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Valued fields

Let (K, v) be a valued field:
▸ Γ = v(K) its value group;
▸ O = {x ∈ K ∶ v(x) ≥ 0} its valuation ring;
▸ M = {x ∈ K ∶ v(x) > 0} its maximal ideal;
▸ k = O /M its residue field.

Example (Hahn series field, Witt vectors)
▸ Let k be a field and Γ be an ordered Abelian group:

k((tΓ)) = {∑
γ∈Γ

cγtγ ∶ well-ordered support}.

▸ Let k be a perfect characteristic p > 0 field.

W(k) = {∑
i>i0
ap
−i

i p
i}.

It is the unique complete, rank 1, mixed characteristic valued field
whose residue field is k.
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Operators

On a field K we consider:
▸ Automorphisms (of the field).
▸ Derivations: an additive morphism ∂ ∶ K→ K that verifies the Leibniz
rule:

∂(xy) = ∂(x)y + x∂(y).
▸ (Iterative) Hasse derivations: a collection (∂n)n≤0 of additive
morphisms K→ K that verify

▸ D0(x) = x;
▸ The generalised Leibniz rule:

∂n(xy) = ∑
i+j=n

∂i(x)∂j(y);

▸ Dn(Dm(x)) = (m+nn )∂m+n(x)
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Operators

Example (Automorphisms)

▸ (Fp
alg
,Fp).

▸ Ultraproducts of the above.

Example (Derivations)
▸ Meromorphic functions on some open subset of C.
▸ Germs at +∞ of infinitely differentiable real functions.
▸ For (k, ∂) a differential field, k((tΓ)) with ∂(∑γ cγt

γ) = ∑γ ∂(cγ)tγ .

Example (Hasse Derivations)
▸ Let K be a characteristic p > 0 field and (bi)i∈I a p-basis of K. There
exists a a Hasse derivation ∂i on K such that ∂i,1(bi) = 1 and
∂i,n(bj) = 0 otherwise.
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Valued fields with operators

We want to consider fields with both structures.
▸ You can either not assume any interaction:

▸ Separably closed valued fields (Delon,Hong,Hils-Kamensky-R.);
▸ Differentially closed valued fields (Michaux,Guzy-Point);

▸ Or force some level of interaction:
▸ Contractive derivations: v(D(x)) ≥ v(x) (Scanlon, R.);
▸ Valued field automorphism: σ(O) = O (Bélair-Macintyre-Scanlon,
Durhan-van den Dries, Hrushovski, Pal, Durhan-Onay).

We will only consider existentially closed fields with operators.
▸ A priori, this rules out transseries.
▸ Actually, we will only need a certain form of quantifier elimination.
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Contractive derivations

In L∂,div ∶= {K;0, 1,+,−, ⋅, ∂,div}:

Theorem (Scanlon, 2000)
The theory of equicharacteristic zero valued fields with a contractive
derivation has a model completion VDFEC which is complete and
eliminates quantifiers.

The theory VDFEC contains:
▸ The field is ∂-Henselian;
▸ v(CK) = v(K) where CK = {x ∈ K ∶ ∂(x) = 0};
▸ The residue field is differentially closed;
▸ The value group is divisible.

Example

If (k, ∂) is differentially closed and Γ is divisible, then k((tΓ)) ⊧ VDFEC .
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Separably closed fields

▸ Let e be a positive integer.
▸ Let K be a characteristic p > 0 field with e commuting Hasse
derivations ∂i: ∂i,n ○ ∂j,m = ∂j,m ○ ∂i,n.

▸ The field K is strict if C1
K ∶= {x ∈ K ∶ ∀i, ∂i,1(x) = 0} = Kp.

In Le,div ∶= {K;0, 1,+,−, ⋅, (∂i,n)0≤i<e,0≤n,div}:

Theorem
The theory SCVHp,e of characteristic p > 0 strict separably closed valued
fields with e commuting Hasse derivations such that [K ∶ Kp] = pe is
complete and eliminates quantifiers.

Let K ⊧ SCVHp,e:
▸ v(K) is divisible and k(K) is algebraically closed;
▸ K is dense in K

alg
.
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Imaginaries

An imaginary is an equivalent class of an∅-definable equivalence relation.

Example
▸ Let (Xy)y∈Y be an ∅-definable family of sets.

▸ Define y1 ≡ y2 whenever Xy1 = Xy2 .
▸ The set Y/≡ is a moduli space for the family (Xy)y∈Y.
▸ The imaginary ⌜Xy⌝ ∶= y/≡ is the canonical parameter of Xy.

▸ Let G be a definable group andH P G be a subgroup. The group G/H
is interpretable but a priori not definable.

Definition
A theory T eliminates imaginaries if for all ∅-definable equivalence
relation E ⊆ D2, there exists an ∅-definable function f defined on D such
that for all x, y ∈ D:

xEy ⇐⇒ f(x) = f(y).
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Shelah’s eq construction

Definition
Let T be a theory. For all ∅-definable equivalence relation E ⊆∏i Si, let SE
be a new sort and fE ∶∏ Si → SE be a new function symbol. Let

Leq ∶= L∪{SE, fE ∶ E is an ∅-definable equivalence relation}

and
Teq ∶= T ∪ {fE is onto and ∀x, y (fE(x) = fE(y)↔ xEy)}.

Remark
▸ LetM ⊧ T, thenM can naturally be enriched into a model of Teq that
we denoteMeq.

▸ The theory Teq eliminates imaginaries.
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Imaginaries in fields

Theorem (Poizat, 1983)
The theory of algebraically closed fields in Lrg ∶= {K;0, 1,+,−, ⋅} and the
theory of differentially closed fields in L∂ ∶= Lrg ∪{∂} both eliminate
imaginaries.

One cannot hope for such a theorem to hold for algebraically closed
valued fields in Ldiv ∶= Lrg ∪{div}. Indeed,
▸ K = C((tQ)) ⊧ ACVF;
▸ Q = K⋆/O⋆ is both interpretable and countable;
▸ All definable set X ⊆ Kn are either finite or have cardinality
continuum.
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Imaginaries in valued fields

Let (K, v) be a valued field, we define:
▸ Sn ∶= GLn(K)/GLn(O).

▸ It is the moduli space of rank n freeO-submodules of Kn.

▸ Tn ∶= GLn(K)/GLn,n(O)
▸ GLn,n(O) consists of the matricesM ∈ GLn(O) whose reduct modulo
M has only zeroes on the last column but for a 1 in the last entry.

▸ It is the moduli space of⋃s∈Sn s/M s = {a +M s ∶ s ∈ Sn and a ∈ s}.

Let LG ∶= {K, (Sn)n∈N>0 , (Tn)n∈N>0 ;Ldiv, σn ∶ K
n2 → Sn, τn ∶ Kn

2

→ Tn}.

Theorem (Haskell-Hrushovski-Macpherson, 2006)
TheLG-theory of algebraically closed valued fields eliminates imaginaries.

11 / 22



Imaginaries and definable types

Proposition (Hrushovski, 2014)
Let T be a theory such that, for all A = acleq(A) ⊆Meq ⊧ Teq:
1. Any Leq(A)-definable set is consistent with an Leq(A)-definable type.
2. Any Leq(A)-definable type p is L(A ∩M)-definable.
3. Finite sets have canonical parameters.

Then T eliminates imaginaries.

Remark
It suffices to prove hypothesis 1 in dimension 1.
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An aside: the invariant extension property

Definition
We say that T has the invariant extension property if for allM ⊧ T and
A = acleq(A) ⊆Meq, every type over A has a global A-invariant extension.

Proposition
The following are equivalent:

(i) The theory T has the invariant extension property.

(ii) For all A = acleq(A) ⊆Meq ⊧ Teq, any Leq(A)-definable set is
consistent with an Leq(A)-definable type.

Remark
If T is NIP then the above are also equivalent to:
(iii) ▸ Forking equals dividing

▸ Lascar strong type, Kim-Pillay strong type and strong type coincide.
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Differentially closed and separably closed fields

Let T be either the theory of characteristic zero differentially closed fields
or the theory of strict characteristic p > 0 separably closed fields with e
commuting Hasse derivations such that [K ∶ Kp] = pe.
▸ Hypothesis 1 is true by stability
▸ Hypothesis 3 is true because it is true in algebraically closed fields.
▸ As for Hypothesis 2:

▸ Let A = acleq(A) ⊆Meq ⊧ Teq and p(x) be an L(A)-definable type.
▸ Let ∂ω(x) denote either (∂n(x))n∈Z≥0 or (∂0,i0 ○ . . . ∂e−1,ie−1(x))ij∈Z≥0 .
▸ Let a ⊧ p and q = tpLrg

(∂ω(a)/M).
▸ By elimination of imaginaries in ACF, q is Lrg(A ∩M)-definable.
▸ So p is L(A ∩M)-definable.
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Prolongations

Let L be either L∂,div or Le,div and T denote either VDFEC or SCVHp,e.

▸ LetM ⊧ T. For all p ∈ SLx (M), we define:

∇ω(p) ∶= {ϕ(xω;m) ∶ ϕ(∂ω(x);m) ∈ p} ∈ SLdiv
xω (M).

▸ By quantifier elimination, the map ∇ω is injective.
▸ Let A = acleq(A) ⊆Meq ⊧ Teq,

p is consistent with X ⇐⇒ ∇ω(p) is consistent with ∂ω(X);

p is Leq(A)-definable ⇐⇒ ∇ω(p) is Leq(A)-definable.

Hypothesis 1 and 2 (almost) reduce to questions about ACVF.
▸ The defining scheme of p consists of L(M)-formulas and not
Ldiv(M) formulas.
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Proving Hypothesis 1

It is proved by a technical construction.
▸ Given an enrichment T of ACVF in a language L, such that k and Γ
eliminate imaginaries,

▸ A set A = acleq(A) ⊆Meq ⊧ Teq,
▸ An Leq(A)-definable set X,
▸ A finite set∆ of Ldiv-formulas,
▸ We find an Leq(A)-definable∆-type p consistent with X.
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Definable types in enrichments of NIP theories

Definition (Uniform stable embeddedness)
LetM be some structure and A ⊆M. We say that A is uniformly stably
embedded inM if for all formula ϕ(x; y) there exists a formula ψ(x; z)
such that for all tuple c ∈M,

ϕ(A; c) = ψ(A;a)

for some tuple a ∈ A.

Proposition (Simon-R.)

Let T be an NIP be an L-theory and T̃ be a complete enrichment of T in a
language L̃. Assume that there exitsM ⊧ T̃ such that M∣L is uniformly
stably embedded in every elementary extension.
Let X be a set that is both externally L-definable and L̃-definable, then X
is L-definable.

In particular, any L-type which is L̃-definable is in fact L-definable.
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Externally definable sets in NIP theories

Proposition (Simon-R.)
Let T be an NIP L-theory, U(x) be a new predicate and ϕ(x; t) ∈ L. There
exists ψ(x; s) ∈ L and θ ∈ LU a sentence such that for allM ⊧ T and
U ⊆M∣x∣ we have:

U is externally ϕ-definable⇒MU ⊧ θU ⇒ U is externally ψ-definable.

▸ It follows that (a uniform version of) the previous proposition’s
conclusion is a first order statement.

▸ Hence it suffices to find one model of T where it holds (uniformly
enough); for example, a model where all externally L-definable sets
are L-definable.

▸ If we are looking at T = ACVF, then models of the form k((tR)) have
this property.
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Imaginaries in VDFEC

Let LG,∂ = LG ∪{∂} and VDFGEC the enrichment of VDFEC to LG .

Theorem
The theory VDFGEC eliminates imaginaries.

Proof.
Apply the criterion.
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Imaginaries in SCVHp,e

Let LG,p,e = LG ∪{∂i,n ∶ 0 ≤ i < e and n ≥ 0} and SCVHGp,e the enrichment
of SCVHp,e to LG .

Theorem
The theory SCVHGp,e eliminates imaginaries.

Proof.

Applying the criterion requires to understand the pair (Kalg,K) where
K ⊧ SCVHp,e. One can prove a quantifier elimination result for this
structure by improving certain results of Delon.
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Other examples

▸ Let Fp,q ∶= (Fp((t))
alg
,Fp). We can consider

∏
p
Fp,p/U or ∏

q
Fp,q/U .

▸ Wp,q ∶= (W(Fp
alg),W(Fq)) and their ultraproducts.

The main issue is that definable types are not dense in these structure, so
one has to find another approach, probably using invariant types.
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Thanks!
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