alg) is a function defin-

able in the structureW(Fp
alg) equipped with the lifting of the Frobenius as well as symbols

for every p-adic analytic function∑I aIX
I where aI → 0 when ∣I ∣→∞.

In [Sca06], Scanlon shows how some model theoretic facts about analytic difference fields
can be used to show that certain Diophantine results are uniform. In particular, he shows
that a uniform version of the Manin-Mumford conjecture on Abelian varieties overW[k] is
a consequence of the classical conjecture (that is, Raynaud’s theorem), using on the one hand,
results of Buium’s on how these question relate to p-differential geometry and, on the other
hand, an Ax-Kochen-Eršov theorem for analytic difference fields.
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The main result in this chapter is a field quantifier elimination result for a certain class of
analytic difference fields:

TheoremD:
The theory of valued σ-Henselian characteristic zero fields with an analytic structure
eliminates field quantifiers in the leading term language.

Most of the model theoretic results about valued fields with analytic structure rely heavily
on the fact that, via Weierstrass preparation, the valuation and, even the leading term, of
an analytic function in one variable is equal to that of a polynomial. One can then show
that every unary definable subset of the valued field is already definable in the language of
valued fields (with leading terms). In Denef and van den Dries’ original proof, one of the
complications is due to the fact that they knowWeierstrass preparation uniquely for analytic
functions and not for all terms in the language (where inverses may occur). Here we use a
version of Weierstrass preparation, proved by Cluckers and Lipshitz [CL11] that works for all
terms.
In valued difference fieldswithout analytic structure, however, the heart of the proof consists
in, first of all, adapting the notion of Henselianity to difference polynomials to obtain σ-
Henselianity, and generalising the results on 1-types used to prove elimination of quantifiers
in pure Henselian valued fields, to very specific n-types which correspond to types of tuples
(x,σ(x), . . . , σn−1(x)) for well-chosen x ∈ K. This last point appears relatively explicitly in
Section II.6.
The proof of TheoremD consists in blending these two approaches. In [Sca06], Scanlon
already attempted this merging in the case of an isometry, but the notion of σ-Henselianity
he definedwas tooweak, although thatwas concealed by some erroneous computations. The
axiomatisation and proofs had to be entirely redone (andwere generalised to any valued field
automorphism) but certain ideas of that article are still fundamental in this new approach.
There are a few inherent difficulties to merging the proof from the analytic case and the dif-
ference case. The first one is that the usual notion of σ-Henselianity, defined, for example,
in [BMS07], is only useful if we considers terms whose Taylor expansion is finite, i.e. polyno-
mials. The other difficulty is that, as explained above, eliminating quantifiers in a difference
valued field requires one to study certain n-types of the underlying (enriched) valued field,
but that the main technique in the analytic case mainly describes 1-types. The main ingredi-
ent to overcome these two obstacles is to consider the differential properties of terms. That
approach allows, among other things, to define, a new notion of σ-Henselianity adapted to
the difference analytic setting.
Given that this is ourmain example, in this chapter, we also axiomatise the theory of the field
W(Fp

alg) equipped with its analytic structure and the lifting of the Frobenius (from now on
we will denote this theoryWp). We also prove a moderation result:

Proposition 0.5 (Proposition (II.6.31) and Corollary (II.7.5)):
The theory ofWp is axiomatised by the fact that it is aσ-Henselian unramifiedmixed characteristic
valued field with analytic structure, whose residue field is algebraically closed, whose value group
is elementarily equivalent to Z and such that the automorphism is an isometry and reduces to the
Frobenius on the residue field.
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Moreover, the theory ofWp is NIP.

Furthermore, this chapter also tries to give a systematic approach to some well-known facts
around quantifier elimination in enriched valued fields, which are usually reproved in each
specific case. The first such fact is that result in mixed characteristic follow from results in
equicharacteristic zero. Another one is that results with angular components follow from
results with leading terms. The last one is that field quantifier elimination results are resplen-
dent, that is they remain true when we enrich the sorts other than the field sort. Sections II.A
and II.B contain abstract considerations that allow to show these three facts in almost all
enriched valued fields that we may want to study.

Chapter III. Imaginaries in certain enrichments of ACVF: The main motivation for
this chapter was to prove the invariant extension property in VDFEC . As was already men-
tioned, when they were studying imaginaries in ACVF, Haskell, Hrushovski and Macpher-
son [HHM06] developed the notion of stably dominated type. This notion was then thor-
oughly studied in [HHM08] and led them to defining metastability. The main example of a
metastable theory is ACVF but it would be interesting to have other examples in which the
stable part is more complicated than ACF. The theory VDFEC can seem like a good candi-
date.
One of the problems with stably dominated types is that we only know a relatively compli-
cated form of descent9 which assumes the existence of global invariant extensions, a prop-
erty usually referred to as the invariant extension property. For this reason, when defining
metastability, Haskell, Hrushovski and Macpherson required not only that there are many
stably dominated types but also the invariant extension property.
To prove that VDFEC is also an example of a metastable theory in order, for example, to
study groups definable in VDFEC as Hrushovski [Hrub] studies groups definable in ACVF,
we thus have to prove the invariant extension property for VDFEC . This property has clear
ties to imaginaries and hence the question of their elimination follows naturally. By analogy
with DCF0, it is reasonable to think that VDFEC has no more imaginaries than ACVF has
and hence that it also eliminates imaginaries in the geometric language.
The techniques developed in this chapter to studyVDFEC can be adapted to a wider setting.
Thus, one of the results we obtain is an abstract criterion for the elimination of imaginaries
and the invariant extension property in enrichments ofACVF. We show in Chapter IV, that
this criterion applies to VDFEC . The main reason we allow such a general setting is because
those technique should also be useful in some other theories, for example, VDFEC with an
analytic structure or Witt vectors over Fp

alg
.

As is the case in a recent version [Hru14; Joh] of the elimination of imaginaries in ACVF,
definable types play a major part in the elaboration of this criterion. In fact, the main result
in this chapter (TheoremE) is a density result for definable types whose canonical basis is
controlled. In the case ofVDFEC in the geometric language, this result can be stated as such:

9The fact that every global type stably dominated overB and invariant overC ⊆ B is stably dominated overC .
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Theorem0.6 (TheoremE forVDFEC ):
LetM ⊧ VDFEC ,A ⊆M eq be definably closed andX be anA-definable set, then there exists
a definable type p which is Aut(M/G(A))-invariant and consistent with X , where G(A)
denotes the set of points from A that are in the sorts of the geometric language.

One of the crucial ingredients to control the canonical basis of the definable types built in
this chapter is an abstract result proved in Section III.1 about externally definable sets inNIP-
theories which implies the following fact:

Theorem0.7 (Theorem (III.1.4) forVDFEC ):
Let M ⊧ VDFEC , A ⊆ M be definably closed. If X is A-definable in VDFEC and externally
definable in ACVF, then it is G(A)-definable in ACVF.

This statement can be reformulated as follows: let p be an ACVF type and let us assume
there exists a definition scheme for pmade ofVDFEC formulas. Then there exists a definition
scheme for pmade ofACVF formulas.

Chapter IV. Some model theory of valued differential fields: The last chapter of this
text contains results about the theory VDFEC . The most important is the following:

TheoremF:
The theoryVDFEC eliminates imaginaries in the geometric language and has the invari-
ant extension property.

In this chapter we also answer some questions that arise immediately if one wants to study
VDFEC . First, we show that the constant field is stably embedded and is a pure model of
ACVF. The proof of this fact naturally adapts to the theory of W(Fp

alg) equipped with
the lifting of the Frobenius. The second question is to describe the definable and algebraic
closures. We show that the definable closure is not as well-behaved as one might hope. In
general, it contains more than the Henselian closure of the differential field generated by the
parameters. We nevertheless show that:

Proposition 0.8 (Corollaries (IV.3.3) and (IV.3.4)):
Let M ⊧ VDFEC and A ⊆ K(M). The field K(dcl(A)) is an immediate extension of the dif-
ferential field generated by A and the fieldK(acl(A)) is an immediate extension of the algebraic
closure of the field generated by A.

In this chapter, we also formalise the relationship between types in VDFEC and types in
ACVF by introducing a notion of prolongation at the level of the type space which is anal-
ogous to the one defined in DCF0. The main difference is that, in DCF0, the prolongation
space of a definable set is definable inACF, whereas inVDFEC we only obtain a partial type
in ACVF.
Finally, in Section IV.5, we study groups definable inVDFEC and their relationship to groups
definable in ACVF. Almost all of this section consists in showing (following [Hrub]), that
certain tools developed in stable theories to study and build groups generalise to the unstable
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context as long as the group has a definable generic. In particular, we show the equivalent
of Hrushovski’s result [Hru90] that a ⋆-definable group in a stable theory is a pro-limit of
definable groups. We also show how to build groups out of “group chunks”. The notion of
“group chunks” that we use here is somewhat more general than the one usually considered
in model theory and allows us to consider non connected groups.
We deduce from these “neostable” considerations that the proof that a group definable in
DCF0 can be definably embedded in a group definable in ACF (and hence in an algebraic
group), can be reproduced in an abstract setting. It follows that certain definable groups in
VDFEC can be definably embedded in groups definable in ACVF.
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