Asymptotic imaginaries in $(\mathbb{F}_p((t))^{\text{alg}}, \mathbf{v}, \phi_p)$ joint with Martin Hils

Silvain Rideau-Kikuchi

CNRS, IMJ-PRG, Université de Paris

June 24 2020

What is your name?

Definition

A valuation on a field *K* is a group morphism $v : K^{\times} \to \Gamma$, where $(\Gamma, +, <)$ is an ordered Abelian group such that:

• for all $x, y \in K$, $v(x + y) \ge \min\{v(x), v(y)\}$.

We often denote $\mathbf{v}(0)=\infty>\Gamma.$

We write:

•
$$\mathcal{O} := \{x \in K \mid v(x) \ge 0\};$$

• $\mathfrak{m} := \{x \in K \mid v(x) > 0\};$
• $k := \mathcal{O}/\mathfrak{m}$

Example

- ► *k*(*t*) with the degree of the root/pole at 0;
- ▶ its completion k((t));
- more generally, the Hahn series field $k((\Gamma))$.

What is your quest?

Let *M* be an \mathcal{L} -structure and $X \subseteq Y \times Z$ be \mathcal{L} -definable. • We wish to understand:

 $\{X_y \mid y \in Y\}$

where $X_y := \{z \in Z \mid (y, z) \in X\}.$

▶ In other words, we wish to describe *Y*/*E* where:

$$y_1Ey_2 \iff \forall z (y_1, z) \in X \leftrightarrow (y_2, z) \in X.$$

In practice, we are looking for an *L*-definable *f* : *Y* → *W* such that:

$$y_1 E y_2 \iff f(y_1) = f(y_2).$$

Then *f* induces an embedding:

$$Y/E \to W.$$

▶ If such an *f* always exists, we say that *T* eliminates imaginaries.

What is the air speed velocity of an unladen swallow?

The structure $(\mathbb{F}_p((t))^{\text{alg}}, \mathbf{v}, \phi_p)$ is a definable expansion of $\text{ACVF}_{p,p}$.

- ► S_n := GL_n(K)/GL_n(O), the moduli space of free rank n O-submodules of Kⁿ;
- ► $T_n := \bigsqcup_{s \in S_n} s/\mathfrak{m}s$, a family of *n*-dimensional *k*-vector spaces.

Theorem (Haskell-Hrushovski-Macpherson, 2006) ACVF eliminates imaginaries up to $\mathcal{G} := K \cup \bigcup_n (S_n \cup T_n)$.

Question What can we say as *p* goes to infinity?

Let ${\mathcal F}$ be an non principal ultrafilter on the set of primes.

$$\prod_{p \to \mathcal{F}} (\mathbb{F}_p((t))^{\mathrm{alg}}, \mathbf{v}) \models \mathrm{ACVF}_{0,0}.$$

An African or European swallow?

Let $(K, \mathbf{v}, \sigma) := \prod_{p \to \mathcal{F}} (\mathbb{F}_p((t))^{\text{alg}}, \mathbf{v}, \phi_p).$

- Its residue field is $(k, \sigma_k) := \prod_{p \to \mathcal{F}} (\mathbb{F}_p^{\text{alg}}, \phi_p);$
- Its value group is $(\Gamma, \sigma_{\Gamma}) := \prod_{p \to \mathcal{F}} (\mathbb{Q}, p)$

Theorem (Durhan/Azgin, 2010) $(K, \mathbf{v}, \sigma) \equiv (k((t^{\Gamma})), \mathbf{v}, \sigma)$ where $\sigma(\sum_{\gamma \in \Gamma} c_{\gamma} t^{\gamma}) := \sum_{\gamma \in \Gamma} \sigma_k(c_{\gamma}) t^{\sigma_{\Gamma}(\gamma)}$.

• $(\Gamma, \sigma_{\Gamma})$ is an ω -increasing, torsion free, divisible $\mathbb{Z}[\sigma_{\Gamma}]$ -module.

Theorem (Hrushovski)

 $(k, \sigma_k) \models ACFA_0.$

And that is how we know the Earth to be banana-shaped.

Let $\text{RV} = K^{\times}/1 + \mathfrak{m}$, \mathcal{L}_{RV} be the language with sorts *K* and RV.

Definition

Let VFA_0 be the common theory of non principal ultraproducts:

$$\prod_{p \to \mathcal{F}} (\mathbb{F}_p((t))^{\mathrm{alg}}, \mathbf{v}, \phi_p)$$

in
$$\mathcal{L} := \mathcal{L}_{\mathrm{RV}} \cup \{\sigma, \sigma_{\mathrm{RV}}\}.$$

Theorem (Pal, 2012) VFA₀ eliminates field quantifiers.

```
Theorem (Hils-RK.)
```

VFA₀ eliminates imaginaries up to \mathcal{G} .

One...

Let *T* be an enrichment of ACVF, $M \models T$ be sufficiently large and *X* be (strict pro-) $\mathcal{L}(M)$ -definable. We define:

•
$$\mathfrak{A} := {\operatorname{aut}(M) \mid \sigma(X) = X};$$

• $E := \{ e \in \mathcal{G}(M) \mid \mathfrak{A} \cdot e \text{ is finite} \}.$

Let tp_0 denote the type in the underlying ACVF-reduct.

Proposition (RK., 2015)

Assume that *k* and Γ eliminate \exists^{∞} in their full induced structure. Then, there exists $a \in X$ in some elementary extension, with $tp_0(a/M) \mathcal{L}(E)$ -definable.

In VFA₀:

- Γ is stably embedded *o*-minimal;
- ▶ *k* is a stably embedded pure model of ACFA₀.

Two...

Let
$$M \models VFA_0, E \subseteq \mathcal{G}(A)$$
 and $a \in N \succcurlyeq M$ a tuple.
Let $\nabla(a) := (\sigma^n(a))_{n>0}$.

Theorem (Field quantifier elimination)

Let $\rho(a) \subseteq \operatorname{dcl}_0(K\nabla(a))$ with $\operatorname{rv}(K(\nabla(a))) \subseteq \operatorname{dcl}_0(K\rho(a))$. Then

 $\mathrm{tp}_0(\nabla(a)/K) \cup \mathrm{tp}(\rho(a)/K) \vdash \mathrm{tp}(a/K).$

Assume tp₀($\nabla(a)/K$) is $\mathcal{L}(E)$ -definable.

► Let $\operatorname{Lin}_E := \bigsqcup_{s \in S(E)} s/\mathfrak{m}s$ and $\operatorname{D}_E := E \cup \operatorname{RV} \cup \operatorname{Lin}_E$.

Proposition

There exists a tuple $\rho(a) \in D_E(\operatorname{dcl}_0(K\nabla(a)))$, whose germ is $\operatorname{aut}(K/E)$ -invariant, such that $\operatorname{rv}(K(\nabla(a))) \subseteq \operatorname{dcl}_0(D_E(K)\rho(a))$.

Corollary

The type tp(a/K) is $aut(K/D_E(K))$ -invariant.

Five!

► Lin_{*E*} is a family of *k*-vector spaces and for every $s \in E$, an isomorphism $\sigma_s : s/\mathfrak{m}s \to \sigma(s)/\mathfrak{m}\sigma(s)$.

Proposition (adapted from Hrushovski, 2012) Lin_{*E*} eliminates imaginaries.

 RV is a short exact sequence of Z[σ]-modules with an enriched kernel.

Proposition

- The structure RV eliminates imaginaries relative to $RV \cup \Gamma$.
- The structure D_E eliminates imaginaries relative to $D_E \cup \Gamma$.

Theorem

VFA₀ eliminates imaginaries up to \mathcal{G} .

Fetchez la vache!