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Codes and Quotients

Definition (Code)
In some structureM, a set X definable (with parameters) is said to be
coded by some tuple a if there is a formula ϕ[x, y] such that

ϕ[M, a ′] = X(M) ⇐⇒ a ′ = a.

Definition (Representable quotient)
LetM be some structure, D be a definable set and E be a definable
equivalence relation on D. The quotient D/E is said to be representable in
M if there exists a definable function f with domain D such that

xEy ⇐⇒ f(x) = f(y).
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Eliminating imaginaries

Proposition
LetM be some structure with at least two constants, the following are
equivalent:

(i) Any subset ofM definable (with parameters) is coded,

(ii) Every quotient definable inM is representable.

A theory is said to eliminate imaginaries if every model of T verifies any of
the two statements in the previous proposition.

Example
▸ A non-example : infinite sets,
▸ An example : algebraically closed fields.
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Shelah’s construction

Definition
LetM be a L-structure, we define a new language Leq and a Leq-structure
Meq as follows:
▸ For any definable equivalence relation E on a product of L-sorts
∏i Si, we add to L a sort SE and a function fE ∶∏i Si → SE,

▸ InMeq, SE is interpreted as∏i Si(M)/E(M) and fE as the canonical
projection.

Proposition
Let T be a complete theory. The language Leq and the theory
Teq = Th(Meq) does not depend on the choice ofM ⊧ T.

Proposition
Let T be a complete theory. The theory Teq eliminates imaginaries.
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Shelah’s construction

Definition
LetM be a L-structure, we define a new language Leq and a Leq-structure
Meq as follows:
▸ For any definable equivalence relation E on a product of L-sorts
∏i Si, we add to L a sort SE and a function fE ∶∏i Si → SE,

▸ InMeq, SE is interpreted as∏i Si(M)/E(M) and fE as the canonical
projection.

Proposition
Let T be a complete theory. The following are equivalent:

(i) T eliminates imaginaries,

(ii) For all,M ⊧ T and e ∈Meq, there exists a tuple d ∈M such that:

d ∈ dcleq(e) and e ∈ dcleq(d).

5 / 35



Finite sets

Definition (Weak elimination of imaginaries)
A complete theory T weakly eliminates imaginaries if for allM ⊧ T and
e ∈Meq, there exists a tuple d ∈M such that:

d ∈ acleq(e) and e ∈ dcleq(d).

Example
Infinite sets weakly eliminate imaginaries.

Proposition
Suppose T has weak elimination of imaginaries and every finite set in
every model of T is coded, then T eliminates imaginaries.
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Finite imaginaries

Definition (EI/UFI)
A complete theory T eliminates imaginaries up to uniform finite
imaginaries if for allM ⊧ T and e ∈Meq, there exists a tuple d ∈M such
that:

d ∈ dcleq(e) and e ∈ acleq(d).

Proposition
Suppose T has EI/UFI and any finite quotient definable (with parameters)
in any model of T is representable, then T eliminates imaginaries.
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Some definitions

Definition
Let K be a field, a valuation on K is a map v from K⋆ to some abelian
ordered group Γ that satisfies the following axioms:

(i) v(xy) = v(x) + v(y),
(ii) v(x + y) ≥min{v(x), v(y)}

▸ We usually add a point∞ to Γ to denote v(0), greater than any other
point in Γ .

▸ The setO = {x ∈ K ∣ v(x) ≥ 0} is a ring, called the valuation ring of K.
▸ It has a unique maximal idealM = {x ∈ K ∣ v(x) > 0}.
▸ The residue fieldO /M will be denoted k.
▸ We will also be considering the group RV ∶= K⋆/(1 +M).
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Some examples

▸ Let p be a prime number, then we can define the p-adic valuation on
Q by taking vp(pna/b) = n whenever a ∧ b = a ∧ p = b ∧ p = 1,

▸ We will denote byQp, the field of p-adic numbers, the completion of
Q for the p-adic valuation. It is also a valued field,

▸ We will denote by ACVF the theory of algebraically closed valued
field (in some language to be specified).
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Imaginaries in valued fields

Remark
In the language of rings enriched with a predicate for v(x) ≤ v(y), the
quotient Γ = K⋆/O⋆ is not representable in any algebraically closed valued
field nor inQp

However, in the case of ACVF, Haskell, Hrushovski and Macpherson have
shown what imaginary sorts it suffices to add.
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The geometric sorts

Definition (The sorts Sn)
The elements of Sn are the freeO-module in Kn of rank n.

Definition (The sorts Tn)
The elements of Tn are of the form a +M s where s ∈ Sn and a ∈ s.

▸ We can give an alternative definition of these sorts, for example
Sn = GLn(K)/GLn(O),

▸ The geometric language LG is composed of the sorts K, Sn and Tn for
all n, with the ring language on K and functions ρn ∶ GLn(K)→ Sn
and τn ∶ Sn ×Kn → Tn.

▸ S1 can be identified with Γ and ρ1 with v,
▸ T1 can be identified with RV,
▸ The set of balls (open and closed, possibly with infinite radius) B can
be identified with a subset of K ∪ S2 ∪T2.
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The geometric sorts

Definition (The sorts Sn)
The elements of Sn are the freeO-module in Kn of rank n.

Definition (The sorts Tn)
The elements of Tn are of the form a +M s where s ∈ Sn and a ∈ s.

Theorem (Haskell, Hrushovski and Macpherson, 2006)

The LG-theory ACVF eliminates imaginaries.

Question
1. Are all imaginaries inQp coded in the geometric sorts or are there

new imaginaries in this theory?

2. Can these imaginairies be eliminated uniformly in p.
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A first example : real-closed fields

Example (Square roots)

Let K be a real closed field and K
alg

be its algebraic closure (both fields are
considered as ring language structures).
▸ Let a ∈ K, the function f ∶ x↦

√
x − a can be defined in K but not in

K
alg
,

▸ However, the 1-to-2 correspondance F = {(x, y) ∣ y2 = x − a} is
quantifier free definable both in K and K

alg
,

▸ F is the Zariski closure of the graph of f and f(x) can be defined (in K)
as the greatest y such that (x, y) ∈ F,

▸ In fact, f can be coded by the code of F in K
alg

(which is K).
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The general setting

▸ Let L̃ ⊆ L be two languages,
▸ Let T̃ be a L̃ theory that eliminates quantifiers and imaginaries,
▸ Let T be a L-theory such that T̃∀ ⊆ T.

Question
Under what hypotheses can we deduce that T eliminates imaginaries?

Let M̃ ⊧ T̃ andM ⊧ T such thatM ⊆ M̃. Let us fix some notations:
▸ Let A ⊆ M̃, we will write dclL̃(A) for the (quantifier-free) L̃-definable
closure in M̃,

▸ Let A ⊆Meq, we will write dcleqL (A) for the L
eq-definable closure in

Meq.

Similarly for acl, tp and TP.
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The specific cases

▸ The theory T̃ will be either ACVF0,0 or ACVF0,p, in LG .
▸ The theory T will be either :
[pC] The LG-theory of L a finite extension ofQp, with a constant added for

a generator of L ∩Qalg
.

[PL] The LG-theory of∏Lp/U where Lp is a finite extension ofQp and U is
a non principal ultrafilter on the set of primes, with constants added
for some (2-generated) subfield F verifying certain properties.

Remark
By Ax-Kochen-Ersov, the theories of [PL] are the completions of the
theory of equicharacteristic zero Henselian valued fields with a
pseudo-finite residue field and a Z-group as valuation group.
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Dominant sorts

Definition
In a theory, a set of sorts S will be called dominant if for any other sort S
of the language, there is a surjective ∅-definable function f ∶∏i Si → S
where the Si are in S.

Example
▸ The set consisting of all the sorts is dominant.
▸ The set of “real” sorts (i.e. the original sorts fromM) are dominant in
Meq,

▸ In a valued field in the geometric language, the sort K is dominant.

For any choice of theory T, we will suppose that a set of dominant sorts
has been chosen, and we will write dom(M) for the union of the
dominant sorts in any model of T.
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Algebraic boundedness

Hypothesis (i)
For allM1 ≼M and c ∈ dom(M), dcleqL (M1c) ∩M ⊆ aclL̃(M1c).

Proof.
[pC] Follows immediately from the fact that for all modelsM and

A ⊆ K(M), aclL̃(A)≼M.

[PL] A lot more technical.
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Coping with dclL̃(M)

Hypothesis (ii)

For all e ∈ dclL̃(M), there exists a tuple e
′ ∈M such that for all σ ∈ Aut(M̃)

with σ(M) =M, σ fixes e if and only if it fixes e ′.

Proposition
Hypothesis (ii) implies that finite sets are coded in T.

Proof.
It suffices to consider e ∈ Sn(dclL̃(M)). Such a lattice has a basis in some
finite extension L∣K(M). With the added constants,O(L) is generated
overO(M) by has an element a whose minimal polynomial is over the
prime field. Then the image of e(L) by the function∑ xiai ↦ (xi) will
work.

19 / 35



Unary imaginaries

Hypothesis (iii)

Any L(M)-definable unary set X ⊆ dom(M)1 is coded.

Proof.
We need a precise description of unary types.
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Germs

Definition
Let A ⊆ M̃, r and s be A-definable functions and p ∈ TPL̃(A) that contains
the domain of both r and s. The functions r and s are said to have the
same p-germ if for some c ⊧ p, r(c) = s(c).

Remark
▸ If r and s have the same p-germ, then for any c ⊧ p, r(c) = s(c),
▸ “Having the same p-germ” is an equivalence relation on A-definable
functions. We will write ∂pr for the class of all A-definable functions
having the same p-germ as r,

▸ If p is a definable type and we only consider the germs of a family of
uniformly defined functions rb, ∂prb is an imaginary,

▸ In any case, if p is Aut(M̃/A)-invariant, then the action of Aut(M̃/A)
on L̃(M̃)-definable functions induces an action on p-germs.
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Controlling germs

Hypothesis (iv)

For any A = acleqL (A) ∩M and c ∈ dom(M)1, there exists an
Aut(M̃/A)-invariant type p̃ ∈ TPL̃(M̃) such that p̃∣M is consistent with
tpL(c/A).
Moreover, for any L̃(B)-definable function r:

(⋆) There exists a sequence (εi)i∈κ, with εi ∈ dclL̃(AB) such that any
σ ∈ Aut(M̃/A) fixes ∂p̃r iff σ fixes almost every εi.

Proof.
We need a precise description of unary types.
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Rigidity of finite sets

Hypothesis (v)
For all A = acleqL (A) ∩M and c ∈ dom(M), acleqL (Ac) ∩M = dcl

eq
L (Ac) ∩M.

Proof.
[pC] Follows from the fact that the hypothesis is true for A ⊆ K, and that

for all e ∈M there is a tuple c ∈ K(M) such that e ∈ dcleqL (c) and
tpL(c/ acl

eq
L (c)) has an invariant extension.

[PL] False in some cases.
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The theorem

Theorem (EI/UFI Criterion)
If the hypotheses (i) to (iv) are true, then T eliminates imaginaries up to
uniform finite imaginaries.

Corollary (EI Criterion)
If the hypotheses (i) to (v) are true, then T eliminates imaginaries.
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Generic types

Definition
LetM be a valued field, A ⊆Meq, bi ∈ B(dcleqL (A)) be a decreasing sequence
of balls and P = ⋂i bi. We define :

qP∣A ∶= P(x) ∪ {x ∉ b ∣ b ∈ B(acleqL (A)), b ⊂ P}.

Any c ⊧ qP∣A will be said to be generic in P over A.

Remark
▸ If A = acleqL (A), any c ∈ K(M)

1 is generic over A in

⋂P(c,A) ∶= {b ∈ B(A) ∣ c ∈ b}.

▸ P is said to be strict if the sequence bi does not have a smallest
element. In the [pC] case, P(c,A) is strict.
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Relative completeness

Definition
Let p be a partial type over some parameters A and f = (fi) be a family of
A-definable functions. The type p is said to be complete relative to f if the
map tpL(c/A)↦ tpL(f(c)/A) is injective on the set of completions of p.
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Unary types in [pC]

Let rn be the canonical surjection K⋆ → K⋆/(K⋆)n.

Proposition
Let A ⊆Meq and P be a strict intersection of balls in B(dcleqL (A)), then :
▸ If there exists a ball a ∈ B(dcleqL (A)) such that a ⊂ P, then qP∣A is
complete relative to (v(x − a), rn(x − a) ∣ 2 ≥ n).

▸ If not, qP∣A is complete.

Proof.
If A ⊆ dcleqL (K(A)) then the proposition follows from quantifier
elimination. If not, findM0 ≼M such that Aeq ⊆Meq

0 and for any c ⊧ qP∣A
there exists c ′ ⊧ qP∣Meq

0 such that c ≡A c ′.
In the first case, anyM0 works, in the second, chooseM0 that omits P.

Remark
With the added constant, rn(M) ⊆ dcleqL (∅).
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Unary types in [PL] (strict case)

Proposition
Let A ⊆Meq and P be a strict intersection of balls in B(dcleqL (A)), then :
▸ If there exists a ball a ∈ B(dcleqL (A)) such that a ⊂ P, then qP∣A is
complete relative to rv(x − a).

▸ If not, qP∣A is complete.

Proof.
The same proof as previously works.
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Unary types in [PL] (closed ball case)

Let b ∈ B(dcleqL (A)) and γ be the radius of b. We define the following map
resb ∶ x↦ x + γM, the maximal open subball of b containing x.

Proposition
The type qb∣A is complete relative to resb.

Proof.
The same proof as previously works (except that the omission type
argument is not useful).

Corollary
▸ If there exists a ball a ∈ B(dcleqL (A)) such that a ⊂ b, then qb∣A is
complete relative to rv(x − a).

▸ If not, qb∣A is complete.
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Unary types in [PL] (closed ball case)

Let b ∈ B(dcleqL (A)) and γ be the radius of b. We define the following map
resb ∶ x↦ x + γM, the maximal open subball of b containing x.

Proposition
The type qb∣A is complete relative to resb.

Corollary
▸ If there exists a ball a ∈ B(dcleqL (A)) such that a ⊂ b, then qb∣A is
complete relative to rv(x − a).

▸ If not, qb∣A is complete.

Proof.
If c, c ′ ⊧ qb∣A, resb(c) = resb(c ′) if and only if rv(c − a) = rv(c ′ − a).
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Unary types in [PL] (closed ball case)

Let b ∈ B(dcleqL (A)) and γ be the radius of b. We define the following map
resb ∶ x↦ x + γM, the maximal open subball of b containing x.

Proposition
The type qb∣A is complete relative to resb.

Corollary
▸ If there exists a ball a ∈ B(dcleqL (A)) such that a ⊂ b, then qb∣A is
complete relative to rv(x − a).

▸ If not, qb∣A is complete.

Proof.
It suffices to show that a A-definable 1-dimensional affine space over k
with no dcleqL (A)-points is a complete type, but that is surprisingly
difficult.
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Unary Imaginaries

Proposition
In both cases, we have elimination of unary imaginaries.

Proof.
In the [PL] case we first have to show that the theory of the structure
induced on RV eliminates imaginaries. It then follows (in both cases) from
the description of unary types that for all A = acleqL (A) and c ∈ K(M)

1:

tpL(c/B) ⊢ tpL(c/A)

where B = B(A).
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Controlling germs

Hypothesis (iv)

For any A = acleqL (A) ∩M and c ∈ dom(M)1, there exists an
Aut(M̃/A)-invariant type p̃ ∈ TPL̃(M̃) such that p̃∣M is consistent with
tpL(c/A).
Moreover, for any L̃(B)-definable function r:

(⋆) There exists a sequence (εi)i∈κ, with εi ∈ dclL̃(AB) such that any
σ ∈ Aut(M̃/A) fixes ∂p̃r iff σ fixes almost every εi.

Proof.
Suppose c is generic in some P = ⋂ bi over A, then take p̃ to be the
ACVF-generic of P over M̃.
▸ If P is a closed ball, then p̃ is A-definable and hence the germs of
function on p̃ are imaginaries (which can be eliminated in ACVF).

▸ If P is strict, take εi to be the germ of r on the ACVF-generic of bi.
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p-adic imaginaries

Theorem
Let F be a finite extension ofQp, then the theory of F in the language LG

with a constant added for a generator of F ∩Qalg
overQ eliminates

imaginaries.

Proof.
It follows from the EI criterion.

Let LG -
be the language LG restricted to the sorts K and Sn.

Corollary

Let F be a finite extension ofQp, then the theory of F in the language LG -

with a constant added for a generator of F ∩Qalg
overQ eliminates

imaginaries.
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Uniformity

Theorem
Let L =∏Lp/U be an ultraproduct of finite extensions Lp ofQp. The
theory of L in the language LG -

with some added constants eliminates
imaginaries.

Proof.
The EI/UFI criterion applies in LG (and we reduce to LG -

in the same
manner). It remains to show that definable finite quotient are
represented, but one can show that they are internal to RV and, as we
already know, the induced theory on RV eliminates imaginaries.

Corollary
For any equivalence relation E on a set D definable in Lp uniformly in p,
there exists uniformly definable non-empty set X and function
f ∶ X ×D→ Sm × Kl such that for any prime p, and any a ∈ X(Lp), for all
x, y ∈ D(Lp), we have: f(a, x) = f(a, y) iff xEy.
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