Transferring imaginaries
 How to eliminate imaginaries in p -adic fields

Silvain Rideau

joint work with E. Hrushovski and B. Martin in "Definable equivalence relations and zeta functions of groups" with an appendix by R. Cluckers

Orsay Paris-Sud iı, École Normale Supérieure
May I2, 2014

Some notations

Let (K, v) be a valued field.

- We will denote by $\mathcal{O}=\{x \in K \mid v(x) \geq 0\}$ the valuation ring;
- It has a unique maximal ideal $\mathfrak{M}=\{x \in K \mid \mathrm{v}(x)>0\}$;
- The residue field $\mathcal{O} / \mathfrak{M}$ will be denoted k;
- The value group will be denoted by Γ;
- Let also RV := $K^{\star} /(1+\mathfrak{M}) \supseteq k^{\star}$.

First model theory results

Let $\mathcal{L}_{\text {div }}=\{\boldsymbol{K} ; 0,1,+,-, \cdot, \mid\}$ where $x \mid y$ is interpreted by $\mathrm{v}(x) \leq \mathrm{v}(y)$.

Theorem (A. Robinson, I956)

The $\mathcal{L}_{\text {div }}$-theory ACVF of algebraically closed valued fields eliminates quantifiers.

Let $\mathcal{L}_{\mathrm{P}}=\mathcal{L}_{\text {div }} \cup\left\{P_{n} \mid n \in \mathbb{N}_{>0}\right\}$ where $x \in P_{n}$ if and only if $\exists y, y^{n}=x$.
Theorem (Macintyre, I976)
The \mathcal{L}_{P}-theory of \mathbb{Q}_{p} eliminates quantifiers.

Imaginaries

Let T be a theory

- For all definable equivalence relation E, does there exist a definable function f - a representation - such that

$$
\forall x, y, x E y \Longleftrightarrow f(x)=f(y)
$$

- For all definable (with parameters) set X, is there a tuple $\bar{c}-$ a code such that automorphisms fix \bar{c} if and only if they stabilize X set-wise?
Positive answers to these two questions are equivalent and is called elimination of imaginaries.

Theorem (Poizat, I983)

The theory ACF of algebraically closed fields in the language $\mathcal{L}_{\text {rg }}=\{\boldsymbol{K} ; 0,1,+,-, \cdot\}$ eliminates imaginaries.

Remark

To any \mathcal{L}-structure M we can associate the $\mathcal{L}^{\text {eq }}$-structure $M^{\text {eq }}$ where we add a point for each imaginary.

Imaginaries in valued fields

Remark

In the language $\mathcal{L}_{\text {div }}$, the quotient $\Gamma=\mathrm{K}^{\star} / \mathcal{O}^{\star}$ is not representable in algebraically closed valued field nor in \mathbb{Q}_{p}.

However, in the case of ACVF - the theory of algebraically closed valued fields - Haskell, Hrushovski and Macpherson have shown what imaginary sorts it suffices to add.

The geometric sorts

Definition

- The elements of \mathbf{S}_{n} are the free \mathcal{O}-module in \mathbf{K}^{n} of rank n.
- The elements of \mathbf{T}_{n} are of the form $a+\mathfrak{M}_{s}$ where $s \in \mathbf{S}_{n}$ and $a \in s$.

We can give an alternative definition of these sorts, for example $\mathbf{S}_{n} \simeq \mathrm{GL}_{n}(\mathrm{~K}) / \mathrm{GL}_{n}(\mathcal{O})$.

Definition

The geometric language $\mathcal{L}_{\mathcal{G}}$ is composed of the sorts $\mathbf{K}, \mathbf{S}_{n}$ and \mathbf{T}_{n} for all n, with $\mathcal{L}_{\text {rg }}$ on \mathbf{K} and functions $\rho_{n}: \mathrm{GL}_{n}(\mathbf{K}) \rightarrow \mathbf{S}_{n}$ and $\tau_{n}: \mathbf{S}_{n} \times \mathbf{K}^{n} \rightarrow \mathbf{T}_{n}$.

- \mathbf{S}_{1} can be identified with Γ and ρ_{1} with v;
- T_{1} can be identified with RV;
- The set of balls (open and closed, possibly with infinite radius) \mathbb{B} can be identified with a subset of $\mathbf{K} \cup \mathbf{S}_{2} \cup \mathbf{T}_{2}$.

The geometric sorts

Definition

- The elements of \mathbf{S}_{n} are the free \mathcal{O}-module in \mathbf{K}^{n} of rank n.
- The elements of \mathbf{T}_{n} are of the form $a+\mathfrak{M} s$ where $s \in \mathbf{S}_{n}$ and $a \in s$.

Definition

The geometric language $\mathcal{L}_{\mathcal{G}}$ is composed of the sorts $\mathbf{K}, \mathbf{S}_{n}$ and \mathbf{T}_{n} for all n, with $\mathcal{L}_{\mathrm{rg}}$ on \mathbf{K} and functions $\rho_{n}: \mathrm{GL}_{n}(\mathbf{K}) \rightarrow \mathbf{S}_{n}$ and $\tau_{n}: \mathbf{S}_{n} \times \mathbf{K}^{n} \rightarrow \mathbf{T}_{n}$.

Theorem (Haskell, Hrushovski and Macpherson, 2006)

- The $\mathcal{L}_{\mathcal{G}}$-theory $\mathrm{ACVF}^{\mathcal{G}}$ eliminates imaginaries.
- In particular, the imaginaries in $\mathrm{ACVF}_{0, p}^{\mathcal{G}}$ (respectively those in $\mathrm{ACVF}_{p, p}^{\mathcal{G}}$) can be eliminated uniformly in p.

The geometric sorts

Definition

- The elements of \mathbf{S}_{n} are the free \mathcal{O}-module in \mathbf{K}^{n} of rank n.
- The elements of \mathbf{T}_{n} are of the form $a+\mathfrak{M} s$ where $s \in \mathbf{S}_{n}$ and $a \in s$.

Definition

The geometric language $\mathcal{L}_{\mathcal{G}}$ is composed of the sorts $\mathbf{K}, \mathbf{S}_{n}$ and \mathbf{T}_{n} for all n, with $\mathcal{L}_{\mathrm{rg}}$ on \mathbf{K} and functions $\rho_{n}: \mathrm{GL}_{n}(\mathbf{K}) \rightarrow \mathbf{S}_{n}$ and $\tau_{n}: \mathbf{S}_{n} \times \mathbf{K}^{n} \rightarrow \mathbf{T}_{n}$.

Question

I. Are all imaginaries in \mathbb{Q}_{p} coded in the geometric sorts or are there new imaginaries in this theory?
2. Can these imaginaries be eliminated uniformly in p ?

The general setting

In the paper, we give a more general setting, but here we will only consider substructures of ACVF.

- Let $T \supseteq \mathrm{ACVF}_{\forall}^{\mathcal{G}}$ be an $\mathcal{L}_{\mathcal{G}}$-theory.

Let $\widetilde{M} \vDash \mathrm{ACVF}^{\mathcal{G}}$ and $M \vDash T$ such that $M \subseteq \widetilde{M}$. Let us fix some notations:

- Let $A \subseteq \widetilde{M}$, we will write $\operatorname{dcl}_{\widetilde{M}}(A)$ for the $\mathcal{L}_{\mathcal{G}}$-definable closure in \widetilde{M},
- Let $A \subseteq M^{\text {eq }}$, we will write $\operatorname{dcl}_{M}^{\text {eq }}(A)$ for the $\mathcal{L}^{\text {eq }}$-definable closure in $M^{\text {eq }}$.

Similarly for acl, tp and TP (the space of types).

The specific cases of interest

The theory T will be either :
$[p C F]$ The $\mathcal{L}_{\mathcal{G}}$-theory of K a finite extension of \mathbb{Q}_{p}, with a constant added for a generator of $K \cap \overline{\mathbb{Q}}^{\text {alg }}$ over $\mathbb{Q}_{p} \cap \overline{\mathbb{Q}}^{\text {alg }}$;
[PLF] The $\mathcal{L}_{\mathcal{G}}$-theory of equicharacteristic zero Henselian valued fields with a pseudo-finite residue field, a Z-group as valuation group and 2 constants added:

- A uniformizer, i.e. $\pi \in \mathbf{K}$ with minimal positive valuation;
- An unramified Galois-unifomizer. i.e an element $c \in \mathbf{K}$ such that res(c) generates $k^{\star} /\left(\bigcap_{n} P_{n}\left(k^{\star}\right)\right)$.

Remark

Every $\Pi K_{p} / \mathcal{U}$ where K_{p} is a finite extension of \mathbb{Q}_{p} and \mathcal{U} is a non principal ultrafilter on the set of primes is a model of PLF. In fact, By the Ax-Kochen-Eršov principle any model of PLF is equivalent to one of these ultraproducts.

A first example: extracting square roots in \mathbb{Q}_{3}

- Let $a \in \mathbb{Q}_{3}$ and $f: P_{2}\left(\mathbb{Q}_{3}^{\star}\right)+a \rightarrow \mathbb{Q}_{3}$, where P_{2} is the set of squares, defined by:

$$
f(x)^{2}=x-a \text { and } \operatorname{ac}(f(x))=1 .
$$

- This function can be defined in \mathbb{Q}_{3} but not in $\overline{\mathbb{Q}}^{\mathrm{alg}} \vDash \mathrm{ACVF}_{0,3}$.
- However, the 1-to-2 correspondence

$$
F=\left\{(x, y) \mid y^{2}=x-a\right\}
$$

is quantifier free definable both in \mathbb{Q}_{3} and $\overline{\mathbb{Q}}_{3}{ }^{\text {alg }}$.

- F is the Zariski closure of the graph of f and $f(x)$ can be defined (in \mathbb{Q}_{3}) as the y such that $(x, y) \in F$ and ac $(y)=1$.
- F is coded in $\overline{\mathbb{Q}}_{3}{ }^{\text {alg }}$ and this code is in $\operatorname{dcl}_{\widetilde{M}}\left(\mathbb{Q}_{3}\right)=\mathbb{Q}_{3}$.
- The graph of f is coded by the code of F.

An abstract criterion

Theorem

Assume the following holds:
(i) Any $\mathcal{L}(M)$-definable unary set $X \subseteq \mathbf{K}(M)$ is coded;
(ii) For all $M_{1} \leqslant M$ and $c \in \mathbf{K}(M), \operatorname{dcl}_{M}^{\mathrm{eq}}\left(M_{1} c\right) \cap M \subseteq \operatorname{acl}_{\widetilde{M}}\left(M_{1} c\right)$;
(iii) For all $e \in \operatorname{dcl}_{\widetilde{M}}(M)$, there exists a tuple $e^{\prime} \in M$ such that for all $\sigma \in \operatorname{Aut}(\widetilde{M})$ with $\sigma(M)=M, \sigma$ fixes e if and only if it fixes e^{\prime};
(iv) For any $A=\operatorname{acl}_{M}^{\mathrm{eq}}(A) \cap M$ and $c \in K(M)$, there exists an $\operatorname{Aut}(\widetilde{M} / A)$-invariant type $\widetilde{p} \in \operatorname{TP}_{\widetilde{M}}(\widetilde{M})$ such that $\widetilde{p} \mid M$ is consistent with $\operatorname{tp}_{\mathcal{L}}(c / A)$;
(v) For all $A=\operatorname{acl}_{M}^{\mathrm{eq}}(A) \cap M$ and $c \in K(M), \operatorname{acl}_{M}^{\mathrm{eq}}(A c) \cap M=\operatorname{dcl}_{M}^{\mathrm{eq}}(A c) \cap M$.

Then T eliminates imaginaries.

Another abstract criterion

Theorem

Assume the following holds:
(i) Any $\mathcal{L}(M)$-definable unary set $X \subseteq \mathcal{K}(M)$ is coded;
(ii) For all $M_{1} \leqslant M$ and $c \in \mathbf{K}(M), \operatorname{dcl}_{M}^{\mathrm{eq}}\left(M_{1} c\right) \cap M \subseteq \operatorname{acl}_{\widetilde{M}}\left(M_{1} c\right)$;
(iii) For all $e \in \operatorname{dcl}_{\widetilde{M}}(M)$, there exists a tuple $e^{\prime} \in M$ such that for all $\sigma \in \operatorname{Aut}(\widetilde{M})$ with $\sigma(M)=M$, σ fixes e if and only if it fixes e^{\prime};
(iv) For any $A=\operatorname{acl}_{M}^{\mathrm{eq}}(A) \cap M$ and $c \in \mathbb{K}(M)$, there exists an $\operatorname{Aut}(\widetilde{M} / A)$-invariant type $\widetilde{p} \in \mathrm{TP}_{\widetilde{M}}(\widetilde{M})$ such that $\widetilde{p} \mid M$ is consistent with $\operatorname{tp}_{\mathcal{L}}(c / A)$;
(v') For all $A \subseteq M$ and any $e \in \operatorname{acl}_{M}^{\mathrm{eq}}(A)$ there exists $e^{\prime} \in M$ such that $e \in \operatorname{dcl}_{M}^{\text {eq }}\left(A e^{\prime}\right)$ and $e^{\prime} \in \operatorname{dcl}_{M}^{\mathrm{eq}}(A e)$.
Then T eliminates imaginaries.

p-adic imaginaries

Theorem

Let K be a finite extension of \mathbb{Q}_{p}, then the theory of K in the language $\mathcal{L}_{\mathcal{G}}$ with a constant added for a generator of $K \cap \overline{\mathbb{Q}}^{\text {alg }}$ over $\mathbb{Q}_{p} \cap \overline{\mathbb{Q}}^{\text {alg }}$ eliminates imaginaries.

Proof.

It follows from the first EI criterion.

Ultraproducts

Theorem

Let $K=\Pi K_{p} / \mathcal{U}$ be an ultraproduct of finite extensions K_{p} of \mathbb{Q}_{p}. The theory of K in the language $\mathcal{L}_{\mathcal{G}}$, with constants added for a uniformizer and an unramified Galois-uniformizer, eliminate imaginaries.

Proof.

It follows from the second El criterion.

Remark

The sorts T_{n} are useless in those two cases.

Uniformity

Let $\mathcal{L}_{\mathcal{G}}^{\star}$ be $\mathcal{L}_{\mathcal{G}}$ with two constants in \mathbf{K} added.

Definition

An unramified m-Galois uniformizer is a point $c \in K$ such that res(c) generates $k^{\star} / P_{m}\left(k^{\star}\right)$.

Corollary

For any equivalence relation E_{p} on a set D_{p} definable in K_{p} uniformly in p, there exists m_{0} and an $\mathcal{L}_{\mathcal{G}}^{\star}$-formula $\phi(x, y)$ such that for all p, ϕ defines a function

$$
f_{p}: D \rightarrow K_{p}^{l} \times S_{m}\left(K_{p}\right)
$$

where K_{p} is made into a $\mathcal{L}_{\mathcal{G}}^{\star}$-structure by choosing a uniformizer and an unramified m_{0}-Galois uniformizer and

$$
K_{p} \vDash \forall x, y, x E_{p} y \Longleftrightarrow f_{p}(x)=f_{p}(y) .
$$

Definable families of equivalence relations

Fix p a prime and let K_{p} be a finite extension of \mathbb{Q}_{p}.

Definition

A family $\left(R_{l}\right)_{l \in \mathbb{N}^{r}} \subseteq K_{p}^{n}$ is said to be uniformly definable if there is an $\mathcal{L}_{\mathcal{G}}$ formula $\phi(x, y)$ such that for all $l \in \mathbb{N}^{\gamma}$,

$$
\phi\left(K_{p}, l\right)=R_{l} .
$$

We say that $E \subseteq R^{2}$ is a definable family of equivalence relations on R if E is an equivalence relation on R and

$$
\forall x, y \in R, x E y \Rightarrow \exists l \in \mathbb{N}^{r}, x, y \in R_{l} .
$$

In particular, for all $l \in \mathbb{N}^{r}, E$ induces an equivalence relation E_{l} on R_{l}.

Definable families of equivalence relations

For all prime p, let K_{p} be a finite extension of \mathbb{Q}_{p}.

Definition

A family $\left(R_{p, l}\right)_{l \in \mathbb{N}^{r}} \subseteq K_{p}^{n}$ is said to be definable uniformly in p if there is an $\mathcal{L}_{\mathcal{G}}$ formula $\phi(x, y)$ such that for all prime p and $l \in \mathbb{N}^{r}$,

$$
\phi\left(K_{p}, l\right)=R_{p, l} .
$$

We say that $E_{p} \subseteq R_{p}^{2}$ is a family of equivalence relations on R_{p} definable uniformly in p if E_{p} is an equivalence relation on R_{p} and

$$
\forall p \forall x, y \in R_{p}, x E_{p} y \Rightarrow \exists l \in \mathbb{N}^{r}, x, y \in R_{p, l} .
$$

In particular, for all $l \in \mathbb{N}^{r}, E_{p}$ induces an equivalence relation $E_{p, l}$ on $R_{p, l}$.

Rationality

Theorem

Fix p a prime. Let $\left(R_{v}\right)_{v \in \mathbb{N}^{r}} \subseteq K_{p}^{n}$ be uniformly definable and E a family of definable equivalence relations on R such that for all $l \in \mathbb{N}^{r}, a_{v}=\left|R_{v} / E_{v}\right|$ is finite. Then

$$
\sum_{v} a_{\nu} t^{v} \text { is rational. }
$$

Rationality

Theorem

Let $\left(R_{p, v}\right)_{v \in \mathbb{N}^{r}} \subseteq K_{p}^{n}$ be definable uniformly in p and E_{p} a family of equivalence relations on R definable uniformly in p such that for all prime p and $v \in \mathbb{N}^{r}$, $a_{p, v}=\left|R_{v} / E_{v}\right|$ is finite. Then for all p,

$$
\sum_{v} a_{p, r} t^{v} \text { is rational. }
$$

Moreover, there exists m_{0} and $d \in \mathbb{N}$ such that for all choice of m_{0}-Galois uniformizer $c_{p} \in K_{p}$, for all $v \in \mathbb{N}^{r}$ with $|v| \leq d$, there exists $q_{v} \in \mathbb{Q}$ and varieties V_{v} and W_{v} over $\mathbb{Z}[X]$ such that for all $p \gg 0$,

$$
\sum_{v} a_{p, v} t^{v}=\frac{\sum_{|v| \leq d} q_{v}\left|V_{v}\left(\operatorname{res}\left(K_{p}\right)\right)\right| t^{v}}{\sum_{|v| \leq d}\left|W_{v}\left(\operatorname{res}\left(K_{p}\right)\right)\right| t^{v}}
$$

where X is specialized to $\operatorname{res}\left(c_{p}\right)$ in $\operatorname{res}\left(K_{p}\right)$.

Some remarks

- The proof proceeds by:
I. Using uniform elimination of imaginaries to reduce to counting cosets of $\mathrm{GL}_{n}\left(\mathcal{O}\left(K_{p}\right)\right)$ in $\mathrm{GL}_{n}\left(K_{p}\right)$;

2. Using the Haar measure μ_{p} on $\mathrm{GL}_{n}\left(K_{p}\right)$ normalized such that $\mu_{p}\left(\mathrm{GL}_{n}\left(\mathcal{O}\left(K_{p}\right)\right)\right)=1$, rewrite the sum as an integral;
3. Use Denef's result on p-adic integrals (and its uniform version given by Pas or even motivic integration).

- In the appendix, Raf Cluckers gives an alternative proof of the counting theorem for fixed p that does not use elimination of imaginaries and generalizes to the analytic setting.
- The denominator of the rational function can described more precisely.
- These results are used to show that some zeta functions that appear in the theory of subgroup growth and representation growth are rational uniformly in p.

Thank you

