Imaginaries in valued fields with operators

Silvain Rideau

UC Berkeley

April 15 2016

Valued fields

Let (K, v) be a valued field:

- $\Gamma = v(K)$ its value group;
- $\mathcal{O} = \{x \in K : v(x) \ge 0\}$ its valuation ring;
- $\mathfrak{M} = \{x \in K : v(x) > 0\}$ its maximal ideal;
- $k = \mathcal{O} / \mathfrak{M}$ its residue field.

Example (Hahn series field, Witt vectors)

• Let *k* be a field and Γ be an ordered Abelian group:

$$k((t^{\Gamma})) = \{\sum_{\gamma \in \Gamma} c_{\gamma} t^{\gamma} : \text{ well-ordered support}\}.$$

▶ Let *k* be a perfect characteristic *p* > 0 field.

$$W(k) = \{\sum_{i>i_0} a_i^{p^{-i}} p^i\}.$$

It is the unique complete, rank 1, mixed characteristic valued field whose residue field is k.

Operators

On a field *K* we consider:

- Automorphisms (of the field).
- Derivations: an additive morphism $\partial : K \to K$ that verifies the Leibniz rule:

$$\partial(xy) = \partial(x)y + x\partial(y).$$

- (Iterative) Hasse derivations: a collection $(\partial_n)_{n \le 0}$ of additive morphisms $K \to K$ that verify
 - $D_0(x) = x;$
 - The generalised Leibniz rule:

$$\partial_n(xy) = \sum_{i+j=n} \partial_i(x) \partial_j(y);$$

•
$$D_n(D_m(x)) = \binom{m+n}{n} \partial_{m+n}(x)$$

Operators

Example (Automorphisms)

- $(\overline{\mathbb{F}_p}^{\mathrm{alg}}, \mathbb{F}_p).$
- Ultraproducts of the above.

Example (Derivations)

- ▶ Meromorphic functions on some open subset of C.
- Germs at $+\infty$ of infinitely differentiable real functions.
- For (k, ∂) a differential field, $k((t^{\Gamma}))$ with $\partial(\sum_{\gamma} c_{\gamma} t^{\gamma}) = \sum_{\gamma} \partial(c_{\gamma}) t^{\gamma}$.

Example (Hasse Derivations)

• Let *K* be a characteristic p > 0 field and $(b_i)_{i \in I}$ a *p*-basis of *K*. There exists a a Hasse derivation ∂_i on *K* such that $\partial_{i,1}(b_i) = 1$ and $\partial_{i,n}(b_j) = 0$ otherwise.

Valued fields with operators

We want to consider fields with both structures.

- You can either not assume any interaction:
 - Separably closed valued fields (Delon, Hong, Hils-Kamensky-R.);
 - Differentially closed valued fields (Michaux, Guzy-Point);
- Or force some level of interaction:
 - Contractive derivations: $v(D(x)) \ge v(x)$ (Scanlon, R.);
 - Valued field automorphism: $\sigma(\mathcal{O}) = \mathcal{O}$ (Bélair-Macintyre-Scanlon, Durhan-van den Dries, Hrushovski, Pal, Durhan-Onay).

We will only consider existentially closed fields with operators.

- A priori, this rules out transseries.
- Actually, we will only need a certain form of quantifier elimination.

Contractive derivations

 $ln \mathcal{L}_{\partial, div} \coloneqq \{K; 0, 1, +, -, \cdot, \partial, div\}:$

Theorem (Scanlon, 2000)

The theory of equicharacteristic zero valued fields with a contractive derivation has a model completion $VDF_{\mathcal{EC}}$ which is complete and eliminates quantifiers.

The theory $VDF_{\mathcal{EC}}$ contains:

- ▶ The field is ∂-Henselian;
- $v(C_K) = v(K)$ where $C_K = \{x \in K : \partial(x) = 0\};$
- The residue field is differentially closed;
- The value group is divisible.

Example

If (k, ∂) is differentially closed and Γ is divisible, then $k((t^{\Gamma})) \models VDF_{\mathcal{EC}}$.

Separably closed fields

- Let *e* be a positive integer.
- ▶ Let *K* be a characteristic p > 0 field with *e* commuting Hasse derivations ∂_i : $\partial_{i,n} \circ \partial_{j,m} = \partial_{j,m} \circ \partial_{i,n}$.
- The field *K* is strict if $C_K^1 := \{x \in K : \forall i, \partial_{i,1}(x) = 0\} = K^p$.

 $\ln \mathcal{L}_{e,\mathrm{div}} \coloneqq \{\mathbf{K}; 0, 1, +, -, \cdot, (\partial_{i,n})_{0 \leq i < e, 0 \leq n}, \mathrm{div}\}:$

Theorem

The theory SCVH_{*p*,*e*} of characteristic p > 0 strict separably closed valued fields with *e* commuting Hasse derivations such that $[K : K^p] = p^e$ is complete and eliminates quantifiers.

Let $K \vDash \text{SCVH}_{p,e}$:

- ▶ v(*K*) is divisible and *k*(*K*) is algebraically closed;
- *K* is dense in \overline{K}^{alg} .

Imaginaries

An imaginary is an equivalent class of an \emptyset -definable equivalence relation.

Example

- Let $(X_y)_{y \in Y}$ be an \emptyset -definable family of sets.
 - Define $y_1 \equiv y_2$ whenever $X_{y_1} = X_{y_2}$.
 - The set Y/\equiv is a moduli space for the family $(X_y)_{y\in Y}$.
 - The imaginary $[X_y] := y/\equiv$ is the canonical parameter of X_y .
- Let *G* be a definable group and $H \leq G$ be a subgroup. The group G/H is interpretable but *a priori* not definable.

Definition

A theory *T* eliminates imaginaries if for all \emptyset -definable equivalence relation $E \subseteq D^2$, there exists an \emptyset -definable function *f* defined on *D* such that for all $x, y \in D$:

 $xEy \iff f(x) = f(y).$

Shelah's eq construction

Definition

Let *T* be a theory. For all \emptyset -definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

 $\mathcal{L}^{eq} \coloneqq \mathcal{L} \cup \{S_E, f_E : E \text{ is an } \emptyset \text{-definable equivalence relation}\}$

and

 $T^{\text{eq}} \coloneqq T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow xEy)\}.$

Remark

- Let $M \models T$, then M can naturally be enriched into a model of T^{eq} that we denote M^{eq} .
- The theory *T*^{eq} eliminates imaginaries.

Theorem (Poizat, 1983)

The theory of algebraically closed fields in $\mathcal{L}_{rg} \coloneqq \{K; 0, 1, +, -, \cdot\}$ and the theory of differentially closed fields in $\mathcal{L}_{\partial} \coloneqq \mathcal{L}_{rg} \cup \{\partial\}$ both eliminate imaginaries.

One cannot hope for such a theorem to hold for algebraically closed valued fields in $\mathcal{L}_{div} := \mathcal{L}_{rg} \cup \{div\}$. Indeed,

- $K = \mathbb{C}((t^{\mathbb{Q}})) \models \text{ACVF};$
- $\mathbb{Q} = K^* / \mathcal{O}^*$ is both interpretable and countable;
- ► All definable set $X \subseteq K^n$ are either finite or have cardinality continuum.

Imaginaries in valued fields

Let (K, v) be a valued field, we define:

- $\mathbf{S}_n \coloneqq \operatorname{GL}_n(K) / \operatorname{GL}_n(\mathcal{O}).$
 - It is the moduli space of rank *n* free \mathcal{O} -submodules of K^n .

$$\bullet \mathbf{T}_n \coloneqq \operatorname{GL}_n(K) / \operatorname{GL}_{n,n}(\mathcal{O})$$

- $\operatorname{GL}_{n,n}(\mathcal{O})$ consists of the matrices $M \in \operatorname{GL}_n(\mathcal{O})$ whose reduct modulo \mathfrak{M} has only zeroes on the last column but for a 1 in the last entry.
- It is the moduli space of $\bigcup_{s \in \mathbf{S}_n} s / \mathfrak{M}s = \{a + \mathfrak{M}s : s \in \mathbf{S}_n \text{ and } a \in s\}.$

Let $\mathcal{L}_{\mathcal{G}} \coloneqq \{\mathbf{K}, (\mathbf{S}_n)_{n \in \mathbb{N}_{>0}}, (\mathbf{T}_n)_{n \in \mathbb{N}_{>0}}; \mathcal{L}_{\operatorname{div}}, \sigma_n : \mathbf{K}^{n^2} \to \mathbf{S}_n, \tau_n : \mathbf{K}^{n^2} \to \mathbf{T}_n\}.$

Theorem (Haskell-Hrushovski-Macpherson, 2006)

The $\mathcal{L}_{\mathcal{G}}$ -theory of algebraically closed valued fields eliminates imaginaries.

Imaginaries and definable types

Proposition (Hrushovski, 2014)

Let *T* be a theory such that, for all $A = \operatorname{acl}^{eq}(A) \subseteq M^{eq} \vDash T^{eq}$:

- **I.** Any $\mathcal{L}^{eq}(A)$ -definable set is consistent with an $\mathcal{L}^{eq}(A)$ -definable type.
- 2. Any $\mathcal{L}^{eq}(A)$ -definable type *p* is $\mathcal{L}(A \cap M)$ -definable.
- 3. Finite sets have canonical parameters.

Then *T* eliminates imaginaries.

Remark

It suffices to prove hypothesis 1 in dimension 1.

An aside: the invariant extension property

Definition

We say that *T* has the invariant extension property if for all $M \models T$ and $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}}$, every type over *A* has a global *A*-invariant extension.

Proposition

The following are equivalent:

- (i) The theory *T* has the invariant extension property.
- (ii) For all $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}} \models T^{\operatorname{eq}}$, any $\mathcal{L}^{\operatorname{eq}}(A)$ -definable set is consistent with an $\mathcal{L}^{\operatorname{eq}}(A)$ -definable type.

Remark

If *T* is NIP then the above are also equivalent to:

- Forking equals dividing
 - Lascar strong type, Kim-Pillay strong type and strong type coincide.

Differentially closed and separably closed fields

Let *T* be either the theory of characteristic zero differentially closed fields or the theory of strict characteristic p > 0 separably closed fields with *e* commuting Hasse derivations such that $[K : K^p] = p^e$.

- Hypothesis I is true by stability
- > Hypothesis 3 is true because it is true in algebraically closed fields.
- As for Hypothesis 2:
 - ▶ Let $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}} \models T^{\operatorname{eq}}$ and p(x) be an $\mathcal{L}(A)$ -definable type.
 - ▶ Let $\partial_{\omega}(x)$ denote either $(\partial^n(x))_{n \in \mathbb{Z}_{\geq 0}}$ or $(\partial_{0,i_0} \circ \ldots \partial_{e^{-1},i_{e^{-1}}}(x))_{i_j \in \mathbb{Z}_{\geq 0}}$.
 - Let $a \vDash p$ and $q = \operatorname{tp}_{\mathcal{L}_{\operatorname{rg}}}(\partial_{\omega}(a)/M)$.
 - ▶ By elimination of imaginaries in ACF, *q* is $\mathcal{L}_{rg}(A \cap M)$ -definable.
 - So *p* is $\mathcal{L}(A \cap M)$ -definable.

Prolongations

Let \mathcal{L} be either $\mathcal{L}_{\partial,\text{div}}$ or $\mathcal{L}_{e,\text{div}}$ and T denote either $\text{VDF}_{\mathcal{EC}}$ or $\text{SCVH}_{p,e}$.

• Let $M \vDash T$. For all $p \in \mathcal{S}_x^{\mathcal{L}}(M)$, we define:

 $\nabla_{\!\omega}(p) \coloneqq \{\phi(x_{\omega};m): \phi(\partial_{\omega}(x);m) \in p\} \in \mathcal{S}_{x_{\omega}}^{\mathcal{L}_{\mathrm{div}}}(M).$

- By quantifier elimination, the map ∇_{ω} is injective.
- Let $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}} \models T^{\operatorname{eq}}$,

p is consistent with $X \iff \nabla_{\omega}(p)$ is consistent with $\partial_{\omega}(X)$;

$$p$$
 is $\mathcal{L}^{eq}(A)$ -definable $\iff \nabla_{\omega}(p)$ is $\mathcal{L}^{eq}(A)$ -definable.

Hypothesis 1 and 2 (almost) reduce to questions about ACVF.

• The defining scheme of *p* consists of $\mathcal{L}(M)$ -formulas and not $\mathcal{L}_{div}(M)$ formulas.

It is proved by a technical construction.

- Given an enrichment *T* of ACVF in a language \mathcal{L} , such that *k* and Γ eliminate imaginaries,
- A set $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}} \models T^{\operatorname{eq}}$,
- An $\mathcal{L}^{eq}(A)$ -definable set X,
- A finite set Δ of \mathcal{L}_{div} -formulas,
- We find an $\mathcal{L}^{eq}(A)$ -definable Δ -type *p* consistent with *X*.

Definable types in enrichments of NIP theories

Definition (Uniform stable embeddedness)

Let *M* be some structure and $A \subseteq M$. We say that *A* is uniformly stably embedded in *M* if for all formula $\phi(x; y)$ there exists a formula $\psi(x; z)$ such that for all tuple $c \in M$,

$$\phi(A;c) = \psi(A;a)$$

for some tuple $a \in A$.

Proposition (Simon-R.)

Let *T* be an NIP be an \mathcal{L} -theory and \widetilde{T} be a complete enrichment of *T* in a language $\widetilde{\mathcal{L}}$. Assume that there exits $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension. Let *X* be a set that is both externally \mathcal{L} -definable and $\widetilde{\mathcal{L}}$ -definable, then *X* is \mathcal{L} -definable.

In particular, any \mathcal{L} -type which is $\widetilde{\mathcal{L}}$ -definable is in fact \mathcal{L} -definable.

Externally definable sets in NIP theories

Proposition (Simon-R.)

Let *T* be an NIP \mathcal{L} -theory, U(x) be a new predicate and $\phi(x; t) \in \mathcal{L}$. There exists $\psi(x; s) \in \mathcal{L}$ and $\theta \in \mathcal{L}_U$ a sentence such that for all $M \models T$ and $U \subseteq M^{|x|}$ we have:

U is externally ϕ -definable \Rightarrow $M_U \vDash \theta_U \Rightarrow U$ is externally ψ -definable.

- It follows that (a uniform version of) the previous proposition's conclusion is a first order statement.
- Hence it suffices to find one model of *T* where it holds (uniformly enough); for example, a model where all externally *L*-definable sets are *L*-definable.
- If we are looking at T = ACVF, then models of the form $k((t^{\mathbb{R}}))$ have this property.

Let $\mathcal{L}_{\mathcal{G},\partial} = \mathcal{L}_{\mathcal{G}} \cup \{\partial\}$ and $VDF_{\mathcal{EC}}^{\mathcal{G}}$ the enrichment of $VDF_{\mathcal{EC}}$ to $\mathcal{L}_{\mathcal{G}}$.

Theorem The theory $VDF_{\mathcal{EC}}^{\mathcal{G}}$ eliminates imaginaries. Proof. Apply the criterion.

Imaginaries in $SCVH_{p,e}$

Let $\mathcal{L}_{\mathcal{G},p,e} = \mathcal{L}_{\mathcal{G}} \cup \{\partial_{i,n} : 0 \le i < e \text{ and } n \ge 0\}$ and $\text{SCVH}_{p,e}^{\mathcal{G}}$ the enrichment of $\text{SCVH}_{p,e}$ to $\mathcal{L}_{\mathcal{G}}$.

Theorem

The theory SCVH^{\mathcal{G}}_{*p,e*} eliminates imaginaries.

Proof.

Applying the criterion requires to understand the pair (\overline{K}^{alg}, K) where $K \models \text{SCVH}_{p,e}$. One can prove a quantifier elimination result for this structure by improving certain results of Delon.

• Let
$$\mathcal{F}_{p,q} \coloneqq (\overline{\mathbb{F}_p((t))}^{alg}, \mathbb{F}_p)$$
. We can consider
$$\prod_p \mathcal{F}_{p,p}/\mathfrak{U} \text{ or } \prod_q \mathcal{F}_{p,q}/\mathfrak{U}$$

• $W_{p,q} \coloneqq (W(\overline{\mathbb{F}_p}^{alg}), W(\mathbb{F}_q))$ and their ultraproducts.

The main issue is that definable types are not dense in these structure, so one has to find another approach, probably using invariant types.

Thanks!