Transferring Imaginaries

Silvain Rideau

UC Berkeley

November 6th 2015

What is your name?

An imaginary is an equivalent class of an Ø-definable equivalence relation.

Example

- Let $(X_y)_{y \in Y}$ be an \emptyset -definable family of sets. Define $y_1 \equiv y_2$ whenever $X_{y_1} = X_{y_2}$. The set Y / \equiv is a "moduli space" for the family $(X_y)_{y \in Y}$.
- Let *G* be a definable group and $H \leq G$ be a definable subgroup. The group *G*/*H* is interpretable but *a priori* not definable.

Definition

A theory *T* eliminates imaginaries if for all \emptyset -definable equivalence relation $E \subseteq D^2$, there exists an \emptyset -definable function *f* defined on *D* such that for all $x, y \in D$:

$$xEy \iff f(x) = f(y).$$

What is your quest?

Definition

• A type *p* over *M* is said to be definable (over *A*) if for all formula $\phi(x; y)$ there is a formula $\theta(y)$ such that

 $\phi(x; a) \in p$ if and only if $M \models \theta(a)$.

We will often write $d_p x \phi(x; y) = \theta(y)$.

• A theory is said to be stable if every type over every model of *T* is definable.

Proposition (Shelah, 1978)

Let $A \subseteq M \models T$ stable, $p \in S(A)$ and $p_1, p_2 \in S(M)$ be two distinct extensions of p to M definable over A. Then there exists an $\mathcal{L}(A)$ -definable finite equivalence relation E and $a_1, a_2 \in M$ such that:

▶ *a*¹ and *a*² are not *E*-equivalent;

•
$$p_i(x) \vdash xEa_i$$
.

What is your quest?

• If *T* is stable and eliminates imaginaries, $A = acl(A) \subseteq M \models T$, then types over *A* have a unique definable extension to *M*.

Assume *T* eliminates imaginaries.

- If X if definable, then X has a smallest (definably closed) set of definition. We denote it ^rXⁿ.
- ▶ If *p* is a definable type, then *p* has a smallest (definably closed) set of definition. It is called the canonical basis of *p*.
- Proving elimination of imaginaries in specific structures can have (more or less direct) applications.

What is the airspeed velocity of an unladen swallow?

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- ▶ O-minimal groups eliminate imaginaries.
 For example, any O-minimal enrichment of (ℝ, 0, 1, +, -, ·).
- Infinite sets do not eliminate imaginaries:
 - The quotient of M^n by the action of \mathfrak{S}_n is not represented.
- \mathbb{Q}_p does not eliminate imaginaries in the ring language :
 - \mathbb{Z} can be interpreted as $\mathbb{Q}_p^* / \mathbb{Z}_p^*$;
 - All infinite definable subsets of \mathbb{Q}_p^n have cardinality continuum.
- Henselian valued fields do not eliminate imaginaries in the language of valued rings.

Shelah's eq construction

Definition

Let *T* be a theory. For all \emptyset -definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

 $\mathcal{L}^{eq} \coloneqq \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \emptyset \text{-definable equivalence relation}\}$

and

 $T^{\text{eq}} \coloneqq T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow xEy)\}.$

Remark

- Let $M \models T$, then M can naturally be enriched into a model of T^{eq} that we denote M^{eq} .
- ▶ We will denote by *R* the set of *L*-sorts. They are called the real sorts.
- The theory *T*^{eq} eliminates imaginaries.
- We will denote by dcl^{eq} (acl^{eq}) the definable (algebraic) closure in *T*^{eq}.

Shelah's eq construction

Definition

Let *T* be a theory. For all \emptyset -definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

 $\mathcal{L}^{eq} \coloneqq \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \emptyset \text{-definable equivalence relation}\}$

and

 $T^{\text{eq}} \coloneqq T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow xEy)\}.$

Proposition

A theory *T* (with two constants) eliminates imaginaries if and only if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

 $e \in \operatorname{dcl}^{\operatorname{eq}}(a)$ and $a \in \operatorname{dcl}^{\operatorname{eq}}(e)$.

Weak elimination

Definition

A theory *T* weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

 $e \in \operatorname{dcl}^{\operatorname{eq}}(a)$ and $a \in \operatorname{acl}^{\operatorname{eq}}(e)$.

Proposition

A theory T eliminates imaginaries if and only if:

- I. *T* weakly eliminates imaginaries.
- **2**. For all $M \vDash T$, the quotient of M^n by the action of \mathfrak{S}_n is represented.

Example

- Infinite sets weakly eliminate imaginaries.
- Any strongly minimal theory weakly eliminates imaginaries.

Encoding functions

• A finite valued function $X \to Y$ is a subset of $X \times Y$ such that for all $x \in X$, the set Y_x is finite.

Proposition

The following are equivalent:

- I. *T* weakly eliminates imaginaries
- **2.** Every set definable in models of *T* has a smallest (algebraically closed) set of definition.
- 3. Every finite valued function $M \rightarrow M$ definable in $M \models T$ has a smallest (algebraically closed) set of definition.

- ▶ Let *T* be an \mathcal{L} -theory and $T' \supseteq T_{\forall}$ be an \mathcal{L}' -theory. Let $M' \vDash T'$ and $M \vDash T$ containing M'.
- Assume that every finite valued function *f* definable in *M*′ is covered by a finite valued function *g* defined in *M*.
- One would like to deduce elimination of imaginaries in *T*['] from elimination of imaginaries in *T*.
- There are a number of problems:
 - No control the domain of *f*.
 - ▶ *g* is not canonical (unless it can somehow be taken minimal).
 - The smallest set of definition of *g* might contain points from $M \smallsetminus M'$.
 - Unclear how to recover *f* from *g*.

In the case of the field $(\mathbb{R}, 0, 1, +, -, \cdot)$:

- Take any finite valued function f definable in \mathbb{R} . Let g be the Zariski closure of f. Then g is a finite valued function definable in \mathbb{C} .
- Let $A \subseteq \mathbb{C}$ be the the smallest set of definition of g.
- The smallest set of definition of $g \cap \mathbb{R}$ is $A \cap \mathbb{R}$.
- ▶ *f* can be recovered from $g \cap \mathbb{R}$ using the order and the fact that every definable *X* ⊆ \mathbb{R} has a smallest subset of definition.

Proposition (Hrushovski-Martin-R., 2014)

Let *T*′ be a theory of fields such that, for all $M \models T'$ and $A \subseteq M$:

- I. $dcl(A) = acl(A) \subseteq \overline{A}^{alg};$
- **2**. Every definable $X \subseteq M$ has a smallest subset of definition.

Then *T* eliminates imaginaries.

Remark

Hypothesis 1 holds in \mathbb{Q}_p but not hypothesis 2 (in the language of rings).

Proposition (Hrushovski-Martin-R., 2014)

Let *T* be an \mathcal{L} -theory that eliminates quantifiers and imaginaries and $T' \supseteq T_{\forall}$ an \mathcal{L}' -theory. Assume that, for all $M' \vDash T', M \vDash T$ containing M' and $A \subseteq M'$:

- **I.** $\operatorname{dcl}_{\mathcal{L}'}(A) = \operatorname{acl}_{\mathcal{L}'}(A) \subseteq \operatorname{acl}_{\mathcal{L}}(A);$
- **2**. Every definable $X \subseteq M'$ has a smallest subset of definition;
- 3. For all $e \in dcl_M(M')$, there exists $e' \in M'$ such that for all $\sigma \in Aut(M)$ stabilising M' globally,

 $\sigma(e) = e$ if and only if $\sigma(e') = e'$;

4. Assume $A = \operatorname{acl}_{\mathcal{L}'}(A)$ and let $p \in \mathcal{S}_1^{\mathcal{L}'}(A)$. Then there exists $\widetilde{p} \in \mathcal{S}_1^{\mathcal{L}}(M)$ definable over A such that $p \cup \widetilde{p}|_{M'}$ is consistent. Then T' eliminates imaginaries.

Proposition

Let T_i be an \mathcal{L}_i -theory that eliminates quantifiers and imaginaries and $T' \supseteq \bigcup_i T_{i,\forall}$ an \mathcal{L}' -theory. Assume that, for all $M' \vDash T'$, $M_i \vDash T_i$ containing M' and $A \subseteq M'$:

- **I.** $\operatorname{dcl}_{\mathcal{L}'}(A) = \operatorname{acl}_{\mathcal{L}'}(A) \subseteq \operatorname{acl}_{\mathcal{L}_i}(A);$
- **2**. Every definable $X \subseteq M'$ has a smallest subset of definition;
- **3.** For all $e \in dcl_{M_i}(M')$, there exists $e' \in M'$ such that for all $\sigma \in Aut(M_i)$ stabilising M' globally,

 $\sigma(e) = e$ if and only if $\sigma(e') = e'$;

4. Assume $A = \operatorname{acl}_{\mathcal{L}'}(A)$ and let $p \in \mathcal{S}_1^{\mathcal{L}'}(A)$. Then there exists $\widetilde{p}_i \in \mathcal{S}_1^{\mathcal{L}_i}(M_i)$ definable over A such that $p \cup \bigcup_i \widetilde{p}_i|_{M'}$ is consistent. Then T' weakly eliminates imaginaries.

- ► All the imaginaries in \mathbb{R} come from ACF (and hence they can be eliminated).
- All the imaginaries in real closed valued fields come from ACVF (whose imaginaries were described by Haskell, Hrushovski and Macpherson).
- All the imaginaries in \mathbb{Q}_p come from ACVF.
- All the imaginaries in $\prod_p \mathbb{Q}_p / \mathfrak{U}$ come from ACVF.

Adding new functions

- If *T* is an *L*-theory, we may want to form *T*_σ the *L* ∪{σ}-theory of models of *T* with an automorphism.
- We will mainly be interested in T_A , the model companion of T_σ , if it exists (and from now on, we will assume it exists).

Proposition (Chatzidakis-Pillay, 1998)

Assume T is strongly minimal, then T_A weakly eliminates imaginaries.

Proposition (Hrushovski, 2012)

Let *T* be a stable theory that eliminates imaginaries. Assume that *T* has 3-uniqueness, then T_A eliminates imaginaries.

Adding new functions

- Let *T* be some \mathcal{L} -theory, *f* be new function symbol and $T' \supseteq T$ be an $\mathcal{L} \cup \{f\}$ -theory.
- Let $M \models T'$. We define:

$$\nabla_{\omega}: \begin{array}{ccc} \mathcal{S}_{x}^{\mathcal{L}'}(M) & \to & \mathcal{S}_{x_{\omega}}^{\mathcal{L}}(M) \\ \operatorname{tp}_{\mathcal{L}'}(a/M) & \mapsto & \operatorname{tp}_{\mathcal{L}}(f_{\omega}(a)/M) \end{array}$$

where $f_{\omega}(a) = (f^n(a))_{n \in \mathbb{N}}$.

- We assume that ∇_{ω} is injective (this is a form of quantifier elimination).
- That does not, in general, hold in T_A .
- It does hold in differentially closed fields of characteristic zero and separably closed fields of finite imperfection degree (and their valued equivalents).

Imaginaries and definable types

Proposition (Hrushovski, 2014)

Let T be a theory such that:

- I. For every definable set *X* there exist an $\mathcal{L}^{eq}(acl^{eq}({}^{r}X^{1}))$ -definable type *p* which is consistent with *X*.
- 2. Let $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}} \models T^{\operatorname{eq}}$. If $p \in \mathcal{S}(M)$ is $\mathcal{L}^{\operatorname{eq}}(A)$ -definable, then p is $\mathcal{L}(\mathcal{R}(A))$ -definable.

Then T weakly eliminates imaginaries.

Remark

It suffices to prove hypothesis I in dimension 1.

In the case of differentially closed fields $(K, 0, 1, +, -, \cdot, \delta)$:

- Hypothesis I is true because DCF₀ is stable.
- Let $M \models \text{DCF}_0$ and $p \in \mathcal{S}^{\mathcal{L}_{\partial}}(M)$.
- ▶ Let $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}}$ and assume p is $\mathcal{L}^{\operatorname{eq}}_{\partial}(A)$ -definable. By elimination of imaginaries in ACF, the canonical basis of $\nabla_{\omega}(p)$ is contained in $\mathbf{K}(A)$. In particular, p is $\mathcal{L}_{\partial}(\mathbf{K}(A))$ -definable.

Prolongations and canonical basis

If *T* is not stable, the previous strategy has a serious flaw:

- If *p* is L'(M)-definable, there is no reason for ∇_ω(*p*) to be L(M)-definable.
- Let $\phi(x_{\omega}; y)$ be an \mathcal{L} -formula then

 $\phi(x_{\omega}; a) \in \nabla_{\omega}(p)$ if and only if $M \models d_p x \phi(f_{\omega}(x); a)$.

• Let $a \vDash \nabla_{\omega}(p)$ we have:

$$\underbrace{\phi(a;M)}_{\text{externally \mathcal{L}-definable}} = \underbrace{\mathbf{d}_p \, x \, \phi(f_\omega(x);M)}_{\mathcal{L}' \text{-definable}}.$$

and we wish this set to be \mathcal{L} -definable.

NIP theories

Definition

Let $\phi(x; y)$ be a formula and M a structure, we say that ϕ has the independence property in M if there exists $(a_n)_{n \in \mathbb{N}}$ and $(b_X)_{X \subseteq \mathbb{N}}$ such that:

 $M \vDash \phi(a_n; b_X)$ if an only if $n \in X$

We say that the theory T is NIP (not the independence property) if no formula has the independence property in any model of T.

Example

- All stable theories are NIP.
- All O-minimal theories are NIP.
- ACVF is NIP.

Definable types in enrichments of NIP theories

Definition (Stable embeddedness)

Let *M* be some structure and $A \subseteq M$. We say that *A* is stably embedded in *M* if for all formula $\phi(x; y)$ and all $c \in M$, there exists a formula $\psi(x; z)$ such that

$$\phi(A;c) = \psi(A;a)$$

for some tuple $a \in A$.

Proposition (Simon-R., 2015)

Let *T* be an NIP be an \mathcal{L} -theory and \widetilde{T} be a complete enrichment of *T* in a language $\widetilde{\mathcal{L}}$. Assume that there exits $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension. Let *X* be a set that is both externally \mathcal{L} -definable and $\widetilde{\mathcal{L}}$ -definable, then *X* is \mathcal{L} -definable.

In particular, any \mathcal{L} -type which is $\widetilde{\mathcal{L}}$ -definable is in fact \mathcal{L} -definable.

Definable types in enrichments of NIP theories

Definition (Uniform stable embeddedness)

Let *M* be some structure and $A \subseteq M$. We say that *A* is uniformly stably embedded in *M* if for all formula $\phi(x; y)$, there exists a formula $\psi(x; z)$ such that for all tuple $c \in M$,

$$\phi(A;c) = \psi(A;a)$$

for some tuple $a \in A$.

Proposition (Simon-R., 2015)

Let *T* be an NIP be an \mathcal{L} -theory and \widetilde{T} be a complete enrichment of *T* in a language $\widetilde{\mathcal{L}}$. Assume that there exits $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension. Let *X* be a set that is both externally \mathcal{L} -definable and $\widetilde{\mathcal{L}}$ -definable, then *X* is \mathcal{L} -definable.

In particular, any \mathcal{L} -type which is $\widetilde{\mathcal{L}}$ -definable is in fact \mathcal{L} -definable.

Proposition

Let *T* be some \mathcal{L} -theory that eliminates imaginaries, *f* be new function symbol and $T' \supseteq T$ be a complete $\mathcal{L} \cup \{f\}$ -theory. Assume that:

- **I.** ∇_{ω} is injective.
- For every L'-definable set X there exist an L^{eq}(acl^{eq}(^rX[¬]))-definable L-type p which is consistent with X.
- 3. There exits $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension.

Then T' eliminates imaginaries.

- All the imaginaries in DCF₀ come from ACF (and hence they can be eliminated).
- All the imaginaries from separably closed fields (be it with λ -functions or Hasse derivations) come from ACF.
- All the imaginaries in Scanlon's theory of differential valued fields come from ACVF.
- All the imaginaries from separably closed valued fields come from ACVF.

Thanks!