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Abstract. In this paper together with the preceding Part I [10], we develop a
framework for tame geometry on Henselian valued fields of characteristic zero,
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definable functions, resplendency results and cell decomposition, all under Hensel
minimality, more precisely, 1-h-minimality. We obtain a diophantine application
of counting rational points of bounded height on Hensel minimal curves.
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1. Introduction

1.1. For a long time one has been looking for adequate analogues of o-minimality
in other settings than for real geometry. Several notions have been put forward,
each with certain strengths and weaknesses. In Part I [10] together with this sequel
paper, we put forward a notion for tame geometry on non-archimedean valued fields,
called Hensel minimality, both simple and strong and providing a common variant
for the settings from, among other, [16, 18, 15, 17, 11].

Let us right away explain the key flavor of the definition of Hensel minimality.
As often, finding a correct analogue involves some reformulations. Here is a way to
reformulate o-minimality: a structure on the real field R is o-minimal if and only
if for each definable subset X of R, there exists a finite set C ⊂ R, such that,
for any x in R, the condition x ∈ X only depends on the signs of x − c for c in
C, the sign being negative, zero, or positive. In an equicharacteristic zero valued
field K, we replace the sign map by the projection map rv : K → K/(1 +MK),
where MK is the maximal ideal of the valuation ring of K, and K/(1 + MK)
the quotient of multiplicative semi-groups. In the mixed characteristic case, one
additionally uses ideals of the form N · MK for nonzero integers N , instead of just
MK itself. Apart from replacing the sign map, we keep the condition of every
definable subset of K being “controlled” by a finite set C ⊂ K. In the real case, C
is automatically definable over the same parameters as X; in the valued field case,
this is no longer automatic and needs to be imposed. Depending on the precise kind
of parameters one allows, one obtains the notion of 0-h-minimality, ω-h-minimality,
or something in-between: `-h-minimality for integers ` > 0; see Section 2 for the
detailed definitions. When we do not want to be precise about the specific version,
we just say “Hensel minimality”.

Hensel minimality is similar to o-minimality [13, 21] not only in its definition, but
also for having strong consequences. In Part I [10] we focused on the equicharacter-
istic zero case. In this sequel, we focus on the mixed characteristic case. We obtain
analogues of many of the results from [10]. In addition, in Section 4, we give a new
diophantine application, similar to the results by Pila-Wilkie [20] from in o-minimal
case; for the moment this application is for curves only.

There are several ways to adapt the notions of Hensel minimality from [10] to the
mixed characteristic case, based on coarsenings, compactness, or on a more literal
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adapation of the definitions for the equi-characteristic zero case. We treat several
of these variants, and in one of the most important cases (namely 1-h-minimality)
we show that they are equivalent. From this equivalence we derive that many of
the geometric results of [10] also hold in the mixed characteristic case, with in
particular some strong results on Taylor approximation of definable functions. In
[23], equivalences of these notions are shown also in other cases.

The name “Hensel minimality” comes from the intuition that a Hensel minimal
valued field behaves as nicely as a henselian valued field in the pure valued field lan-
guage. In equi-characteristic 0, this is reflected by the fact that a pure valued field
K is Hensel minimal if and only if K is henselian (where any version of Hensel mini-
mality can be used). In mixed characteristic, this is still true if K is finitely ramified
(see Remark 2.2.3), but in general, Hensel minimality only captures tameness from
the ramification degree on.

1.2. Let us give a short overview of the paper. In Section 2 we introduce sev-
eral variants of Hensel minimality (for both the mixed and the equi-characteristic
cases), and we prove that all of them are equivalent in the key case of 1-h-minimality
(Theorem 2.2.8). We do this for a large part by classical strategies: coarsening of
valuations of mixed characteristic to equi-characteristic zero, and model theoretic
compactness. A combination of these classical strategies with new geometric and
model theoretic arguments lead to our strongest results, like Theorem 3.1.2 on Tay-
lor approximation. It is precisely this result Theorem 3.1.2 on Taylor approximation
that plays a key role in our diophantine application Theorem 4.1.7, where we es-
timate the number of rational points of bounded height on transcendental curves.
This is the Hensel minimal analogue of point counting on transcendental curves case
as treated by Bombieri and Pila [5] and o-minimally by Pila-Wilkie [20], and, it is
the axiomatic analogue of point counting on subanalytic sets as studied in [8] and
[9], and on analytic sets in [4].

In Section 2.6, we develop some resplendency results analogous to the ones from
[10, Section 4], namely, that Hensel minimality is preserved under certain expansions
of the structure (e.g. arbitrary expansions of the value group and the residue field).
Those results are used to show the equivalences of Theorem 2.2.8. It follows from
the equivalence with item (4) in Theorem 2.2.8 that 1-h-minimality is preserved
under coarsening of the valuation; such a coarsening result was previously known
only for ω-h-minimality by [10, Corollary 4.2.4]. Note that in [23], several results of
this paper and of part I [10] are extended from 1-h-minimality to `-h-minimality for
each ` ≥ 1, for example, their preservation under coarsenings of the valuation.

We end the paper with some open questions. One of the big challenges in the
current framework is to push our diophantine application further towards arbitrary
dimension, and thus to get a full, Hensel minimal analogue of the results by Pila-
Wilkie [20]. Other main challenges are further developments of the geometry, like t-
stratifications building on and extending [10, Section 5.5]. It may also be interesting
to compare the notions of Hensel minimal structures with distal expansions on valued
fields, as studied recently in [1].
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2. Hensel minimality in characteristic zero (including mixed
characteristic)

In this whole section we fix a theory T of valued fields of characteristic zero in
a language L expanding the language Lval = {+, ·,OK} of valued fields. Note that
T is allowed to be non-complete, and that each model K of T is a valued field of
characteristic zero, which includes both possibilities that K has mixed characteristic
or equicharacteristic zero.

In this section we give four alternative definitions of 1-h-minimality for T (see
Definitions 2.2.1, 2.2.4, 2.2.5, 2.2.7), and we show that they are equivalent in Theo-
rem 2.2.8. To keep the generality of [10], we will treat more generally `-h-minimality
for ` ≥ 0 either an integer or equal to ω. The first definition is a close adaptation of
the main notion of Hensel minimality of [10, Definition 2.3.3]. Definitions 2.2.4 and
2.2.5 are based on coarsenings, and Definition 2.2.7 corresponds to the criterion for
1-h-minimality from [10, Theorem 2.9.1]. Since for ` = 1 these notions coincide, we
simply will call them 1-h-minimality.

2.1. Basic terminology. We use the following terminology, notation and concepts
from [10]. By a valued field we mean a non-trivially valued field, i.e., the field
of fractions of a valuation ring which is not a field itself. Any valued field K is
a structure in the language Lval = {+, ·,OK} of valued fields, where + and · are
addition and multiplication on K, and where OK is (a predicate for) the valuation
ring of K. The maximal ideal of OK is denoted by MK . We use multiplicative
notation for the value group which we denote by Γ×K , and we write ΓK := Γ×K ∪{0}.
We write | · | : K → ΓK for the valuation map. By an open ball we mean a set of the
form B<λ(a) = {x ∈ K | |x− a| < λ} for some λ in Γ×K and some a in K. We define
radopB<λ(a) = λ to be the open radius of such a ball. Similarly, a closed ball is a set
of the form B≤λ(a) = {x ∈ K | |x− a| ≤ λ}. Its closed radius is radclB≤λ(a) = λ.

For any proper ideal I of the valuation ring OK , we write RVI for the correspond-
ing leading term structure, i.e., the disjoint union of {0} with the quotient group
K×/(1 + I), and rvI : K → RVI for the leading term map, i.e., the quotient map
extended by sending sending 0 to 0. When I is the open ball {x ∈ K | |x| < λ} for
some λ ≤ 1 in Γ×K , we simply write RVλ and rvλ instead of RVI and rvI , and we
write RV and rv instead of RV1 and rv1.

We will sometimes also write RVK for RV and similarly RVK,λ for RVλ if multiple
fields are under consideration.

2.1.1. Definition. Let λ ≤ 1 be an element of Γ×K .
(1) Given an arbitrary set X ⊂ K and a finite non-empty set C ⊂ K, we say

that X is λ-prepared by C if the condition whether some x ∈ K lies in X
depends only on the tuple (rvλ(x− c))c∈C .

(2) We say that a ball B ⊂ K is λ-next to an element c ∈ K if

B = {x ∈ K | rvλ(x− c) = ξ}

for some (nonzero) element ξ of RVλ.
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(3) We say that a ball B ⊂ K is λ-next to a finite non-empty set C ⊂ K if B
equals

⋂
c∈C Bc with Bc a ball λ-next to c for each c ∈ C.

One easily verifies that for fixed C and λ, the set of all balls λ-next to C forms a
partition of K \C. Moreover, a set X ⊂ K is λ-prepared by C if and only if X \C
is a union of parts of this partition (without any condition on X ∩ C). Decreasing
λ refines this partition, i.e., if λ′ < λ and C λ-prepares X, then it also λ′-prepares
X. Similarly, if C ′ ⊃ C and C λ-prepares X, then C ′ also λ-prepares X.

2.1.2. Example. Fix any λ ≤ 1 in Γ×K .
(1) A finite set X ⊂ K is λ-prepared by C if and only if C contains X.
(2) A subset X ⊂ K is λ-prepared by the set C = {0} if and only if X is a

(possibly infinite) union of fibers of the map rvλ, i.e., if it is of the form
X = rv−1λ (Ξ), for an arbitrary subset Ξ ⊂ RVλ.

(3) Every open ball B = B<λ(a) of radius λ contained in OK is λ-prepared by
C = {0}, though B might not be λ-next to C. (It is λ-next to C if and only
if |a| = 1.)

The following notation specific to mixed characteristic already appears in [10,
Section 6].

2.1.3. Definition (Equi-characteristic 0 coarsening). Given a model K |= T , we
write OK,ecc for the smallest subring of K containing OK and Q and we let | ·
|ecc : K → ΓK,ecc be the corresponding valuation. (Thus, |·|ecc is the finest coarsening
of | · | which has equi-characteristic 0; note that | · |ecc can be a trivial valuation on
K.) If |·|ecc is a nontrivial valuation (i.e., OK,ecc 6= K), then we also use the following
notation: rvecc : K → RVecc is the leading term map with respect to | · |ecc; given
λ ∈ ΓK,ecc, rvλ : K → RVλ is the leading term map with respect to λ; and Lecc is
the extension of L by a predicate for OK,ecc. More generally, for any non-trivial
coarsening | · |c of the valuation on K, write Lc for the extension of L by a predicate
for the valuation ring for | · |c.
2.2. Equivalent definitions. There are several natural notions of Hensel minimal-
ity in mixed characteristic. We give four possible definitions. Theorem 2.2.8 states
that these are all equivalent, in the case of 1-h-minimality.

We first adapt the main definition of Hensel minimality from [10, Definition 2.3.3]
to include the mixed characteristic case. Recall that T is a theory of valued fields
of characteristic zero in a language L ⊃ Lval.

2.2.1. Definition. Let ` ≥ 0 be either an integer or ω. Say that T is `-hmix-minimal
if for each model K of T , for each integer n ≥ 1, each λ ≤ 1 in Γ×K , each A ⊂ K,
each finite A′ ⊂ RVλ of cardinality #A′ ≤ `, and each (A ∪ RV|n| ∪ A′)-definable
set X ⊂ K, there exists an integer m ≥ 1 such that X is |m|λ-prepared by a finite
A-definable set C ⊂ K. If all models of T are of equicharacteristic zero, we also call
T simply `-h-minimal.

As one sees from the definition, bigger ` yield stronger conditions, i.e., for ` < `′,
`′-hmix-minimality implies `-hmix-minimality.
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Clearly, if all models K of T are of equicharacteristic zero, then one can take n =
m = 1, so the above definition of `-h-minimality agrees with [10, Definition 2.3.3].
In the mixed characteristic case, one is obliged to take the valuation of integers
into account in Definition 2.2.1. The general philosophy is that λ-preparation in
equi-characteristic 0 becomes λ · |m|-preparation in mixed characteristic, for some
integer m ≥ 1, as the following example illustrates.

2.2.2. Example. The set X of cubes in the 3-adic numbers Q3 cannot be 1-prepared
by any finite set C, since each of the infinitely many disjoint balls 27r(1 + 3Z3),
r ∈ Z, contains both, cubes and non-cubes. However, X is a union of (infinitely
many) fibers of the map rv|3| : Q3 → RV|3|, so it is |3|-prepared by the set {0}.

In [12], Dolich and Goodrick introduced the notion of a visceral structure (a
structure equipped with a uniformly definable topological base satisfying certain
simple axioms) and showed several tameness results in this abstract setting. It is
easy to see that 0-hmix-minimality implies viscerality in this sense.

2.2.3. Remark. In the equi-characteristic 0 case, 0-h-minimality implies definable
spherical completeness (meaning that every definable family of nested balls has non-
empty intersection), and this in turn implies henselianity (see [10], Lemma 2.7.1 and
Theorem 2.7.2). A similar implication holds in mixed characteristic if we restrict
to finitely ramified fields K: If the theory such a K is 0-hmix-minimal, then it is
definable spherical complete by [6, Proposition 1.4], and this in turn implies thatK is
henselian using the usual argument via Newton approximation (see the proof of [10,
Theorem 2.7.2] for details). In contrast, note that if K is not finitely ramified, then
0-hmix-minimality does not imply definable spherical completeness; see Example 1.5
in [6].

The following two definitions use equicharacteristic zero coarsenings of the valua-
tion to define mixed characteristic Hensel minimality in terms of the equicharacter-
istic notions from [10, Definition 2.3.3] (which we just recalled in Definition 2.2.1).
We use notation from Definition 2.1.3.

2.2.4. Definition. Let ` ≥ 0 be either an integer or ω. We say that T is `-hecc-
minimal if for every model K |= T the following holds: If the valuation | · |ecc on K
is non-trivial, then the Lecc-theory of K, when considered as a valued field with the
valuation | · |ecc, is `-h-minimal.

One can also require every equi-characteristic zero coarsening to be `-h-minimal,
leading to the following definition.

2.2.5. Definition. Let ` ≥ 0 be either an integer or ω. We say that T is `-hcoars-
minimal if for every modelK |= T and each non-trivial equicharacteristic coarsening
| · |c of the valuation on K, the Lc-theory of K, when considered as a valued field
with the valuation | · |c, is `-h-minimal.

2.2.6. Remark. Since in an equi-characteristic zero valued field K, we have OK,ecc =
OK , the theory of such a field `-hecc-minimal if and only if it is `-h-minimal, for each
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` ≥ 0. For more subtle reasons, ω-hcoars-minimality is equivalent to ω-hecc-minimality
by [10, Corollary 4.2.4]. Even more, in [23] it is shown that in equi-characteristic
zero, `-hcoars-minimality is equivalent to `-hecc-minimality for any ` ≥ 1. In mixed
characteristic, we will show the analogue of this (and more) for ` = 1 in Theorem
2.2.8.

By the usual play of compactness, preparation results that hold in each model
of T also hold uniformly for all models of T , and results in equi-characteristic zero
can be transfered to mixed characteristic. We will give examples in the proofs for
Corollary 2.3.5 and Corollary 2.5.5 to illustrate how compactness is used for these
purposes.

In [10, Theorem 2.9.1], a geometric criterion for 1-h-minimality is given in equi-
characteristic zero. The following is a mixed characteristic version of that criterion.

2.2.7. Definition. Let f : K → K be A-definable, for some set A ⊂ K ∪ RV|n| for
some positive integer n. We define the following two properties:
(T1mix) There exists a finite A-definable C ⊂ K and a positive integer m such that

for every ball B |m|-next to C there exists µB ∈ ΓK such that for x, y ∈ B
we have

µB · |m| · |x− y| ≤ |f(x)− f(y)| ≤ µB ·
∣∣∣∣ 1

m

∣∣∣∣ · |x− y|.
(T2) The set {y ∈ K | f−1(y) is infinite} is finite.

We say that T satisfies (T1,T2) if for all f , A and n as above, the two conditions
(T1mix) and (T2) hold.

We now have several variants of 1-h-minimality in mixed characteristic. The main
result of this section is the following, stating that all of the above definitions agree.

2.2.8. Theorem. The following are equivalent, for a theory T of valued fields of
characteristic zero (possibly of mixed characteristic) in a language L containing Lval.

(1) T is 1-hecc-minimal.
(2) T is 1-hmix-minimal.
(3) T satisfies (T1,T2).
(4) T is 1-hcoars-minimal.

Therefore we will call this common notion simply 1-h-minimality.

We will prove Theorem 2.2.8 in Section 2.7. Until then, we continue distinguishing
between the four notions.

2.3. Basic results under 1-hmix-minimality. Many basic results from [10] also
hold in mixed characteristic with only minor changes. In particular, this includes all
the results of Sections 2.4–2.6 from [10], and those of Section 2.8 up to Lemma 2.8.5.
In the following, we state the precise version of the mixed characteristic results.
When a proof is (almost) identical to the corresponding one from [10], we only give
a sketch, so that the reader has the choice between reading the short version here
or the long version in [10].
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2.3.1. Lemma. Assume that T is 0-hmix-minimal. The following results are true for
any model K of T .

(1) (Adding constants [10, Lemma 2.4.1]). If A ⊂ K ∪ RVeq
|n| then ThL(A)(K) is

0-hmix-minimal. (And similarly, if T is `-hmix-minimal, then ThL(A)(K) is
`-hmix-minimal for any ` and any such A.)

(2) (Preparation is first order [10, Lemma 2.4.2]). If Xq, Cq are ∅-definable fam-
ilies of subsets of K with q running over an ∅-definable Q in an arbitrary
imaginary sort, and Cq is finite for all q, then the set of (q, λ) ∈ Q × Γ×K
with λ ≤ 1 such that Cq λ-prepares Xq is ∅-definable.

(3) (∃∞-elimination [10, Lemma 2.5.2]). Every infinite ∅-definable X ⊂ K con-
tains an open ball.

(4) (Finite sets are RV-parametrized [10, Lemma 2.5.3]). If Cq ⊂ K is an ∅-
definable family of finite sets, for q in some arbitrary ∅-definable imaginary
sort Q, then there is a ∅-definable family of injections fq : Cq → RVk

|n| (for
some k ≥ 0 and n ≥ 1).

(5) (λ-next balls as unions of fibres [10, Lemma 2.5.4]). Let C ⊂ K be a finite
∅-definable set. Then for any λ ≤ 1, there is a {λ}-definable map f : K →
RVk
|n| × RV|m|λ (for some k, n and m) such that every ball λ-next to C is a

union of fibres of f . If moreover, λ = |n′| for some integer n′ > 0 then we
can ensure that for some integer p > 0, every ball |p|-next to C is contained
in a fibre of f .

In (1) of Lemma 2.3.1, by RVeq
|n|, we mean imaginary sorts of the form (RV|n|)

m/∼,
for some m and some ∅-definable equivalence relations ∼.
Proof of Lemma 2.3.1. (1) and (2) are straightforward from the definition. (3) also
follows directly by preparing X.

(4) Using (3), we can assume that #Cq does not depend on q. We define aq :=
1

#Cq

∑
x∈Cq x and f̂q : Cq → RV|n|, x 7→ rv|n|(x − aq) for some n which is a multiple

of #Cq. This implies that f̂q is not constant on Cq. We then apply induction to the
family consisting of all fibers of fq, for all q. (We take the final n to be a multiple
of all cardinalities #Cq appearing during this process.)

(5) For x ∈ K, define
µ(x) = min{|x− c| | c ∈ C},
C(x) = {c ∈ C | |x− c| = µ(x)},

a(x) =
1

#C(x)

∑
c∈C(x)

c.

The map a : K → K has finite image, so by (4) we can find an injection α : im a→
RVk
|n|. Let m = max{C(x) | x ∈ K}! and define the map f as

f(x) :=

{
(α(a(x)), rv|m|λ(x− a(x))) if |x− a(x)| ≥ µ(x)λ|m|
(α(a(x)), rv|m|λ(0)) if |x− a(x)| < µ(x)λ|m|.
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If x and x′ are in the same ball λ-next to C then C(x) = C(x′) and so a(x) = a(x′).
If x and x′ are in the same fibre of f and we are in the first case then the fact that
rv|m|λ(x − a(x)) = rv|m|λ(x

′ − a(x′)) implies that rvλ(x − c) = rvλ(x
′ − c) for any

c ∈ C. Thus any fibre of f is contained in a ball λ-next to C.
If λ = |n′| for some integer n′, then one can take p = n′ · m. Then f will be

constant on any ball |p|-next to C. �

The following proposition states that we can also prepare families, similarly to
[10, Proposition 2.6.2]. That proposition will also be needed for 0-hmix-minimality,
so we formulate it more generally.

2.3.2. Proposition (Preparing families). Assume `-hmix-minimality for T and some
` ≥ 0. Let K be a model of T . Let A ⊂ K and let

W ⊂ K × RVk
|n| ×

⋃
λ≤1

RV`
λ

be (A ∪ RV|n|)-definable for some integers k and n ≥ 1. Then there exists a finite
A-definable set C ⊂ K and a positive integer m such that for any λ ≤ 1 and any ball
B which is |m|λ-next to C, the set Wx,λ := {(ξ, ξ′) ∈ RVk

|n| × RV`
λ | (x, ξ, ξ′) ∈ W}

is independent of x as x runs over B.

Proof. For each λ and each (ξ, ξ′) ∈ RVk
|n|×RV`

λ, let Cλ,ξ,ξ′ be a finite A-definable set
|mλ,ξ,ξ′|λ-preparing the fiber Wξ,ξ′ ⊂ K. Using compactness, we may assume that
for varying λ, ξ, ξ′, there are only finitely many different sets Cλ,ξ,ξ′ and integers
mλ,ξ,ξ′ . Let C be the union of the Cλ,ξ,ξ′ and m be the least common multiple of the
mλ,ξ,ξ′ . �

2.3.3. Remark. In that proposition, instead of RVk
|n|, we can have any product

Z of sorts from RVeq
|n| (including in particular ΓK). Indeed, given such a W ⊂

K × Z ×
⋃
λ≤1 RV`

λ, we can apply Proposition 2.3.2 to the preimage of W in
K ×RVk

|n|×
⋃
λ≤1 RV`

λ under some quotient map RVk
|n| → Z. The same also applies

to Corollary 2.3.4 below.

We will mostly apply the following special case of Proposition 2.3.2:

2.3.4. Corollary. Let K be a model of a 0-hmix-minimal theory T , let A ⊂ K and
let

W ⊂ K × RVk
|n|

be (A ∪ RV|n|)-definable, for some integers k and n ≥ 1. Then there exists a finite
A-definable set C ⊂ K and a positive integer m such that for any ball B which is
|m|-next to C, the set Wx := {ξ ∈ RVk

|n| | (x, ξ) ∈ W} is independent of x as x runs
over B.

Note that in the corollary, instead of saying that Wx is constant on each B, one
could equivalently also say that for each ξ ∈ RVk

|n|, the set Wξ := {x ∈ K | (x, ξ) ∈
W} is |m|-prepared by C. In applications, we will sometimes use this point of view
without further notice.
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Yet another point of view of the corollary is obtained if W is the graph of a
function f : K → RVk

|n|. In that case, the conclusion is that f is constant on each
ball |m|-next to C.

We also obtain the following corollary about preparing families in in all models
K of the (possibly non-complete) theory T . The point here is that the integer m
can be taken uniformly over all models.

2.3.5. Corollary (of Proposition 2.3.2). Assume that T is `-hmix-minimal for some
` ≥ 0, and suppose that φ is an L-formula such that for every model K |= T ,
WK := φ(K) is a subset of K × RVk

|n| × RV`
λK

for some k, n, and some λK ≤ 1 in
Γ×K. Then there exists an L-formula ψ and an integer m ≥ 1 such that for every
model K |= T , CK := ψ(K) is a finite subset of K which λK · |m|-prepares WK in
the following sense: For every ball B ⊂ K which is λK · |m|-next to CK, the fiber

WK,x := {ξ ∈ RVk
|n| × RV`

λK
| (x, ξ) ∈ WK}

does not depend on x when x runs over B.

Proof. Let φ be given as in the statement. Whether a pair (m,ψ) works as desired
in a model K can be expressed by an L-sentence, by Lemma 2.3.1. By compactness
and `-hmix-minimality, we deduce that there exist finitely many pairs (mi, ψi) which
cover all models. We may furthermore assume that the sets ψi(K) are finite for each
model K. We are done by letting m be the least common multiple of the mi (so
that |m| ≤ |mi| for each i) and ψ be the disjunction of the ψi. �

Proposition 2.3.2 also implies the following corollaries. Denote by RV• the disjoint
union of all RVλ for λ ≤ 1.

2.3.6. Corollary. Assume 1-hmix-minimality for T . The following hold for any
model K of T .

(1) (RV-unions stay finite [10, Corollary 2.6.7]). LetW ⊂ K×RVk
• be ∅-definable

such that Wξ is finite for any ξ ∈ RVk
•. Then the union

⋃
ξWξ is also finite.

(2) (Finite image in K [10, Corollary 2.6.8]). The image of any ∅-definable
f : RVk

• → K is finite.
(3) (Removing RV-parameters [10, Corollary 2.6.10]). Let C be a finite A∪RVeq

|n|-
definable set, for some A ⊂ K and some integer n > 0. Then there exists a
finite A-definable set C ′ containing C.

Proof. (1) The case k = 1 follows by applying Proposition 2.3.2. (Each Wξ is
contained in the set C one obtains.) For k ≥ 2, use induction (adding parameters
to the language using Lemma 2.3.1 (1)).

(2) Apply (1) to the graph of f .
(3) C is a fiber of an A-definable subset W ⊂ K × RVk

•, for some k. Apply (1)
to W . �

To obtain (T1,T2) from 1-hmix-minimality for T , we follow [10, Section 2.8]. Here
we have to be slightly more careful in our formulations and proofs. First, we set
some notation.
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2.3.7.Definition. If B is an open ball inK, and λ is in Γ×K , λ ≤ 1, then a λ-shrinking
of B is an open ball B′ ⊂ B with

radopB
′ = λ radopB.

2.3.8. Lemma. Assume 1-hmix-minimality for T . Let K be a model of T and let
f : K → K be an ∅-definable function. Then the following hold.

(1) (Basic preservation of dimension [10, Lemma 2.8.1]). The set of y ∈ K for
which f−1(y) is infinite, is finite.

(2) (Piecewise constant or injective [10, Lemma 2.8.2]). There exists a finite
∅-definable set C and a positive integer m such that on any ball B |m|-next
to C, f is either constant or injective.

(3) (Images of most balls are almost balls [10, Lemma 2.8.3]). There exists a
finite ∅-definable set C and positive integers m,n such that for any open ball
B contained in a ball |m|-next to C, either f(B) is a singleton, or for any
y ∈ f(B), there are open balls B′, B′′ for which y ∈ B′ ⊂ f(B) ⊂ B′′ and

radopB
′ ≥ |n| radopB

′′.

(4) (Preservation of scaling factor [10, Lemma 2.8.4]). Let B be MK. Suppose
that there are α, β in Γ×K, α < 1, such that for every open ball B′ ⊂ B of
radius α, the image f(B′) is contained in an open ball of radius β. Assume
moreover that there is an integer p and open balls B′, B′′ such that B′ ⊂
f(B) ⊂ B′′ and

radopB
′ ≥ |p| radopB

′′.

Then f(B) is contained in an open ball of radius at most β
|n|α for some positive

integer n.

Proof. (1) Suppose for contradiction that f has infinitely many infinite fibers. Let
X ⊂ K be the subset of the domain of f where f is locally constant, i.e, of points
x ∈ K such that f is constant on B<λ(x) for some λ ∈ Γ×K . Since each infinite fiber
of f contains a ball (by preparation of the fiber), the restriction of f to X still has
infinite image.

Let C ⊂ K be a finite set |m|-preparing X, for some integer m ≥ 1. Then
enlarge C and m in such a way that for each λ ∈ Γ×K , whether f is constant on
B<λ(x) only depends on the ball |m|-next to C containing x. This is possible by
applying Corollary 2.3.4 (and Remark 2.3.3) to the set W ⊂ K ×Γ×K of those (x, λ)
for which f is constant on B<λ(x).

By Corollary 2.3.6 (1), there exists a ball B0 ⊂ X |m|-next to C such that f(B0)
is still infinite. Fix such a B0, and also fix a λ0 ∈ Γ×K such that f is constant on
every open ball of radius λ0 contained in B0.

The family of all those balls can definably be parametrized by a subset Z ⊂ RVλ1 ,
for λ1 = λ0/ radopB0. Now f induces a map from Z to K with infinite image,
contradicting Corollary 2.3.6 (1).

(2) Firstly, find C and m such that C |m|-prepares every infinite fiber of f (using
(1) to see that there are only finitely many infinite fibers). Then apply Lemma 2.3.1
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(4) to the family of finite fibers of f , to obtain an injective map from each finite
fiber of f to RVk

|n| for some n and k. We put all those maps together to one single
map g : Y → RVk

|n|, where Y is the union of all finite fibers of f . Enlarge C and m
in such a way that g is constant on each ball B ⊂ Y |m|-next to C (by applying
Corollary 2.3.4 to the graph of g). Then, for each ball B |m|-next to C, either
B is entirely contained in an infinite fiber of f (and hence f is constant on B, as
desired), or B ⊂ Y and g is constant on B. In that case, f is injective on B, since
f(x1) = f(x2) for x1, x2 ∈ B would imply that x1 and x2 lie in the same fiber of f ,
contradicting that g is injective on each fiber of f .

(3) Use (2) to obtain a finite ∅-definable set C and an integer m such that on any
ball |m|-next to C, f is either constant or injective. Let W0 ⊂ K × (Γ×K)2 consist
of those (x, λ, µ) with µ ≤ 1 such that for every y ∈ f(B<λ(x)) there are open balls
B′, B′′ with y ∈ B′ ⊂ f(B<λ(x)) ⊂ B′′ and

radopB
′ ≥ µ radopB

′′.

We enlarge C and m, such that C also |m|-prepares this set W0.
The set C is already as desired, but m will later be enlarged to some m ·m′′. Note

that we already simplified the statement we will need to prove, namely: Firstly, it
suffices to consider balls B which are contained in a ball B1 |m|-next to C on which f
is injective; and secondly, for each λ ≤ 1, it suffices to find a single λ · |m′′|-shrinking
B of B1 for which the lemma holds (using some n which we still need to specify).
Indeed, the fact that C m-prepares W0 implies that then, the lemma also holds for
all translates of B within B1 (using the same n).

Before we can continue, we need to do some preparation on the range side of f :
We want to find a finite ∅-definable D and a positive integer p such that for every
λ ≤ 1 and every ball B λ|m|-next to C, the set f(B) is λ|p|-prepared by D. To see
that such a D exists, first note that by Lemma 2.3.1 (5), there exists a λ-definable
map gλ : K → RVk

|n′| × RV|m′|·λ such that every ball λ|m|-next to C is a union of
fibers of gλ. We may assume (by compactness) that the maps gλ form a ∅-definable
family. Now apply Proposition 2.3.2 to the set

W := {(f(x), λ, gλ(x)) ∈ K × Γ×K × RVk
|n′| ×

⋃
µ

RVµ | x ∈ K,λ ≤ 1}

and let D and p be the result. To see that this works, let λ ≤ 1 and B λ|m|-next
do C be given. We have B = g−1λ (Ξ) for Ξ := gλ(B), and the image f(B) consists
of those y ∈ K for which the fiber W(y,λ) is not disjoint from Ξ. Since this fiber is
constant when y runs over a ball B′ λ|p|-next to D, we either have B′ ⊂ f(B) or
B′ ∩ f(B) = ∅, as desired.

Now that we constructed D and p (on the range side of f), we construct another
set C ′ and integer m′ on the domain side of f : For λ ∈ Γ×K , λ ≤ 1, use Lemma 2.3.1
to get a map hλ : K → RVk

|p| × RVλ|n′′| such that each fibre is contained in a ball
λ|p|-next to D. We may assume that hλ is an ∅-definable family of maps, with
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a parameter λ. Let C ′ be a finite ∅-definable set which λ|m′|-prepares every map
hλ ◦ f . This can again be done using Proposition 2.3.2.

We need one last ingredient before we can verify that the lemma holds: Since C ′
is finite, there exists an integer p′ ≥ 1 such that every ball B1 |mm′|-next to C has
a |p′|-shrinking B′1 ⊂ B1 disjoint from C ′.

We now claim that the lemma holds using C, |mm′p′|, and n = m′p′. According
to the beginning of the proof, it suffices to check that given a ball B1 |m|-next to
C on which f is injective, and given a λ ≤ 1, there exists a λ · |p′m′|-shrinking B
of B1 for which the claim holds. Choose a |p′|-shrinking B′1 of B1 disjoint from C ′

and choose B to be any λ|m′|-shrinking of B′1. To finish the proof, we show that
the lemma holds for this B.

On the one hand, since B is a λ · |m′|-shrinking of B′1 (and B′1 is disjoint from
C ′), B is contained in a ball λ · |m′|-next to C ′. By definition of C ′ this means that
hλ ◦ f is constant on B and hence (by definition of hλ) f(B) is contained in a ball
B′′ λ|p|-next to D.

On the other hand, B is λ|mm′p′|-next to C, so that f(B) is λ|pm′p′|-prepared
by D (by definition of D). Thus for any y ∈ f(B), we obtain that the entire ball B′
λ|pm′p′|-next toD containing y is contained in f(B). This ballB′ is just the (unique)
|m′p′|-shrinking of B′′ containing y; in particular, radopB

′ = |m′p′| radopB
′′, as

desired.

The proof of (4) is a straightforward adaptation of the cited result in equichar-
acteristic zero. �

Finally, we can prove an approximate valuative Jacobian property in mixed char-
acteristic. The lemma and its proof are similar to [10, Lemma 2.8.5] and is sharpened
to an actual Jacobian property below in Corollary 3.1.3. Note that the sharpened
version is obtained only using a huge detour, involving approximations by second
degree Taylor polynomials. We do not see a more direct proof of this sharpened
version.

2.3.9. Lemma (Approximate valuative Jacobian property). Assume that T is 1-
hmix-minimal. Let K be a model of T and let f : K → K be an A-definable function,
for some A ⊂ K ∪RV|n|. Then there exists a finite A-definable set C and a positive
integer m such that for every ball B |m|-next to C there exists a µB ∈ ΓK such that
for all x, y ∈ B we have

µB|m||x− y| ≤ |f(x)− f(y)| ≤ µB

∣∣∣∣ 1

m

∣∣∣∣ |x− y|.
Proof. We may assume that A = ∅ by Lemma 2.3.1. Using Lemma 2.3.8 (3), we can
find a finite ∅-definable set C0 and positive integers m,n such that

• f is constant or injective on balls |m|-next to C0, and
• if B is an open ball contained in a ball |m|-next to C0 then either f(B) is a
singleton, or there are open balls B′ ⊂ f(B) ⊂ B′′ such that the radii of B′
and B′′ differ by at most |n|.
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For an open ball B = B<α(x) contained in a ball |m|-next to C on which f is
injective, define µ(x, α) to be the (convex) set of µ ∈ Γ×K for which f(B) is contained
in an open ball of radius µ and contains an open ball of radius |n|µ. Note that we
have |n|µ(x, α) ≤ µ(x, α), in the sense that for every ν ∈ |n|µ(x, α) and every
ν ′ ∈ µ(x, α), we have ν ≤ ν ′. (In the following, inequalities between convex subsets
of ΓK are always meant in this sense.) Also define

s(x, α) = {µ/α | µ ∈ µ(x, α)}.

(An element ν ∈ s(x, α) is a kind of “scaling factor”: the ball B<α(x) is sent into a
ball of radius αν.)

We will now enlarge C and m to obtain the following claim. As a side remark,
note that we will keep n fixed for the entire proof, so that the definitions of µ(x, α)
and s(x, α) are unaltered.

Claim 1: By possibly enlarging C and m, we can achieve that
(1) µ(x, α) and s(x, α) are independent of x as x runs over a ball |m|-next to C,
(2) if B<α(x) and B<β(y) are open balls contained in the same ball |m|-next to

C and α ≤ β, then
s(y, β) ≤ s(x, α)/|m|.

To prove Claim 1, letW ⊂ K×(Γ×K)2 consist of those (x, λ, µ) such that f(B<λ(x))
is contained in a ball B′ of radius µ, and contains a ball of radius |n|µ. Enlarge
C and m such that C |m|-prepares this set W . Note that item (1) of the claim
then holds by preparation. Let B be |m|-next to C. If f is constant on B then
there is nothing to check, so we can assume that f is injective on B. By item (1),
µ(x, α) and s(x, α) are constant when x runs over B and α ≤ radopB is fixed, so we
write simply µ(α) and s(α). It remains to prove item (2) of Claim 1 (after possibly
enlarging m once more). Fix µ ∈ µ(α) and take α ≤ β ≤ radopB. Then any ball
of radius α inside B has image under f contained in a ball of radius at most µ.
Hence, by a rescaled version of Lemma 2.3.8(4), there exists an integer p ≥ 1 such
that for x ∈ B, the image f(B<β(x)) is contained in an open ball of radius µ·β

|p|·α . In
particular, we have

|n|µ(β) ≤ µ(α) · β
|p| · α

.

But this means precisely that

s(β) ≤ s(α)/|np|,

which proves Claim 1 (after replacing m by e.g. mnp).

To prove the lemma, we also need an inequality opposite to the one of Claim 1
(2). More precisely:
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Claim 2: After possibly further enlarging C and m, in Claim 1 (2), we can addition-
ally obtain

s(y, α) ≤ s(x, β)/|m|.

The idea of the proof of Claim 2 is to apply Claim 1 to f−1 (which in reality only
exists piecewise). This is made precise as follows:

Denote by Y the set of y ∈ K for which f−1(y) is finite. This is a cofinite ∅-
definable set in K, by Lemmas 2.3.1 and 2.3.8 (1). Use Lemma 2.3.1 (4) to obtain
a ∅-definable family of injections

hy : f−1(y)→ RVk
|n0|,

for y ∈ Y . For η ∈ RVk
|n0| define

Yη = {y ∈ Y | η ∈ imhy},
gη : Yη → K : y 7→ h−1y (η).

Then we have that ⋃
y∈Y

{y} × f−1(y) =
⊔

η∈RVk|n0|

graph(gη).

For each η, apply Lemma 2.3.8 (3) to gη (extended by 0 outside of Yη) to obtain a
finite η-definable set Dη and integers mη, nη. By compactness, we may take n′ := nη
independent of η. Now enlarge Dη and mη using Claim 1, so that (1) and (2) hold
for gη (where the corresponding µ and s are defined using n′). We may moreover
assume that Dη |mη|-prepares Yη (enlarging Dη and mη once more, if necessary).
After that, apply compactness once more to make m′ := mη independent of η and
to turn (Dη)η into a ∅-definable family. By Corollary 2.3.6 the union D =

⋃
ηDη is

a finite ∅-definable set.
Using Lemma 2.3.1 (5), take a ∅-definable function χ : K → RVk′

|n1| such that
every ball |m′|-next to D is a union of fibres of χ. Then choose C2 and C3 such
that, after possibly enlarging m, C2 |m|-prepares the family of sets f−1(χ−1(η)) for
η ∈ RVk′

|n1|, and C3 |m|-prepares the family of images gη(Yη). We will now prove
that Claim 2 holds after replacing C by C ∪C2 ∪C3 (and some further enlargement
of m).

So suppose that we have open balls B1, B with radopB1 = α ≤ radopB = β
which are contained in the same ball |m|-next to C. If f is constant on B then we
are done, so assume that f is injective on B. We may assume that B1 ⊂ B since
µ(x, α) is independent of x as x runs over B. Let B′ ⊂ f(B) ⊂ B′′ be open balls
whose radii differ by at most |n|. By definition of C2, χ ◦ f is constant on B, so (by
definition of χ), f(B) is contained in a ball |m′|-next to D. Perhaps after shrinking
B′′, we can assume that also B′′ is contained in a ball |m′|-next to D. By definition
of C3, there is a (unique) η ∈ RVk

|n0| such that B ⊂ gη(Yη); this implies that f |B and
gη|f(B) are mutually inverse bijections between B and f(B). Using that we applied
Lemma 2.3.8 to gη, take open balls B̃′ ⊂ gη(B

′) ⊂ B
′ whose radii differ by at most



16 CLUCKERS, HALUPCZOK, RIDEAU, AND VERMEULEN

|n′| and do the same with open balls B̃′′ ⊂ gη(B
′′) ⊂ B

′′. Note that we have a chain
of inclusions

B̃′ ⊂ gη(B
′) ⊂ gη(f(B)) = B ⊂ gη(B

′′) ⊂ B
′′
.

Choose similar balls corresponding to B1: B′1, B′′1 , B̃′1, . . . . We may certainly assume
that radopB

′
1 ≤ radopB

′′. Therefore, our application of Claim 1 to gη yields that

radopB
′′

radopB′′
≤ radopB

′
1

|m′| radopB′1
.

Combining this with radopB ≤ radopB
′′, |n′| radopB

′
1 ≤ radop B̃

′
1 ≤ radopB1 and

|n| radopB
′′
1 ≤ radopB

′
1, we obtain

radopB

radopB′′
≤ radopB

′′

radopB′′
≤ radopB

′
1

|m′| radopB′1
≤ radopB1

|n′m′| radopB′1
≤ radopB1

|nn′m′| radopB′′1
.

Since radopB′′
1

radopB1
∈ s(α) and radopB′′

radopB
∈ s(β), we deduce

s(α) ≤ s(β)/|n3n′m′|
(where the additional factor n2 takes into account the length of the convex sets s(α)
and s(β)). This finishes the proof of Claim 2 (where we take m to be a multiple of
n3n′m′).

We are now ready to prove the lemma itself. Take x, y in the same ball B |m|-next
to C. Denote by β the open radius of B. Let µ ∈ µ(x, β), so that f(B) is contained
in a ball of radius µ and contains a ball of radius |n|µ. We will show that we can
take µB = µ/β.

If we choose α > |x− y|, then x and y are contained in an open ball of radius α.
If we moreover choose µ′ ∈ µ(x, α), then f(x), f(y) are contained in an open ball of
radius µ′. Thus

|f(x)− f(y)|/α < µ′/α ≤ 1

|m|
µ/β.

Since this holds for any α > |x− y|, this gives that

|f(x)− f(y)| ≤ 1

|m|
µ

β
|x− y|.

For the other inequality, set α = |x− y| and denote by B′ the open ball of radius α
around x. By the injectivity of f on B, f(y) is not in f(B′). But f(B′) contains an
open ball of radius |n|µ′ (for µ′ ∈ µ(x, α), as before) and so

|f(x)− f(y)|/α ≥ |n|µ′/α ≥ |nm|µ/β.
Thus

|f(x)− f(y)| ≥ |mn|µ
β
|x− y|.

This proves the Lemma. �

We now obtain already a part of Theorem 2.2.8.
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2.3.10. Corollary. Any 1-hmix-minimal theory T satisfies (T1,T2).

Proof. This is direct from Item 1 from Lemma 2.3.8 and Lemma 2.3.9. �

2.4. Basic results under (T1,T2). We now prove some consequences of T satis-
fying (T1,T2) in the sense of Definition 2.2.7. First note that by applying (T1mix)
to the characteristic function of an A-definable set X ⊂ K, for some A ⊂ K ∪RV|n|,
we obtain a finite A-definable set C ⊂ K |m|-preparing X for some m ≥ 1. In
Lemma 2.4.1, we will see that in (T1mix), we can even take C to be (A ∩ K)-
definable, so that T is 0mix-h-minimal. For the moment, note that the above weaker
statement already suffices to obtain ∃∞-elimination (namely, (3) of Lemma 2.3.1).

2.4.1. Lemma. Assume that T satisfies (T1,T2). Let K be a model of T . Then
(1) (RVλ-unions stay finite [10, Lemma 2.9.4]). If Cξ ⊂ K is a definable family

(with parameters) of finite sets, parametrized by ξ ∈ RVk
λ, then

⋃
ξ Cξ is still

finite.
(2) (Eliminating RV-parameters [10, Lemma 2.9.5]). If f : K → K is A-

definable for some A ⊂ K ∪RV|n| then we can find a finite (A∩K)-definable
set C and an integer m such that f satisfies property (T1mix) with respect to
C and m. In particular, T is 0-hmix-minimal.

The following proof is the same as in [10].

Proof of Lemma 2.4.1. (1) We induct on k, so first assume that k = 1. Using
∃∞-elimination, we may assume that the cardinality of Cξ is constant, say, equal
to m. Let σ1, . . . , σm be the elementary symmetric polynomials in m variables,
considered as functions on m-element-subsets of K. Then the map Kk → K, x 7→
σi(Crvλ(x)) is locally constant everywhere except possibly at 0, so by (T2), it has
finite image. Since σ1(Cξ), . . . , σm(Cξ) together determine Cξ, there are only finitely
many different Cξ.

For arbitrary k, consider Cξ as a definable family Cξ1,ξ2 with ξ1 ∈ RVλ and
ξ2 ∈ RVk−1

λ . Then by induction on k the union ∪ξCξ = ∪ξ1∈RVλ ∪ξ2∈RVkλ Cξ1,ξ2 is
finite.

(2) Using (T1mix), we find an A-definable C. Letting the parameters from A ∩
RV|n| run and taking the union, we obtain an (A ∩ K)-definable set, which is still
finite by (1). �

Now that we know that any theory T satisfying (T1,T2) is 0mix-h-minimal, we
can use Corollary 2.3.4 and Lemma 2.3.1.

The following is a first adaptation of [10, Lemma 2.9.6]. In Corollary 3.1.3, we
will obtain an adaptation which is better in the sense that it has a more precise
conclusion (and more similar to the equi-characteristic 0 case).

2.4.2. Lemma (Images of balls). Assume that T satisfies (T1,T2). Let f : K → K
be A-definable, for some A ⊂ K ∪ RV|n|. Then there exists a finite A-definable C
and a positive integer m such that (T1mix) holds for f and C and m and such that
the following holds for any ball B |m|-next to C. Let B′ ⊂ B be an open ball and
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let µB be as in (T1mix). Then for every x ∈ B′ there are open balls B1, B̃1 such that
f(x) ∈ B̃1 ⊂ f(B′) ⊂ B1 and moreover

|m|µB radop(B′) ≤ radop(B̃1) ≤ radop(B1) ≤
∣∣∣∣ 1

m

∣∣∣∣µB radop(B′).

Proof. Using Lemma 2.3.1 we may as well assume that A = ∅. Take a finite ∅-
definable set C and an integer m such that (T1mix) holds for f with respect to C
and m. Let χ : K → RVk

|p| be a ∅-definable map coming from Lemma 2.3.1(5) for
C,m. So every ball |m|-next to C is a union of fibres of χ and every ball |n′|-next
to C is contained in a fibre of χ. Let D be a finite ∅-definable set |n|-preparing
the family (f(χ−1(η)))η∈RVk|p| , here we use Corollary 2.3.4. Let ψ : K → RVk′

|p′| be
a ∅-definable map such that every ball |n|-next to D is a union of fibres of ψ and
every ball |n′′|-next to D is contained in a fibre of ψ. Finally, use Corollary 2.3.4
again to |q|-prepare the family (f−1(ψ−1(η)))η∈RVk′|p′|

with a finite ∅-definable set C0.
We claim that C ′ = C ∪ C0 suffices. So let B′ be a ball |q|-next to C ′ and let B

be the ball |m|-next to C containing B′. We can assume that µB 6= 0, for else f is
constant on B. Fix any open ball B′′ in B′ and let x, y ∈ B′′. Then

|f(x)− f(y)| ≤ µB
|m|
|x− y| < µB

|m|
radopB

′′.

Therefore, if we denote by B′′1 the open ball of radius µB
|m| radopB

′′ around f(x) then
f(B′′) is contained in B′′1 . By definition of C0, f(B′) is contained in a ball B1 |n|-
next to D. On the other hand, f(B) is |n|-prepared by D. Since B1 ∩ f(B) 6= ∅ we
have

f(B′′) ⊂ f(B′) ⊂ B1 ⊂ f(B).

Using property (T1mix) we see that

radopB1 ≥ |m|µB radopB
′.

Now take z ∈ K such that |f(x)−z| < |m|µB radopB
′′. Then we have z ∈ B1 ⊂ f(B)

and so there is some x′ ∈ B with f(x′) = z. Applying (T1mix) one more time yields
that

|x− x′| ≤ 1

|m|µB
|f(x)− f(x′)| < radopB

′′.

We conclude that f(B′′) contains the open ball of radius |m|µB radopB
′′ around

f(x). �

2.5. Basic results under 1-hecc-minimality. We provide the tools necessary to
transfer preparation results to mixed characteristic, starting from 1-hecc-minimality.
We prove part of Theorem 2.2.8 stating that 1-hecc-minimality implies 1-hmix-minimality.

2.5.1. Notation. The notion of balls λ-next to a finite set C ⊂ K now has different
meanings for | · | and for | · |ecc, with notation from Definition 2.1.3. To make clear
which of the valuations we mean, we either write |1|-next or |1|ecc-next (instead of
just 1-next).



HENSEL MINIMALITY II 19

2.5.2. Remark. Suppose that | · |ecc is non-trivial on K. For any x, x′ ∈ K, we have

(2.5.1) |x|ecc ≤ |x′|ecc ⇐⇒ ∃m ∈ N≥1 : |m · x| ≤ |x′|,
and given a finite set C ⊂ K, the points x and x′ lie in the same ball |1|ecc-next to
C if and only if for every integer m ≥ 1, they lie in the same ball |m|-next to C.

Assuming 1-hecc-minimality of K as an Lecc-structure, we will be able to find
finite Lecc-definable sets. To get back to the smaller language L, we will use the
following lemma:

2.5.3. Lemma (From Lecc-definable to L-definable). Suppose that T is 1-hecc-minimal.
Let K be a model of T and suppose thatK is ℵ0-saturated and strongly ℵ0-homogeneous
as an Leq-structure. (Note that this in particular implies that | · |ecc is non-trivial.)
Then, any finite Lecc-definable set C ⊂ K is already L-definable.

2.5.4. Remark. It is a standard result that every model K has an elementary exten-
sion satisfying the properties of the lemma: Indeed, any model which is special in
the sense of [22, Definition 6.1.1] is strongly ℵ0-homogeneous by [22, Theorem 6.1.6],
and it is easy to construct ℵ0-saturated special models.

Proof of Lemma 2.5.3. It suffices to prove that for any a ∈ C, all realizations of
p := tpL(a/∅) lie in C; indeed, by ℵ0-saturation, this then implies that p is algebraic
(using that C is finite), and hence isolated by some formula φp(x), and hence C is
defined by the disjunction of finitely many such φp(x).

So now suppose for contradiction that there exist a ∈ C and a′ ∈ K \ C which
have the same L-type over ∅. Then by our homogeneity assumption, there exists
an L-automorphism of K sending a to a′ (and hence not fixing C setwise). Such
an automorphism also preserves Oecc and hence is an Lecc-automorphism, but this
contradicts C being Lecc-definable. �

We obtain yet another part of Theorem 2.2.8.

2.5.5. Corollary. Assume that T is 1-hecc-minimal. Then T is 1-hmix-minimal.

Proof. By Remark 2.5.4, we may consider a model K of T which is sufficiently
saturated and sufficiently homogeneous (as in Lemma 2.5.3). Consider an integer n,
λ ∈ Γ×K , A ⊂ K, ξ ∈ RVλ, η ∈ RVk

|n| for some integers k, n > 0, and an L(A∪{η, ξ})-
definable set X ⊂ K. We have to show that X can be |m| · λ-prepared by some
finite L(A)-definable set C for some integer m > 0.

Let λecc be the image of λ in ΓK,ecc. Since B<λecc(1) ⊂ B<λ(1), we have a canonical
surjection RVλecc → RVλ. Similarly, there is a canonical surjection RVecc → RV|n|.
We fix any preimage (ξecc, ηecc) ∈ RVλecc × RVk

ecc of (ξ, η), so that X is L(A ∪
{ξecc, ηecc})-definable. By 1-h-minimality for the Lecc-structure on K, there exists a
finite Lecc(A)-definable set C such that for every pair x, x′ in the same ball λecc-next
to C, we have x ∈ X ⇐⇒ x′ ∈ X. By Lemma 2.5.3, C is already L(A)-definable;
we claim that it is as desired. Suppose for contradiction that there exists no m as in
the corollary, i.e., for every integer m ≥ 1, there exists a pair of points (x, x′) ∈ K2
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which lie in the same ball λ · |m|-next to C such that x ∈ X but x′ /∈ X. By
ℵ0-saturation (in the language L), we find a single pair (x, x′) ∈ K2 of points with
x ∈ X but x′ /∈ X and which lie in the same ball λ · |m|-next to C for every m ≥ 1.
The latter implies that x and x′ lie in the same ball λecc-next to C (by Remark 2.5.2),
so we get a contradiction to our choice of C. �

2.6. Resplendency. In order to prove that (3) implies (1) in Theorem 2.2.8, we
will need a way to add the coarsened valuation ring to the language. This is made
possible via a mixed characteristic resplendency result, as in [10, Section 4]. All
proofs in this subsection work exactly as in [10]; one just needs to replace RVI by⋃
n RVnI everywhere (where I is an ideal of OK). For completeness, we nevertheless

give most of the details.
Fix a ∅-definable ideal I of OK which is neither {0} nor equal to OK . Call a

language L′ an
⋃
n RVnI-expansion of L if L′ is obtained from L by adding (any)

predicates which live on Cartesian products of the (imaginary) definable sets RVnI

for some n > 0. (Recall that RVI has been defined in 2.1.)
In the following, we assume that K is κ-saturated for some κ > |L|; we call a set

“small” if its cardinality is less than κ, and “large” otherwise.

2.6.1. Definition (Mixed-I-preparation). We say that K has mixed-I-preparation
if for every integer n, every set A ⊂ K and every (A ∪ RVnI)-definable subset
X ⊂ K, there exists a finite A-definable set C ⊂ K and an integer m such that X
is mI-prepared by C.

We say that K has resplendent mixed-I-preparation if for every set A ⊂ K, for
every

⋃
n RVnI-expansion L′ of L, and for every L′(A)-definable subset X ⊂ K,

there exists an integer m and a finite L(A)-definable set C ⊂ K such that X is
mI-prepared by C.

Clearly, resplendent mixed-I-preparation implies mixed-I-preparation.
We consider the language L as having the sorts K and RVnI for each n > 0. Let

moreover LI be the language with the same sorts, but consisting only of the additive
group on K and the maps rvnI .

2.6.2. Lemma (Preparation and partial isomorphisms). Let A ≤ K be a small Q-
sub-vector space. The following are equivalent:
(i) Any L(A∪

⋃
n RVnI)-definable set X ⊂ K can be mI-prepared, for some integer

m, by some finite set C ⊂ A.
(ii) For every small subset A2 ⊂ K, c1, c2 ∈ K and all (potentially large) sets

B1, B2 ⊂
⋃
n RVnI with

⋃
n rvnI(〈A, c1〉) ⊂ B1, if f : AB1c1 → A2B2c2 is

a partial LI-isomorphism sending c1 to c2 whose restriction f |AB1
is a par-

tial elementary L-isomorphism, then the entire f is a partial elementary L-
isomorphism.

(iii) For all c1, c2 ∈ K and all (potentially large) sets B ⊂ RVnI containing
⋃
n rvnI(〈A, c1〉),

any partial LI(A ∪ B)-isomorphism f : {c1} → {c2}, is a partial elementary
L(A ∪B)-isomorphism.
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Proof. (i) ⇒ (iii): Let f be as in (iii). We have to check that for every L(A ∪ B)-
definable set X ⊂ K, c1 ∈ X if and only if c2 ∈ X. By (i), there exists a finite
C ⊂ A and an integer m such that X is mI-prepared by C. Since f is an LI(A∪B)-
isomorphism and B contains rvmI(〈A, c1〉), for all a ∈ C and all r ≥ 1, we have

rvmI(c2 − a) = rvmI(f(c1)− a) = f(rvmI(c1 − a)) = rvmI(c1 − a).

Since X is I-prepared by C, it follows that c1 ∈ X if and only if c2 ∈ X.

(iii) ⇒ (ii): Let f be as in (ii). Since f is L-elementary if and only its restriction
to every finite domain is, we may assume Bi small. Using the assumption that f |AB1

is L-elementary, we can extend (f |AB1
)−1 L-elementarily to some g defined at c2.

Let c′1 := g(c2). Then g ◦f : {c1} → {c′1} is a partial LI(A∪B1)-isomorphism. Since⋃
n rvnI(〈A, c1〉) ⊂ B1, it follows by (iii) that g ◦ f is an elementary L-isomorphism.

As g is also L-elementary, so is f .

(ii)⇒ (i): Let X be as in (i), and let B ⊂
⋃
n RVnI be a finite subset such that X

is L(A ∪B)-definable. Let L′I denote the expansion of LI by the full L(A)-induced
structure on

⋃
n RVnI .

Consider any c1, c2 ∈ K which have the same qf-L′I-type over A ∪ B. Then the
map f : c1 → c2 is an L′I(A ∪ B)-isomorphism and extends to f : AB1c1 → A2B2c2,
where Bi := B ∪

⋃
n rvnI(〈A, ci〉). By definition of L′I , the restriction f |AB1 is L-

elementary, so by (ii), the map f is L-elementary. Since moreover f is the identity
on A ∪B, this implies that c1 and c2 have the same L-type over A ∪B.

We just proved that the L(A ∪ B)-type of any element c ∈ K is implied by
its qf-L′I(A ∪ B)-type. By a classical compactness argument (cf. the proof of [22,
Theorem 3.2.5]), it follows that any L(A ∪ B)-formula in one valued field variable
is equivalent to a quantifier free L′I(A ∪ B)-formula. In particular, this applies to
our set X. Since L′I(B) is an

⋃
n RVnI-expansion of LI , X is indeed mI-prepared

by some finite C ⊂ A. �

We can now prove, exactly as in [10, Lemma 4.1.16]:

2.6.3. Lemma (Back and forth over
⋃
n RVnI). Suppose thatK has mixed-I-preparation.

Then the set of partial elementary L-isomorphisms f :
⋃
n RVnI∪A1 →

⋃
n RVnI∪A2

(where A1, A2 run over all small subsets of K) has the back-and-forth, i.e., given such
an f and a c1 ∈ K \ A1, f can be extended to a partial elementary L-isomorphism
on
⋃
n RVnI ∪ A1 ∪ {c1}.

Proof. Let A1, A2, f, c1 be given. We may assume that aclKAi = Ai. Set B1 :=⋃
n rvnI(〈A1, c1〉Q). We claim that we can extend f by setting f(c1) := c2 for any

c2 ∈ K realizing f∗qftpLI (c1/A1B1). To see this, we use 2.6.2 (i)⇒(ii), i.e., we
need to verify that f |A1B1 is a partial elementary L-automorphism (this is clear
by assumption) and that f is a partial LI-isomorphism. This follows from the
restrictions f |A1B1c1 and f |⋃

n RVnI being partial LI-isomorphisms, since the only
LI-interaction between A1c1 and

⋃
n RVnI is via B1. �

And finally, as in [10, Proposition 4.1.7]:
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2.6.4. Proposition. Assuming K is κ-saturated for some κ > |L|, the following are
equivalent:
(i) K has mixed-I-preparation.
(ii) K has resplendent mixed-I-preparation.

Proof. (ii) ⇒ (i) is trivial, so we assume (i) and prove (ii). Let L′ ⊃ L be an⋃
n RVnI-expansion and suppose that X ⊂ K is L′(A)-definable, for some A ⊂ K.

We need to find a finite L(A)-definable C ⊂ K mI-preparing X for some m ≥ 1.
We may replace K by a sufficiently saturated elementary extension. We may also
assume that A = aclL,K(A) (since every finite aclL,K(A)-definable set is contained
in a finite A-definable set). Now we are in the setting of Lemma 2.6.2. Applying the
lemma for L′ shows that it suffices to verify that every partial LI(Ã)-isomorphism
f : {c1} → {c2} is an elementary L′(Ã)-isomorphism, for Ã := A ∪

⋃
n RVnI , and

applying the lemma for L shows that such an f is an elementary L(Ã)-isomorphism.
Thus we can finish the proof by showing (more generally) that any elementary L(Ã)-
isomorphism f : B1 → B2 is already an elementary L′(Ã)-isomorphism, for small sets
B1, B2 ⊂ K. We show that such f preserve every L′(Ã)-formula, by induction over
the structure of the formula. For quantifier free formulas, this is clear. To deal
with an existence quantifier, use Lemma 2.6.3 to extend f to a realization of the
existential quantifier. �

We now get the analogue of [10, Theorem 4.1.19] (about
⋃
n RVn-expansions

preserving Hensel minimality), where the case with ` = 1 is replaced by conditions
(T1,T2). Once we will have proved Theorem 2.2.8 in full, we recover the case ` = 1
as well.

2.6.5. Proposition. (i) If T is `-hmix-minimal for some ` ∈ {0, ω}, then any⋃
n RVn-expansion also is `-hmix-minimal.

(ii) If T satisfies (T1,T2), then any (
⋃
n RVn)-expansion of T also satisfies

(T1,T2).

Proof. (i) follows easily from Proposition 2.6.4 (applied in sufficiently saturated
models K |= T ), using I = MK in the case ` = 0, and using I = B<λ(0) for
every λ ≤ 1 in the case ` = ω. In the latter case, we need to first add λ to the
language and then get rid of it again using that RV-unions preserve finiteness (Corol-
lary 2.3.6 (1)), i.e., the full argument is as follows: To λ-prepare a set X ⊂ K which
is A ∪ RVλ-definable (where A ⊂ K) in the

⋃
n RVn-expansion of K, apply Propo-

sition 2.6.4 with I = B<λ(0) in the language L(λ) to get a finite L(A, λ)-definable
set C ′ = φ(K,λ) λ-preparing X. By Corollary 2.3.6 (1), the L(A)-definable set
C =

⋃
λ′ φ(K,λ′) is still finite (and it λ-prepares X since it contains C ′).

For (ii), let L′ be an (
⋃
n RV|n|)-expansion of the language L, and let K be a

model of the expansion of T . First of all, by part (i) (and Lemma 2.4.1 (2)) we
know that ThL′(K) is still 0mix-h-minimal. Let f : K → K be L′(A)-definable, for
some A ⊂ K ∪RVn. By Proposition 2.6.4, the L′(A∪{x})-definable set {f(x)} can
be prepared by a finite L(A∪{x})-definable set Cx; note that this implies f(x) ∈ Cx.
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We may assume (using compactness) that Cx is definable uniformly in x. By Lemma
2.3.1, we find an L(A)-definable family of injective maps gx : Cx → RVk

m. We define
h : K → RVk

m : x 7→ gx(f(x)) and

f̃ : K × RVk
m → K : (x, ζ) 7→

{
g−1x (ζ) if ζ ∈ gx(Cx),
0 else.

Note that f(x) = f̃(x, h(x)) for every x ∈ K, and that h is L′(A)-definable while f̃
is L(A)-definable. By Lemma 2.3.1, we can find an L(A)-definable family of finite
sets Cξ, for ξ ∈ RVk

m such that the map x 7→ f̃(x, ξ) satisfies (T1mix) with integer p
and (T2) with respect to Cξ. Let C1 be the union of all of these Cξ, which is still
finite by Lemma 2.4.1. By 0mix-h-minimality, there exists a finite L′(A)-definable
set C2 ⊂ K and a positive integer p′ such that h is constant on the balls |p′|-next
to C2. Now take C = C1 ∪ C2 and let q = pp′. Then C is a finite L′(A)-definable
set for which f satisfies properties (T1mix) and (T2) with respect to C (with integer
q). �

2.6.6. Remark. After proving Theorem 2.2.8 (which will be done in the next subsec-
tion), the resplendency statement (i) of Proposition 2.6.5 follows for ` = 1. Indeed,
this is direct from (ii) of Proposition 2.6.5 and Theorem 2.2.8. Preservation of `-
h-minimality under RV-enrichment is generalized in [23, Thm. 2.2.5] to all ` ≥ 0 in
equi-characteristic zero.

2.7. Proof of Theorem 2.2.8. We are now ready to complete the proof of Theorem
2.2.8.

Proof of Theorem 2.2.8. (1) implies (2). This is Corollary 2.5.5.
(2) implies (3). This is Corollary 2.3.10.
(3) implies (4). Let | · |c be a nontrivial equicharacteristic zero coarsening of

the valuation | · |.
The coarsened valuation ring OK,c is a pullback of some subset of RV. Hence

by Item (ii) of Proposition 2.6.5, the theory of K in L′ = L ∪ {OK,c} still satisfies
(T1,T2). We work in this language L′.

We will use [10, Theorem 2.9.1], which says that the theory of K in Lc with
respect to the norm | · |c is 1-h-minimal if for every set A ⊂ K ∪ RVc and every
A-definable function f : K → K the following hold:

(1) there exists some finite A-definable set C such that for every ball B which
is |1|c-next to C there is a µB ∈ ΓK,c such that for x, y ∈ B

|f(x)− f(y)|c = µB|x− y|c, and

(2) the set {y ∈ K | f−1(y) is infinite} is finite.
Let us say that a finite set C mc-prepares a function f if (1) holds for f and C.

So let f : K → K be A-definable for some A ⊂ K ∪ RVc. By adding parameters
from K to the language we may as well assume that A ⊂ RVc. We will find a finite
∅-definable C which mc-prepares f . We induct on r = #A. The case r = 0 is clear.
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Indeed, in that case there even exists a finite L-definable set C such that f satisfies
(T1) with respect to C,m. In particular C will mc-prepare f .

So suppose that r > 0. Let A = A′ ∪ {ζ} and consider an A′-definable family
(fy)y for y ∈ K with fy = f if rvc y = ζ. Here we use the fact that mc is ∅-definable.
Let Y = rv−1c (ζ). By induction on r there exist for every y ∈ K a finite y-definable
Cy mc-preparing fy. Fix a y-definable injection hy : Cy → RVk

|n0| for some integer n0.
Such a map exists by Lemma 2.3.1(4) which holds under (T1,T2) by Lemma 2.4.1.
By compactness we may assume that both Cy and hy form ∅-definable families with
a parameter y. For η ∈ RVk

n0
consider

Yη = {y ∈ K | η ∈ im(hy)}
gη : Yη → K : y 7→ h−1y (η).

Both of these are η-definable and via compactness we may assume that the entire
family is ∅-definable with a parameter. Note that⋃

y∈K

{y} × Cy =
⊔

η∈RVkn0

graph(gη).

Let Dη be a finite η-definable set |m0|-preparing Yη and such that gη (extended by
zero) satisfies Lemma 2.4.2 with respect to Dη and m0. This is possible by Lemma
2.4.2. Moreover take Dη to mc-prepare the (A′ ∪ {η})-definable

f̃η : K → K : y 7→ fy(gη(y)).

This is via induction on r together with the fact that we can add η to the language
and preserve (T1,T2). By compactness, we have without loss that Dη forms a ∅-
definable family, with a parameter η, and that m0 does not depend on η. Now put
D = {0} ∪

⋃
η∈RVk|n0|

Dη, which is a finite ∅-definable set by Lemma 2.3.1.
If D ∩ Y 6= ∅ then C =

⋃
y∈D Cy is a finite ∅-definable set which mc-prepares f .

So suppose that D ∩ Y = ∅. Since 0 ∈ D and as Y is an rvc-fibre, we have that Y
is mc-next to D.

Use Lemma 2.3.1 to find integers p, k′ and a ∅-definable map

χ : K → RVk′

|p|

such that any ball |m0|-next to D is a union of fibres of χ. Use Corollary 2.3.4 to find
a finite ∅-definable set C and a positive integer n′ such that C |n′|-prepares every
set gη(χ−1(ξ)) for any η ∈ RVk

|n0| and any ξ ∈ RVk′

|p| for which χ−1(ξ) ⊂ Yη. Then
we have that for any ball B |m0|-next to D with B ⊂ Yη that gη(B) is |n′|-prepared
by C. We will prove that C mc-prepares f .

We claim that C mc-prepares gη(Y ) for any η ∈ RVk
n0

with Y ⊂ Yη. To this end,
we will show that for any λ ∈ Γ×K , λ ≤ 1, if B0 is a ball |m0|λ-next to D then gη(B0)
is |m2

0n
′|λ-prepared by C whenever B ⊂ Yη. So let B0 be |m0|λ-next to D for some

λ ∈ Γ×K , λ ≤ 1 and let B be the ball |m0|-next to D containing B0. Suppose that
B ⊂ Yη and let µB be as in (T1,T2) for gη on B. By Lemma 2.4.2, for any x ∈ B0

the open ball of radius |m0|µB radop(B0) around gη(x) is contained in gη(B). By the
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same Lemma, gη(B) is contained in an open ball of radius |1/m0|µB radop(B). Now
let B′0 be the ball |m2

0n
′|λ-next to C containing gη(x) and let B′ be the ball |n′|-next

to C containing B′0. Since gη(B) is |n′|-prepared by C, B′ ⊂ gη(B). Hence

radopB
′
0 = |m2

0|λ radopB
′ ≤ |m0|λµB radopB = |m0|µB radopB0.

Therefore B′0 ⊂ gη(B0) and we conclude that C |m2
0n
′|λ-prepares gη(B).

We now prove the claim that C mc-prepares gη(Y ) for any η ∈ RVk
n0

with Y ⊂ Yη.
Fix such an η and recall that Y is mc-next to D. Let B0 be the ball |m0|-next to
D containing Y . By property T1, gη is either injective or constant on B0. If gη is
constant on B0 there is nothing to show, so assume that gη is injective on B0. Let
B′ be a ball mc-next to C. If B′ ∩ gη(Y ) = ∅ then there is nothing to show. So
we may assume that gη(y) and B′ are not disjoint. Assume that the claim is false,
so there exists some z ∈ B′ \ gη(Y ). Now B′ is contained in a ball |n|-next to C,
which is in turn contained in gη(B0) by construction of C. By injectivity of gη on
B0, there is a unique x ∈ B0 with gη(x) = z. We necessarily have that x /∈ Y . Take
an open ball B1 around Y not containing x. This ball is |m0|λ-next to D for some
λ ≤ 1 in Γ×K . Since Y is mc-next to D we have that the image of |m0|λ is 1 under
the map Γ×K → Γ×K,c. By the previous paragraph, gη(B1) is |m2

0n
′|λ-prepared by C.

Now similarly, |m2
0n
′|λ becomes 1 in Γ×K,c and so B′ ⊂ gη(B1). But then z ∈ gη(B1),

contrary to assumption.
We now prove that C mc-prepares f . Suppose the result is false, and let B

be a ball mc-next to C on which the result does not hold. So there exist distinct
x, x′, x′′ ∈ B and µ1, µ2 ∈ ΓK,c with µ1 6= µ2 and

|f(x)− f(x′)|c = µ1|x− x′|c
|f(x)− f(x′′)|c = µ2|x− x′′|c.

Assume that |x− x′|c ≥ |x− x′′|c and let B1 be the smallest closed ball containing
x, x′ for | · |c. Fix a y0 ∈ Y . Since Cy0 mc-prepares fy0 = f and since x, x′, x′′ ∈ B1

we have Cy0 ∩ B1 6= ∅. So let η ∈ RVk be such that gη(y0) ∈ B1. Recall that Y
is a maximal ball disjoint from D for the coarsened norm. By our construction of
D, gη is defined on all of Y . We claim that since D mc-prepares f̃η, gη(Y ) cannot
contain all of B1. Indeed, suppose to the contrary that gη(y) = x, gη(y

′) = x′ and
gη(y

′′) = x′′ for some y, y′, y′′ ∈ Y . Then there are µgη , µf̃η ∈ ΓK,c such that

|f(x)− f(x′)|c = µ1|x− x′|c = µ1µgη |y − y′|c
= |f̃η(y)− f̃η(y′)|c = µf̃η |y − y

′|c.

Hence µ1 = µf̃η/µgη . But exactly the same reasoning works for µ2, contrary to our
assumption that µ1 and µ2 are distinct. Thus gη(Y ) cannot contain all of B1.

Therefore
radop,ecc(gη(Y )) ≤ radcl,ecc(B1) = |x− x′|c.

Now C mc-prepares gη(Y ) so there exists some c ∈ C with

|gη(y0)− c|c ≤ radop,ecc(gη(Y )) ≤ |x− x′|c.
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So we have

|x− c|c ≤ max{|x− gη(y0)|c, |gη(y0)− c|c} ≤ |x− x′|c.
But this would mean that x and x′ are not in the same ball mc-next to C, contra-
diction.

(4) implies (1). Trivial. �

3. Geometry of definable sets in 1-h-minimal structures

In this section we develop our main geometrical results under 1-h-minimality,
often using the equivalences of Theorem 2.2.8.

3.1. Taylor approximation. Results which simply state that every definable set/function
of a certain kind has some nice (language-independent) properties immediately fol-
low for valued fields of mixed characteristic via coarsenings; in particular, we have
a good dimension theory, similar to [10, Section 5.3]. Here the dimension of a (non-
empty) definable set X ⊂ Kn is the maximal integer m such that there is a K-linear
function ` : Kn → Km for which `(X) has non-empty interior. We denote it by
dimX and put dim ∅ = −∞.

More generally we have the following:

3.1.1.Proposition (Language-independent properties). Suppose that T is 1-h-minimal.
Then the conclusions of the following results hold for any model K of T :

(1) (Almost everywhere continuity [10, Theorem 5.1.1]). For every definable
function f : X ⊂ Kn → K, the set of u ∈ X at which f is continuous in a
neighbourhood of u is dense in X.

(2) (Almost everywhere Ck [10, Theorem 5.1.5]). For every definable function
f : X ⊂ Kn → K, the set of u ∈ X at which f is Ck in a neighbourhood of
u is dense in X.

(3) (Dimension theory [10, Proposition 5.3.4]). Let X, Y ⊂ Kn, Z ⊂ Km be non-
empty and definable, and let f : X → Z be definable. Then the following
hold
(a) We have dimX ≥ d if and only if there is a coordinate projection π :

Kn → Kd such that π(X) has non-empty interior.
(b) dim(X ∪ Y ) = max{dimX, dimY }.
(c) For any integer d, the set of z ∈ Z such that dim f−1(z) = d is definable

over the same parameters of f .
(d) If all fibres of f have dimension d, then dimX = d+ dimZ.
(e) There exists an x ∈ X such that for every open ball B ⊂ Kn around x,

dimX = dim(X ∩B).
(f) We have that dim(X \X) < dimX where X is the closure of X.

Proof. We may work in a model K |= T such that |·|ecc is non-trivial. Then every L-
definable object is in particular Lecc-definable, so all of the above equi-characteristic
0 results apply to the definable objects in question and yield the desired mixed-
characteristic result, except in the case of Item 3.c. (Concerning [10, Theorem 5.1.1]
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and [10, Theorem 5.1.5], note that | · | and | · |ecc induce the same topology and hence
equivalent notions of continuity and derivatives.)

Now Item 3.c (definability of dimension) can easily be reproved directly in L,
using Lemma 2.3.1 and that 0-dimensional is equivalent to finite. �

Recall that if f : K → K is a function which is Cr at a point x0 ∈ K, then we
define the order r Taylor polynomial of f at x0 as

T≤rf,x0(x) =
r∑
i=0

f (i)(x0)

i!
(x− x0)i.

Now we find back the precise analogue of [10, Theorem 3.2.2] on Taylor approxima-
tion.

3.1.2. Theorem (Taylor approximation). Suppose that T is 1-h-minimal and let K
be a model of T . Let f : K → K be an A-definable function, for A ⊂ K ∪RV|n|, and
let r ∈ N be given. Then there exists a finite A ∩K-definable set C and an integer
m ≥ 1 such that for every ball B |m|-next to C, f is (r + 1)-fold differentiable on
B, |f (r+1)| is constant on B, and we have:

(3.1.1) |f(x)− T≤rf,x0(x)| =
∣∣∣∣ 1

(r + 1)!
f (r+1)(x0) · (x− x0)r+1

∣∣∣∣
for every x0, x ∈ B.

Proof. As usual, we may simply assume that A = ∅, since we can add parameters
from K ∪ RV|n| to L and preserve 1-h-minimality. We first prove a slightly weaker
version of this result, where the conclusion states that

(3.1.2) |f(x)− T≤rf,x0(x)| ≤
∣∣∣∣ 1

m
· f (r+1)(x0) · (x− x0)r+1

∣∣∣∣ ,
for some positive integer m. Proceeding as in the proof of Corollary 2.5.5, we
assume that K is sufficiently saturated and sufficiently homogeneous and we use
[10, Theorem 3.2.2] and Lemma 2.5.3 to find a finite L-definable set C such that f
is differentiable away from C, and such that for x0, x in the same ball |1|ecc-next to
C, we have

(3.1.3) |f(x)− T≤rf,x0(x)|ecc ≤ |f (r+1)(x0) · (x− x0)r+1|ecc.
Now suppose that there exists no m ≥ 1 satisfying the condition involving (3.1.2).
As before, we then use ℵ0-saturation to find a pair (x0, x) ∈ K2 of points which lie
in the same ball |1|ecc-next to C and such that (3.1.1) fails for every m. The latter
means that (3.1.3) fails for x0, x, so we have a contradiction to our choice of C.

For the weakened theorem, it remains to ensure that |f (r+1)| is constant on balls
|m|-next to C. By applying Corollary 2.3.4 to the graph of x 7→ rv(f (r+1)(x)), we
can enlarge C so that this works for balls |m′|-next to C, for some m′ ≥ 1. Now the
weaker statement holds using m ·m′ (since |m ·m′| ≤ |m|, |m′|).

We now explain how to get the statement with (r + 1)! instead of m. We can
find a finite A∩K-definable C and an integer m such that f satisfies the weakened
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version of this theorem with order r + 1. We now enlarge C and find an integer n
such that f (r+1) satisfies the conclusion of Lemma 2.4.2 with respect to C and n. We
may moreover assume by Lemma 2.3.2 that rv ◦f (r+1) is constant on balls |n|-next
to C. Then there exists an integer n′ such that for any ball B |n|-next to C and any
x0 ∈ B we have that

|f (r+2)(x0)| radopB ≤
1

|n′|
|f (r+1)(x0)|.

Now at the cost of enlarging n (and making B smaller) we obtain

|f (r+2)(x0)| radopB ≤ |m||f (r+1)(x0)|.

Thus we obtain for x, x0 ∈ B that

|f(x)− T≤r+1
f,x0

(x)| ≤
∣∣∣∣ 1

m
f (r+2)(x0) · (x− x0)r+2

∣∣∣∣ ≤ |f (r+1)(x0)(x− x0)r+2|
radop(B)

.

But since |x− x0| < radop(B) we get that

|f(x)− T≤r+1
f,x0

(x)| < |f (r+1)(x0)(x− x0)r+1|.

Now apply the ultrametric triangle inequality to get

|f(x)− T≤rf,x0(x)| ≤ max{|f(x)− T≤r+1
f,x0

(x)|,
∣∣∣∣f (r+1)(x0)

(r + 1)!
(x− x0)r+1

∣∣∣∣}
=

∣∣∣∣ 1

(r + 1)!

∣∣∣∣ · |f (r+1)(x0)(x− x0)r+1|. �

Surprisingly, this implies an exact version of property (T1mix) and of Lemma
2.3.9, namely, an exact valuative Jacobian property similar to [10, Corollary 3.1.6],
and, we get an ever finer version with rv in Corollary 3.1.4.

3.1.3. Corollary (Valuative Jacobian property). Let T be a 1-h-minimal theory.
Let K be a model of T and let f : K → K be A-definable, for some A ⊂ K ∪RV|n|.
Then there exists a finite ∅-definable set C and an integer m such that for any ball B
|m|-next to C, f is differentiable on B, |f ′| is constant on B, and, for all x, x′ ∈ B
one has

|f(x)− f(x′)| = |f ′(x)| · |x− x′|.
Moreover, we can ensure that if B′ ⊂ B is an open ball then f(B′) is either a
singleton or an open ball of radius

|f ′(x)| · radopB
′.

Proof. Apply Theorem 3.1.2 for r = 0 for the first statement. For the moreover
part, follow the proof of [10, Lemma 2.9.6]. �

The following finer variant with rv instead of the valuation is useful for motivic
integration, for the change of variables formulas and for Fourier transforms.
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3.1.4. Corollary (Jacobian property). Let T be a 1-h-minimal theory. Let K be a
model of T and let f : K → K be A-definable, for some A ⊂ K ∪RV|n|. Then there
exists a finite A-definable set C and an integer m such that for every λ ∈ Γ×K, λ ≤ 1
and every ball |m|λ-next to C we have:

(1) The derivative f ′ exists on B and rvλ ◦f ′ is constant on B.
(2) For any x, x′ ∈ B we have rvλ

(
f(x)−f(x′)

x−x′

)
= rvλ(f

′).
(3) If B′ ⊂ B is any open ball, then f(B′) is either a point or an open ball.

Proof. Identical to [10, Corollary 3.2.7]. �

3.2. Algebraic Skolem functions. We show that as in the equicharacteristic zero
case, one can obtain acl = dcl by an

⋃
n RVn-expansion. Recall that a theory satisfies

acl = dcl if for for any model K and any subset A ⊂ K we have aclK(A) = aclK(A).
Equivalently, this means that algebraic Skolem functions exist in any model of the
theory. The following is the analogue of [10, Proposition 2.6.12].

3.2.1. Lemma. Suppose that Th(K) is 0-h-minimal (possibly of mixed characteris-
tic) and let A ⊂ K. Let X ⊂ RVk

|m| be an A-definable set, for some integers k,m.
Then X is dcl∪nRV|n|(A)-definable.

Proof. We can assume that A is finite, and induct on #A. The case where A = ∅ is
clear, so write A = Â ∪ {a}. Then we find an Â-definable family

Y ⊂ K × RVk
|m|

such that Ya = X. Using Proposition 2.3.2 we find a finite Â-definable set C and
an integer p such that either a ∈ C, or for every a′ ∈ K in the same ball |p|-next
to C we have Ya′ = Ya = X. In both cases, we use Lemma 2.3.1(5) to find an
Â-definable map f : K → RVk′

|q| for some integers q, k′ such that any ball |p|-next to
C is a union of fibres of f . Then Ya = X is definable over Â ∪ {f(a)}, so there is
a family Z ⊂ RVk

|m| × RVk′

|q| such that X = Zf(a). By induction Z is definable over
dcl∪nRV|n|(Â). Since f(a) ∈ RVk′

|q| is definable over A, we find that X is definable
over dcl∪nRV|n|(A). �

3.2.2. Lemma. Suppose that Th(K) is 0-h-minimal (possibly of mixed character-
istic) and that for any integer m and any set A ⊂ RV|m| we have acl∪nRV|n|(A) =

dcl∪nRV|n|(A). Then for any set A ⊂ K we have aclK(A) = dclK(A).

Proof. See also [10, Lemma 4.3.1]. Let C ⊂ K be a finite A-definable set. By
Lemma 2.3.1(4) there exists an A-definable bijection f : C → C ′ ⊂ RVk

|n| for some
integers n, k. By the previous lemma, C ′ is already definable over dcl∪pRV|p|(A). So
by the assumption C ′ is contained in dclRV|n|(A), and by pulling back via f we have
that C ⊂ dclK(A).

�
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3.2.3. Proposition. Suppose that Th(K) is 1-h-minimal of possibly mixed charac-
teristic in a language L. Then there exists a ∪nRVn-expansion L′ of L such that
ThL′(K) is still 1-h-minimal and for any model K ′ of ThL′(K) and any subset
A ⊂ K ′ we have

aclL′,K′(A) = dclL′,K′(A).

Proof. This is identical to [10, Proposition 4.3.3]. We simply let L′ be the extension
of L by a predicate for every subset of RVk

|n| (for all integers n, k). The theory
remains 1-h-minimal in view of Proposition 2.6.5. By construction we moreover have
for every model K ′ of ThL′(K) and every subset A ⊂ RVk

|m| that acl∪nRV|n|(A) =

dcl∪nRV|n|(A), so that we can conclude by the previous lemma. �

By an ∪nRVn-expansion of the language as in Proposition 3.2.3 we can thus
always obtain acl = dcl. The following lemma provides a tool for returning to the
original language.

3.2.4. Lemma (Undoing RV-expansions). Suppose that ThL(K) is 0-h-minimal and
that L′ is an ∪nRV|n|-expansion of L. Let χ′ : Kn → RVk′

|m′| be an L′-definable
map (for some positive integers k′ and m′). Then there exists an L-definable map
χ : Kn → RVk

|m| (for some k and m) such that χ′ factors over χ, i.e. χ′ = g ◦ χ, for
some function g : RVk

|m| → RVk′

|m′| (which is automatically L′-definable).

Proof. The proof is similar to [10, Lemma 4.3.4].
We induct on n. The case n = 0 is clear, so let n > 0 and for a ∈ K define

χ′a : Kn−1 → RVk′

|m′| : x 7→ χ′(a, x). By induction and compactness, we find an
L-definable family of maps χa : Kn−1 → RV`

|m| with a parameter a ∈ K such that
for every a ∈ K we have χ′a = ga ◦ χa for some L′-definable family of maps ga. Now
consider the set

W = {(a, ζ ′, ga(ζ ′)) | a ∈ K, ζ ′ ∈ RVk
|m|}

and use Lemma 2.3.2 to uniformly |p|-prepare W with some finite L′-definable set
C ′. Using Proposition 2.6.4 we find a finite L-definable set C containing C ′. By
Lemma 2.3.1(5), we find f : K → RV`′

|q| an L-definable map such that every ball
|p|-next to C is a union of fibres of f . We can assume that |q| ≤ |m| and so by
lifting χa to a map Kn−1 → RV`

|q|, the L-definable map χ(a, x) = (f(a), χa(x)) will
be as desired. �

3.3. Cell decomposition and (higher dimensional) Jacobian property. As
in [10, Section 5.2], we approach the cell decomposition results in a simpler way
than usual (compared to e.g. [19]), by imposing acl = dcl in K, or in other words,
that we have algebraic Skolem functions in K. This is harmless by Proposition 3.2.3
and Lemma 3.2.4. In fact, the assumption that acl equals dcl does more than just
simplify the arguments: it also allows one to formulate stronger results like piecewise
Lipschitz continuity results as in Theorem 3.3.6. This is similar to [9], where this
condition is also used for similar reasons.
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In the following, for m ≤ n, we denote the projection Kn → Km to the first m
coordinates by π≤m, or also by π<m+1.

3.3.1. Definition (Cells, twisted boxes). Fix any parameter set A ⊂ Keq and con-
sider a non-empty A-definable set X ⊂ Kn for some n, an integer N , and, for
i = 1, . . . , n, values ji in {0, 1} and A-definable functions ci : π<i(X) → K. Then
X is called an A-definable cell of depth |N |, with center tuple c = (ci)

n
i=1 and of

cell-type j = (ji)
n
i=1 if it is of the form
X = {x ∈ Kn | (rv|N |(xi − ci(x<i)))ni=1 ∈ R},

for a (automatically A-definable) set

R ⊂
n∏
i=1

(ji · RV×|N |),

where x<i = π<i(x) and where 0 ·RV×|N | = {0} ⊂ RV|N |, and 1 ·RV×|N | = RV|N | \ {0}.
If X is such a cell, then, for any r ∈ R, the subset

{x ∈ Kn | rv|N |(xi − ci(x<i)))ni=1 = r},
of X is called a twisted box of the cell X. We also call X itself a twisted box if it is
a cell consisting of a single twisted box (i.e., if R is a singleton).

Note that a cell of depth |N | is automatically also a cell of depth |M | for any
|M | ≤ |N |, by taking the preimage of the set R under the projection map RVn

|M | →
RVn
|N |.

3.3.2. Example. Consider the set of non-zero cubes X in Q3 from Example 2.2.2.
This is a (1)-cell of depth |3| with cell center 0. Indeed, X is a union of fibres of the
map rv|3| : Q3 → RV|3|.

For a two-dimensional example, let Y ⊂ Q2
3 be the set of (x, y) ∈ Z2

3 for which
y − x is a non-zero cube. This is a (1, 1)-cell of depth |3| with cell tuple c1 = 0 and
c2(x) = x. In more detail, let R ⊂ RV|3| be the set rv|3|(X) of rv|3|-values of cubes
in Q3. Then we have that

Y = {(x, y) ∈ Z2
3 | (rv|3|(x− 0), rv|3|(y − x)) ∈ RV|3| ×R}.

As in [10, Section 5.2], we first state the simplest version of cell decomposition
and then formulate stronger versions as addenda:

3.3.3. Theorem (Cell decomposition). Suppose that acl equals dcl in Th(K), and
that Th(K) is 1-h-minimal. Consider a ∅-definable set X ⊂ Kn for some n. Then
there exists a cell decomposition of X, namely, a partition of X into finitely many
∅-definable cells A` of some depth N > 0.

3.3.4. Example. Here is an example of a cell decomposition for which one needs the
condition that acl = dcl. Let K be a field of equi-characteristic zero which contains
cube roots of unity. Let Z ⊂ K2 be the set of (x, y) in (K×)2 for which x = y3. This
is a 1-dimensional set, but it is not a cell. Denote by X ⊂ K the set of non-zero
cubes. This set X is a union of fibres of the map rv : K → RV, so it is a cell with
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cell center 0. By using acl = dcl we find three definable maps f1, f2, f3 : X → K
such that for any x ∈ X, {f1(x), f2(x), f3(x)} is the set of cube roots of x. Then Z
is the union of three (1, 0)-cells (of depth 1), namely the sets

Zi = {(x, y) ∈ K2 | (rv(x− 0), rv(y − fi(x))) ∈ rv(X)× {0}}, for i = 1, 2, 3.

1. Addendum (Preparation of RV|M |-sets). On top of the assumptions from Theo-
rem 3.3.3, let also a ∅-definable set P ⊂ X×RVk

|M | be given for some k and M > 0.
We consider P as the function sending x ∈ X to the fiber Px := {ξ ∈ RVk

|M | | (x, ξ) ∈
P}.

Then the cells A` from Theorem 3.3.3 can be taken such that moreover P (seen
as function) is constant on each twisted box of each cell A`.

2. Addendum (Continuous functions). On top of the assumptions from Theorem
3.3.3 (with Addendum 1, if desired), suppose that finitely many ∅-definable functions
fj : X → K are given. Then the A` can be taken such that moreover, the restriction
fj|A` of each function fj to each cell A` is continuous, and, that each component
ci : π<i(A`)→ K of the center tuple of A` is continuous.

In the one-dimensional case, we can prepare the domain and the image of the
functions in a compatible way:

3. Addendum (Compatible preparation of domain and image). Under the assump-
tions of Addendum 2, if n = 1, we may moreover impose that there exists an integer
M such that for each ` and each j, fj|A` is either constant or injective, fj(A`) is a
∅-definable cell of depth N and for every twisted box R of A`, there are twisted boxes
S ⊂ S ′ of fj(A`) of depth NM respectively N such that

S ⊂ fj(R) ⊂ S ′.

In [23], this result is generalized in equi-characteristic zero to higher dimensions,
where one can compatibly prepare the domain and image of a definable map Km →
K.

We recall the usual notion of Lipschitz continuity.

3.3.5. Definition (Lipschitz continuity). For a valued field K and an element λ in
its value group Γ×K , a function f : X ⊂ Kn → Km is called Lipschitz continuous
with Lipschitz constant λ if for all x and x′ in X one has

|f(x)− f(x′)| ≤ λ|x− x′|,
where the norm of tuples is, as usual, the sup-norm. We call such f shortly λ-
Lipschitz.

Call f locally λ-Lipschitz, if for each x ∈ X there is an open neighborhood U of
x such that the restriction of f to U is λ-Lipschitz.

4.Addendum (Lipschitz centers). Theorem 3.3.3 (with Addenda 1 and 2 if desired),
is also valid in the following variant: Instead of imposing that A` itself is a cell in the
sense of Definition 3.3.1, we only impose that σ`(A`) is a cell, for some coordinate
permutation σ` : K

n → Kn. With this extra freedom given by the choice of σ`, we
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can moreover ensure that there is an integer M > 0 such that σ`(A`) is of cell-type
(1, . . . , 1, 0, . . . , 0) and that each component ci of the center tuple (ci)i of σ`(A`) is
|1/M |-Lipschitz.

Closely related to that addendum, we also have the following reformulation of
the piecewise continuity result of [9] in the Hensel minimal setting.

3.3.6. Theorem (Piecewise Lipschitz continuity). Suppose that acl equals dcl in
Th(K) and that Th(K) is 1-h-minimal. Consider a ∅-definable set X ⊂ Kn for
some n and a ∅-definable function f : X → K. Suppose that f is locally 1-Lipschitz.
Then there exist an integer M > 0 and a finite partition of X into ∅-definable sets
A` such that the restriction of f to A` is 1/|M |-Lipschitz, for each `.

3.3.7. Definition (Supremum Jacobian property). Let integers m > 0 and n ≥ 0
be given. For X ⊂ Kn open and f : X → K a function, we say that f has the
|m|-supremum Jacobian Property on X if f is C1 on X, and f is either constant on
X, or, for every x and y in X with x 6= y we have:

(3.3.1) |(grad f)(x)− (grad f)(y)| < |m · (grad f)(y)|
and

(3.3.2) |f(x)− f(y)− (grad f)(y) · (x− y)| < |m · (grad f)(y)| · |x− y|.

In the definition, as usual, one considers (grad f)(y) as a matrix with a single row
with entries (∂f/∂xi)(y), which is multiplied with the column vector x− y.

3.3.8. Theorem (Sup-Jac-preparation). Suppose that Th(K) is 1-h-minimal. Let
integers m > 0 and n ≥ 0 be given. For every ∅-definable function f : Kn → K,
there exists a ∅-definable map χ : Kn → RVk

|N | (for some integers k ≥ 0 and N ≥ 1)
such that for each fiber F of χ which is n-dimensional, F is open and f restricted
to F has the |m|-supremum Jacobian property on F .

To prove these results we first prove the cell decomposition theorem together with
Addendum 1 directly. While it is possible to prove the other addenda in a similar
way, we give an alternative recipe for transferring cell decompositions via coarsening.

Proof of Theorem 3.3.3 with Addendum 1. We induct on n. For the base case n = 1,
we use Proposition 2.3.2 to find a finite ∅-definable set C and an integer N such
that C |N |-prepares P . By our assumption that acl = dcl every element of C is
∅-definable. For each ball B |N |-next to C we can definable pick c(B) ∈ C such that
B is |N |-next to c(B). The desired cell decomposition consists of 2 cells for every
element c ∈ C, namely the 0-cell {c}, and the 1-cell consisting the union of all balls
B |N |-next to C for which c(B) = c.

Now assume that n > 1. For every a ∈ Kn−1, we apply the case n = 1 to the set

Pa = {(b, ξ) ∈ K × RVk
|M | | (a, b, ξ) ∈ P}.

Using compactness, we find for each a ∈ Kn−1 a finite set of cells of depth |N |
adapted to Pa, where we can moreover assume that the cell centers are ∅-definable
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functions Kn−1 → K. Now consider the set P ′ ⊂ Kn−1 × RV|N | × RVk
|M | where for

each a ∈ Kn−1, P ′a consists of the following:
(1) For each 0-cell {c} ⊂ K of Pa, the set {(0, . . . , 0) ∈ RV|N |} × Pa,c is in P ′a.
(2) For each 1-cell X with center c ∈ K of Pa let R ⊂ RV|N | be the set from

Definition 3.3.1. Then the set
{(ζ, ξ) ∈ RV|N | × RVk

|M | | ζ ∈ R, ξ ∈ Pa,b for any b ∈ K with rv|N |(b− c) = ζ}}
is in P ′a.

We find the desired cell decomposition by applying the induction hypothesis to the
set P ′. �

The following lemma can be used to move from a cell decomposition in Kecc to
one in K.

3.3.9. Lemma. Assume that acl equals dcl in K and that ThL(K) is 1-h-minimal.
Let A′ be an Lecc-definable cell decomposition of Kn. Then there exists an L-
definable cell decomposition A of Kn of depth |N |, for some N , such that every
|1|ecc-twisted box of A is contained in a twisted box of A′.

By a |1|ecc-twisted box of A we mean the following. Let (c1, . . . , cn) be the cell
center of some cell in A and let

{x ∈ Kn | (rv|N |(xi − ci(π<i(x))))ni=1 = r}
be a twisted box in this cell, for some r ∈ RVn

|N |. Then a |1|ecc-twisted box of A is
a set of the form

{x ∈ Kn | (rvecc(xi − ci(π<i(x))))ni=1 = r′},
for any r′ ∈ RVn

ecc reducing to r under the natural projection RVecc → RV|N |.

Proof of Lemma 3.3.9. We can do this one cell at a time, so letA be an Lecc-definable
cell with cell center (c1, . . . , cn). By [10, Cor. 4.1.17] (which holds in our context
by Proposition 2.6.4), we have that ci(π<i(x)) is always L(π<i(x))-definable. Let
Ci(π<i(x)) be an L-definable family of finite sets, with parameter π<i(x) ∈ Ki−1,
such that ci(π<i(x)) is an element of Ci(π<i(x)). Using acl = dcl in L, we can find
several L-definable cells of depth |N |, for some N , whose cell center is among the
Ci. This will be the desired cell decomposition. �

Proof of Theorems 3.3.6 and 3.3.8 and the Addenda 2, 3, 4. Let us first explain how
compactness works for showing Theorem 3.3.8. Let f be given as in Theorem 3.3.8.
We may suppose that K is saturated when we prove existence of χ. Let Lecc be
the RV-enrichment of L obtained by adding to ΓK the cut given by the maximal
ideal of OK,ecc. Working in Lecc and applying [10, Theorem 5.4.10], we obtain an
Lecc-definable map χ′ : Kn → RVk

ecc such that on the fibres of χ′, f has the supre-
mum Jacobian property with respect to | · |ecc. We can assume that χ′ comes from
a Lecc-definable cell decomposition. Let A be the L-definable cell decomposition of
depth |N | of Kn obtained from Lemma 3.3.9 on χ′. We claim that after enlarging
N , f has the |m|-supremum Jacobian property on the twisted boxes of A. Suppose
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the claim is false. By saturation, we can find x, y ∈ Kn which are in the same
|N |-twisted box of A for every integer N and such that either

|(grad f)(x)− (grad f)(y)| ≥ |m · (grad f)(y)|,
or

|f(x)− f(y)− (grad f)(y) · (x− y)| ≥ |m · (grad f)(y)| · |x− y|.
However, if x and y are in the same |N |-twisted box of A for every integer N , then
they are also in the same |1|ecc-twisted box of A, and hence also in the same fibre
of χ′. But this contradicts our choice of χ′, proving the claim.

The proofs of the addenda and 3.3.6 can be proven in the same way using coars-
ening, or alternatively by direct adaptation of the proofs of [10, Theorems 5.2.4
and 5.2.8]. �

4. Diophantine application for 1-h-minimal transcendental curves

In this section we give a diophantine application of Hensel minimality by bounding
the number of rational points of bounded height on transcendental curves that are
definable in Hensel minimal structures, in the spirit of [5], [20], [8] and [9]. In
more detail, our Diophantine application for curves resembles the results for curves
from Bombieri-Pila [5], but allow for an axiomatic setting, analogous to the results
by Pila-Wilkie [20] (where o-minimality is used). It extends [8] and [9] to our
axiomatic setting of Hensel minimality, but only in the curve case. In [8] and [9]
the analytic (and subanalytic) situation is treated. These approaches all use Taylor
approximation to finite order. In the one-dimensional case, Theorem 3.1.2 is strong
enough as Taylor approximation, but in higher dimensions new and extra work is
needed which seems quite hard at the moment. See Section 5.4 for a discussion on
the difficulties to extend the axiomatic approach to higher dimensions.

Note that the finiteness result of [3] for the number of polynomials of bounded
degree on the transcendental part of non-archimedean analytic and subanalytic sets
X in Kn with K = C((t)) no longer needs to hold in general 1-h-minimal struc-
tures on K, and is specific to the subanalytic situation. See [7] for such examples
with infinitely many polynomials of bounded degree on the transcendental part of
a set definable in a Hensel minimal structure. We leave the discovery of higher
dimensional variants of Theorem 4.1.7 to the future.

4.1. We first define sets of rational points of bounded height, as in [8], [9].

4.1.1. Definition. For any integer H > 0 and any set X ⊂ Kn with K a field
extension of Qp, write X(H) for

X(H) := {x ∈ X ∩ Zn | 0 ≤ xi ≤ H for each i}.

In the real setting, convexity together with bounds on Cr-norms leads to Taylor
approximation results, but in our setting we have to control Taylor approximation
in other ways (by lack of convexity and by total disconnectedness). This is captured
by the Tr notion from [8] and [9].
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4.1.2. Definition (Tr maps). Fix a positive integer r. A function f : U ⊆ Km → K
is said to be Tr if for each y ∈ U there is a polynomial T<rf,y (x) of degree less than r
and coefficients in K such that for each x, y ∈ U
(4.1.1) |f(x)− T<rf,y (x)| ≤ |x− y|r.
A map f : U ⊆ Km → Kn is called Tr if each component function is.

We need some notation from [9, Section 5.1].

4.1.3. Definition. Let α = (α1, ..., αm) ∈ Nm and define |α| = α1 + · · · + αm. We
define the following sets and numbers:

• Λm(k) := {α ∈ Nm; |α| = k},
• ∆m(k) := {α ∈ Nm; |α| ≤ k},
• Lm(k) := #Λm(k) and Dm(k) := #∆m(k)

Note that Lm(k) (resp. Dm(k)) is the number of monomials of degree exactly
(resp. at most) k in m variables.

Fix an integer d and define, for all integers n andm such thatm < n the following
integers.

(4.1.2)
µ(n, d) = Dn(d) r(m, d) = min{x ∈ Z; Dm(x− 1) ≤ µ < Dm(x)}

V (n, d) =
d∑

k=0

kLn(k) e(n,m, d) =
r−1∑
k=1

kLm(k) + r(µ−Dm(r − 1)).

We recall [9, Lemma 5.1.3], amending it with a correction for the exponent (See
Remark 4.1.5).

4.1.4. Lemma (Counting algebraic hypersurfaces). For all positive integers d, n, m
with m < n, consider the integers r, V , e and µ as defined above. Fix a finite field
extension K of degree ν over Qp and with qK many elements in the residue field of
K. Let a subset U ⊆ OmK and a Tr map ψ : U → OnK be given and put X = ψ(U).
Then for each H ≥ 1, the set X(H) is contained in at most

(4.1.3) qmK(µ!)m/eHνmV/e

hypersurfaces of degree at most d. Moreover, when d goes to infinity, mV/e goes to
0.

4.1.5. Remark. Note that the exponent ν of H in (4.1.3) is forgotten in the statement
of [9, Lemma 5.1.3] in the characteristic zero case, but comes up in the proof given
there. This lemma is used for the characteristic zero cases of Proposition 5.1.4 and
Theorems B and 5.2.2 of [9], each of which can be corrected by letting the implicit
constants depend furthermore on ν. The positive characteristic cases of Lemma
5.1.3, Proposition 5.1.4 and Theorems B and 5.2.2 of [9] don’t need any change.
A sharper variant of [9, Lemma 5.1.3] (under some extra conditions) that would
recover the original Theorems B and 5.2.2 from [9] may be found in some future.
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The following lemma plays a similar role as Lemma 3.2.14 of [8] and Lemma
3.4.3 of [9]. Similarly as in the Yomdin-Gromov and Pila-Wilkie approaches [24]
[14] [20], it states that composing with well-chosen powers maps yields good Taylor
approximation.

4.1.6. Lemma (Composing with power maps). Let an integer r > 0 and a finite
field extension K of Qp be given. Let B be an open ball of the form d(1 + NMK)
for some integer N > 0 and some d ∈ OK. Let f : B → OK be a T1 function such
that f and each of the iterated derivatives f ′, f ′′, . . . f (r) of f up to order r has the
Jacobian property, and, such that f satisfies Taylor approximation up to level r as
in Theorem 3.1.2. Then there is an integer r′ ≥ r such that the map

x 7→ f(a+ bxr
′
)

is Tr on B′ for any choice of a, b ∈ OK and any ball B′ ⊂ OK which maps into B
under the map x 7→ a+ bxr

′.

The proof of Lemma 4.1.6 is similar to the proofs of Lemma 3.4.3 of [9] and
Lemma 3.2.14 of [8] where the analyticity condition is replaced by the Jacobian
property for the functions f, f ′, f ′′, . . . f (r). Slightly more details of the proof can be
found in [8, 9].

Proof of Lemma 4.1.6. The Jacobian property for f and the f (i) and the fact that
f is T1 imply that |f (i)(b + bNx)| ≤ |x|1−i for all i with 0 < i ≤ r and all x with
b + bNx ∈ B. Write fr′,B′ for a composition of the form x ∈ B′ 7→ f(a + bxr

′
) for

some choice of r′, a, b and B′ as in the lemma. By the chain rule for differentiation,
we find that |f (i)

r′,B′(x)| ≤ |r′/N r| for all i with 0 < i ≤ r and all x in B′. Since
Taylor approximation up to level r as in Theorem 3.1.2 still holds for fr′,B′ since it
is preserved under compositions (see Lemma 3.2.7 of [8]), we are done for suitable
choice of r′. �

Call an infinite set C ⊂ Kn purely transcendental if every algebraic curve in Kn

has finite intersection with C.

4.1.7. Theorem. Let K be a finite field extension of Qp. Let C ⊂ Kn be a purely
transcendental set which is definable in a 1-h-minimal structure on K and which
is of dimension 1 (i.e. there is a linear projection p : Kn → K such that p(C) is
infinite and such that p has finite fibers on C). Then for each ε > 0 there is a
constant c such that for all H ≥ 1 one has

#C(H) ≤ cHε.

Moreover, the constant c can be chosen uniformly in a definable family of such curves
in the following sense: Consider a 1-h-minimal structure on K and a definable family
{Cy}y∈Y of definable sets Cy ⊂ Kn where y runs over some definable set Y ⊂ Km.
Then for each ε > 0 there is a constant c such that for all y ∈ Y and all H ≥ 1 one
has, if Cy is of dimension 1 and purely transcendental, then

#Cy(H) ≤ cHε.
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Proof. Let K and C be given as in the beginning of the theorem and fix ε > 0. Write
n′ for

(
n
2

)
. Fix d (and corresponding value for r, V and e) such that νV/e < ε/n′,

with notation from Lemma 4.1.4 for plane curves (namely the case of that lemma
with m = 1 and n = 2). We may suppose that acl = dcl by Proposition 3.2.3, and
thus, we can speak more easily about cells. Clearly we may suppose that C ⊂ OnK .
By the Cell Decomposition Theorem 3.3.3 with Addendum 4 and possibly after
composing with x → a + Mx for some a ∈ OK to kill the factor |1/M | from the
addendum, we may suppose that we have N maps

ϕi : Pi ⊂ OK → C

the union of whose images equals C, and which are 1-Lipschitz. Indeed, by varying
over finite choices of a, we can ensure that the union of images equals C. Further-
more, after translation by the center we may suppose that each Pi is a cell with
center 0, that each of the component functions of each partial derivative of ϕi up to
order r has the Jacobian property, and, that each component functions of ϕi satisfies
Taylor approximation up to level r, as in Theorem 3.1.2. By Lemma 4.1.6, we find
an integer r′ ≥ r such that the map x 7→ ϕi(a + bxr

′
) is Tr on P ′i , for any choice

of a, b ∈ OK and any cell P ′i which is mapped into Pi under x 7→ a + bxr
′ . Indeed,

on any twisted box B′ in P ′i this is exactly given by Lemma 4.1.6, and, obtaining
Equation (4.1.1) on P ′i for x and y lying in different twisted boxes of P ′i is more
easy. By varying over a, b and P ′i we can ensure that the union of the images of the
ϕi still equals C.

Hence, we may suppose that the maps ϕi are already Tr themselves. Write Ci for
ϕi(Pi). Apply Lemma 4.1.4 to the sets pj(Ci) in K2 for each choice of coordinate
projection pj : Kn → K2. This yields N ′ > 0 and for each i, j and H ≥ 1 a collection
of at most N ′Hε/n′ algebraic curves Sij` of degree d whose union contains pj(Ci)(H).
Since any intersection of the form

⋂
j p
−1
j (Sij`) is algebraic and of dimension at most

1 (see for example the argument on transversal cylinders on page 45 of [8]), we
have for each H ≥ 1 that the set Ci(H) is contained in no more than N ′n

′
Hε

many algebraic curves (all of bounded complexity in terms of d and n). Each such
algebraic curve has finite intersection with Ci by the pure transcendence of Ci. Since
the intersections of Ci with the mentioned algebraic curves appear in a definable
family of finite definable sets, and since one has uniform upper bounds on the size
of finite sets in definable families in 1-h-minimal structures by (3) of Lemma 2.3.1,
the theorem follows. �

4.1.8. Remark. A version of Theorem 4.1.7 which works uniformly in all local fields
K of large residue field characteristic (namely Qp and Fp((t)) and their finite field
extensions, for large p) can also be formulated and proved along the same lines.
This extends the one-dimensional case (with m = 1, and with implied constant
as specified in Remark 4.1.5) of Theorem 5.2.2 of [9] to the 1-h-minimal situation
(instead of subanalytic).
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5. Some questions

We end the paper with some questions for future research.

5.1. Suppose that L′ is an
⋃
n RVn-expansion of L. Then `-hmix-minimality of

ThL(K) implies `-hmix-minimality of ThL′(K) for ` = 0, 1, ω (see Proposition 2.6.5
and Theorem 2.2.8).

5.1.1. Question. Does the converse also hold, i.e., does `-h-minimality of ThL′(K)
imply `-h-minimality of ThL(K)?

5.1.2. Remark. Hensel minimality is not preserved by passing to reducts in general.
Indeed, suppose that ThL(K) is ω-h-minimal and that K is ℵ0-saturated. Fix a
ball B = B<λ(a) ⊂ K which is strictly contained in a ball disjoint from aclK(∅) (so
that B cannot be prepared by a finite, ∅-definable C ⊂ K). Then ThL(a,λ)(K) is
ω-h-minimal but the reduct ThL∪{B}(K) is not even 0-h-minimal (where by “B”, we
mean a predicate for that ball). It would be interesting to find a tameness notion
which is preserved on reducts.

5.2. Suppose that Th(K) is ω-hecc-minimal and that we have a definable coarsening
| · |c of the valuation; write Kc for K considered as a valued field with the coarsened
valuation | · |c, and write kc for the residue field of Kc, and, put the full induced
structure on kc. By [10, Corollary 4.2.4], resp. by Theorem 2.2.8, one has

(1) if Th(K) is ω-hecc-minimal, then so is Th(Kc), and, resp., if Th(K) is 1-h-
minimal, then so is Th(Kc).

5.2.1. Question. (2) Does ω-hecc-minimality of Th(K) imply ω-hecc-minimality
of Th(kc)?

(3) Do ω-hecc-minimality of Th(Kc) and ω-hecc-minimality of Th(kc) together
imply ω-hecc-minimality of K?

And one may ask (2) and (3) also for 1-h-minimality instead of ω-hecc-minimality.
One may also ask whether (1) holds under other variants of Hensel minimality.

5.3. Any C1-function U ⊂ Rn → R also has a strict derivative (see [10, Defini-
tion 3.1.2]. This is not the case in valued fields:

5.3.1. Example. Define f : K2 → K by f(x, y) = x2 if |x|4 ≤ |y| and f(x, y) = x3

otherwise. This function is C1 everywhere, but at 0, the strict derivative does not
exist, since f(x,x4)−f(x,0)

x4
= x−2 − x−1, which diverges for x→ 0.

In view of this example, and by our knowledge that strict C1 is the better notion
for rank one valued fields for several reasons (see e.g. [2], and where strict C1 means
that the strict derivative exists everywhere and is continuous), one may try to build
a good working notion of definable strict C1 submanifolds ofKn, assuming a suitable
form of Hensel minimality. The following is a first question in this direction.

5.3.2. Question. In what form could an Implicit Function Theorem hold for defin-
able functions, say, assuming 1-h-minimality? This should be considered knowing
that a 1-h-minimal theory does not automatically imply hensel’s lemma in mixed
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characteristic, and, knowing that, in some special situations (like in [2]) it is known
that strict C1 functions work well for the Implicit Function Theorem.

5.4. Theorem 3.3.8 can be seen as a order one Taylor approximations result, for
functions in several variables. This viewpoint suggests that we might have the
following variant of [10, Theorem 5.6.1] (which is a result on higher order Taylor
approximations of functions in several variables):

5.4.1. Question. Given a definable function f : Kn → K in a 1-h-minimal structure
and an integer r ≥ 1, does there exist a definable map χ : Kn → RVk

|N | such that
[10, Equation (5.6.1)] (or a similar kind of Taylor approximation) holds on each
n-dimensional fiber of χ?

Such a result would be strictly stronger than [10, Theorem 5.6.1], which yields
Taylor approximations only on boxes disjoint from a lower-dimensional definable set
C. Indeed, given χ, one can easily find a C such that every box disjoint from C is
contained in a fiber of χ (namely by 1-preparing χ fiberwise using Corollary 2.3.4).
On the other hand, the family of maximal boxes disjoint from C cannot, in general,
by parametrized by a tuple from RV. An answer to Question 5.4.1 is important to
generalize the diophantine application of Section 4 to arbitrary dimension instead
of just curves.
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