Pseudo *T*-closed fields, approximations and NTP₂ joint with Samaria Montenegro

Silvain Rideau-Kikuchi

CNRS, IMJ-PRG, Université de Paris

May 21 2021

A local-global principle

For i < n, let $\mathcal{L}_i \supseteq \mathcal{L}_{rg}$ and T_i be an \mathcal{L}_i -theory of large fields.

Proposition

Let *K* be a field. The following are equivalent:

- 1. For every geometrically integral variety *V* over *K*, if, for any $L \models T_{i,K}, V_{sm}(L) \neq \emptyset$, then $V(K) \neq \emptyset$; equiv. $\overline{V(K)}^{z} = V$;
- 2. Any regular extension $K \leq F$, which $\mathcal{L}_{rg}(K)$ -embeds in some $L^* \geq L$, for every $L \models T_{i,K}$, is \mathcal{L}_{rg} -existentially closed.

When the above hold, we say that *K* is *pseudo T*-*closed*.

Example

- $T_0 = ACF, PTC = PAC;$
- $T_0 = \text{RCF}, \text{PTC} = \text{PRC};$
- $T_{i < n} = \dots$, $PTC = PS^{\tau}CC$;

A local-not-so-global principle

Let $\mathcal{L} = \bigcup_i \mathcal{L}_i$ and $T = \bigcup_i T_{i,\forall}$.

• Assume that every T_i eliminates quantifiers¹.

Proposition

Let $K \vDash T$. The following are equivalent:

- 1. *K* is pseudo *T*-closed;
- 2. Any regular extension $K \leq F \vDash T$ is \mathcal{L}_{rg} -existentially closed.

Example

- $T_{i < n} = \text{RCF}_{<}, \text{PTC} = n \text{PRC};$
- $T_{i < n} = ACVF, PTC = PAC (+ n valuations).$

¹From now on, we will only consider quantifier free \mathcal{L}_i -formulas.

Strong pseudo *T*-closed fields

Assume that:

- there is a definable henselian V-topology τ_i in T_i ;
- for all $L_i \models T_i$, any $\mathcal{L}_i(L_i)$ -definable set *X* has non empty τ_i -interior in \overline{X}^2 .

Proposition

Let $K \vDash T$. The following are equivalent:

- 1. Any regular extension $K \leq L \models T$ is \mathcal{L} -existentially closed.
- 2. For every geometrically integral variety *V* over *K*, and $p_i \in S_i(K)$ generic in $V, \bigcup_i p_i$ is realised in some $K^* \ge K$;
- 3. For every $L_i \models T_{i,K}$, every geometrically integral variety *V* over *K* and every $\mathcal{L}_i(K)$ -definable non-empty τ_i -open $U_i \subseteq V_{sm}(L_i)$, we have $\bigcap_i U_i(K) \neq \emptyset$.

When the above hold, we say that *K* is *strongly pseudo T-closed*.

Examples

- Prestel: $T_{i < n} = \text{RCF}_{<}$, SPTC = n PRC = PTC.
- $T_{i < n} = pCF_{Mac}$, SPTC = n PpC = PTC.
- ▶ Heinemann-Prestel, Schmid: Fix $K \models T$, let $K_i = K^{s} \cap L_i \models T_{i,K}$. Assume that no K_i embeds in some K_j , with $i \neq j$, and $K_i \neq K_i^{s}$. Then $K \models PTC$ if and only if $K \models SPTC$.
- Kollar: T_0 = ACVF, SPTC = PAC + 1 valuation = PTC.
- ▶ Johnson: T_{0<i≤n} = ACVF, L-existentially closed models of T are SPTC — and they are exactly the models of T₀ with n independent valuations, independent from τ₀.

Density

Fix $K \vDash PTC$, $L_i \vDash T_{i,K}$, $K_i = K^{s} \cap L_i$ and τ a V-topology on K.

- Assume (K_i, τ_i) is not discrete.
- Let $C_{\tau} := \{K_i : \tau_i \text{ induces } \tau\} \cap \{K^s\}.$
- Say that $F \in C_{\tau}$ is minimal if any $\mathcal{L}_{rg}(K)$ -embedding $E \to F$, with $E \in C_{\tau}$, is surjective.

• Let
$$K_{\tau} = \widehat{(K, \tau)} \cap K^{\mathrm{s}}$$
.

Proposition

 K_{τ} is $\mathcal{L}_{rg}(K)$ -homeomorphic to any minimal $F \in C_{\tau}$.

• In particular, *K* is τ -dense in *F*.

Proposition

 K_{τ} is $\mathcal{L}_{rg}(K)$ -homeomorphic to any minimal $F \in C_{\tau}$.

- ▶ If $P \in K[x]$ is separable and has a root in $L_i \models T_{i,K}$, for all *i*, then *P* has a root in $\widehat{(K, \tau)}$.
- Some $E \in C_{\tau}$ can be $\mathcal{L}_{rg}(K)$ -embedded in K_{τ} .
- K_{τ} continuously $\mathcal{L}_{rg}(K)$ -embeds in any $E \in C_{\tau}$.

Approximation

Let $\tau_{j < m}$ be distinct V-topologies on *K* and K_j be minimal in C_{τ_i} .

Corollary

For every non-empty τ_j -open $U_j \leq K_j$, $\bigcap_j U_j(K) \neq \emptyset$.

Proposition

Let *C* be a smooth geometrically integral projective curve over *K*, with $C(K) \neq \emptyset$. For every non-empty τ_j -open sets $U_j \subseteq C(K_j)$, $\bigcap_{j < m} U_j(K)$ is infinite.

Corollary

Let *V* be a geometrically integral variety over *K*, with $V(K) \neq \emptyset$. For every non-empty τ_j -open sets $U_j \subseteq V_{sm}(K_j)$, $\bigcap_{j < m} U_j(K) \neq \emptyset$.

Approximation, proof l

Proposition

Let *C* be a smooth geometrically integral projective curve over *K*, with $C(K) \neq \emptyset$. For every non-empty τ_j -open sets $U_j \subseteq C(K_j)$, $\bigcap_{j < m} U_j(K)$ is infinite.

- ► There exists $f: C \to \mathbb{P}^1$ over K with $f^{-1}(0:1) \subseteq \bigcap_{j>0} U_j(K)$ which is smooth above (0:1).
- Let *e* be maximal such that

$$\{t \in \mathbb{P}(K_0) : \exists y_1 \dots y_e \in C(K_0) f(y_j) = t \land y_1 \in U_0\}$$

is infinite, *D* be some irreducible component of the *e*-fold product of *C* over \mathbb{P}^1 , $g : D \to C$ and $h = f \circ g$.

• By the \mathbb{P}^1 case, we may assume that τ_0 -locally around (0:1), $f|_{U_0}$ is surjective and *h* is surjective and smooth.

Approximation, proof Il

• Let $B_s \subseteq D \times D$ be given by $(ss_1s_2 - t_1t_2) \circ (h \times h) = 0$.

Lemma (Kollar)

For all but finitely many s, B_s is geometrically integral.

- ▶ By the \mathbb{P}^1 case, we find $(1:s) \in \mathbb{P}^1(K)$ arbitrarily close to (1:0) for each τ_j , such that B_{s^2} is geometrically integral.
- ▶ By induction, we find infinitely many $(y_1, y_2) \in B_{s^2}(K)$ with $h(y_\ell) \in \bigcap_{j>0} f(U_j)$.
- For one ℓ , $h(y_{\ell}) \in f(U_0)$.
- By maximality of *e*, we may assume that $g(y_{\ell}) \in U_0$.
- So $g(y_\ell) \in \bigcap_{j < m} U_j$.

Automatic \mathcal{L} -existential closedness

• Assume that K_i is dense in some $L_i \models T_{i,K}$.

Theorem

The following are equivalent:

- $K \models PTC$ and the τ_i are pairwise distinct.
- $K \models SPTC.$

Example

- $T_{i < n} = ACVF$, SPTC = PAC + *n* independent valuations.
- ► $T_{i < n} = \text{RCF}_{<}$ and $T_{n \le i < n+m} = \text{ACVF}$, SPTC = n PRC + m independent valuations.

Types in bounded perfect SPTC fields

Fix $\mathfrak{d} : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. Let $\mathcal{L}_{\mathfrak{d}} := \mathcal{L} \cup \{c_i : |c_i| = \mathfrak{d}(i)\}$ and SPTC_{\mathfrak{d}}^{\text{perf}} := perfect SPTC $\cup \{P_i := X^{\mathfrak{d}(i)} + \sum_{j < \mathfrak{d}(i)} c_{i,j} X^j \text{ irreducible}\}$ $\cup \{\text{separable polynomials of degree } i \text{ split modulo } P_i\}.$ Fix $K, L \models \text{SPTC}_{\mathfrak{d}}^{\text{perf}}, F \le K \text{ and } f : F \to L \text{ an } \mathcal{L}_{\mathfrak{d}}\text{-embedding.}$

Embedding lemma

If $F = F^a \cap K$, then f can be extended to an $\mathcal{L}_{\mathfrak{d}}$ -embedding $g: K \to L^* \ge L$ with $g(K)^a \cap L^* = g(K)$.

Corollary

The following are equivalent:

- 1. *f* extends to an $\mathcal{L}_{\mathfrak{d}}$ -embedding $g: F^{\mathfrak{a}} \cap K \to L$;
- 2. $f: F \subseteq K \rightarrow L$ is $\mathcal{L}_{\mathfrak{d}}$ -elementary.

Local density

Fix $K \models \text{SPTC}_{\mathfrak{d}}^{\text{perf}}$, $L_i \models T_{i,K}$ and $F \le K$.

For every $p \in \mathcal{S}(F)$, let p_i denote its restriction to $\mathcal{L}_i(F)$.

Proposition

Assume that $F = F^a \cap K$. Let $p \in S_n(F)$ and $U_i \subseteq L_i^n$ be

 $\mathcal{L}_i(K)$ -definable τ_i -open sets. The following are equivalent:

- 1. for every *i*, p_i is consistent with U_i ;
- 2. *p* is consistent with $\bigcap_i U_i$.

Let τ be the coarsest topology refining all the τ_i .

Corollary

The τ -closure of any $\mathcal{L}(F)$ -definable *X* is quantifier free $\mathcal{L}(F)$ -definable.

• *X* is τ -dense in $\bigcup_{j} \bigcap_{i} X_{j,i}$ where $X_{j,i}$ is $\mathcal{L}_i(F)$ -definable.

Amalgamation

Proposition

Let $a_1, a_2, c_1, c_2, c \in K$, with a_j enumerating $A_j := \operatorname{acl}(Fa_j)$ and c_j enumerating $C_j := \operatorname{acl}(Fc_j)$, for j = 1, 2. Assume:

- $A_1 \cap A_2 = F;$
- $tp(c_1/F) = tp(c_2/F);$
- $c \downarrow_F^a a_1 a_2;$
- $qftp(c/A_j) = qftp(c_j/A_j)$, for j = 1, 2.

Then $\operatorname{tp}(c_1/A_1) \cup \operatorname{tp}(c_2/A_2) \cup \operatorname{qftp}(c/A_1A_2)$ is consistent.

Amalgamation, proof

The universe

Burden

Definition

Let λ be a cardinal. An inp-pattern of depth λ consists of tuples $(a_{i,j})_{i < \omega, j < \lambda}$, \mathcal{L} -formulas $(\phi_j(x, y))_{j < \lambda}$ and intergers $(k_j)_{j < \lambda}$ such that:

- { $\phi_j(x, a_{i,j}) : i < \omega$ } is k_j -inconsistent, for every $j < \lambda$;
- $\{\phi_j(x, a_{f(j),j}) : i < \lambda\}$ is consistent, for every $f : \lambda \to \omega$.

Burden

Definition

Let λ be a cardinal. An inp-pattern of depth λ consists of tuples $(a_{i,j})_{i < \omega, j < \lambda}$, \mathcal{L} -formulas $(\phi_j(x, y))_{j < \lambda}$ and intergers $(k_j)_{j < \lambda}$ such that:

- { $\phi_j(x, a_{i,j}) : i < \omega$ } is k_j -inconsistent, for every $j < \lambda$;
- $\{\phi_j(x, a_{f(j),j}) : i < \lambda\}$ is consistent, for every $f : \lambda \to \omega$.
- ▶ $bd(T) \ge \lambda$ if there is an inp-pattern of depth λ with |x| = 1.
- A theory is NTP₂ if and only if $bd(T) < \infty$.
- bd(ACVF) = bd(RCF) = bd(pCF) = 1

Burden in SPTC_{\mathfrak{d}}^{perf}

Theorem

$$\operatorname{bd}(\operatorname{SPTC}_{\mathfrak{d}}^{\operatorname{perf}}) \leq \sum_{i} \operatorname{bd}(T_{i}).$$

•
$$T_{i < n} = ACVF$$
,

 $bd(PAC_{\partial}^{perf} + n \text{ independent valuations}) = n.$