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Codes and Quotients

Definition (Code)

In some structure M, a set X definable (with parameters) is said to be
coded by some tuple a if there is a formula ¢[x,y] such that

d[M,a'] =X(M) < a’' =a.

Definition (Representable quotient)

Let M be some structure, D be a definable set and E be a definable
equivalence relation on D. The quotient D/E is said to be representable in
M if there exists a definable function f with domain D such that

xBy < f(x) = f(7).




Eliminating imaginaries

Proposition
Let M be some structure with at least two constants, the following are
equivalent:

(i) Any subset of M definable (with parameters) is coded,

(ii) Every quotient definable in M is representable.

A theory is said to eliminate imaginaries if every model of T verifies any of
the two statements in the previous proposition.
Example

» Anon-example : infinite sets,

» An example : algebraically closed fields.




Shelah’s construction

Definition
Let M be a £L-structure, we define a new language £°¢ and a £%-structure
M*1 as follows:

» For any definable equivalence relation E on a product of £-sorts
I1; Si, we add to £ a sort Sg and a function fz : [; S; = Sk,

» In M9, Sg is interpreted as [; S;(M)/E(M) and fg as the canonical
projection.

Proposition

Let T be a complete theory. The language £°I and the theory
T*¢ = Th(M*®?) does not depend on the choice of M = T.

Proposition

Let T be a complete theory. The theory T4 eliminates imaginaries.




Shelah’s construction

Definition

Let M be a L-structure, we define a new language £°9 and a £%-structure
M*1 as follows:

» For any definable equivalence relation E on a product of £-sorts
[1; Si, we add to £ a sort Sy and a function fz : [[; S; = Sk,

» In MY, Sg is interpreted as [; S;(M)/E(M) and fg as the canonical
projection.

Proposition
Let T'be a complete theory. The following are equivalent:
(i) T eliminates imaginaries,
(ii) Forall, M = T and e € M®Y, there exists a tuple d € M such that:

d € dcld(e) and e € dcI*Y(d).




Finite sets

Definition (Weak elimination of imaginaries)

A complete theory T weakly eliminates imaginaries if for all M = T and
e € M9, there exists a tuple d € M such that:

d € acl®¥(e) and e € dcl*(d).

Example

Infinite sets weakly eliminate imaginaries.

Proposition

Suppose T has weak elimination of imaginaries and every finite set in
every model of T is coded, then T eliminates imaginaries.




Finite imaginaries

Definition (E1/UFI)

A complete theory T eliminates imaginaries up to uniform finite
imaginaries if for all M = T and e € M®9, there exists a tuple d € M such
that:

d € dcl®¥(e) and e € acl®d(d).

Proposition

Suppose T has E1/UFI and any finite quotient definable (with parameters)
in any model of T is representable, then T eliminates imaginaries.
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Some definitions

Definition

Let K be a field, a valuation on K is a map v from K* to some abelian
ordered group T that satisfies the following axioms:

(i) v(xp) = v(x) +v(y),
(i) v(x +y) > min{v(x),v(y)}

» We usually add a point oo to I" to denote v(0), greater than any other
pointinT.

» Theset O = {x € K| v(x) > 0} is a ring, called the valuation ring of K.
» It has a unique maximal ideal 0T = {x € K| v(x) > 0}.

» The residue field O / 91 will be denoted k.

» We will also be considering the group RV := K* /(1 + 9t).



Some examples

» Let p be a prime number, then we can define the p-adic valuation on
Q by taking v,(p"a/b) = n wheneveranb=aAp=bAp=1,

> We will denote by Q,, the field of p-adic numbers, the completion of
Q for the p-adic valuation. It is also a valued field,

» We will denote by ACVF the theory of algebraically closed valued
field (in some language to be specified).



Imaginaries in valued fields

Remark

In the language of rings enriched with a predicate for v(x) < v(y), the
quotient I' = K*/ O™ is not representable in any algebraically closed valued
field norin Q,

However, in the case of ACVF, Haskell, Hrushovski and Macpherson have
shown what imaginary sorts it suffices to add.



The geometric sorts

Definition (The sorts S,,)

The elements of S,, are the free O-module in K" of rank n.

Definition (The sorts T),)

The elements of T, are of the form a + 9ts wheres € S, and a € s.

v

We can give an alternative definition of these sorts, for example

Sn = GLn(K)/ GLn(O),

The geometric language L9 is composed of the sorts K, S, and T, for
all n, with the ring language on K and functions p, : GL,(K) - S,
and T, : S, xK" — T,,.

S; can be identified with T" and p; with v,

T; can be identified with RV,

The set of balls (open and closed, possibly with infinite radius) B can
be identified with a subset of Ku S, uT;.



The geometric sorts

Definition (The sorts S,,)

The elements of S,, are the free O-module in K" of rank n.

Definition (The sorts T},)

The elements of T, are of the form a + 9ts wheres €S, and a € s.

Theorem (Haskell, Hrushovski and Macpherson, 2000)

The £9-theory ACVF eliminates imaginaries.

Question

1. Are all imaginaries in Q, coded in the geometric sorts or are there
new imaginaries in this theory?

2. Can these imaginairies be eliminated uniformly in p.
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A first example : real-closed fields

Example (Square roots)

Let K be a real closed field and K**® be its algebraic closure (both fields are
considered as ring language structures).

» Leta € K, the function f: x » \/x — a can be defined in K but not in
K

» However, the 1-to-2 correspondance F = {(x,y) | y* = x —a} is
quantifier free definable both in K and ?lg,

» Fis the Zariski closure of the graph of fand f(x) can be defined (in K)
as the greatest y such that (x,y) € F,

» In fact, f can be coded by the code of F in Ealg (which is K).




The general setting

» Let £ ¢ £ be two languages,
» Let Tbe a £ theory that eliminates quantifiers and imaginaries,
» Let Tbe a L-theory such that Ty, ¢ T.

Question

Under what hypotheses can we deduce that T eliminates imaginaries?

Let M £ Tand M E T such that M € M. Let us fix some notations:

» Let A ¢ M, we will write dclz(A) for the (quantifier-free) £-definable
closure in M,
» Let A ¢ M9, we will write dcl7!(A) for the £°9-definable closure in
M*ea.
Similarly for acl, tp and TP.



The specific cases

» The theory T will be either ACVFg g or ACVF p, in L9,
» The theory T will be either :
[pC] The L9 -theory of L a finite extension of Q,, with a constant added for
a generator of L N @alg.
[PL] The £9-theory of [] L,/ U where L, is a finite extension of Q,and U is

anon principal ultrafilter on the set of primes, with constants added
for some (2-generated) subfield F verifying certain properties.

Remark

By Ax-Kochen-Ersov, the theories of [PL] are the completions of the
theory of equicharacteristic zero Henselian valued fields with a
pseudo-finite residue field and a Z-group as valuation group.




Dominant sorts

Definition

In a theory, a set of sorts S will be called dominant if for any other sort S
of the language, there is a surjective @-definable function f: [; S; - S
where the S; are in S.

Example

» The set consisting of all the sorts is dominant.
» The set of “real” sorts (i.e. the original sorts from M) are dominant in
Me9,

» In a valued field in the geometric language, the sort K is dominant.

For any choice of theory T, we will suppose that a set of dominant sorts
has been chosen, and we will write dom(M) for the union of the
dominant sorts in any model of 7.



Algebraic boundedness

Hypothesis (i)
For all M; <M and ¢ € dom(M), dcl7(Mic) n M < aclz(M;c).

Proof.

[pC] Follows immediately from the fact that for all models M and
A c K(M),aclz(A) <M.
[PL] Alot more technical.




Coping with dclz(M)

Hypothesis (ii)

For all e € dclz (M), there exists a tuple e’ € M such that for all o € Aut(M)
with 0(M) = M, o fixes e if and only if it fixes e'.

v

Proposition
Hypothesis (ii) implies that finite sets are coded in T.

Proof.

It suffices to consider e € S,,(dclz(M)). Such a lattice has a basis in some
finite extension L|K(M). With the added constants, O(L) is generated
over O(M) by has an element a whose minimal polynomial is over the
prime field. Then the image of e(L) by the function ¥ x;a’ = (x;) will
work. O

v




Unary imaginaries

Hypothesis (iii)
Any £(M)-definable unary set X ¢ dom(M)! is coded.

Proof.
We need a precise description of unary types. O

20/35



Germs

Definition

Let A € M, r and s be A-definable functions and p € TPz(A) that contains
the domain of both r and s. The functions r and s are said to have the
same p-germ if for some c = p, r(c) = s(c).

Remark
» If r and s have the same p-germ, then for any c  p, r(c) = s(c),

» “Having the same p-germ” is an equivalence relation on A-definable
functions. We will write 0,7 for the class of all A-definable functions
having the same p-germ as r,

» 1f p is a definable type and we only consider the germs of a family of
uniformly defined functions r;, 9,7, is an imaginary,

> Inany case, if p is Aut(M/A)-invariant, then the action of Aut(M/A)
on L£(M)-definable functions induces an action on p-germs.




Controlling germs

Hypothesis (iv)
For any A = acl}/(A) n M and ¢ e dom(M)", there exists an

Aut(M/A)-invariant type p € TPz (M) such that p|M is consistent with

tp,(c/A). _
Moreover, for any £(B)-definable function r:

(*) There exists a sequence (&;)ic«, With ¢; € dclz(AB) such that any
o € Aut(M/A) fixes d5r iff o fixes almost every €;.

Proof.

We need a precise description of unary types.




Rigidity of finite sets

Hypothesis (v)
For all A = acl}(A) n M and ¢ € dom(M), acl}(Ac) "M = dcl/(Ac) n M.

Proof.

[pC] Follows from the fact that the hypothesis is true for A ¢ K, and that
for all e € M there is a tuple ¢ € K(M) such that e € dcl;(c) and
tp,(c/acl;(c)) has an invariant extension.

[PL] False in some cases.




The theorem

Theorem (E1/UFI Criterion)

If the hypotheses (i) to (iv) are true, then T eliminates imaginaries up to
uniform finite imaginaries.

Corollary (EI Criterion)

If the hypotheses (i) to (v) are true, then T eliminates imaginaries.

24/35
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Generic types

Definition

Let M be a valued field, A ¢ M, b; € B(dcl/(A)) be a decreasing sequence
of balls and P = N; b;. We define :

gr|A:=P(x) U{x ¢ b|b e B(acl(A)),bc P}.

Any c = gp|A will be said to be generic in P over A.

Remark
» If A = acl}/(A), any c € K(M)' is generic over A in
(P(c,A) :={beB(A) |ceb}.

» Pis said to be strict if the sequence b; does not have a smallest
element. In the [p C] case, P(c,A) is strict.




Relative completeness

Definition

Let p be a partial type over some parameters A and f = (f;) be a family of
A-definable functions. The type p is said to be complete relative to fif the
map tp . (c/A) — tp,(f(c)/A) is injective on the set of completions of p.




Unary types in [p C]
Let r,, be the canonical surjection K* — K*/(K*)".

Proposition

Let A ¢ M*@ and P be a strict intersection of balls in B(dcl(A)), then :

» If there exists a ball a € B(dcl?(A)) such thata c P, then gp|A is
complete relative to (v(x — a),r,(x —a) | 2 > n).

» 1f not, gp|A is complete.

Proof.

If A ¢ dcl(K(A)) then the proposition follows from quantifier
elimination. If not, find Mo < M such that A% ¢ M and for any ¢ = gp|A
there exists ¢’ = gp|M,,’ such thatc =4 ¢’.

In the first case, any M works, in the second, choose M, that omits P. [

V.

Remark
With the added constant, r,(M) < dcl/(2).




Unary types in [PL] (strict case)

Proposition

Let A ¢ M* and P be a strict intersection of balls in B(dcl(A)), then :

» If there exists a ball a € B(dcl7(A)) such thata c P, then gp|A is
complete relative to rv(x — a).

» 1f not, gp|A is complete.

Proof.

The same proof as previously works.




Unary types in [PL] (closed ball case)

Let b € B(dcl7(A)) and vy be the radius of b. We define the following map
resy : x = X +yM, the maximal open subball of b containing x.

Proposition

The type gp|A is complete relative to res;,.

Proof.

The same proof as previously works (except that the omission type

argument is not useful). O




Unary types in [PL] (closed ball case)

Let b € B(dcl7(A)) and vy be the radius of b. We define the following map
resy : x = X +yM, the maximal open subball of b containing x.

Proposition

The type gp|A is complete relative to res;,.

Corollary

> If there exists a ball a € B(dcl?(A)) such thata c b, then g,|A is
complete relative to rv(x — a).

Proof.
If ¢, ¢’ E gp|A, resy(c) = resy(c¢”) if and only if rv(c — a) = rv(c’ - a). O




Unary types in [PL] (closed ball case)

Let b € B(dcl7(A)) and vy be the radius of b. We define the following map
resy : x = X +yM, the maximal open subball of b containing x.

Proposition

The type gp|A is complete relative to res;,.

Corollary

> If there exists a ball a € B(dcl?(A)) such thata c b, then g,|A is
complete relative to rv(x — a).

» 1f not, gp|A is complete.

Proof.

It suffices to show that a A-definable 1-dimensional affine space over k
with no dcl/(A)-points is a complete type, but that is surprisingly

difficult. O




Unary Imaginaries

Proposition

In both cases, we have elimination of unary imaginaries.

Proof.

In the [PL] case we first have to show that the theory of the structure
induced on RV eliminates imaginaries. It then follows (in both cases) from
the description of unary types that for all A = acl;'(A) and c € K(M)*:

tp.(c/B) - tp,(c/A)

where B = B(A). O




Controlling germs

Hypothesis (iv)

For any A = acl}/(A) n M and c € dom(M)?, there exists an
Aut(M/A)-invariant type p € TPz (M) such that p|M is consistent with
tp,(c/A). N

Moreover, for any £(B)-definable function r:

(x) There exists a sequence (&;)ex, with €; € dclz(AB) such that any
o € Aut(M/A) fixes opr iff o fixes almost every &;.

Proof.

Suppose c is generic in some P = (b; over A, then take p to be the
ACVEF-generic of P over M.

» 1f Pis a closed ball, then p is A-definable and hence the germs of
function on p are imaginaries (which can be eliminated in ACVF).

» 1f P is strict, take ¢; to be the germ of r on the ACVF-generic of b;. [
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p-adic imaginaries

Theorem
Let F be a finite extension of Q,,, then the theory of F in the language g

. —al, ..
with a constant added for a generator of Fn Q & over Q eliminates
imaginaries.

Proof.

It follows from the El criterion. |

Let £9 be the language L restricted to the sorts K and S,

Corollary

Let F be a finite extension of Q,,, then the theory of F in the language £Y

. —al ..
with a constant added for a generator of Fn Qa £ over Q eliminates
imaginaries.




Uniformity

Theorem
Let L = [T L, /U be an ultraproduct of finite extensions L, of Q,. The

theory of L in the language £9 with some added constants eliminates
imaginaries.

Proof.

The EI/UFI criterion applies in £9 (and we reduce to £9” in the same
manner). It remains to show that definable finite quotient are
represented, but one can show that they are internal to RV and, as we
already know, the induced theory on RV eliminates imaginaries.

O

Corollary

For any equivalence relation E on a set D definable in L, uniformly in p,
there exists uniformly definable non-empty set X and function
f:XxD — S, x K such that for any prime p, and any a € X(L,), for all
x,y € D(Lp), we have: f(a,x) = f(a,y) iff xEy.
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