Imaginaries and definable types in valued differential fields

Silvain Rideau

Université Paris-Sud, École Normale Supérieure

August 7 2015

Valued fields

Let (K, v) be a valued field. We will denote by:

- $\mathcal{O} = \{x \in K \mid v(x) \ge 0\}$ its valuation ring;
- $\mathfrak{M} = \{x \in K \mid v(x) > 0\}$ its maximal ideal;
- $k = \mathcal{O} / \mathfrak{M}$ its residue field.

Definition (Hahn series field)

Let *k* be a field and Γ be an ordered abelian group. The field $k((t^{\Gamma}))$ consists of the formal power series $\sum_{\gamma \in \Gamma} c_{\gamma} t^{\gamma}$ with coefficients in *k* whose support $\{\gamma \mid c_{\gamma} \neq 0\}$ is well ordered.

Differential fields

Definition (Differential field)

A derivation on a field *K* is a group endohomomorphism ∂ of (K, +) such that for all $x, y \in K$:

 $\partial(xy) = \partial(x)y + x\partial(y).$

Example

- ► The field of meromorphic functions on some open subset of C with the usual derivation.
- The field of germs at +∞ of infinitely differentiable real functions with the usual derivation.
- If (k, ∂) is a differential field, k((t^Γ)) can be made naturally into a differential field by setting ∂(Σ_γ c_γt^γ) = Σ_γ ∂(c_γ)t^γ.

We want to study fields equipped with both a valuation and a derivation. Three classes of such fields have been studied:

- Fields where there is no interaction between the valuation and the derivation (Michaux, Guzy-Point).
- Hardy fields, field of transseries and more generally H-fields (Aschenbrenner-van den Dries-van der Hoeven).
- \blacktriangleright Valued fields with a contractive derivation, i.e. a derivation ∂ such that:

 $\forall x, y \in K v(\partial(x)) \ge v(x).$

Some model theory

We work in the language $\mathcal{L}_{\partial,\text{div}} \coloneqq {\mathbf{K}; 0, 1, +, -, \cdot, \partial, \text{div}}$ where *x* div *y* is interpreted as $v(x) \le v(y)$.

Theorem (Scanlon, 2000)

The theory of equicharacteristic zero valued fields with a contractive derivation has a model completion $VDF_{\mathcal{EC}}$ which is complete and eliminates quantifiers.

The theory $VDF_{\mathcal{EC}}$ is the theory of valued fields with a contractive derivation such that:

- ► The field is ∂-Henselian;
- The value group of the constant field is equal to the value group of the whole field;
- The residue field is differentially closed;
- The value group is divisible.

Example

If (k, ∂) is differentially closed and Γ is divisible, then $k((t^{\Gamma})) \models VDF_{\mathcal{EC}}$.

Imaginaries

An imaginary is an equivalent class of an Ø-definable equivalence relation.

Example

- Let $(X_y)_{y \in Y}$ be an \emptyset -definable family of sets. Define $y_1 \equiv y_2$ whenever $X_{y_1} = X_{y_2}$. The set Y/\equiv is a moduli space for the family $(X_y)_{y \in Y}$. We say that $[X_y] \coloneqq y/\equiv$ is the canonical parameter of X_y .
- Let p(x) be a definable type. Then $\{ {}^{r}d_{p} x \phi(x;y)^{\gamma} | \phi(x;y) \in \mathcal{L} \}$ is called the canonical basis of p.
- Let *G* be a definable group and $H \leq G$ be a subgroup. The group G/H is interpretable but *a priori* not definable.

Definition

A theory *T* eliminates imaginaries if for all \emptyset -definable equivalence relation $E \subseteq D^2$, there exists an \emptyset -definable function *f* defined on *D* such that for all $x, y \in D$:

$$xEy \iff f(x) = f(y).$$

Shelah's eq construction

Definition

Let *T* be a theory. For all \emptyset -definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

 $\mathcal{L}^{eq} \coloneqq \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \emptyset \text{-definable equivalence relation}\}$

and

$$T^{\text{eq}} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow xEy)\}$$

Remark

- Let $M \models T$, then M can naturally be enriched into a model of T^{eq} that we denote M^{eq} .
- ${\scriptstyle \blacktriangleright}\,$ We will denote by ${\cal R}$ the set of ${\cal L}\mbox{-sorts}.$ They are called the real sorts.
- The theory *T*^{eq} eliminates imaginaries.

Theorem (Poizat, 1983)

The theory of algebraically closed fields in $\mathcal{L}_{rg} \coloneqq \{K; 0, 1, +, -, \cdot\}$ and the theory of differentially closed fields in $\mathcal{L}_{\partial} \coloneqq \mathcal{L}_{rg} \cup \{\partial\}$ both eliminate imaginaries.

One cannot hope for such a theorem to hold for algebraically closed valued fields in $\mathcal{L}_{div} := \mathcal{L}_{rg} \cup \{div\}$. Indeed,

- $K = \mathbb{C}((t^{\mathbb{Q}})) \models \text{ACVF};$
- $\mathbb{Q} = K^* / \mathcal{O}^*$ is both interpretable and countable;
- ▶ All definable set $X \subseteq K^n$ are either finite or have cardinality continuum.

Imaginaries in valued fields

Let (K, v) be a valued field, we define:

- $\mathbf{S}_n := \operatorname{GL}_n(K) / \operatorname{GL}_n(\mathcal{O}).$ It is the moduli space of rank *n* free \mathcal{O} -submodules of K^n .
- $\mathbf{T}_n := \operatorname{GL}_n(K)/\operatorname{GL}_{n,n}(\mathcal{O})$ where $\operatorname{GL}_{n,n}(\mathcal{O})$ consists of the matrices $M \in \operatorname{GL}_n(\mathcal{O})$ whose reduct modulo \mathfrak{M} has only zeroes on the last column but for a 1 in the last entry.

It is the moduli space of $\bigcup_{s \in \mathbf{S}_n} s / \mathfrak{M}s = \{a + \mathfrak{M}s \mid s \in \mathbf{S}_n \text{ and } a \in s\}.$

Let
$$\mathcal{L}_{\mathcal{G}} \coloneqq {\mathbf{K}, (\mathbf{S}_n)_{n \in \mathbb{N}_{>0}}, (\mathbf{T}_n)_{n \in \mathbb{N}_{>0}}; \mathcal{L}_{\text{div}}, \sigma_n : {\mathbf{K}^n}^2 \to {\mathbf{S}_n, \tau_n : {\mathbf{K}^n}^2 \to {\mathbf{T}_n}}.$$

Theorem (Haskell-Hrushovski-Macpherson, 2006)

The $\mathcal{L}_{\mathcal{G}}$ -theory of algebraically closed valued fields eliminates imaginaries.

Question

What about $VDF_{\mathcal{EC}}^{\mathcal{G}}$?

Imaginaries and definable types

Proposition (Hrushovski, 2014)

Let *T* be a theory such that:

- **I.** For all $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}} \models T^{\operatorname{eq}}$ and all $\mathcal{L}^{\operatorname{eq}}(A)$ -definable type p, then p is in fact $\mathcal{L}(\mathcal{R}(A))$ -definable.
- 2. For all set *X* definable with parameters there exist an $\mathcal{L}^{eq}(acl^{eq}({}^{r}X^{\gamma}))$ -definable type *p* which is consistant with *X*.
- 3. Finite sets have real canonical parameters.

Then *T* eliminates imaginaries.

Remark

It suffices to prove hypothesis I in dimension 1.

An aside: the invariant extension property

Definition

We say that *T* has the invariant extension property if for all $M \models T$ and $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}}$, every type over *A* has a global *A*-invariant extension.

Proposition

The following are equivalent:

- (i) The theory *T* has the invariant extension property.
- (ii) For all set *X* definable with parameters there exists an $acl^{eq}(^{r}X^{\gamma})$ -invariant type *p* which is consistant with *X*.

Remark

If *T* is NIP then the above are also equivalent to:

(iii) Forking equals dividing and Lascar strong type, Kim-Pillay strong type and strong type coincide.

Computing the canonical basis of types in DCF₀

- Let p(x) be an \mathcal{L}_{∂} -type over $M \models \text{DCF}_0$ and let $\nabla_{\omega}(p)$ denote the \mathcal{L}_{rg} -type of $(\partial^n(x))_{n \in \mathbb{N}})$ over M.
- By quantifier elimination, the map ∇_{ω} is injective. So we can identify $S_x^{\mathcal{L}_{\partial}}(M)$ with a subset of $S_{x_{\omega}}^{\mathcal{L}_{rg}}(M)$.
- Let $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}}$ and assume p is $\mathcal{L}^{\operatorname{eq}}_{\partial}(A)$ -definable. By elimination of imaginaries in ACF, the canonical basis of $\nabla_{\omega}(p)$ is contained in $\mathbf{K}(A)$. In particular, p is $\mathcal{L}_{\partial}(\mathbf{K}(A))$ -definable.

Computing the canonical basis of definable types in $\mathsf{VDF}_{\mathcal{EC}}$

- Let p(x) be an $\mathcal{L}_{\partial,\text{div}}$ -type over $M \models \text{VDF}_{\mathcal{EC}}$ and let $\nabla_{\omega}(p)$ denote the \mathcal{L}_{div} -type of $(\partial^n(x))_{n \in \mathbb{N}})$ over M.
- By quantifier elimination, the map ∇_{ω} is injective. So we can identify $S_x^{\mathcal{L}_{\partial, \text{div}}}(M)$ with a subset of $S_{x_{\omega}}^{\mathcal{L}_{\text{div}}}(M)$.
- One issue: if p(x) is $\mathcal{L}_{\partial,\text{div}}(M)$ -definable, then $\nabla_{\omega}(p)$ might not be $\mathcal{L}_{\text{div}}(M)$ -definable as its definition scheme is given by $\mathcal{L}_{\partial,\text{div}}$ -formulas.
- Let $\phi(x_{\omega}; y)$ be an \mathcal{L}_{div} -formula then and $a \models \nabla_{\omega}(p)$ we have:

$$\underbrace{\phi(a;M)}_{\text{externaly } \mathcal{L}_{\text{div}}\text{-definable}} = \underbrace{d_p x \phi(x, \partial(x), \dots, \partial^n(x);M)}_{\mathcal{L}_{\partial \text{ div}}\text{-definable}}$$

Question

Let *X* be a set that is both externaly \mathcal{L}_{div} -definable and $\mathcal{L}_{\partial,div}$ -definable (with parameters). Is it automatically \mathcal{L}_{div} -definable (with parameters)?

Definable types in enrichments of NIP theories

Definition (Uniform stable embeddedness)

Let *M* be some structure and $A \subseteq M$. We say that *A* is uniformly stably embedded in *M* if for all formula $\phi(x; y)$ there exists a formula $\psi(x; z)$ such that for all tuple $c \in M$,

$$\phi(A;c) = \psi(A;a)$$

for some tuple $a \in A$.

Proposition (Simon-R.)

Let *T* be an NIP be an \mathcal{L} -theory and \widetilde{T} be a complete enrichment of *T* in a language $\widetilde{\mathcal{L}}$. Assume that there exits $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension. Let *X* be a set that is both externaly \mathcal{L} -definable and $\widetilde{\mathcal{L}}$ -definable, then *X* is \mathcal{L} -definable.

In particular, any \mathcal{L} -type which is $\widetilde{\mathcal{L}}$ -definable is in fact \mathcal{L} -definable.

Proposition (Simon-R.)

Let *T* be an NIP \mathcal{L} -theory, U(x) be a new predicate and $\phi(x; t) \in \mathcal{L}$. There exists $\psi(x; s) \in \mathcal{L}$ and $\theta \in \mathcal{L}_U$ a sentence such that for all $M \models T$ and $U \subseteq M^{|x|}$ we have:

U is externally ϕ -definable \Rightarrow $M_U \vDash \theta_U \Rightarrow U$ is externally ψ -definable.

- It follows that (a uniform version of) the previous proposition's conclusion is a first order statement.
- Hence it suffices to find one model of *T* where it holds (uniformly enough); for example, a model where all externally *L*-definable sets are *L*-definable.

Computing the canonical basis of types in $\text{VDF}_{\mathcal{EC}}$ (II)

- Let (k, ∂) be differentially closed. Then k((t^R)) is uniformly stably embedded as a valued field in every elementary extension and it can be made into a model of VDF_{EC}.
- It follows that if p(x) is an $\mathcal{L}_{\partial,\text{div}}$ -type over $M \models \text{VDF}_{\mathcal{EC}}$ which is $\mathcal{L}_{\partial,\text{div}}^{\text{eq}}(A)$ -definable for some $A = \text{dcl}^{\text{eq}}(A) \subseteq M^{\text{eq}}$, then $\nabla_{\omega}(p)$ is $\mathcal{L}_{\text{div}}(M)$ -definable and hence its canonical basis is included in $\mathcal{G}(A)$ and so is the canonical basis of p itself.

Theorem

The theory $\mathsf{VDF}^{\mathcal{G}}_{\mathcal{EC}}$ eliminates imaginaries and has the invariant extension property.

Thanks!