Imaginaries in pseudo-*p*-adically closed fields Joint with Samaria Montenegro

Silvain Rideau

UC Berkeley

July 5 2017

Bounded pseudo-p-adically closed fields

Definition

- A valuation is *p*-adic if the residue field is \mathbb{F}_p and *p* has minimal positive valutation.
- A field extension $K \le L$ is *totally p-adic* if every *p*-adic valuation of *K* can be extended to a *p*-adic valuation of *L*.
- A field *K* is *pseudo-p-adically closed* if it is existentially closed (as a ring) in every regular totally *p*-adic extension.
- A field is *bounded* if it has finitely many extensions of any given degree.

Proposition (Montenegro)

Let *K* be a bounded pseudo-*p*-adically closed field. There are finitely many *p*-adic valuations on *K* and they are definable in the ring language.

The geometric language

Let (K, v) be a valued field.

Definition (Geometric sorts)

- We define $\mathbf{S}_n := \mathrm{GL}_n(K)/\mathrm{GL}_n(\mathcal{O})$ and $\mathbf{T}_n := \mathrm{GL}_n(K)/\mathrm{GL}_{n,n}(\mathcal{O})$.
- The *geometric language* $\mathcal{L}^{\mathcal{G}}$ has sorts \mathbf{F} , \mathbf{S}_n and \mathbf{T}_n for all $n \ge 1$. It also contains the ring language on \mathbf{F} , the canonical projections $s_n : \mathrm{GL}_n(\mathbf{F}) \to \mathbf{S}_n$ and $t_n : \mathrm{GL}_n(\mathbf{F}) \to \mathbf{T}_n$.

Remark

 $\mathbf{S}_1 \simeq \Gamma$ and s_1 can be identified with the valuation.

Theorem

- Algebraically closed valued fields eliminate imaginaries in L^G (HHM).
- \mathbb{Q}_p eliminates imaginaries in $\mathcal{L}^{\mathcal{G}}$ (HMR).

An orthogonality result

- Let *K* be a bounded pseudo-*p*-adically closed fields with *n p*-adic valuations $(v_i)_{i \le n}$.
- Let \mathcal{L}_i denote *n* copies of $\mathcal{L}^{\mathcal{G}}$, with sorts \mathcal{G}_i , sharing the sort **F**.
- Let $K_0 \leq K$, $\mathcal{L} = \bigcup_i \mathcal{L}_i \cup K_0$ and $T = \operatorname{Th}_{\mathcal{L}}(K)$.
- Let $M \models T$, \overline{M}_i be the algebraic closure of M with an extension of v_i and M_i be the *p*-adic closure of M inside \overline{M}_i

Remark

Let $U_i \neq \emptyset$ be v_i-open, then $\bigcap_i U_i \neq \emptyset$.

Proposition

Let $K_0 \subseteq A \subseteq \mathbf{F}(M)$ and $s_i, t_i \in \mathbf{S}_{i,n}(M)$. If

$$\forall i, s_i \equiv^{M_i}_{\mathcal{L}_i(A)} t_i$$

then

$$(s_i)_{i\leq n}\equiv^M_{\mathcal{L}(A)} (t_i)_{i\leq n}$$

A local density result

Let $A \subseteq M^{eq}$ containing $\bigcup_i \mathcal{G}_i(\operatorname{acl}_M^{eq}(A))$.

Proposition

Let $c \in \mathbf{F}(M)$. Then, for all *i*, there exists an $\mathcal{G}_i(A)$ -invariant $\mathcal{L}_i(\overline{M}_i)$ -type p_i such that $\operatorname{tp}_{\mathcal{L}}^M(c/A) \cup \bigcup_i p_i$ is consistent.

Proposition

Let $c \in \mathbf{F}(M)$ and $d \in \mathcal{G}_i(\operatorname{acl}_M^{\operatorname{eq}}(Ac))$ be some tuples. Assume $\operatorname{tp}_{\mathcal{L}_i}^{\overline{M}_i}(c/\overline{M}_i)$ is $\mathcal{G}_i(A)$ -invariant, then so is $\operatorname{tp}_{\mathcal{L}_i}^{\overline{M}_i}(d/\overline{M}_i)$.

Corollary

Let $c \in \mathbf{F}(M)$ be some tuple. Then, for all *i*, there exists a $\mathcal{G}_i(A)$ -invariant $\mathcal{L}_i(M_i)$ -type p_i such that $\operatorname{tp}_{\mathcal{L}}^M(c/A) \cup \bigcup_i p_i$ is consistent.

A criterion using amalgamation

- Let (L_i)_{i∈I} be languages, with sorts R_i, sharing a dominant sort D, and let L ⊇ ∪_i L_i.
- Let T_i be \mathcal{L}_i -theories and $T \supseteq \bigcup_i T_{i,\forall}$ be an \mathcal{L} -theory.
- Let $M \models T$ and $M \subseteq M_i \models T_i$ be sufficiently saturated and homogeneous.
- ▶ For all $C \le M^{\text{eq}}$ and all tuples $a, b \in \mathcal{D}(M)$, write $a \downarrow_C b$ if there are $\mathcal{R}_i(A)$ -invariant $\mathcal{L}_i(M_i)$ -types p_i with $a \models \bigcup_i p_i|_{\mathcal{R}_i(C)b}$.

Proposition

Assume:

- 1. for all $A = \operatorname{acl}_{M}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}}$ and tuple $c \in \mathcal{D}(M)$, there exists $d \equiv_{\mathcal{L}(A)}^{M} c$ with $d \downarrow_{A} M$;
- 2. For all $A = \operatorname{acl}_{M}(A) \subseteq M$ and $a, b, c \in \mathcal{D}(M)$ tuples, if $b \downarrow_{A} a, c \downarrow_{A} ab$, $a \equiv^{M}_{\mathcal{L}(A)} b$ and $ac \equiv^{M_{i}}_{\mathcal{L}_{i}(\mathcal{R}_{i}(A))} bc$, for all *i*, then there exists *d* such that $db \equiv^{M}_{\mathcal{L}(A)} da \equiv^{M}_{\mathcal{L}(A)} ca$.

Then T weakly eliminates imaginaries.

Amalgamation

In pseudo-*p*-adically closed fields, Condition 2 follows from a more general result:

Proposition

Let $M \models T, A \subseteq M$ and $a_1, a_2, c_1, c_2, c \in \mathbf{F}(M)$ be tuples. Assume $\overline{\mathbf{F}(A)}^a \cap M \subseteq A, \overline{\mathbf{F}(A)(a_1)}^a \cap \overline{\mathbf{F}(A)(a_2)}^a = \overline{\mathbf{F}(A)}^a, c \downarrow_A a_1a_2, c_1 \equiv^M_{\mathcal{L}(A)} c_2, c \equiv^{M_i}_{\mathcal{L}_i(Aa_1)} c_1 \text{ and } c \equiv_{\mathcal{L}_i(Aa_2)} c_2, \text{ for all } i. \text{ Then}$

$$\operatorname{tp}_{\mathcal{L}}^{M}(c_{1}/Aa_{1}) \cup \operatorname{tp}_{\mathcal{L}}^{M}(c_{2}/Aa_{2}) \cup \bigcup_{i} \operatorname{tp}_{\mathcal{L}}^{M_{i}}(c/Aa_{1}a_{2})$$

is satisfiable.

Remark

- If $A \subseteq \mathbf{F}$, this is an earlier result of Montenegro.
- The general result follows from the older version and the description of the structure on the geometric sorts given by the orthogonality result.

Theorem

The theory *T* eliminates imaginaries.

Remark

- Coding finite sets is not completely obvious.
- ▶ Since the valuations v_i are discrete, **T**_{i,n} is coded in **S**_{i,n+1}.
- Let $\mathcal{O} = \bigcap_i \mathcal{O}_i$. We have a bijection

$$\prod_{i} \mathbf{S}_{i,n} = \prod_{i} \mathrm{GL}_{n}(\mathbf{F})/\mathrm{GL}_{n}(\mathcal{O}_{i}) \simeq \mathrm{GL}_{n}(\mathbf{F})/\mathrm{GL}_{n}(\mathcal{O})$$