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Valued fields with operators

We want to study (quantifier free) definable sets in (existentially closed):

VDFEC Equicharacteristic zero valued fields with a contractive derivation:
for all x > K, v�∂�x�� C v�x�.

E.g.

k��tΓ�� with ∂�Q
γ

cγtγ� �Q
γ

∂k�cγ�t
γ ,

where �k, ∂k� à DCF and Γ is divisible.

SCVHp,e Characteristic p valued fields with e commuting Hasse derivations.
VFA Equicharacteristic zero valued field with an ω-increasing

automorphism: for all x > O and n > ZC, v�σ�x�� C n � v�x�.

E.g.

k��tΓ�� with σ�Q
γ

cγtγ� �Q
γ

σk�cγ�t
σΓ�γ�,

where �k, σk� à ACVA, Γ is divible and σΓ is ω-increasing,

or:

M
p�U

�Fp�t�, vt, φp�

where U is a non-principal ultrafilter on the set of primes.
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Prolongations I

Let �K, ∂� à DCF.

L Let V be an affine ∂-variety over K. We defineDn�x� �� �x, . . . , ∂n�x��,

Vn � �Dn�x� � x > V�
Zar

and Vω �� lim
�Ð
n

Vn.

L The ∂-variety V is completely determined by the pro-algebraic
variety Vω .

L Vω can be identified with the ideal:

�P > K�X� � ¦x > V, P�Dn�x�� � � b K�Xi � i C �,

or, when V is irreducible, with the complete type in
Lrg � ��,�, �,, � over K:

pω �� �P�Dn�x�� �  � P > I� 8 �P�Dn�x�� x  � P ¶ I�.
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Prolongations II

Let �K, v,D� be a valued field with operatorsD.

Let L �� ��,�, �,, , S� be
the language of valued fields and LD �� L 8D.

L LetDω denote all possible compositions of the operators.
L For all complete LD-type p�x� over K we define:

pω � �φ�x� L � formula � φ�Dω�x�� > p�.

VDFEC The map p( pω is injective. This is Scanlon’s elimination of
quantifiers.

SCVHp,e The type pω has a unique extension to a complete type over K. The
map p( pω is injective. This is Delon’s elimination of quantifiers.

VFA The map p( pω is not injective. Indeed the corresponding map on
the residue field is not.
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Definable types

L Let K � K, p�x� a complete type in Lrg over K, I � �P � ”P�x� � ” > p�
and V � V�I�. For all varietiesW over K, we have:

”x >W” > p if and only if V bW.

Definition
A complete type p�x� overM is said to be definable if for every formula
φ�x, y�, there exists a formula θ�y� (with parameters inM) such that, for
all a >My:

φ�x,a� > p if and only if θ�a� holds.

We say that p is defined over A bM is all the θ have parameters in A.

Example
L All complete types in algebraically (respectively differentially) closed
fields are definable.

L The generic type of a ball in an algebraically closed valued field is
definable.
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Prolongations of definable types

L If p�x� is definable, then for all L-formula φ�x, y�, there exists an
LD-formula θ�y� such that for all a > Ky, φ�x,a� > pω if and only if
θ�a� holds.

L But, a priori, there is no such L-formula θ.

Proposition (R.-Simon, Hils-Kamensky-R., Hils-R.)
In VDFEC , SCVHp,e and VFA, if p is definable then pω is definable.

 / 



Prolongations of definable types

L If p�x� is definable, then for all L-formula φ�x, y�, there exists an
LD-formula θ�y� such that for all a > Ky, φ�x,a� > pω if and only if
θ�a� holds.

L But, a priori, there is no such L-formula θ.

Proposition (R.-Simon, Hils-Kamensky-R., Hils-R.)
In VDFEC , SCVHp,e and VFA, if p is definable then pω is definable.

 / 



Prolongations of definable types

L If p�x� is definable, then for all L-formula φ�x, y�, there exists an
LD-formula θ�y� such that for all a > Ky, φ�x,a� > pω if and only if
θ�a� holds.

L But, a priori, there is no such L-formula θ.

Proposition (R.-Simon, Hils-Kamensky-R., Hils-R.)
In VDFEC , SCVHp,e and VFA, if p is definable then pω is definable.

 / 



Density of definable types

L Ideally, each definable X set should contain a ”canonical” definable
type: a definable type which is defined over the same parameters as X
and does not depend on the choice of parameters.

Proposition (R.,Hils-Kamensky-R.)
In VDFEC and SCVHp,e, if X is a definable set, there exists a definable type
p�x� containing ”x > X”. Moreover, for any A such that X is definable over
A, p is definable over A.

L In fact, we build pω first and then get p.
L A similar result holds for VFA but because of the lack of elimination
of quantifiers, we have to consider quantifier free types.
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Elimination of imaginaries

L Let A B K, we say that A is definably closed if it is closed under all
definable functions.

L A structure eliminates imaginaries if every definable set has a
smallest definably closed set of over which it is defined. In that case,
every definable type also has a smallest definably closed set of over
which it is defined.

Example
L Algebraically closed and differentially closed fields eliminate
imaginaries.

L Algebraically closed valued fields do not eliminate imaginaries. By a
result of Haskell-Hrushovski-Macpherson, they do once you add
points for elements of GLn�K�~GLn�O� and GLn�K�~ker�ρ� where
ρ � GLn�O�� GLn�O~m� is the reduction map. We then say that we
are working in the geometric language.
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Imaginaries in valued with operators

L It suffice to show that for all g-definable equivalence, every
equivalence class has a smallest definably closed set of definition.

L Pick X a class of an g-definable equivalence E (in VDFEC or SCVHp,e).
L Find p ”canonical” definable type containing ”x > X”. Then pω has a
smallest definably closed set of definition A. So does p.

L Since x > X is equivalent to ”xEy”> p�y�, X is definable over A.
L If X is defined over some definably closed A, then so is p. Thus A b A.

Theorem (R.,Hils-Kamensky-R.)
VDFEC and SCVHp,e eliminate imaginaries in the geometric language.
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