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Codes and Quotients

Definition (Code)
In some structureM, a set X definable (with parameters) is said to be
coded by some tuple a if there is a formula ϕ[x, y] such that

ϕ[M, a ′] = X(M) ⇐⇒ a ′ = a.

Definition (Representable quotient)
LetM be some structure, D be a definable set and E be a definable
equivalence relation on D. The quotient D/E is said to be representable in
M if there exists a definable function f with domain D such that

xEy ⇐⇒ f(x) = f(y).
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Eliminating imaginaries

Proposition
LetM be some structure with at least two constants, the following are
equivalent:

(i) Any subset ofM definable (with parameters) is coded,

(ii) Every quotient definable inM is representable.

A theory is said to eliminate imaginaries if every model of T verifies any of
the two statements in the previous proposition.

Example

▸ A non-example : infinite sets,
▸ An example : algebraically closed fields.
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Shelah’s construction

Definition
LetM be a L-structure, we define a new language Leq and a Leq-structure
Meq as follows:
▸ For any definable equivalence relation E on a product of L-sorts
∏i Si, we add to L a sort SE and a function fE ∶∏i Si → SE,

▸ InMeq, SE is interpreted as∏i Si(M)/E(M) and fE as the canonical
projection.

Proposition
Let T be a complete theory.
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▸ InMeq, SE is interpreted as∏i Si(M)/E(M) and fE as the canonical
projection.

Proposition
Let T be a complete theory. The language Leq and the theory
Teq = Th(Meq) does not depend on the choice ofM ⊧ T.
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▸ InMeq, SE is interpreted as∏i Si(M)/E(M) and fE as the canonical
projection.

Proposition
Let T be a complete theory. The following are equivalent:

(i) T eliminates imaginaries,

(ii) For all,M ⊧ T and e ∈Meq, there exists a tuple d ∈M such that:

d ∈ dcleq(e) and e ∈ dcleq(d).

5 / 1



Finite sets

Definition (Weak elimination of imaginaries)
A complete theory T weakly eliminates imaginaries if for allM ⊧ T and
e ∈Meq, there exists a tuple d ∈M such that:

d ∈ acleq(e) and e ∈ dcleq(d).
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e ∈Meq, there exists a tuple d ∈M such that:

d ∈ acleq(e) and e ∈ dcleq(d).

Example
Infinite sets weakly eliminate imaginaries.
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Finite sets

Definition (Weak elimination of imaginaries)
A complete theory T weakly eliminates imaginaries if for allM ⊧ T and
e ∈Meq, there exists a tuple d ∈M such that:

d ∈ acleq(e) and e ∈ dcleq(d).

Proposition
Suppose T has weak elimination of imaginaries and every finite set in
every model of T is coded, then T eliminates imaginaries.
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Finite imaginaries

Definition (EI/UFI)
A complete theory T eliminates imaginaries up to uniform finite
imaginaries if for allM ⊧ T and e ∈Meq, there exists a tuple d ∈M such
that:

d ∈ dcleq(e) and e ∈ acleq(d).

Proposition
Suppose T has EI/UFI and any finite quotient definable (with parameters)
in any model of T is representable, then T eliminates imaginaries.
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Some definitions

Definition
Let K be a field, a valuation on K is a map v from K⋆ to some abelian
ordered group Γ that satisfies the following axioms:

(i) v(xy) = v(x) + v(y),
(ii) v(x + y) ≥ min{v(x), v(y)}

▸ We usually add a point∞ to Γ to denote v(0), greater than any other
point in Γ .

▸ The setO = {x ∈ K ∣ v(x) ≥ 0} is a ring, called the valuation ring of K.
▸ It has a unique maximal idealM = {x ∈ K ∣ v(x) > 0}.
▸ We will be considering the group RV = K⋆/(1 +M).
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Some examples

▸ Let p pe a prime number, then we can define the p-adic valuation on
Q by taking vp(pna/b) = n whenever a ∧ b = a ∧ p = b ∧ p = 0,

▸ We will denote byQp, the field of p-adic numbers, the completion of
Q for the p-adic valuation. It is also a valued field,

▸ We will denote by ACVF the theory of algebraically closed valued
field (in some language to be specified).
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Imaginaries in valued fields

Remark
In the language of rings enriched with a predicate for v(x) ≤ v(y), the
quotient Γ = K⋆/O⋆ is not representable in any algebraically closed valued
field nor inQp

However, in the case of ACVF, Haskell, Hrushovski and Macpherson have
shown what imaginary sorts it suffices to add.
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The geometric sorts

Definition (The sorts Sn)
The elements of Sn are the freeO-module in Kn of rank n.

Definition (The sorts Tn)
The elements of Tn are of the form a +M s where s ∈ Sn and a ∈ s.
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The elements of Sn are the freeO-module in Kn of rank n.

Definition (The sorts Tn)
The elements of Tn are of the form a +M s where s ∈ Sn and a ∈ s.

▸ We can give an alternate definition of these sorts, for example
Sn = GLn(K)/GLn(O),

▸ The geometric language LG is composed of the sorts K, Sn and Tn for
all n, with the ring language on K and functions ρn ∶ GLn(K)→ Sn

and τn ∶ Sn ×Kn → Tn,
▸ S1 can be identified with Γ and ρ1 with v.
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The geometric sorts

Definition (The sorts Sn)
The elements of Sn are the freeO-module in Kn of rank n.

Definition (The sorts Tn)
The elements of Tn are of the form a +M s where s ∈ Sn and a ∈ s.

Theorem (Haskell, Hrushovski and Macpherson, 2006)

The LG-theory ACVF eliminates imaginaries.
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The geometric sorts

Definition (The sorts Sn)
The elements of Sn are the freeO-module in Kn of rank n.

Definition (The sorts Tn)
The elements of Tn are of the form a +M s where s ∈ Sn and a ∈ s.

Question
Are all imaginaries inQp coded in the geometric sorts or are there new
imaginaries in this theory?
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A first example : real-closed fields

Example (Square roots)

Let K be a real closed field and K
alg

be its algebraic closure (both fields are
considered as ring language structures).

▸ Let a ∈ K, the function f ∶ x↦
√
x − a can be defined in K but not in

K
alg
,

▸ However, the 1-to-2 correspondance F = {(x, y) ∣ y2 = x − a} is
definable both in K and K

alg
,

▸ F is the Zariski closure of the graph of f and f(x) can be defined (in K)
as the greatest y such that (x, y) ∈ F,

▸ In fact, f can be coded by the code of F in K
alg

(which is K).
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The general setting

▸ Let L̃ ⊆ L be two languages,
▸ Let T̃ be a L̃ theory that eliminates quantifiers and imaginaries,
▸ Let T be a L-theory such that T̃∀ ⊆ T.

Question
Under what hypotheses can we deduce that T eliminates imaginaries?

Let M̃ ⊧ T̃ andM ⊧ T such thatM ⊆ M̃. Let us fix some notations:
▸ Let A ⊆ M̃, we will write dclL̃(A) for the (quantifier-free) L̃-definable
closure in M̃,

▸ Let A ⊆Meq, we will write dcleq
L (A) for the L

eq-definable closure in
Meq.

Similarly for acl, tp and TP.
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Dominant sorts

Definition
In a theory, a set of sorts S will be called dominant if for any other sort S
of the language, there is a surjective ∅-definable function f ∶∏i Si → S
where the Si are in S.

Example
▸ The sorts of “real” elements (i.e. the original sorts fromM) are
dominant inMeq,

▸ In a valued field in the geometric language, the sort K is dominant.

We will write dom(M) for the union of the dominant sorts inM.
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Algebraic boundedness

Hypothesis (i)

For allM1 ≼ M̃ and c ∈ dom(M), dcleq
L (M1c) ∩M ⊆ aclL̃(M1c).
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Coping with dclL̃(M)

Hypothesis (ii)

For all e ∈ dclL̃(M), there exists a tuple e ′ ∈M such that for all σ ∈ Aut(M̃)
with σ(M) =M, σ fixes e if and only if it fixes e ′.

Proposition
Hypothesis (ii) implies that finite sets are coded in T.
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Unary imaginaries

Hypothesis (iii)
Any L(M)-definable unary set X ⊆ dom(M) is coded.
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Germs

Definition
Let A ⊆ M̃, r and s be A-definable functions and p ∈ TPL̃(A) that contains
the domain of both r and s. The functions r and s are said to have the
same p-germ if for some c ⊧ p, r(c) = s(c).

Remark
▸ If r and s have the same p-germ, then for any c ⊧ p, r(c) = s(c),

▸ “Having the same p-germ” is an equivalence relation on A-definable
functions. We will write ∂pr for the class of all A-definable functions
having the same p-germ as r,

▸ If p is a definable type and we only consider the germs of a family of
uniformely defined functions rb, ∂prb is an imaginary,

▸ In any case, if p is Aut(M̃/A)-invariant, then the action of Aut(M̃/A)
on L̃(M̃)-definable functions induces an action on p-germs.

20 / 1



Germs

Definition
Let A ⊆ M̃, r and s be A-definable functions and p ∈ TPL̃(A) that contains
the domain of both r and s. The functions r and s are said to have the
same p-germ if for some c ⊧ p, r(c) = s(c).

Remark
▸ If r and s have the same p-germ, then for any c ⊧ p, r(c) = s(c),

▸ “Having the same p-germ” is an equivalence relation on A-definable
functions. We will write ∂pr for the class of all A-definable functions
having the same p-germ as r,

▸ If p is a definable type and we only consider the germs of a family of
uniformely defined functions rb, ∂prb is an imaginary,

▸ In any case, if p is Aut(M̃/A)-invariant, then the action of Aut(M̃/A)
on L̃(M̃)-definable functions induces an action on p-germs.

20 / 1



Germs

Definition
Let A ⊆ M̃, r and s be A-definable functions and p ∈ TPL̃(A) that contains
the domain of both r and s. The functions r and s are said to have the
same p-germ if for some c ⊧ p, r(c) = s(c).

Remark
▸ If r and s have the same p-germ, then for any c ⊧ p, r(c) = s(c),
▸ “Having the same p-germ” is an equivalence relation on A-definable
functions. We will write ∂pr for the class of all A-definable functions
having the same p-germ as r,

▸ If p is a definable type and we only consider the germs of a family of
uniformely defined functions rb, ∂prb is an imaginary,

▸ In any case, if p is Aut(M̃/A)-invariant, then the action of Aut(M̃/A)
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Controling germs

Hypothesis (iv)
For any A = acleq

L (A) ∩M and c ∈ dom(M), there exists an
Aut(M̃/A)-invariant type p̃ ∈ TPL̃(M̃) such that p̃∣M is consistent with
tpL(c/A).
Moreover, for any L̃(B)-definable function r:

(⋆) There exists a sequence (εi)i∈κ, with εi ∈ dclL̃(AB) such that any
σ ∈ Aut(M̃/A) fixes ∂p̃r iff σ fixes almost every εi.
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Rigidity of finite sets

Hypothesis (v)
For all A = acleq

L (A) ∩M and c ∈ dom(M), acleq
L (Ac) ∩M = dcleq

L (Ac) ∩M.
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The theorem

Theorem (EI/UFI Criterion)
If the hypotheses (i) to (iv) are true, then T eliminates imaginaries up to
uniform finite imaginaries.

Corollary (EI Criterion)
If the hypotheses (i) to (v) are true, then T eliminates imaginaries.
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p-adic imaginaries

Theorem
Let F be a finite extension ofQp, then the theory of F in the language LG

with a constant added for a generator of F ∩Qalg
overQ eliminates

imaginaries.
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p-adic imaginaries

Theorem
Let F be a finite extension ofQp, then the theory of F in the language LG

with a constant added for a generator of F ∩Qalg
overQ eliminates

imaginaries.

Proof.
It follows from the EI criterion.
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Theorem
Let L =∏Lp/U be an ultraproduct of finite extensions Lp ofQp. The
theory of L in the language LG -
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Uniformity

Theorem
Let L =∏Lp/U be an ultraproduct of finite extensions Lp ofQp. The
theory of L in the language LG -

with some added constants eliminates
imaginaries.

Proof.
The EI/UFI criterion applies in LG (and we reduce to LG -

in the same
manner). It remains to show that definable finite quotient are
represented, but one can show that they are internal to RV and that the
induced theory on RV eliminates imaginaries.
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Uniformity

Theorem
Let L =∏Lp/U be an ultraproduct of finite extensions Lp ofQp. The
theory of L in the language LG -

with some added constants eliminates
imaginaries.

Corollary
For any equivalence relation E on a set D definable in Lp uniformly in p,
there exists uniformly definable non-empty set X and function
f ∶ X ×D→ Sm × Kl such that for any prime p, and any a ∈ X(Lp), for all
x, y ∈ D(Lp), we have: f(a, x) = f(a, y) iff xEy.
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