Transferring imaginaries How to eliminate imaginaries in p-adic fields

Silvain Rideau

joint work with E. Hrushovski and B. Martin in "Definable equivalence relations and zeta functions of groups" with an appendix by R. Cluckers

Orsay Paris-Sud 11, École Normale Supérieure

May 12, 2014

Let (K, v) be a valued field.

- We will denote by $\mathcal{O} = \{x \in K \mid v(x) \ge 0\}$ the valuation ring;
- It has a unique maximal ideal $\mathfrak{M} = \{x \in K \mid v(x) > 0\};$
- The residue field $\mathcal{O} / \mathfrak{M}$ will be denoted k;
- The value group will be denoted by Γ;
- Let also RV := $K^*/(1 + \mathfrak{M}) \supseteq k^*$.

First model theory results

Let $\mathcal{L}_{div} = \{\mathbf{K}; 0, 1, +, -, \cdot, |\}$ where x | y is interpreted by $v(x) \le v(y)$.

Theorem (A. Robinson, 1956)

The $\mathcal{L}_{\text{div}}\text{-}\text{theory}$ ACVF of algebraically closed valued fields eliminates quantifiers.

Let $\mathcal{L}_{P} = \mathcal{L}_{div} \cup \{P_n \mid n \in \mathbb{N}_{>0}\}$ where $x \in P_n$ if and only if $\exists y, y^n = x$.

Theorem (Macintyre, 1976)

The \mathcal{L}_{P} -theory of \mathbb{Q}_{p} eliminates quantifiers.

Imaginaries

Let T be a theory

▶ For all definable equivalence relation *E*, does there exist a definable function *f* — a representation — such that

 $\forall x, y, \, xEy \iff f(x) = f(y).$

For all definable (with parameters) set X, is there a tuple c
 – a code –
 such that automorphisms fix c
 if and only if they stabilize X set-wise?
 Positive answers to these two questions are equivalent and is called
 elimination of imaginaries.

Theorem (Poizat, 1983)

The theory ACF of algebraically closed fields in the language $\mathcal{L}_{rg} = \{\mathbf{K}; 0, 1, +, -, \cdot\}$ eliminates imaginaries.

Remark

To any \mathcal{L} -structure M we can associate the \mathcal{L}^{eq} -structure M^{eq} where we add a point for each imaginary.

Remark

In the language \mathcal{L}_{div} , the quotient $\Gamma = \mathbf{K}^* / \mathcal{O}^*$ is not representable in algebraically closed valued field nor in \mathbb{Q}_p .

However, in the case of ACVF — the theory of algebraically closed valued fields — Haskell, Hrushovski and Macpherson have shown what imaginary sorts it suffices to add.

The geometric sorts

Definition

- The elements of S_n are the free \mathcal{O} -module in K^n of rank n.
- The elements of T_n are of the form $a + \mathfrak{M}s$ where $s \in S_n$ and $a \in s$.

We can give an alternative definition of these sorts, for example $S_n \simeq GL_n(K)/GL_n(\mathcal{O})$.

Definition

The geometric language $\mathcal{L}_{\mathcal{G}}$ is composed of the sorts \mathbf{K} , \mathbf{S}_n and \mathbf{T}_n for all n, with \mathcal{L}_{rg} on \mathbf{K} and functions $\rho_n : \operatorname{GL}_n(\mathbf{K}) \to \mathbf{S}_n$ and $\tau_n : \mathbf{S}_n \times \mathbf{K}^n \to \mathbf{T}_n$.

- S_1 can be identified with Γ and ρ_1 with v;
- ► **T**₁ can be identified with RV;
- ▶ The set of balls (open and closed, possibly with infinite radius) \mathbb{B} can be identified with a subset of $\mathbf{K} \cup \mathbf{S}_2 \cup \mathbf{T}_2$.

The geometric sorts

Definition

- The elements of S_n are the free \mathcal{O} -module in \mathbf{K}^n of rank n.
- The elements of T_n are of the form $a + \mathfrak{M}s$ where $s \in S_n$ and $a \in s$.

Definition

The geometric language $\mathcal{L}_{\mathcal{G}}$ is composed of the sorts \mathbf{K} , \mathbf{S}_n and \mathbf{T}_n for all n, with \mathcal{L}_{rg} on \mathbf{K} and functions $\rho_n : \operatorname{GL}_n(\mathbf{K}) \to \mathbf{S}_n$ and $\tau_n : \mathbf{S}_n \times \mathbf{K}^n \to \mathbf{T}_n$.

Theorem (Haskell, Hrushovski and Macpherson, 2006)

- ▶ The *L*_{*G*}-theory ACVF^{*G*} eliminates imaginaries.
- In particular, the imaginaries in $ACVF_{0,p}^{\mathcal{G}}$ (respectively those in $ACVF_{p,p}^{\mathcal{G}}$) can be eliminated uniformly in *p*.

The geometric sorts

Definition

- The elements of S_n are the free \mathcal{O} -module in K^n of rank n.
- The elements of T_n are of the form $a + \mathfrak{M}s$ where $s \in S_n$ and $a \in s$.

Definition

The geometric language $\mathcal{L}_{\mathcal{G}}$ is composed of the sorts **K**, **S**_{*n*} and **T**_{*n*} for all *n*, with \mathcal{L}_{rg} on **K** and functions $\rho_n : GL_n(\mathbf{K}) \to \mathbf{S}_n$ and $\tau_n : \mathbf{S}_n \times \mathbf{K}^n \to \mathbf{T}_n$.

Question

- I. Are all imaginaries in \mathbb{Q}_p coded in the geometric sorts or are there new imaginaries in this theory?
- 2. Can these imaginaries be eliminated uniformly in *p*?

In the paper, we give a more general setting, but here we will only consider substructures of ACVF.

• Let $T \supseteq ACVF_{\forall}^{\mathcal{G}}$ be an $\mathcal{L}_{\mathcal{G}}$ -theory.

Let $\widetilde{M} \models ACVF^{\mathcal{G}}$ and $M \models T$ such that $M \subseteq \widetilde{M}$. Let us fix some notations:

- ▶ Let $A \subseteq \widetilde{M}$, we will write $dcl_{\widetilde{M}}(A)$ for the $\mathcal{L}_{\mathcal{G}}$ -definable closure in \widetilde{M} ,
- ▶ Let $A \subseteq M^{eq}$, we will write $dcl_M^{eq}(A)$ for the \mathcal{L}^{eq} -definable closure in M^{eq} .

Similarly for acl, tp and TP (the space of types).

The specific cases of interest

The theory *T* will be either :

- [*p*CF] The $\mathcal{L}_{\mathcal{G}}$ -theory of *K* a finite extension of \mathbb{Q}_p , with a constant added for a generator of $K \cap \overline{\mathbb{Q}}^{alg}$ over $\mathbb{Q}_p \cap \overline{\mathbb{Q}}^{alg}$;
- [PLF] The $\mathcal{L}_{\mathcal{G}}$ -theory of equicharacteristic zero Henselian valued fields with a pseudo-finite residue field, a \mathbb{Z} -group as valuation group and 2 constants added:
 - A uniformizer, i.e. $\pi \in \mathbf{K}$ with minimal positive valuation;
 - An unramified Galois-unifomizer. i.e an element $c \in \mathbf{K}$ such that $\operatorname{res}(c)$ generates $k^*/(\bigcap_n P_n(k^*))$.

Remark

Every $\prod K_p/\mathcal{U}$ where K_p is a finite extension of \mathbb{Q}_p and \mathcal{U} is a non principal ultrafilter on the set of primes is a model of PLF. In fact, By the Ax-Kochen-Eršov principle any model of PLF is equivalent to one of these ultraproducts.

A first example: extracting square roots in \mathbb{Q}_3

• Let $a \in \mathbb{Q}_3$ and $f: P_2(\mathbb{Q}_3^*) + a \to \mathbb{Q}_3$, where P_2 is the set of squares, defined by:

$$f(x)^2 = x - a$$
 and $ac(f(x)) = 1$.

- This function can be defined in \mathbb{Q}_3 but not in $\overline{\mathbb{Q}_3}^{alg} \vDash ACVF_{0,3}$.
- However, the 1-to-2 correspondence

$$F = \{(x,y) \mid y^2 = x - a\}$$

is quantifier free definable both in \mathbb{Q}_3 and $\overline{\mathbb{Q}_3}^{alg}$.

- *F* is the Zariski closure of the graph of f and f(x) can be defined (in \mathbb{Q}_3) as the *y* such that $(x, y) \in F$ and $\operatorname{ac}(y) = 1$.
- *F* is coded in $\overline{\mathbb{Q}_3}^{\text{alg}}$ and this code is in $dcl_{\widetilde{M}}(\mathbb{Q}_3) = \mathbb{Q}_3$.
- The graph of *f* is coded by the code of *F*.

An abstract criterion

Theorem

Assume the following holds:

- (i) Any $\mathcal{L}(M)$ -definable unary set $X \subseteq \mathbf{K}(M)$ is coded;
- (ii) For all $M_1 \leq M$ and $c \in \mathbf{K}(M)$, $dcl_M^{eq}(M_1c) \cap M \subseteq acl_{\widetilde{M}}(M_1c)$;
- (iii) For all $e \in dcl_{\widetilde{M}}(M)$, there exists a tuple $e' \in M$ such that for all $\sigma \in Aut(\widetilde{M})$ with $\sigma(M) = M$, σ fixes e if and only if it fixes e';
- (iv) For any $A = \operatorname{acl}_{M}^{\operatorname{eq}}(A) \cap M$ and $c \in \mathbf{K}(M)$, there exists an $\operatorname{Aut}(\widetilde{M}/A)$ -invariant type $\widetilde{p} \in \operatorname{TP}_{\widetilde{M}}(\widetilde{M})$ such that $\widetilde{p}|M$ is consistent with $\operatorname{tp}_{\mathcal{L}}(c/A)$;

(v) For all $A = \operatorname{acl}_{M}^{\operatorname{eq}}(A) \cap M$ and $c \in \mathbf{K}(M)$, $\operatorname{acl}_{M}^{\operatorname{eq}}(Ac) \cap M = \operatorname{dcl}_{M}^{\operatorname{eq}}(Ac) \cap M$. Then *T* eliminates imaginaries.

Another abstract criterion

Theorem

Assume the following holds:

- (i) Any $\mathcal{L}(M)$ -definable unary set $X \subseteq \mathbf{K}(M)$ is coded;
- (ii) For all $M_1 \leq M$ and $c \in \mathbf{K}(M)$, $dcl_M^{eq}(M_1c) \cap M \subseteq acl_{\widetilde{M}}(M_1c)$;
- (iii) For all $e \in dcl_{\widetilde{M}}(M)$, there exists a tuple $e' \in M$ such that for all $\sigma \in Aut(\widetilde{M})$ with $\sigma(M) = M$, σ fixes e if and only if it fixes e';
- (iv) For any $A = \operatorname{acl}_{M}^{\operatorname{eq}}(A) \cap M$ and $c \in \mathbf{K}(M)$, there exists an $\operatorname{Aut}(\widetilde{M}/A)$ -invariant type $\widetilde{p} \in \operatorname{TP}_{\widetilde{M}}(\widetilde{M})$ such that $\widetilde{p}|M$ is consistent with $\operatorname{tp}_{\mathcal{L}}(c/A)$;
- (v') For all $A \subseteq M$ and any $e \in \operatorname{acl}_{M}^{\operatorname{eq}}(A)$ there exists $e' \in M$ such that $e \in \operatorname{dcl}_{M}^{\operatorname{eq}}(Ae')$ and $e' \in \operatorname{dcl}_{M}^{\operatorname{eq}}(Ae)$.

Then T eliminates imaginaries.

Theorem

Let *K* be a finite extension of \mathbb{Q}_p , then the theory of *K* in the language $\mathcal{L}_{\mathcal{G}}$ with a constant added for a generator of $K \cap \overline{\mathbb{Q}}^{alg}$ over $\mathbb{Q}_p \cap \overline{\mathbb{Q}}^{alg}$ eliminates imaginaries.

Proof.

It follows from the first El criterion.

Ultraproducts

Theorem

Let $K = \prod K_p / \mathcal{U}$ be an ultraproduct of finite extensions K_p of \mathbb{Q}_p . The theory of *K* in the language $\mathcal{L}_{\mathcal{G}}$, with constants added for a uniformizer and an unramified Galois-uniformizer, eliminate imaginaries.

Proof.

It follows from the second El criterion.

Remark

The sorts T_n are useless in those two cases.

Uniformity

Let $\mathcal{L}_{\mathcal{G}}^{\star}$ be $\mathcal{L}_{\mathcal{G}}$ with two constants in K added.

Definition

An unramified *m*-Galois uniformizer is a point $c \in \mathbf{K}$ such that res(c) generates $k^*/P_m(k^*)$.

Corollary

For any equivalence relation E_p on a set D_p definable in K_p uniformly in p, there exists m_0 and an $\mathcal{L}_{\mathcal{G}}^*$ -formula $\phi(x, y)$ such that for all p, ϕ defines a function

$$f_p: D \to K_p^l \times S_m(K_p)$$

where K_p is made into a $\mathcal{L}_{\mathcal{G}}^*$ -structure by choosing a uniformizer and an unramified m_0 -Galois uniformizer and

$$K_p \vDash \forall x, y, x E_p y \iff f_p(x) = f_p(y).$$

Definable families of equivalence relations

Fix *p* a prime and let K_p be a finite extension of \mathbb{Q}_p .

Definition

A family $(R_l)_{l \in \mathbb{N}^r} \subseteq K_p^n$ is said to be uniformly definable if there is an $\mathcal{L}_{\mathcal{G}}$ formula $\phi(x, y)$ such that for all $l \in \mathbb{N}^r$,

$$\phi(K_p,l)=R_l.$$

We say that $E \subseteq R^2$ is a definable family of equivalence relations on *R* if *E* is an equivalence relation on *R* and

 $\forall x, y \in R, x E y \Rightarrow \exists l \in \mathbb{N}^r, x, y \in R_l.$

In particular, for all $l \in \mathbb{N}^r$, *E* induces an equivalence relation E_l on R_l .

Definable families of equivalence relations

For all prime *p*, let K_p be a finite extension of \mathbb{Q}_p .

Definition

A family $(R_{p,l})_{l \in \mathbb{N}^r} \subseteq K_p^n$ is said to be definable uniformly in p if there is an $\mathcal{L}_{\mathcal{G}}$ formula $\phi(x, y)$ such that for all prime p and $l \in \mathbb{N}^r$,

$$\phi(K_p,l)=R_{p,l}.$$

We say that $E_p \subseteq R_p^2$ is a family of equivalence relations on R_p definable uniformly in p if E_p is an equivalence relation on R_p and

$$\forall p \forall x, y \in R_p, x E_p y \Rightarrow \exists l \in \mathbb{N}^r, x, y \in R_{p,l}.$$

In particular, for all $l \in \mathbb{N}^r$, E_p induces an equivalence relation $E_{p,l}$ on $R_{p,l}$.

Theorem

Fix *p* a prime. Let $(R_{\nu})_{\nu \in \mathbb{N}^r} \subseteq K_p^n$ be uniformly definable and *E* a family of definable equivalence relations on *R* such that for all $l \in \mathbb{N}^r$, $a_{\nu} = |R_{\nu}/E_{\nu}|$ is finite. Then

 $\sum_{\nu} a_{\nu} t^{\nu}$ is rational.

Rationality

Theorem

Let $(R_{p,\nu})_{\nu \in \mathbb{N}^r} \subseteq K_p^n$ be definable uniformly in p and E_p a family of equivalence relations on R definable uniformly in p such that for all prime p and $\nu \in \mathbb{N}^r$, $a_{p,\nu} = |R_{\nu}/E_{\nu}|$ is finite. Then for all p,

$$\sum_{\nu} a_{p,\nu} t^{\nu} \text{ is rational.}$$

Moreover, there exists m_0 and $d \in \mathbb{N}$ such that for all choice of m_0 -Galois uniformizer $c_p \in K_p$, for all $\nu \in \mathbb{N}^r$ with $|\nu| \le d$, there exists $q_\nu \in \mathbb{Q}$ and varieties V_ν and W_ν over $\mathbb{Z}[X]$ such that for all $p \gg 0$,

$$\sum_{\nu} a_{p,\nu} t^{\nu} = \frac{\sum_{|\nu| \le d} q_{\nu} |V_{\nu}(\operatorname{res}(K_p))| t^{\nu}}{\sum_{|\nu| \le d} |W_{\nu}(\operatorname{res}(K_p))| t^{\nu}}$$

where *X* is specialized to $res(c_p)$ in $res(K_p)$.

Some remarks

- The proof proceeds by:
 - I. Using uniform elimination of imaginaries to reduce to counting cosets of $GL_n(\mathcal{O}(K_p))$ in $GL_n(K_p)$;
 - 2. Using the Haar measure μ_p on $GL_n(K_p)$ normalized such that $\mu_p(GL_n(\mathcal{O}(K_p))) = 1$, rewrite the sum as an integral;
 - 3. Use Denef's result on *p*-adic integrals (and its uniform version given by Pas or even motivic integration).
- In the appendix, Raf Cluckers gives an alternative proof of the counting theorem for fixed *p* that does not use elimination of imaginaries and generalizes to the analytic setting.
- The denominator of the rational function can described more precisely.
- These results are used to show that some zeta functions that appear in the theory of subgroup growth and representation growth are rational uniformly in *p*.

Thank you