Prolongations in valued fields

Silvain Rideau

UC Berkeley

September 13, 2017

We want to study (quantifier free) definable sets in (existentially closed):

We want to study (quantifier free) definable sets in (existentially closed): $VDF_{\mathcal{EC}}$ Equicharacteristic zero valued fields with a contractive derivation: for all $x \in K$, $v(\partial(x)) \ge v(x)$.

We want to study (quantifier free) definable sets in (existentially closed): $VDF_{\mathcal{EC}}$ Equicharacteristic zero valued fields with a contractive derivation: for all $x \in K$, $v(\partial(x)) \ge v(x)$. E.g.

$$k((t^{\Gamma}))$$
 with $\partial(\sum_{\gamma} c_{\gamma} t^{\gamma}) = \sum_{\gamma} \partial_k(c_{\gamma}) t^{\gamma}$,

where $(k, \partial_k) \models \text{DCF}_0$ and Γ is divisible.

We want to study (quantifier free) definable sets in (existentially closed): $VDF_{\mathcal{EC}}$ Equicharacteristic zero valued fields with a contractive derivation: for all $x \in K$, $v(\partial(x)) \ge v(x)$. E.g.

$$k((t^{\Gamma}))$$
 with $\partial(\sum_{\gamma} c_{\gamma} t^{\gamma}) = \sum_{\gamma} \partial_k(c_{\gamma}) t^{\gamma}$,

where $(k, \partial_k) \models \text{DCF}_0$ and Γ is divisible.

 $SCVH_{p,e}$ Characteristic *p* valued fields with *e* commuting Hasse derivations.

We want to study (quantifier free) definable sets in (existentially closed): $VDF_{\mathcal{EC}}$ Equicharacteristic zero valued fields with a contractive derivation: for all $x \in K$, $v(\partial(x)) \ge v(x)$. E.g.

$$k((t^{\Gamma}))$$
 with $\partial(\sum_{\gamma} c_{\gamma} t^{\gamma}) = \sum_{\gamma} \partial_k(c_{\gamma}) t^{\gamma}$,

where $(k, \partial_k) \models \text{DCF}_0$ and Γ is divisible.

SCVH_{*p,e*} Characteristic *p* valued fields with *e* commuting Hasse derivations. VFA₀ Equicharacteristic zero valued field with an ω -increasing automorphism: for all $x \in \mathcal{O}$ and $n \in \mathbb{Z}_{>0}$, $v(\sigma(x)) \ge n \cdot v(x)$.

We want to study (quantifier free) definable sets in (existentially closed): $VDF_{\mathcal{EC}}$ Equicharacteristic zero valued fields with a contractive derivation: for all $x \in K$, $v(\partial(x)) \ge v(x)$. E.g.

$$k((t^{\Gamma}))$$
 with $\partial(\sum_{\gamma} c_{\gamma} t^{\gamma}) = \sum_{\gamma} \partial_k(c_{\gamma}) t^{\gamma}$,

where $(k, \partial_k) \models \text{DCF}_0$ and Γ is divisible.

SCVH_{*p*,*e*} Characteristic *p* valued fields with *e* commuting Hasse derivations. VFA₀ Equicharacteristic zero valued field with an ω -increasing automorphism: for all $x \in \mathcal{O}$ and $n \in \mathbb{Z}_{\geq 0}$, $v(\sigma(x)) \ge n \cdot v(x)$. E.g.

$$k((t^{\Gamma}))$$
 with $\sigma(\sum_{\gamma} c_{\gamma} t^{\gamma}) = \sum_{\gamma} \sigma_k(c_{\gamma}) t^{\sigma_{\Gamma}(\gamma)},$

where $(k, \sigma_k) \models ACVA_0$, Γ is divible and σ_{Γ} is ω -increasing,

We want to study (quantifier free) definable sets in (existentially closed): $VDF_{\mathcal{EC}}$ Equicharacteristic zero valued fields with a contractive derivation: for all $x \in K$, $v(\partial(x)) \ge v(x)$. E.g.

$$k((t^{\Gamma}))$$
 with $\partial(\sum_{\gamma} c_{\gamma} t^{\gamma}) = \sum_{\gamma} \partial_k(c_{\gamma}) t^{\gamma}$,

where $(k, \partial_k) \models \text{DCF}_0$ and Γ is divisible.

SCVH_{*p*,*e*} Characteristic *p* valued fields with *e* commuting Hasse derivations. VFA₀ Equicharacteristic zero valued field with an ω -increasing automorphism: for all $x \in \mathcal{O}$ and $n \in \mathbb{Z}_{\geq 0}$, $v(\sigma(x)) \ge n \cdot v(x)$. E.g.

$$k((t^{\Gamma}))$$
 with $\sigma(\sum_{\gamma} c_{\gamma} t^{\gamma}) = \sum_{\gamma} \sigma_k(c_{\gamma}) t^{\sigma_{\Gamma}(\gamma)},$

where $(k, \sigma_k) \models ACVA_0$, Γ is divible and σ_{Γ} is ω -increasing, or:

$$\prod_{p \to \mathfrak{U}} (\overline{\mathbb{F}_p(t)}, \mathbf{v}_t, \phi_p)$$

where \mathfrak{U} is a non-principal ultrafilter on the set of primes.

Let $(K, \partial) \models \text{DCF}_0$.

Let $(K, \partial) \models \text{DCF}_0$.

• Let *V* be an affine ∂ -variety over *K*. We define $\mathcal{D}_n(x) := (x, \dots, \partial^n(x))$,

$$V_n = \overline{\{\mathcal{D}_n(x) : x \in V\}}^{\operatorname{Zar}} \text{ and } V_\omega := \varprojlim_n V_n.$$

Let $(K, \partial) \models \text{DCF}_0$.

• Let *V* be an affine ∂ -variety over *K*. We define $\mathcal{D}_n(x) := (x, \dots, \partial^n(x))$,

$$V_n = \overline{\{\mathcal{D}_n(x) : x \in V\}}^{\operatorname{Zar}} \text{ and } V_\omega := \varprojlim_n V_n.$$

• The ∂ -variety *V* is completely determined by the pro-algebraic variety V_{ω} .

Let $(K, \partial) \models \text{DCF}_0$.

• Let *V* be an affine ∂ -variety over *K*. We define $\mathcal{D}_n(x) \coloneqq (x, \dots, \partial^n(x))$,

$$V_n = \overline{\{\mathcal{D}_n(x) : x \in V\}}^{\operatorname{Zar}} \text{ and } V_\omega := \varprojlim_n V_n.$$

- The ∂ -variety *V* is completely determined by the pro-algebraic variety V_{ω} .
- V_{ω} can be identified with the ideal:

$$\{P \in K[\overline{X}] : \forall x \in V, P(\mathcal{D}_n(x)) = 0\} \subseteq K[X_i : i \ge 0],$$

Let $(K, \partial) \models \text{DCF}_0$.

• Let *V* be an affine ∂ -variety over *K*. We define $\mathcal{D}_n(x) := (x, \dots, \partial^n(x))$,

$$V_n = \overline{\{\mathcal{D}_n(x) : x \in V\}}^{\operatorname{Zar}} \text{ and } V_\omega := \varprojlim_n V_n.$$

- The ∂-variety V is completely determined by the pro-algebraic variety V_ω.
- V_{ω} can be identified with the ideal:

$$\{P \in K[\overline{X}] : \forall x \in V, \ P(\mathcal{D}_n(x)) = 0\} \subseteq K[X_i : i \ge 0],$$

or, when *V* is irreducible, with the complete type in $\mathcal{L}_{rg} = \{+, -, \cdot, 0, 1\}$ over *K*:

$$p_{\omega} := \{P(\mathcal{D}_n(x)) = 0 : P \in I\} \cup \{P(\mathcal{D}_n(x)) \neq 0 : P \notin I\}.$$

Let (K, v, D) be a valued field with operators D.

Let (K, v, D) be a valued field with operators D. Let $\mathcal{L} := \{+, -, \cdot, 0, 1, |\}$ be the language of valued fields and $\mathcal{L}_D := \mathcal{L} \cup D$.

Let (K, v, D) be a valued field with operators D. Let $\mathcal{L} := \{+, -, \cdot, 0, 1, |\}$ be the language of valued fields and $\mathcal{L}_D := \mathcal{L} \cup D$.

• Let \mathcal{D}_{ω} denote all possible compositions of the operators.

Let (K, v, D) be a valued field with operators D. Let $\mathcal{L} := \{+, -, \cdot, 0, 1, |\}$ be the language of valued fields and $\mathcal{L}_D := \mathcal{L} \cup D$.

- Let \mathcal{D}_{ω} denote all possible compositions of the operators.
- For all complete $\mathcal{L}_{\mathcal{D}}$ -type p(x) over K we define:

$$p_{\omega} = \{ \phi(\overline{x}) \mathcal{L} - \text{formula} : \phi(\mathcal{D}_{\omega}(x)) \in p \}.$$

Let (K, v, D) be a valued field with operators D. Let $\mathcal{L} := \{+, -, \cdot, 0, 1, |\}$ be the language of valued fields and $\mathcal{L}_D := \mathcal{L} \cup D$.

- Let \mathcal{D}_{ω} denote all possible compositions of the operators.
- For all complete $\mathcal{L}_{\mathcal{D}}$ -type p(x) over K we define:

$$p_{\omega} = \{\phi(\overline{x}) \mathcal{L} - \text{formula} : \phi(\mathcal{D}_{\omega}(x)) \in p\}.$$

 $VDF_{\mathcal{EC}}$ The map $p \mapsto p_{\omega}$ is injective. This is Scanlon's elimination of quantifiers.

Let (K, v, D) be a valued field with operators D. Let $\mathcal{L} := \{+, -, \cdot, 0, 1, |\}$ be the language of valued fields and $\mathcal{L}_D := \mathcal{L} \cup D$.

- Let \mathcal{D}_{ω} denote all possible compositions of the operators.
- For all complete $\mathcal{L}_{\mathcal{D}}$ -type p(x) over K we define:

 $p_{\omega} = \{ \phi(\overline{x}) \mathcal{L} - \text{formula} : \phi(\mathcal{D}_{\omega}(x)) \in p \}.$

- $VDF_{\mathcal{EC}}$ The map $p \mapsto p_{\omega}$ is injective. This is Scanlon's elimination of quantifiers.
- $\text{SCVH}_{p,e}$ The type p_{ω} has a unique extension to a complete type over \overline{K} . The map $p \mapsto p_{\omega}$ is injective. This is Delon's elimination of quantifiers.

Let (K, v, D) be a valued field with operators D. Let $\mathcal{L} := \{+, -, \cdot, 0, 1, |\}$ be the language of valued fields and $\mathcal{L}_D := \mathcal{L} \cup D$.

- Let \mathcal{D}_{ω} denote all possible compositions of the operators.
- For all complete $\mathcal{L}_{\mathcal{D}}$ -type p(x) over K we define:

 $p_{\omega} = \{ \phi(\overline{x}) \mathcal{L} - \text{formula} : \phi(\mathcal{D}_{\omega}(x)) \in p \}.$

- $VDF_{\mathcal{EC}}$ The map $p \mapsto p_{\omega}$ is injective. This is Scanlon's elimination of quantifiers.
- $SCVH_{p,e}$ The type p_{ω} has a unique extension to a complete type over \overline{K} . The map $p \mapsto p_{\omega}$ is injective. This is Delon's elimination of quantifiers.
 - VFA₀ The map $p \mapsto p_{\omega}$ is not injective. Indeed the corresponding map on the residue field is not.

• Let $K = \overline{K}$, p(x) a complete type in \mathcal{L}_{rg} over K, $I = \{P : "P(x) = 0" \in p\}$ and V = V(I). For all varieties W over K, we have:

" $x \in W$ " $\in p$ if and only if $V \subseteq W$.

• Let $K = \overline{K}$, p(x) a complete type in \mathcal{L}_{rg} over K, $I = \{P : "P(x) = 0" \in p\}$ and V = V(I). For all varieties W over K, we have:

" $x \in W$ " $\in p$ if and only if $V \subseteq W$.

Definition

A complete type p(x) over M is said to be definable if for every formula $\phi(x, y)$, there exists a formula $\theta(y)$ (with parameters in M) such that, for all $a \in M^{y}$:

 $\phi(x, a) \in p$ if and only if $\theta(a)$ holds.

• Let $K = \overline{K}$, p(x) a complete type in \mathcal{L}_{rg} over K, $I = \{P : "P(x) = 0" \in p\}$ and V = V(I). For all varieties W over K, we have:

" $x \in W$ " $\in p$ if and only if $V \subseteq W$.

Definition

A complete type p(x) over M is said to be definable if for every formula $\phi(x, y)$, there exists a formula $\theta(y)$ (with parameters in M) such that, for all $a \in M^y$:

 $\phi(x, a) \in p$ if and only if $\theta(a)$ holds.

We say that *p* is defined over $A \subseteq M$ is all the θ have parameters in *A*.

• Let $K = \overline{K}$, p(x) a complete type in \mathcal{L}_{rg} over K, $I = \{P : "P(x) = 0" \in p\}$ and V = V(I). For all varieties W over K, we have:

" $x \in W$ " $\in p$ if and only if $V \subseteq W$.

Definition

A complete type p(x) over M is said to be definable if for every formula $\phi(x, y)$, there exists a formula $\theta(y)$ (with parameters in M) such that, for all $a \in M^y$:

 $\phi(x, a) \in p$ if and only if $\theta(a)$ holds.

We say that *p* is defined over $A \subseteq M$ is all the θ have parameters in *A*.

Example

• All complete types in algebraically (respectively differentially) closed fields are definable.

• Let $K = \overline{K}$, p(x) a complete type in \mathcal{L}_{rg} over K, $I = \{P : "P(x) = 0" \in p\}$ and V = V(I). For all varieties W over K, we have:

" $x \in W$ " $\in p$ if and only if $V \subseteq W$.

Definition

A complete type p(x) over M is said to be definable if for every formula $\phi(x, y)$, there exists a formula $\theta(y)$ (with parameters in M) such that, for all $a \in M^{y}$:

 $\phi(x, a) \in p$ if and only if $\theta(a)$ holds.

We say that *p* is defined over $A \subseteq M$ is all the θ have parameters in *A*.

Example

- All complete types in algebraically (respectively differentially) closed fields are definable.
- The generic type of a ball in an algebraically closed valued field is definable.

Prolongations of definable types

• If p(x) is definable, then for all \mathcal{L} -formula $\phi(x, y)$, there exists an $\mathcal{L}_{\mathcal{D}}$ -formula $\theta(y)$ such that for all $a \in K^{y}$, $\phi(x, a) \in p_{\omega}$ if and only if $\theta(a)$ holds.

Prolongations of definable types

- If p(x) is definable, then for all \mathcal{L} -formula $\phi(x, y)$, there exists an $\mathcal{L}_{\mathcal{D}}$ -formula $\theta(y)$ such that for all $a \in \mathcal{K}^{y}$, $\phi(x, a) \in p_{\omega}$ if and only if $\theta(a)$ holds.
- But, a priori, there is no such \mathcal{L} -formula θ .

Prolongations of definable types

- If p(x) is definable, then for all \mathcal{L} -formula $\phi(x, y)$, there exists an $\mathcal{L}_{\mathcal{D}}$ -formula $\theta(y)$ such that for all $a \in K^{y}$, $\phi(x, a) \in p_{\omega}$ if and only if $\theta(a)$ holds.
- But, a priori, there is no such \mathcal{L} -formula θ .

Proposition (R.-Simon, Hils-Kamensky-R., Hils-R.)

In VDF_{*EC*}, SCVH_{*p*,*e*} and VFA₀, if *p* is definable then p_{ω} is definable.

 Ideally, each definable X set should contain a "canonical" definable type: a definable type which is defined over the same parameters as X and does not depend on the choice of parameters.

 Ideally, each definable X set should contain a "canonical" definable type: a definable type which is defined over the same parameters as X and does not depend on the choice of parameters.

Proposition (R., Hils-Kamensky-R.)

In VDF_{*EC*} and SCVH_{*p,e*}, if *X* is a definable set, there exists a definable type p(x) containing " $x \in X$ ". Moreover, for any *A* such that *X* is definable over *A*, *p* is definable over *A*.

 Ideally, each definable X set should contain a "canonical" definable type: a definable type which is defined over the same parameters as X and does not depend on the choice of parameters.

Proposition (R., Hils-Kamensky-R.)

In VDF_{*EC*} and SCVH_{*p,e*}, if *X* is a definable set, there exists a definable type p(x) containing " $x \in X$ ". Moreover, for any *A* such that *X* is definable over *A*, *p* is definable over *A*.

• In fact, we build p_{ω} first and then get *p*.

 Ideally, each definable X set should contain a "canonical" definable type: a definable type which is defined over the same parameters as X and does not depend on the choice of parameters.

Proposition (R., Hils-Kamensky-R.)

In VDF_{*EC*} and SCVH_{*p,e*}, if *X* is a definable set, there exists a definable type p(x) containing " $x \in X$ ". Moreover, for any *A* such that *X* is definable over *A*, *p* is definable over *A*.

- In fact, we build p_{ω} first and then get p.
- A similar result holds for VFA₀ but because of the lack of elimination of quantifiers, we have to consider quantifier free types.

 Let A ≤ K, we say that A is definably closed if it is closed under all definable functions.

- Let $A \le K$, we say that A is definably closed if it is closed under all definable functions.
- A structure eliminates imaginaries if every definable set has a smallest definably closed set of over which it is defined. In that case, every definable type also has a smallest definably closed set of over which it is defined.

- Let *A* ≤ *K*, we say that *A* is definably closed if it is closed under all definable functions.
- A structure eliminates imaginaries if every definable set has a smallest definably closed set of over which it is defined. In that case, every definable type also has a smallest definably closed set of over which it is defined.

Example

 Algebraically closed and differentially closed fields eliminate imaginaries.

- Let *A* ≤ *K*, we say that *A* is definably closed if it is closed under all definable functions.
- A structure eliminates imaginaries if every definable set has a smallest definably closed set of over which it is defined. In that case, every definable type also has a smallest definably closed set of over which it is defined.

Example

- Algebraically closed and differentially closed fields eliminate imaginaries.
- Algebraically closed valued fields do not eliminate imaginaries. By a result of Haskell-Hrushovski-Macpherson, they do once you add points for elements of $\operatorname{GL}_n(K)/\operatorname{GL}_n(\mathcal{O})$ and $\operatorname{GL}_n(K)/\operatorname{ker}(\rho)$ where $\rho : \operatorname{GL}_n(\mathcal{O}) \to \operatorname{GL}_n(\mathcal{O}/\mathfrak{m})$ is the reduction map. We then say that we are working in the geometric language.

 It suffice to show that for all Ø-definable equivalence, every equivalence class has a smallest definably closed set of definition.

- It suffice to show that for all Ø-definable equivalence, every equivalence class has a smallest definably closed set of definition.
- Pick *X* a class of an \emptyset -definable equivalence *E* (in VDF_{*EC*} or SCVH_{*p*,*e*}).

- It suffice to show that for all Ø-definable equivalence, every equivalence class has a smallest definably closed set of definition.
- Pick *X* a class of an \emptyset -definable equivalence *E* (in VDF_{*EC*} or SCVH_{*p*,*e*}).
- Find *p* "canonical" definable type containing " $x \in X$ ". Then p_{ω} has a smallest definably closed set of definition A_0 . So does *p*.

- It suffice to show that for all Ø-definable equivalence, every equivalence class has a smallest definably closed set of definition.
- Pick *X* a class of an \emptyset -definable equivalence *E* (in VDF_{*EC*} or SCVH_{*p*,*e*}).
- Find *p* "canonical" definable type containing " $x \in X$ ". Then p_{ω} has a smallest definably closed set of definition A_0 . So does *p*.
- Since $x \in X$ is equivalent to "*xEy*" $\in p(y)$, *X* is definable over A_0 .

- It suffice to show that for all Ø-definable equivalence, every equivalence class has a smallest definably closed set of definition.
- Pick *X* a class of an \emptyset -definable equivalence *E* (in VDF_{*EC*} or SCVH_{*p*,*e*}).
- Find *p* "canonical" definable type containing " $x \in X$ ". Then p_{ω} has a smallest definably closed set of definition A_0 . So does *p*.
- Since $x \in X$ is equivalent to "*xEy*" $\in p(y)$, *X* is definable over A_0 .
- ▶ If *X* is defined over some definably closed *A*, then so is *p*. Thus $A_0 \subseteq A$.

- It suffice to show that for all Ø-definable equivalence, every equivalence class has a smallest definably closed set of definition.
- Pick *X* a class of an \emptyset -definable equivalence *E* (in VDF_{*EC*} or SCVH_{*p*,*e*}).
- Find *p* "canonical" definable type containing " $x \in X$ ". Then p_{ω} has a smallest definably closed set of definition A_0 . So does *p*.
- Since $x \in X$ is equivalent to "*xEy*" $\in p(y)$, *X* is definable over A_0 .
- ▶ If *X* is defined over some definably closed *A*, then so is *p*. Thus $A_0 \subseteq A$.

Theorem (R., Hils-Kamensky-R.)

 $VDF_{\mathcal{EC}}$ and $SCVH_{p,e}$ eliminate imaginaries in the geometric language.