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Codes and Quotients

Definition (Code)

In some structure M, a set X definable (with parameters) is said to be
coded by some tuple a if there is a formula ¢[x,y] such that

d[M,a'] =X(M) < a’' =a.
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Codes and Quotients

Definition (Code)

In some structure M, a set X definable (with parameters) is said to be
coded by some tuple a if there is a formula ¢[x,y] such that

d[M,a'] =X(M) < a’' =a.

Definition (Representable quotient)

Let M be some structure, D be a definable set and E be a definable
equivalence relation on D. The quotient D/E is said to be representable in
M if there exists a definable function f with domain D such that

xBy < f(x) = f7).
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Eliminating imaginaries

Proposition
Let M be some structure with at least two constants, the following are
equivalent:

(i) Any subset of M definable (with parameters) is coded,

(ii) Every quotient definable in M is representable.
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Eliminating imaginaries

Proposition
Let M be some structure with at least two constants, the following are
equivalent:

(i) Any subset of M definable (with parameters) is coded,

(ii) Every quotient definable in M is representable.

A theory is said to eliminate imaginaries if every model of T verifies any of
the two statements in the previous proposition.
Example

» Anon-example : infinite sets,
> An example : algebraically closed fields.
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Shelah’s construction

Definition

Let M be a L-structure, we define a new language £°9 and a £*%-structure
M*9 as follows:

» For any definable equivalence relation E on a product of £-sorts
[1; Si, we add to £ a sort Sg and a function fg : [1; S; — Sk,

> In M®9, Sg is interpreted as []; S;(M)/E(M) and fg as the canonical
projection.
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» For any definable equivalence relation E on a product of £-sorts
[1; Si, we add to £ a sort Sg and a function fg : [1; S; — Sk,

> In M®9, Sg is interpreted as []; S;(M)/E(M) and fg as the canonical
projection.

Proposition

Let T be a complete theory. The language £° and the theory
T*9 = Th(M®9) does not depend on the choice of M = T.
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Shelah’s construction

Definition

Let M be a L-structure, we define a new language £°9 and a £*%-structure
M*9 as follows:

» For any definable equivalence relation E on a product of £-sorts
[1; Si, we add to £ a sort Sg and a function fg : [1; S; — Sk,

> In M®9, Sg is interpreted as []; S;(M)/E(M) and fg as the canonical
projection.

Proposition
Let T be a complete theory. The following are equivalent:
(i) T eliminates imaginaries,
(ii) Forall, M = T and e € M*9, there exists a tuple d € M such that:

d e dcl®¥(e) and e € dcI®(d).
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Finite sets

Definition (Weak elimination of imaginaries)

A complete theory T weakly eliminates imaginaries if for all M = T and
e € M®9, there exists a tuple d € M such that:

d € acl®(e) and e € dcl®9(d).
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Finite sets

Definition (Weak elimination of imaginaries)

A complete theory T weakly eliminates imaginaries if for all M = T and
e € M®9, there exists a tuple d € M such that:

d € acl®(e) and e € dcl®9(d).

Example

Infinite sets weakly eliminate imaginaries.
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Finite sets

Definition (Weak elimination of imaginaries)

A complete theory T weakly eliminates imaginaries if for all M = T and
e € M®9, there exists a tuple d € M such that:

d € acl®(e) and e € dcl®9(d).

Proposition

Suppose T has weak elimination of imaginaries and every finite set in
every model of T'is coded, then T eliminates imaginaries.
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Finite imaginaries

Definition (E1/UFI)

A complete theory T eliminates imaginaries up to uniform finite
imaginaries if for all M = T and e € M®9, there exists a tuple d € M such
that:

d e dcl®i(e) and e € acl®(d).
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Finite imaginaries

Definition (E1/UFI)

A complete theory T eliminates imaginaries up to uniform finite
imaginaries if for all M = T and e € M®9, there exists a tuple d € M such
that:

d e dcl®i(e) and e € acl®(d).

Proposition

Suppose T has EI/UFI and any finite quotient definable (with parameters)
in any model of T'is representable, then T eliminates imaginaries.
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Some definitions

Definition

Let K be a field, a valuation on K is a map v from K* to some abelian
ordered group T that satisfies the following axioms:

(i) v() =v(x) +v(y),
(i) v(x+y) > min{v(x),v(y)}
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Some definitions

Definition

Let K be a field, a valuation on K is a map v from K* to some abelian
ordered group T that satisfies the following axioms:

(i) v() = v(x) +v(y),
(i) v(x+y) > min{v(x),v(y)}

» We usually add a point oo to I to denote v(0), greater than any other
pointinT.

» Theset O = {x € K| v(x) > 0} is a ring, called the valuation ring of K.
» It has a unique maximal ideal 90t = {x € K| v(x) > 0}.
» We will be considering the group RV = K* /(1 + 93t).
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Some examples

> Let p pe a prime number, then we can define the p-adic valuation on
Q by taking v, (p"a/b) = n wheneveranb=anp=bap=0,
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Some examples

> Let p pe a prime number, then we can define the p-adic valuation on
Q by taking v, (p"a/b) = n wheneveranb=anp=bap=0,

> We will denote by Q,,, the field of p-adic numbers, the completion of
Q for the p-adic valuation. It is also a valued field,

» We will denote by ACVF the theory of algebraically closed valued
field (in some language to be specified).
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Imaginaries in valued fields

Remark

In the language of rings enriched with a predicate for v(x) < v(y), the
quotient I' = K* / O™ is not representable in any algebraically closed valued
field norin Q,
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Imaginaries in valued fields

Remark

In the language of rings enriched with a predicate for v(x) < v(y), the
quotient I' = K*/ O™ is not representable in any algebraically closed valued
field norin Q,

However, in the case of ACVF, Haskell, Hrushovski and Macpherson have
shown what imaginary sorts it suffices to add.
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The geometric sorts

Definition (The sorts S,) J

The elements of S,, are the free O-module in K" of rank n.
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Sy = GLy(K)/ GL,(0),
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Definition (The sorts S,,)
The elements of S, are the free O-module in K" of rank n. J
Definition (The sorts T,,)
The elements of T, are of the form a + s wheres €S, anda €. J

» We can give an alternate definition of these sorts, for example
Sn = GLn(K)/ GLn(O)»

» The geometric language £ is composed of the sorts K, S, and T, for
all n, with the ring language on K and functions p, : GL,(K) - S,
and 1, : S, xK" - T,,
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The geometric sorts

Definition (The sorts S,,)
The elements of S, are the free O-module in K" of rank n. J
Definition (The sorts T,,)
The elements of T, are of the form a + s wheres €S, anda €. J

» We can give an alternate definition of these sorts, for example
Sn = GLn(K)/ GLn(O)»

» The geometric language £ is composed of the sorts K, S, and T, for
all n, with the ring language on K and functions p, : GL,(K) - S,
and 1, : S, xK" - T,,

» S can be identified with I' and p; with v.
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The geometric sorts

Definition (The sorts S,,)

The elements of S,, are the free O-module in K" of rank n.

Definition (The sorts T,,)
The elements of T, are of the form a + s wheres € S, and a € s.

Theorem (Haskell, Hrushovski and Macpherson, 20006)

The £9-theory ACVF eliminates imaginaries.
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The geometric sorts

Definition (The sorts S,,)

The elements of S,, are the free O-module in K" of rank n.

Definition (The sorts T,,)

The elements of T, are of the form a + s wheres €S, anda €.

Question

Are all imaginaries in Q, coded in the geometric sorts or are there new
imaginaries in this theory?
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A first example : real-closed fields

Example (Square roots)

Let K be a real closed field and K°© be its algebraic closure (both fields are
considered as ring language structures).
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A first example : real-closed fields

Example (Square roots)

Let K be a real closed field and K°© be its algebraic closure (both fields are
considered as ring language structures).

» Leta €K, the function f: x = \/x — a can be defined in K but not in
K"

» However, the 1-to-2 correspondance F = {(x,y) | y* = x —a} is
definable both in K and I_<alg,
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Example (Square roots)

Let K be a real closed field and K°© be its algebraic closure (both fields are
considered as ring language structures).

> Leta € K, the function f: x » \/x — a can be defined in K but not in
—alg
K

» However, the 1-to-2 correspondance F = {(x,y) | y* = x —a} is
definable both in K and Kalg,

» Fis the Zariski closure of the graph of f and f(x) can be defined (in K)
as the greatest y such that (x,y) € F,
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A first example : real-closed fields

Example (Square roots)

Let K be a real closed field and K°© be its algebraic closure (both fields are
considered as ring language structures).
> Leta € K, the function f: x » \/x — a can be defined in K but not in
—alg
K

» However, the 1-to-2 correspondance F = {(x,y) | y* = x —a} is
definable both in K and Kalg,

» Fis the Zariski closure of the graph of fand f(x) can be defined (in K)
as the greatest y such that (x,y) € F,

» In fact, f can be coded by the code of F in Ealg (which is K).
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The general setting

» Let £ ¢ £ be two languages,
» Let Tbe a £ theory that eliminates quantifiers and imaginaries,
» Let Tbe a L-theory such that Ty c T.
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closure in M,
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The general setting

» Let £ ¢ £ be two languages,
» Let Tbe a £ theory that eliminates quantifiers and imaginaries,
» Let Tbe a L-theory such that Ty c T.

Question }

Under what hypotheses can we deduce that T eliminates imaginaries?

Let M &= Tand M & T such that M € M. Let us fix some notations:

> Let A ¢ M, we will write dclz(A) for the (quantifier-free) L-definable
closure in M,

> Let A ¢ M®9, we will write dcl?'(A) for the £I-definable closure in
M*9,
Similarly for acl, tp and TP.

15/1



Dominant sorts

Definition

In a theory, a set of sorts S will be called dominant if for any other sort S
of the language, there is a surjective @-definable function f: [; S; - S
where the S; are in S.
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Dominant sorts

Definition

In a theory, a set of sorts S will be called dominant if for any other sort S
of the language, there is a surjective @-definable function f: [; S; - S
where the S; are in S.

Example

> The sorts of “real” elements (i.e. the original sorts from M) are
dominant in M®9,

» In avalued field in the geometric language, the sort K is dominant.

o’

We will write dom (M) for the union of the dominant sorts in M.

16/1



Algebraic boundedness

Hypothesis (i)
For all M; <M and ¢ € dom(M), dcl? (Mic) N M ¢ aclz(Mic). J
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Coping with dclz(M)

Hypothesis (ii)

For all e € dclz (M), there exists a tuple e’ € M such that for all o € Aut(M)
with 0(M) = M, o fixes e if and only if it fixes e'.
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Coping with dclz(M)

Hypothesis (ii)

For all e € dclz (M), there exists a tuple e’ € M such that for all o € Aut(M)
with 0(M) = M, o fixes e if and only if it fixes e'.

.

Proposition
Hypothesis (ii) implies that finite sets are coded in T.
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Unary imaginaries

Hypothesis (iii)
Any £(M)-definable unary set X ¢ dom(M) is coded. J
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Germs

Definition

Let A € M, rand s be A-definable functions and p € TP#(A) that contains
the domain of both r and s. The functions r and s are said to have the
same p-germ if for some c  p, r(c) = s(c).
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Germs

Definition

Let A € M, r and s be A-definable functions and p € TPz(A) that contains
the domain of both r and s. The functions r and s are said to have the
same p-germ if for some c  p, r(c) = s(c).

Remark
» 1f r and s have the same p-germ, then for any c E p, r(c) = s(c),

» “Having the same p-germ” is an equivalence relation on A-definable
functions. We will write 0,7 for the class of all A-definable functions
having the same p-germ asr,

» 1f p is a definable type and we only consider the germs of a family of
uniformely defined functions r;, 9,7, is an imaginary,

> Inany case, if pis Aut(M/A)-invariant, then the action of Aut(M/A)
on L£(M)-definable functions induces an action on p-germs.

20/1



Controling germs

Hypothesis (iv)
For any A = acl(A) n M and c € dom(M), there exists an
Aut(M/A)-invariant type p € TP~ 7 (M) such that p|M is consistent with
tp.(c/A). N
Moreover, for any £(B)-definable function r:
(*) There exists a sequence (&;)iex, With ¢; € dclz(AB) such that any
o € Aut(M/A) fixes Opr iff o fixes almost every ;.
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Rigidity of finite sets

Hypothesis (v)
For all A = acl?'(A) n M and ¢ € dom(M), acl7 (Ac) n M = dcl7 (Ac) n M.

J
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The theorem

Theorem (E1/UFI Criterion)

If the hypotheses (i) to (iv) are true, then T eliminates imaginaries up to
uniform finite imaginaries.
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The theorem

Theorem (E1/UFI Criterion)

If the hypotheses (i) to (iv) are true, then T eliminates imaginaries up to
uniform finite imaginaries.

Corollary (EI Criterion)

If the hypotheses (i) to (v) are true, then T eliminates imaginaries.
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p-adic imaginaries

Theorem
Let F be a finite extension of Q,,, then the theory of F in the language L9

—al ..
with a constant added for a generator of F n Qa ® over Q eliminates
imaginaries.
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p-adic imaginaries

Theorem
Let F be a finite extension of Q,,, then the theory of F in the language L9

—al ..
with a constant added for a generator of F n Qa ® over Q eliminates
imaginaries.

Proof.

1t follows from the El criterion. |
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p-adic imaginaries

Theorem
Let F be a finite extension of Q,,, then the theory of F in the language g

. —al ..
with a constant added for a generator of F n Q’® over Q eliminates
imaginaries.

Let £9” be the language £9 restricted to the sorts K and S,,.

Corollary
Let F be a finite extension of Q,,, then the theory of F in the language =

. —al ..
with a constant added for a generator of Fn Q € over Q eliminates
imaginaries.
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Uniformity

Theorem

Let L =[] L, /U be an ultraproduct of finite extensions L, of Q,. The

theory of L in the language £9° with some added constants eliminates
imaginaries.
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Uniformity

Theorem

Let L = [T Ly /U be an ultraproduct of finite extensions L, of Q,. The

theory of L in the language £9 with some added constants eliminates
imaginaries.

Proof.

The EI/UFI criterion applies in £ (and we reduce to £9” in the same
manner). It remains to show that definable finite quotient are
represented, but one can show that they are internal to RV and that the
induced theory on RV eliminates imaginaries.

O

v
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Uniformity

Theorem

Let L =[] L, /U be an ultraproduct of finite extensions L, of Q,. The

theory of L in the language £9 with some added constants eliminates
imaginaries.

Corollary

For any equivalence relation E on a set D definable in L, uniformly in p,
there exists uniformly definable non-empty set X and function
f:XxD - Sy x K such that for any prime p, and any a € X(L, ), for all
x,y € D(Lp), we have: f(a,x) = f(a,y) iff xEy.
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