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Résumé

Cette thèse est une contribution à la théorie des modèles des corps valués. Les principaux résultats
de ce texte sont des résultats d’éliminations des quantificateurs et des imaginaires.
Le premier chapitre contient une étude des imaginaires dans les extensions finies deQp. On y dé-
montre que ces corps ainsi que leurs ultraproduits éliminent les imaginaires dans le langage géo-
métrique. On en déduit un résultat de rationalité uniforme pour les fonctions zêta associées aux
familles de relations d’équivalences définissables dans les extensions finies deQp.

Lamotivation première du deuxième chapitre est l’étude deW(Fp
alg) en tant que corps valué analy-

tique de différence. Plus généralement, on démontre un théorème d’élimination des quantificateurs
de corps dans le langageRV pour les corps valués analytiquesσ-Henséliens de caractéristique nulle.
On donne aussi une axiomatisation de la théorie deW(Fp

alg) ainsi qu’une preuve qu’elle est NIP.
Dans le troisième chapitre, on prouve la densité des types définissables dans certains enrichisse-
ments d’ACVF. On en déduit un critère pour l’élimination des imaginaires et la propriété d’exten-
sion invariante. Ce chapitre contient aussi des résultats abstraits sur les ensembles extérieurement
définissables dans les théoriesNIP.
Dans le dernier chapitre, les résultats du chapitre précédent sont appliqués à VDFEC , la modèle
complétion des corps valués munis d’une dérivation qui préserve la valuation, pour obtenir l’élimi-
nation des imaginaires dans le langage géométrique ainsi que la densité des types définissables et
la propriété d’extension invariante. Ce chapitre contient aussi des considérations sur les fonctions
définissables, les types et les groupes définissables dans VDFEC .
Mots-clefs : Théorie des modèles, corps valués, élimination des quantificateurs, élimination des
imaginaires, structure analytique, dérivation, différence, métastabilité.

Eliminations in valued fields

Abstract

This thesis is about the model theory of valued fields. The main results in this text are eliminations
of quantifiers and imaginaries.
The first chapter is concerned with imaginaries in finite extensions ofQp. I show that these fields
and their ultraproducts eliminate imaginaries in the geometric language. As a corollary, I obtain
the uniform rationality of zeta functions associated to families of equivalence relations that are
definable in finite extensions ofQp.

The motivation for the second chapter is to study W(Fp
alg) as an analytic difference valued field.

More generally, I show a field quantifier elimination theorem in theRV-language for σ-Henselian
characteristic zero valued fields with an analytic structure. I also axiomatise the theory ofW(Fp

alg)
and I show that this theory is NIP.
In the third chapter, I prove the density of definable types in certain enrichments of ACVF. From
this result, I deduce a criterion for the elimination of imaginaries and the invariant property. This
chapter also contains abstract results on externally definable sets in NIP theories.
In the last chapter, the previous chapter is applied toVDFEC , themodel completion of valued fields
with a valuation preserving derivation, to obtain the elimination of imaginaries in the geometric
language, as well as the density of definable types and the invariant extension property. This chap-
ter also contains considerations about definable functions, types and definable groupes inVDFEC .
Keywords : Model theory, valued fields, elimination of quantifiers, elimination of imaginaries, an-
alytic structure, derivation, difference, metastability.





Exterminate! Exterminate!
Any random Dalek

Plus il y a d’emmental, plus il y a de trous ;
plus il y a de trous, moins il y a d’emmental ;

donc plus il y a d’emmental, moins il y a d’emmental.
Sagesse populaire
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Introduction

Le Logicien
Permettez moi de me présenter... Logicien professionnel : voici ma carte d’identité.

E. Ionesco, Rhinocéros, Acte I

Ce texte a pour sujet l’étude modèle théorique des corps valués. La théorie des modèles est
l’étude des structures et des ensembles définissables au premier ordre dans ces structures.
On distingue souvent la théorie des modèles pure, qui est l’étude abstraite de théories et
de la combinatoire des ensembles définissables, et la théorie des modèles appliquée dont
le but est d’étudier certaines structures concrètes provenant du reste des mathématiques ;
ici, les corps valués. Mais la distinction est relativement arbitraire, les questions de théorie
des modèles pure provenant souvent d’applications et les considérations plus « pures »
permettant souvent de mieux comprendre les cas concrets qui nous intéressent.
De fait, ce texte est clairement un exemple de théorie des modèles appliquée mais certains
des résultats présentés répondent à des préoccupations beaucoup plus « pures ».

Les corps valués et le principe d’Ax-Kochen-Eršov
Parmi les premiers résultats de théorie desmodèles des corps valués, il y en a un en particu-
lier qui préfigure le développement ultérieur du domaine : le théorème d’Ax-Kochen-Eršov
[AK65 ; Erš65]. S’il serait déraisonnable de négliger l’aspect fondateur des travaux d’Abra-
hamRobinson [Rob77] sur les corps valués algébriquement clos (ACVF), le théorème d’Ax-
Kochen-Eršov, cependant, contient en germe un principe qui s’est révélée d’une extrême
importance : un corps valué est une structure « contrôlée » d’une part par un groupe or-
donné (son groupe de valeur) et d’autre part par un corps (son corps résiduel). Les corps de
Hahn illustrent parfaitement cette idée : à partir de n’importe quel corps k et de n’importe
quel groupe abélien ordonné Γ, on peut construire le corps valué k((tΓ)) dont les éléments
sont les séries formelles∑γ∈Γ aγtγ à coefficient dans k telles que l’ensemble {γ ∈ Γ ∶ aγ ≠ 0}
est bien ordonné. Le corps résiduel de k((tΓ)) est exactement k et son groupe de valeur est
exactement Γ.
Certes, tout corps valuéK de groupe de valeur Γ et de corps résiduel k n’est pas isomorphe
à k((tΓ)). Mais, d’après le théorème d’Ax-Kochen-Eršov, s’il est Hensélien (c’est-à-dire que
la valuation peut être étendue de façon unique à toute extension algébrique) et si k est de
caractéristique nulle, la théorie au premier ordre deK est contrôlée par celle de k et Γ :

Théorème0.1 (théorème d’Ax-Kochen-Eršov, 1965) :
SoientK et L des corps valués Henséliens d’équicaractéristique nulle. Les corps valuésK et
L sont élémentairement équivalents3si et seulement si leurs corps résiduels et leurs groupes
de valeur le sont.

iii



Introduction

Donc, si K est Hensélien d’équicaractéristique nulle il est élémentairement équivalent à
k((tΓ)), où k est son corps résiduel et Γ est son groupe de valeur.
Le théorème d’Ax-Kochen-Eršov s’étend tel quel à la caractéristique mixte non ramifiée,
c’est-à-dire quandK est de caractéristique nulle, k est de caractéristique p positive et val(p)
est le plus petit élément strictement positif. Avec quelques complications supplémentaires,
il s’étend aussi à la caractéristique mixte finiment ramifiée (quand val(p) est un multiple
fini du plus petit élément strictement positif du groupe de valeur). Dans la suite, on di-
ra plus généralement qu’un corps valué de caractéristique nulle est finiment ramifié si sa
caractéristique résiduelle est nulle ou s’il est de caractéristique mixte finiment ramifiée.
L’un des corollaires les plus marquants du théorème d’Ax-Kochen-Eršov est que, si U est un
ultrafiltre non principal sur l’ensemble des nombres premiers, alors les deux ultraproduits
∏pQp/U et∏pFp((t))/U sont élémentairement équivalents en tant que corps valués. Au-
trement dit, un énoncé (du premier ordre) est vérifié dans tout Qp pour p assez grand, si
et seulement s’il est vérifié dans tout Fp((t)) pour p assez grand. La motivation première
d’Ax et Kochen lorsqu’ils ont prouvé ce principe de transfert était de répondre à la question
suivante d’Artin : est-il vrai que tout polynôme sur Qp homogène de degré d en au moins
d2 + 1 variables a une racine non triviale. D’après un théorème de Lang, ce résultat est vrai
dans Fp((t)), pour tout p. On en déduit donc que pour tout d il existe un nombre premier
p0 tel que la réponse à la question d’Artin est positive dans tout Qp tel que p ⩾ p0. On sait
depuis que ce résultat est « optimal » car on connait des contre-exemples pour p petit.
Récemment ce type de résultats de transfert a été étendu, au-delà des langages du premier
ordre, aux égalités d’intégrales p-adiques contenant des caractères additifs [CL10], par le
biais de l’intégration motivique. Cela a permis, par exemple, à Cluckers, Hales et Loeser
[CHL11] de transférer le lemme fondamental du programme de Langlands de la caractéris-
tique positive à la caractéristique nulle.
L’idée sous-jacente au théorème d’Ax-Kochen-Eršov de contrôle d’un corps valuéHensélien
par son groupe de valeur et son corps résiduel a de nombreux avatars dans la théorie des
modèles des corps valués telle qu’elle a été développée depuis. L’un de ceux-ci est le résultat
de Delon [Del81] (en équicaractéristique nulle) et Bélair [Bél99] (en caractéristique mixte
finiment ramifiée) sur la « modération » des corps valués finiment ramifiés.
Avant d’expliciter ce résultat, il est nécessaire d’expliquer ce qu’on entend ici par modé-
ration. Dans ses travaux sur la classification, Shelah a introduit, dès les années 1970, un
certain nombre de classes de théories plus ou moins modérées, liées à la présence (ou non)
de configurations combinatoires dans leursmodèles. La première qu’il ait définie, et de loin
la plus étudiée de ces classes, est celle des théories stables :

Définition 0.2 (Théorie stable) :
Soient φ(x, y) une L-formule etM une L-structure. On dit que φ a la propriété de l’ordre dans
M s’il existe des suites de uples (ai)i∈N et (bi)i∈N ∈ M tels queM ⊧ φ(ai, bj) si et seulement si
i ⩽ j.
UneL-théorie T est dite stable si aucuneL-formule n’a la propriété de l’ordre dans aucunmodèle
de T .

3C’est-à-dire tout énoncé du premier ordre dans le langage des corps valués vrai dans l’un des corps valués
est vrai dans l’autre.
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Cette condition, qui semble particulièrement combinatoire, a, en fait, un grand nombre de
conséquences, qui font de la stabilité un « paradis » de la théorie desmodèles dans lequel de
nombreux outils ont été développés (les types définissables, la déviation, l’indépendance,
etc). L’exemple le plus classique de théorie stable est celui des corps algébriquement clos
(ACF) mais il en existe d’autres. Certaines n’ont que peu de contenu algébrique comme la
théorie des ensembles infinis dans le langage de l’égalité ou encore la théorie d’une relation
d’équivalence avec un nombre infini de classes infinies. Mais d’autres, les modules sur un
anneau donné, les corps séparablement clos (SCF) ou encore les corps différentiellement
clos de caractéristique nulle (DCF0), sont des structures algébriques. Cependant, de nom-
breuses structures qui apparaissent en mathématiques sont instables, limitant de fait les
applications possibles des résultats obtenus grâce à la stabilité.
Par exemple, le corps R (plus généralement les corps réels clos) ou les corps valués ne
peuvent pas être stables puisqu’on y trouve un ordre définissable. Mais depuis la défini-
tion de la stabilité, d’autres notions de modération ont été introduites. Nous ne parlerons,
ici, que d’une seule d’entres elles, compatible avec la présence d’un ordre définissable, la no-
tion de théorieNIP. Cette notion avait également été définie par Shelah, mais avait été peu
étudiée jusqu’au début des années 2000. Elle a fait depuis l’objet d’une attention croissante.

Définition 0.3 (Théorie NIP) :
Soient φ(x, y) une L-formule etM une L-structure. On dit que φ a la propriété de l’indépen-
dance dansM s’il existe des suites de uples (ai)i∈N et (bJ)J⊆N ∈M tels queM ⊧ φ(ai, bJ) si et
seulement si i ∈ J .
Une L-théorie T est dite NIP (not the independence property), ou dépendante, si aucune L-
formule n’a la propriété de l’indépendance dans aucun modèle de T .

Parmi les théories NIP, on trouve un grand nombre d’exemples naturels. Il y a d’abord
toutes les théories stables, ainsi que la théorie des corps réels clos (RCF) ou plus générale-
ment toute théorie o-minimale, commepar exemple la théorie deRmuni de l’exponentielle
et des fonctions analytiques à support compact. On y trouve aussi de nombreuses théories
de corps valués : la théorie des corps valués algébriquement clos, la théorie de Qp et plus
généralement la théorie de toute extension finie deQp.
Ceci nous ramène au « principe d’Ax-Kochen-Eršov » relatif à la modération des corps va-
lués que l’on a déjà mentionné :

Théorème0.4 ([Del81 ; Bél99]) :
Soit T une théorie de corps valués Henséliens de caractéristique nulle finiment ramifiés. Alors
T est NIP si et seulement si la théorie induite sur le corps résiduel l’est.

Ce théorème est une instance d’un principe plus général qui peut s’énoncer ainsi : un corps
valué Hensélien de caractéristique nulle finiment ramifié n’est pas plus compliqué que ne
le sont son groupe de valeur et son corps résiduel. Toute mention du groupe de valeur a
disparu du théorème ci-dessus parce que, d’après un théorème de [GS84], tous les groupes
abéliens ordonnés sont NIP.
Comme on l’a déjà mentionné, les théories stables ont de très bonnes propriétés. L’une
d’entre elles est que tous les types sont définissables. Rappelons qu’un type surM est un
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ultrafiltre sur l’algèbre de Boole des ensembles définissables à paramètres dans M . Il est
dit définissable si pour toute formule φ(x; s) il existe une formule θ(s) telle que, pour tout
m, θ(m) est vrai si et seulement si φ(x;m) ∈ p. De manière équivalente, dans tout modèle
M d’une théorie stable, tout ensemble extérieurement définissable4, est en fait définissable
dansM (avec paramètres). Cette propriété caractérise la stabilité et ne peut donc pas être
vraie dans toutes les théories NIP. Mais les ensembles extérieurement définissables ont
toujours de très bonnes propriétés dans ces dernières. La principale d’entre elles est l’exis-
tence des définitions honnêtes (uniformes), introduites par Chernikov et Simon [CS13 ; CS]
et qui feront leur apparition dans la Section III.1 de ce texte.
On considère souvent qu’une théorie NIP est contrôlée par une partie stable et une par-
tie ordonnée. Dans le cas des corps valués, ce principe qui n’est pas sans rappeler celui
d’Ax-Kochen-Eršov, peut être illustré précisément. Dans les corps locaux de caractéristique
nulle5, le corps résiduel étant fini, la structure est essentiellement contrôlée par le groupe
de valeur. On aimerait alors dire que ces théories sont « purement instables », ce qui est
formalisé par Simon [Sim13] sous le nom de distalité.
Pour ce qui est des corps valués algébriquement clos, il y a une partie ordonnée (le groupe
de valeur Γ) et une partie extrêmement stable, le corps résiduel qui est algébriquement
clos. Haskell, Hrushovski etMacpherson [HHM06 ; HHM08] ont formalisé cette intuition
en introduisant la notion de métastabilité : pour tout uple a le type de a sur Γ est « do-
miné » par la partie stable. Dans [Hrub], Hrushovski utilise la métastabilité pour dévisser
les groupes définissables dans ACVF à partir de groupes internes au groupe de valeur, de
groupes internes au corps résiduel et de schémas en groupe sur l’anneau de valuation.
Remarquons enfin qu’une forme du principe d’Ax-Kochen-Eršov apparaît dans le cadre de
l’intégrationmotivique, dont l’un des buts est de trouver des invariants additifs des variétés
algébriques définies sur des corps valués. En particulier, en suivant Hrushovski et Kazh-
dan [HK06], on peut trouver un tel invariant en associant à une variété sa classe dans le
semi-anneau de Grothendieck des définissables dans ACVF6. Ils démontrent alors que ce
semi-anneau est essentiellement isomorphe au produit tensoriel du semi-anneau de Gro-
thendieck du corps résiduel et de celui du groupe de valeur.

Élimination des quantificateurs
Le théorème d’Ax-Kochen-Eršov (0.1) est, en fait, une conséquence naturelle de résultats
d’élimination des quantificateurs ; bien qu’Ax, Kochen et Eršov ne donnent jamais explici-
tement de tels résultats.
Plus généralement, la question de l’élimination des quantificateurs est une question fon-
damentale lorsqu’on étudie une théorie spécifique. En effet, la classe des ensembles défi-
nissables dans une structure donnée est obtenue à partir d’ensembles de base, déterminés

4C’est-à-dire lesM -points d’un ensemble définissable avec paramètres dans une extension élémentaire de
M .

5Ici, par corps local de caractéristique nulle, on veut dire corps local non-archimédien de caractéristique
nulle, autrement dit une extension finie deQp pour un certain premier p.

6C’est-à-dire le semi-anneau des classes d’isomorphismes définissables d’ensembles définissables dans
ACVFmuni de la somme disjointe comme addition et du produit comme multiplication.
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par le langage choisi, par des combinaisons booléennes finies et des projections. Mais les
projections sont des opérations beaucoup plus compliquées que les opérations booléennes
et il est idéal, pour avoir une bonne compréhension des ensembles définissables, de savoir
que les opérations booléennes suffisent ; c’est exactement le contenu de l’élimination des
quantificateurs. Par exemple dans le cas d’ACF, les ensembles des bases sont les variétés
algébriques affines et les combinaisons booléennes d’ensembles de base sont les ensembles
constructibles dans la topologie de Zariski. L’élimination des quantificateurs pourACF est
donc équivalente à un théorème de Chevalley selon lequel l’image par une fonction régu-
lière d’un ensemble constructible est encore constructible.
Dans le cas des corps valués, il existe une grande diversité de résultats d’élimination des
quantificateurs. Le premier d’entre eux est celui qui est essentiellement prouvé dans les tra-
vaux d’AbrahamRobinson [Rob77] sur les corps valués algébriquement clos dans le langage
le plus simple possible pour les corps valués7. Dans ce cas, comme dans beaucoup d’autres,
ce résultat d’élimination des quantificateurs permet de démontrer des résultats de modé-
ration. En l’occurrence, il permet de démontrer que la théorie ACVF est C-minimale. La
C-minimalité est une notion qui généralise à la fois la notion de forte minimalité et celle
d’o-minimalité et qui comme toute notion de minimalité concerne les ensembles définis-
sables en une variable. Dans les théories fortement minimales on demande que les en-
sembles définissables unaires soient les mêmes que dans l’ensemble infini sans structure
(autrement dit ils sont soit finis soit cofinis). Dans les théories o-minimales, on demande
que ces ensembles soient les mêmes que ceux définis sans quantificateurs dans un ordre
(c’est-à-dire des unions finies d’intervalles). Enfin dans les théories C-minimales, on de-
mande que ces ensembles soient les mêmes que ceux définis sans quantificateurs dans les
feuilles d’un arbre. Dans le cas d’un corps valué, cet arbre est l’arbre des boules fermées et
laC-minimalité requiert que tout ensemble définissable unaire soit une combinaison boo-
léenne de boules. Une notion demodération n’est intéressante que parce qu’elle donne des
outils avec lesquels travailler. Dans le cas de la C-minimalité, on obtient, par exemple, une
notion de décomposition cellulaire ainsi qu’une notion, associée, de dimension.
Pour ce qui est de la théorie de Qp, on peut montrer que le langage de Robinson ne suffit
pas pour éliminer les quantificateurs, autrement dit, il faut rajouter de nouveaux ensembles
de base pour espérer éliminer les quantificateurs. Macintyre [Mac76] montre qu’il suffit de
rajouter les ensembles de la forme Pn(K) ∶= {x ∈K ∶ ∃y, x = yn} pour tout n.
Plus récemment, des résultats d’élimination des quantificateurs ont été démontré pour une
classe de corps valués beaucoup plus large : les corps valués Henséliens de caractéristique
nulle (non ramifiés). Ces résultats viennent essentiellement en deux grandes familles sui-
vant les ensembles de base que l’on choisit : les résultats avec composantes angulaires et
les résultats avec termes dominants. Pour suivre le développement historique du domaine,
commençons par les composantes angulaires. Une composante angulaire d’un corps valué
K est un morphisme de groupe ac ∶K⋆ → k⋆ tel que la restriction de ac àO⋆ coïncide avec
le résidu res ∶ O → k, où O ∶= {x ∈ K ∶ val(x) ⩾ 0} est l’anneau de valuation deK . On peut
munir les séries de Laurent sur k (ou plus généralement sur tout corps de Hahn), les corps

7Les ensembles de base dans ce langage sont de la forme {x ∶ val(P (x)) ⩾ val(Q(x))}, où P etQ sont des
polynômes en plusieurs variables.
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locaux et les vecteurs de Witt sur un corps parfait, d’une composante angulaire naturelle,
mais tout corps valué ne peut pas êtremuni d’une composante angulaire. Toutefois, il suffit
de supposer que le corps valué est ℵ1-saturé pour en construire une.
D’après un théorème de Pas [Pas89], les corps valués Henséliens d’équicaractéristique nulle
éliminent les quantificateurs de corps dans le langage (à trois sortes K, k et Γ) des corps
valués muni d’une composante angulaire, aussi connu sous le nom de langage de Denef-
Pas. Si l’on rajoute des « composantes angulaires d’ordre supérieur », ce théorème s’étend
aux corps valués Henséliens de caractéristique mixte finiment ramifiés.
Le principal défaut des composantes angulaires est, qu’en général, même quand des com-
posantes angulaires naturelles existent, elles ne sont pas définissables dans le langage des
corps valués ; il existe quelques exceptions notables comme les corps locaux de caracté-
ristique nulle où le système classique de « composantes angulaires d’ordre supérieur » est
définissable. Les langages avec termes dominants, aussi connus sous le nom de congruences
amc ou encore fonctionsRV, ont pour but de pallier cemanquement des composantes an-
gulaires en considérant un langage qui ne rajoute aucun ensemble définissable sur le corps
valué lui-même. On définit le groupeRV ∶= K⋆/(1 +M). Il existe une suite exacte courte
1 → k⋆ → RV → Γ → 0 définissable dans tout corps valué. Il s’avère alors, par des travaux
de Basarab et Kuhlmann [Bas91 ; BK92], qu’avec ces termes dominants, on peut éliminer
les quantificateurs de corps dans les corps valués Henséliens d’équicaractéristique nulle.
Comme précédemment, on obtient qu’en caractéristique mixte (possiblement infiniment
ramifié), on peut éliminer les quantificateurs de corps, quitte à rajouter des « termes domi-
nants d’ordre supérieur ».
Au cours des vingt-cinq dernières années, ces théorèmes d’élimination des quantificateurs
ont été étendus à divers enrichissements des corps valués apparaissant naturellement en
mathématiques. Tout d’abord, la plupart des corps valués que l’on considère, que ce soient
des corps locaux ou des corps de séries formelles, sont complets8. Ils sont donc naturel-
lement munis d’une structure analytique donnée par la spécialisation, sur leur domaine
de convergence, de séries formelles. Les premiers résultats d’élimination des quantifica-
teurs pour les corps valués munis d’une telle structure analytique remontent aux travaux
de Denef et van den Dries [DD88] sur le corpsQp. Ils ont été suivis d’un grand nombre de
travaux dans un cadre de plus en plus général, parmi lesquels on peut citer ceux de van
den Dries, Haskell, Macpherson, Lipshitz, Robinson et Cluckers [Dri92 ; DHM99 ; LR00 ;
LR05 ; CLR06 ; CL11]. Par exemple, dans [Dri92], van den Dries démontre l’élimination des
quantificateurs de corps pour tout corps Hensélien d’équicaractéristique nulle avec struc-
ture analytique dans un langage avec composantes angulaires et en déduit un théorème
d’Ax-Kochen-Eršov analytique.
L’autre enrichissement de corps valué qu’il est naturel de considérer consiste à rajouter un
opérateur, que ce soit une dérivation ou un automorphisme de corps valué9. Les premiers
résultats (construction de modèle-complétion et élimination des quantificateurs de corps)
remontent à Scanlon [Sca00] où il étudie, sous certaines hypothèses techniques supplé-
mentaires, les corps valués munis d’un opérateur D (notion qui généralise à la fois le cas

8Ceci étant, la complétude n’est pas une propriété exprimable au premier ordre.
9Un automorphisme de corps tel que σ(O) = O.
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d’une dérivation et celui d’un automorphisme) qui préserve la valuation, c’est-à-dire tel
que pour tout x, val(D(x)) ⩾ val(x). Il montre en particulier l’existence de la modèle-
complétion des corps valués différentiels dont la dérivation préserve la valuation (VDFEC).
L’étude de cette théorie a motivé les Chapitres III et IV de ce texte.
Dans des travaux ultérieurs, Bélair, Macintyre, Scanlon, Durhan et van den Dries [Sca03 ;
BMS07 ; AD10] étendent les résultats d’élimination des quantificateurs de corps aux isomé-
tries, c’est-à-dire aux automorphismes de corps tels que pour tout x, val(σ(x)) = val(x).
Par ailleurs, des automorphismes qui ne sont pas des isométries, mais tels que pour tout x
tel que val(x) > 0 et tout n ∈ N, val(σ(x)) > nval(x), qu’on appelle des automorphismes
ω-croissants, apparaissent dans les travaux de Hrushovski [Hrua] sur les approximations
tordues de Lang-Weil. L’élimination des quantificateurs de corps pour les corps valués mu-
nis d’un tel automorphisme est démontrée par Durhan dans [Azg10]. Pal a ensuite étendu
dans [Pal12] ces résultats à des automorphismes plus généraux et enfin Durhan et Onay
[DO] ont récemment montré que ces résultats sont vérifiés pour un automorphisme quel-
conque de corps valué.
Le but du Chapitre II de ce texte est de réconcilier ces deux grandes tendances en étudiant
les corps valués munis à la fois d’une structure analytique et d’un automorphisme de corps
valué. On y démontre, entre autres choses, un résultat d’élimination des quantificateurs de
corps pour les corps σ-Henséliens analytiques. La motivation première de ces résultats est
l’étude modèle théorique du corps des vecteurs de Witt sur Fp

alg
muni à la fois de sa struc-

ture analytique et du relèvement du Frobenius. Une bonne connaissance de cette théorie
peut permettre par exemple de donner une version modèle théorique de la géométrie p-
différentielle de Buium et de traiter certains problèmes de géométrie diophantienne (voir
[Sca06]).
Pour revenir aux corps valués munis d’une dérivation, deux autres cas relativement dis-
tincts ont été étudiés. Le premier, l’étude au long cours du corps des transséries (voir par
exemple [ADH13]), a amené à considérer des corps valués différentiels qui ne sont pas D-
Henséliens et dont la dérivation, bien que ne préservant pas la valuation, est continue.
Le second est celui de corps valués différentiels dans lesquels il n’y a aucune interaction
entre la valuation et la dérivation. En particulier, cette dérivation est discontinue (voir par
exemple [GP10]). Mais, mis à part les techniques liées au fait qu’on étudie des corps valués,
ces deux autres cas ont en fait peu de choses en commun avec le cas étudié par Scanlon ou
avec le cas d’un automorphisme de corps valué qui lui est étroitement lié.

Élimination des imaginaires
Lorsque l’on veut étudier une théorie donnée, une fois que la question de l’élimination
des quantificateurs a été résolue, une autre question se pose, celle de la description des
quotients définissables. En effet, pour de multiples raisons, on est naturellement amené à
considérer des relations d’équivalence définissables et donc les quotients par ces relations
d’équivalence. Mais ces quotients, qu’on appelle les ensembles interprétables, sortent de
la catégorie des ensembles définissables et on perd alors l’essentiel de l’information qu’on
avait pu établir jusqu’ici sur les ensembles définissables.
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Des relations d’équivalence définissables apparaissent de la façon suivante. Soient X ⊆
Y × Z des ensembles ∅-définissables dans une structure M . On peut voir X comme la
famille (Xy)y∈Y des fibres deX sur Y . On peut alors se demander s’il existe une autre para-
métrisation (Uw)w∈W de cette famille telle que chaque ensemble de la familleX apparaisse
une et une seule fois dans la familleU . Cette notion, prochede celle d’un espace demodules,
est fondamentale car elle permet d’identifier l’ensemble desXy avec l’ensemble définissable
W . On dit alors que le point de W qui correspond à une fibre Xy de X est un paramètre
canonique deX . Ce paramètre canonique est alors le « plus petit » ensemble au-dessus du-
quel Xy peut être défini ; un ensemble dont l’existence n’est pas assurée dans une théorie
quelconque.
On peut construire W et U de manière « canonique » en considérant la relation d’équi-
valence y1Ey2 sur Y définie par ∀z, z ∈ Xy1 ⇐⇒ z ∈ Xy2 et en prenant W = Y /E et
U = {(z, ŷ) ∶ x ∈ Xy} où ŷ est la E-classe de y. Mais les ensemblesW et U sont interpré-
tables et non définissables. Une telle construction n’est possible à l’intérieur deM que si
les quotients interprétables dans M sont représentables par des ensembles définissables.
C’est exactement cette propriété que l’on nomme l’élimination des imaginaires dans M et
qui est équivalente à l’existence, dansM , d’un plus petit ensemble de définition pour tout
ensemble définissable.
La notion d’élimination des imaginaires, introduite par Poizat dans [Poi83] est beaucoup
plus récente que celle d’élimination des quantificateurs, qui a été fondamentale, pendant
de longues années, dans toutes les applications de la théorie desmodèles. Il n’est donc guère
surprenant qu’il existemoins de résultats d’élimination des imaginaires. Parmi les exemples
de théories éliminant les imaginaires, on trouve, tout d’abord, les deux théories qui ont
motivé la définition de cette notion : ACF et DCF0. L’élimination des imaginaires dans
ces théories découle de l’existence, pour toute variété algébrique (respectivement différen-
tielle), d’un plus petit corps (respectivement différentiel) de définition et de la définissabilité
des polynômes symétriques. Parmi les autres exemples notables, on trouve aussi les groupes
divisibles ordonnés, les corps réels clos (c’est-à-dire les corps élémentairement équivalents
à R) et plus généralement toutes les théories o-minimales de groupes ordonnés.
En général, pour une théorie qui n’élimine pas les imaginaires, la question est de savoir
quels sont les paramètres canoniques d’ensembles définissables qu’il suffit de rajouter aux
modèles de la théorie pour obtenir l’élimination des imaginaires. En rajoutant tous les pa-
ramètres canoniques de tous les ensembles définissables dans une théorie T , on obtient la
théorie T eq (dont les modèles seront notésM eq) définie par Shelah qui élimine les imagi-
naires. Mais cette construction, si elle est très utile d’un point de vue abstrait, n’a que peu
d’intérêt pour une théorie donnée car elle ne fournit aucune information sur les ensembles
interprétables. Ce que l’on recherche dans les résultats d’élimination des imaginaires c’est
une description « concrète » des ensembles interprétables. Par exemple, on peut vérifier
que la théorie des ensembles infinis sans structure dans le langage contenant seulement
l’égalité n’élimine pas les imaginaires ; en effet, à part les singletons, aucun ensemble fini
n’a de paramètre canonique. Mais il suffit de rajouter, pour tout n ∈N>0, une sorte Sn dont
les éléments sont les sous-ensembles à n éléments de la sorte principale.
Considérons maintenant les corps valués algébriquement clos dans le langage avec une
seule sorte pour le corps valué lui-même. Il découle de l’élimination des quantificateurs que
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tout ensemble infini définissable est de même cardinalité que le corps valué. Or, il existe
des corps valués algébriquement clos de cardinal 2ℵ0 dont le groupe de valeurΓ est dénom-
brable. Il est donc impossible que l’ensemble interprétableΓ =K⋆/O⋆ soit en bijection avec
un sous-ensemble définissable du corps. Des contre-exemples plus élaborés permettent de
montrer qu’il ne suffit pas de rajouter le groupe de valeur, le corps résiduel ni même l’en-
semble des boules du corps valué pour obtenir l’élimination des imaginaires. Il en est de
même pour les corps locaux de caractéristique nulle.
Le premier résultat d’élimination des imaginaires pour des corps valués a été démontré
par Haskell, Hrushovski et Macpherson dans [HHM06]. Ils démontrent que dans les corps
valués algébriquement clos, il suffit de rajouter les paramètres canoniques de certains en-
sembles, qui peuvent être vus comme des équivalents en dimension supérieure des boules.
Ces ensembles sont, d’une part, les sous-O-modules libres de rang n de Kn, aussi connus
sous le nom de réseaux et, d’autre part, pour tout réseau s, les ensembles de la forme a+Ms
où a ∈ s. Le langage dans lequel on a rajouté des paramètres canoniques pour ces deux fa-
milles d’ensembles est connu sous le nom de langage géométrique.
Il a été démontré depuis par Mellor [Mel06] que les corps valués réels clos éliminent aussi
les imaginaires dans le langage géométrique. Dans le Chapitre I de ce texte, on démontre de
nouveaux résultats d’élimination des imaginaires dans le langage géométrique : d’une part
pour les corps locaux de caractéristique nulle et d’autre part pour les corps pseudo-locaux
(c’est-à-dire les ultraproduits de corps locaux) d’équicaractéristique nulle.
Pour ce qui est des corps valués enrichis, les résultats sont encore plus rares. Dans le cas des
corps valués algébriquement clos avec structure analytique, il est démontré dans [HHM13]
qu’ils n’éliminent pas les imaginaires dans le langage géométrique.Mais aucune description
concrète des paramètres canoniques qu’il faudrait rajouter n’est connue. Dans ce texte, on
prouve un résultat pour l’autre famille d’enrichissements décrite plus tôt, les corps valués
avec opérateurs. Plus précisément, le Chapitre III contient des considérations générales sur
les imaginaires dans les enrichissements d’ACVF qui sont appliqués dans le Chapitre IV
pour démontrer queVDFEC élimine les imaginaires dans le langage géométrique augmenté
d’un symbole pour la dérivation.
Nous avons remarqué précédemment que les résultats d’élimination des quantificateurs
permettent de démontrer des résultats de modération. Pour ce qui est de l’élimination des
imaginaires, c’est plutôt le contraire : la modération d’une théorie peut aider à comprendre
ses imaginaires. Par exemple, la stabilité des théories ACF,DCF0 et SCF joue un rôle non
négligeable dans les preuves d’élimination des imaginaires. De même, la théorie des types
stablement dominés et de la métastabilité a été développée pour étudier les imaginaires
dans ACVF. Dans une preuve plus récente [Hru14 ; Joh] de l’élimination des imaginaires
dans ACVF dans le langage géométrique , la densité des types définissables joue un rôle
central. Enfin, dans la preuve de l’élimination des imaginaires pourVDFEC dans le langage
géométrique présentée dans ce texte, les types définissables sont tout aussi importants,
mais un autre ingrédient central de la preuve est le bon comportement, dans les théories
NIP, des ensembles extérieurement définissables.
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Après l’élimination
Une fois que l’on connait l’élimination des quantificateurs et des imaginaires pour une
théorie donnée, tout un champdepossibilités s’ouvre ànous, et il n’y a plus vraiment d’étape
suivante « canonique ». Par exemple, pour ce qui est d’ACVF, Hrushovski et Loeser [HL]
étudient l’espace des types stablement dominés et montrent qu’il permet, non seulement,
de redéfinir la notion d’espace de Berkovich mais aussi de prouver de nouveaux résultats
sur leur topologie. Plus classiquement, on peut vouloir étudier les groupes et les corps défi-
nissables dans une théorie : les classifier mais aussi montrer comment certaines propriétés
géométriques des ensembles définissables permettent d’en construire. Ces considérations
sont centrales à la théorie dite géométrique de la stabilité et, appliquées àDCF0 et SCF, ont
permis à Hrushovski [Hru96] de démontrer certains résultats diophantiens dont la conjec-
ture de Mordell-Lang pour les corps de fonctions.
Dans les corps algébriquement clos, d’après un résultat deWeil, ou plus précisément l’inter-
prétation modèle théorique de ce résultat par Hrushovski (cf. [Poi87, Section 4.e]) ou van
den Dries [Dri90], tout groupe définissable est définissablement isomorphe à un groupe
algébrique. D’après un résultat de Bouscaren et Delon [BD01], les groupes définissables
dans un corps K séparablement clos de degré d’imperfection fini sont définissablement
isomorphes auxK-points d’un groupe algébrique.Dans les corps pseudo-finis, d’aprèsHru-
shovski et Pillay [HP94], la situation est similaire, à certains groupes finis près : tout groupe
définissable dans un corps pseudo finiK contient un sous-groupe définissable d’indice fi-
ni, isogène aux K-points d’un groupe algébrique. Dans les corps différentiellement clos
de caractéristique nulle, d’après un théorème de Pillay [Pil97], tout groupe définissable se
plonge définissablement dans un groupe algébrique. Enfin, dans les corps algébriquement
clos avec un automorphisme générique, Chatzidakis et Hrushovski [CH99], dans le cas de
rang fini, puis Kowalski et Pillay [KP02], dans le cas général, montrent un résultat similaire
à des groupes finis près. La Section IV.5 de ce texte contient les premiers pas d’une telle
classification des groupes définissables dans les corps valués différentiels à la Scanlon.

Aperçu des résultats
Les principaux résultats de ce texte sont des résultats d’élimination des quantificateurs et
des imaginaires dans les corps valués, des purs corps valués comme les corps locaux de
caractéristique nulle ou les corps pseudo-locaux d’équicaractéristique nulle, et des corps
valués enrichis par une dérivation, un automorphisme ou encore une structure analytique.
Le premier chapitre, écrit avec Ehud Hrushovski et BenMartin, contient [HMR]. Ses prin-
cipaux résultatsmodèles théoriques sont l’élimination des imaginaires dans le langage géo-
métrique pour les corps locaux de caractéristique nulle (ThéorèmeA) et pour les corps
pseudo-locaux d’équicaractéristique nulle (ThéorèmeB). On en déduit alors, dans le Corol-
laire (I.2.7) que l’élimination des imaginaires dans les corps locaux de caractéristique nulle
est uniforme quand la caractéristique résiduelle est assez grande.
Ces résultats d’élimination sont ensuite appliqués pour compter des classes dans une fa-
mille de relations d’équivalence paramètrées par le groupe de valeur et définissables dans un
corps local de caractéristique nulle. En utilisant des techniques, développées entre autres
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par Denef, qui relient ces problèmes à des calculs d’intégrales p-adiques, on démontre le
ThéorèmeC selon lequel les fonctions zêta associées à ces problèmes de comptage sont
uniformément rationnelles. Ce chapitre contient aussi les applications du ThéorèmeC à
l’étude de certaines fonctions zêta qui apparaissent en théorie de la croissance des sous-
groupes et des représentations.

Dans le Chapitre II, on prouve un résultat (ThéorèmeD) d’élimination des quantificateurs
de corps dans des corps valués avec à la fois une structure analytique et un automorphisme.
Bien que la motivation première ait été d’étudier le corps des vecteurs de Witt sur Fp

alg

muni de sa structure analytique et du relèvement du Frobenius (qui est une isométrie), le
ThéorèmeD est prouvé pour tous les automorphismes de corps valués. Ce chapitre tente
aussi, dans les Sections II.A et II.B, de donner une approche plus systématique des preuves
d’élimination des quantificateurs dans les corps valués enrichis, par le biais de certaines
considérations plus abstraites.

Le sujet du Chapitre III est l’élimination des imaginaires dans certains enrichissements
d’ACVF. La théorie VDFEC est le principal exemple motivant cette section. Plus précisé-
ment, on prouve un résultat de densité des types définissables (ThéorèmeE) qui implique
à la fois l’éliminations des imaginaires et l’existence d’extensions globales invariantes. Ce
chapitre commence, dans la Section III.1, par un travail en commun avec Pierre Simon, que
je remercie d’accepter que je présente ici ces résultats, sur des considérations plus abstraites
à propos des ensembles extérieurement définissables dans les théoriesNIP. Ces considéra-
tions sont essentielles pour démontrer les autres résultats de ce chapitre.

Enfin, le Chapitre IV contient plusieurs résultats surVDFEC . Le principal (ThéorèmeF) est
l’élimination des imaginaires et la propriété d’extension invariante pour VDFEC dans le
langage géométrique. C’est une application directe des résultats du chapitre précédent. On
montre aussi que le corps des constantes est stablement plongé dans lesmodèles deVDFEC ,
et on étudie les clôtures définissables et algébriques. Le lien entre les types dans VDFEC
et ceux dans ACVF est formalisé par la définition d’un analogue des prolongations de la
géométrie algébrique différentielle. Enfin, la dernière section de ce chapitre est consacrée
à l’étude des groupes définissables dansVDFEC et leurs liens avec les groupes définissables
dans ACVF.

Description détaillée des résultats
Chapitre I. Imaginaires dans les corps p-adiques : Outre leur intérêt intrinsèque pour
les théoriciens desmodèles, la principalemotivation derrière les résultats de ce chapitre est
l’étude de certaines fonctions de comptage en théorie des groupes. Commençons donc par
un petit historique de ces questions de comptage et de leur lien à la théorie des modèles.
Commençons par les séries de Poincaré associées aux points p-adiques de variétés. Soit
X une variété affine définie sur Zp. On appelle an le nombre de ces Z/pnZ-points et ãn
le nombre de points dans l’image de la fonction canonique X(Zp) → X(Z/pnZ). Pour
étudier la croissance de ces deux suites, on définit les deux séries de Poincaré PX(t) ∶=
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∑i aiti et P̃X(t) ∶= ∑i ãiti. La principale question concernant ces séries est celle de leur
rationalité. Dans le cas de PX(t), cela est démontré par Igusa dans les années 1970. Pour ce
qui est de P̃X(t), la présence d’une image (et donc d’un quantificateur) rend les choses plus
compliquées mais Denef démontre sa rationalité dans [Den84] en utilisant l’élimination
des quantificateurs pourQp prouvée par Macintyre [Mac76].
Dans sa preuve, Denef considère les ensemblesAn ∶= {x ∈ Zp ∶ x est dansX modulo pnZp}
et Ãn ∶= {x ∈ Zp ∶ il existe y ∈ X(Zp) tel que x ≡ y mod pnZp}, qui sont définissables dans
Qp, et prouve que an = µ(An)pnd et ãn = µ(Ãn)pnd où d ∈N dépend deX et µ est la mesure
de Haar sur Qp telle que µ(Zp) = 1. Il montre ensuite que la Q-algèbre des fonctions en-
gendrée par les fonctions f ∶Qp×Z→ Z et x↦ pf(x) où f est définissable dansQp est close
par intégration. Le théorème de rationalité suit alors facilement. En utilisant un théorème
d’élimination des quantificateurs pourQp uniforme, Pas [Pas91] et Macintyre [Mac90] dé-
montrent que, quandX est définie sur Z, la rationalité de ces séries est uniforme.
Dans [GSS88], Grunewald, Segal et Smith utilisent le résultat de Denef sur la définissabilité
des intégrales p-adiques pour traiter un problème de comptage qui vient directement de
la théorie des groupes. Soit G un groupe nilpotent, finiment engendré, sans torsion. Le
nombre de sous-groupes deG d’indice n est fini ; on le note bn. On trouve alors une famille,
définissable dansQp, de fonctions paramètrées par le groupe de valeur telle que l’intégrale
de la fonction d’indice n est exactement bpn . En utilisant le résultat de Denef, on obtient
alors la rationalité de la série ζG,p(t) ∶= ∑i bpiti. Par des considérations similaires à celles de
Pas etMacintyre, ou plus généralement la spécialisation p-adique de résultats d’intégration
motivique, on obtient aussi des informations sur le comportement quand p varie. L’un des
intérêts de ces résultats uniformes en p est que l’on peut définir la fonction zêta globale
associée àG, ζG(s) = ∑i bii−s et qu’on a, comme pour la fonction zêta de Riemann qui n’est
autre que ζZ, une décomposition d’Euler en fonctions zêta locales :

ζG(s) =∏
p

ζG,p(p−s).

Une compréhension uniforme des fonctions zêta locales peut donc permettre de com-
prendre la fonction zêta globale.
La méthode pour associer à bpn une fonction définissable dansQp consiste à trouver, uni-
formément en n, un ensembleDn/En interprétable dansQp qui soit en bijection avec l’en-
semble des sous groupes deG d’indice pn et à trouver une fonction fn définissable dansQp

telle que pour tout x ∈ Dn, si x̂En dénote la En-classe de x, µ(x̂En) = p−val(fn(x)). Ainsi le
résultat de Grunewald, Segal et Smith, tout comme celui de Denef sur les séries de Poinca-
ré, peut se voir comme une instance d’un problème plus général qui consiste à compter les
classes dans une famille (En)n∈N de relations d’équivalence, définissable dans Qp. Dans le
cas des résultats que l’on a déjà mentionnés, les relations d’équivalences en question sont
suffisamment simples pour qu’on puisse trouver les fonctions fn de façon explicite. Cepen-
dant, dans le cas général, tant qu’onne sait pas exactement quelle est la formedes ensembles
interprétables, il est impossible de trouver de tels fn, d’où la nécessité de prouver un résul-
tat d’élimination des imaginaires pour Qp, de préférence uniforme en p, pour pouvoir en
déduire des informations sur les fonctions zêta globales.
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Dans ce chapitre on prouve deux théorèmes d’élimination des imaginaires. Un théorème
sur les corps locaux :

ThéorèmeA :
SoitK un corps local de caractéristique mixte (0, p). Si on rajoute une constante pour
un générateur deK ∩Q

alg
surQp ∩Q

alg
, alors la théorie deK dans le langage géomé-

trique élimine les imaginaires.

Et un théorème sur leurs ultraproduits :

ThéorèmeB :
La théorie des corps pseudo-locaux de caractéristique résiduelle nulle élimine les ima-
ginaires dans le langage géométrique, si on rajoute une infinité de constantes.

Dans les deux cas, comme la valuation est discrète, les paramètres canoniques d’ensembles
de la forme a+Ms, où s est un réseau, ne sont, en fait, pas nécessaires. On déduit du second
théorème, dans le Corollaire (I.2.7), que l’élimination des imaginaires pour les corps locaux
est uniforme quand la caractéristique résiduelle est grande.
Il s’en suit que tout ensemble interprétable dans un corps localK de caractéristique nulle
peut être identifié avec un sous-ensemble définissable deKn × (GLm(K)/GLm(O)) pour
certains n etm ∈ N, uniformément en p. On peut alors trouver assez facilement les fonc-
tions fn telles que précédemment, en utilisant le fait que la mesure de Haar sur GLm(K)
a une densité relative à la mesure de Haar surKn2 qui est une fonction définissable, et en
déduire un résultat (ThéorèmeC) de rationalité uniforme pour toute famille de relations
d’équivalence uniformément définissables dans les corps locaux de caractéristique nulle.
Ce théorème permet, non seulement, de retrouver plusieurs résultats déjà connus de ra-
tionalité pour des fonctions zêta locales issues de la théorie des groupes, mais aussi d’en
prouver de nouveaux pour lesquels les relations d’équivalence qui rentrent en jeu sont plus
compliquées, comme par exemple le comptage des représentations à « isotwist » près.
Pour ce qui est des résultats d’élimination des imaginaires eux-mêmes, ils sont prouvés
en utilisant des critères abstraits, Proposition (I.2.11) et Corollaire (I.2.15), qui permettent
de transférer un résultat d’élimination des imaginaires d’une certaine théorie, ici ACVF,
à une autre. Dans ce chapitre, le transfert est rendu possible par le fait que les fonctions
définissables dans les théories, pour lesquelles on veut éliminer les imaginaires, peuvent
être recouvertes par des correspondances, définissables dans ACVF, qui, à chaque point,
associent un nombre fini de points. L’existence d’extensions invariantes des types sur de
petits ensembles de paramètres algébriquement clos ainsi qu’une description complète de
tous les 1-types jouent aussi un rôle central.

Chapitre II. Corps analytiques de différence : Commementionné précédemment, ce
chapitre a pour but l’étude des corps valués enrichis à la fois par une structure analytique
et un automorphisme de corps valué. L’étude de ces structures n’est cependant pas seule-
mentmotivée par l’envie de comprendre les interactions entre deux types d’enrichissement
de corps valués que l’on comprend bien et de donner un traitement modèle théorique de
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structures de plus en plus complexes, mais aussi parce que c’est un cadre modèle théorique
qui permet de comprendre certains problèmes de géométrie diophantienne et de théorie
des nombres. Par exemple, c’est le cadre dans lequel traiter la géométrie p-différentielle de
Buium. En effet, toute fonction p-différentielle définie surW(Fp

alg) est une fonction défi-
nissable dans la structureW(Fp

alg)munie du relèvement du Frobenius, ainsi que des sym-
boles pour toutes les fonctions analytiques p-adiques∑I aIXI où aI → 0 quand ∣I ∣→∞.
Dans [Sca06], Scanlon montre comment une bonne connaissance de la théorie des mo-
dèles des corps analytiques de différence peut permettre de montrer que certains résultats
diophantiens sont uniformes. En particulier, il montre qu’on peut déduire une version en
famille de la conjecture de Manin-Munford pour les variétés abéliennes surW[k] à partir
de la conjecture classique (c’est-à-dire du théorèmedeRaynaud), en utilisant, d’une part des
résultats de Buium sur le lien entre ces questions et la géométrie p-différentielle et, d’autre
part un théorème d’Ax-Kochen-Eršov pour les corps analytiques de différence.
Le résultat principal de ce chapitre est un résultat d’éliminationdes quantificateurs de corps
pour une certaine classe de corps valués analytiques de différence :

ThéorèmeD :
La théorie des corps valués σ-Henséliens de caractéristique nulle avec structure analy-
tique élimine les quantificateurs de corps dans le langage avec des termes dominants

Dans le cas des corps valués munis de structure analytique, l’idée sur laquelle repose en
grande partie les résultats de théorie des modèles est que, par le biais de la préparation de
Weierstrass, la valuation, et même le terme dominant, d’une fonction analytique en une
variable est en fait donnée par celle, ou celui, d’un polynôme. On peut alors démontrer que
tout ensemble définissable unidimensionnel du corps valué est déjà définissable dans le
langage des corps valués (avec terme dominant). Dans le cas de la preuve originale deDenef
et van den Dries, l’une des complications est liée au fait qu’ils disposent de la préparation
de Weierstrass uniquement pour les fonctions analytiques mais pas pour tous les termes
du langage (qui font potentiellement intervenir l’inverse). On utilise ici une préparation de
Weierstrass qui fonctionne pour tous les termes, prouvée par Cluckers et Lipshitz [CL11].
Par ailleurs, dans le cas des corps valués de différence sans structure analytique, le cœur
des preuves consiste, tout d’abord, à adapter la notion d’Hensélianité au cas des polynômes
de différence pour obtenir la notion de σ-Hensélianité, ainsi qu’à généraliser l’étude des 1-
types utilisée pour démontrer l’élimination des quantificateurs dans le cas de corps valués
sans opérateur, à l’étude de certains n-types spécifiques de corps valué qui correspondent
au type de (x,σ(x), . . . , σn−1(x)) pour des éléments x ∈ K bien choisis. Ce dernier point
apparaît relativement explicitement dans la Section II.6.
La preuve du ThéorèmeD consiste à marier ces deux approches. Dans [Sca06], Scanlon
avait déjà tenté de le faire dans le cas d’une isométrie mais la notion de σ-Hensélianité qu’il
utilise est trop faible, bien que cela soit caché par des erreurs dans certains calculs. L’axio-
matisation et les preuves ont du être entièrement refaites (et ont été généralisée au cas
d’un automorphisme de corps valué quelconque) mais certaines idées de cet article restent
fondamentales dans l’approche présentée ici.
Pour mener à bien ce mélange, il y a plusieurs difficultés. La première est que la notion
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habituelle de σ-Hensélianité, telle que définie dans [BMS07] par exemple, n’est vraiment
utilisable que si l’on considère des termes dont le développement de Taylor est fini, autre-
ment dit des polynômes. L’autre difficulté est liée au fait que, comme expliqué ci-dessus,
l’élimination des quantificateurs en présence d’un automorphisme nécessite d’étudier cer-
tains n-types de corps valués analytiques, mais que la technique principale utilisée dans
le cadre analytique ne nous renseigne vraiment que sur les 1-types. L’ingrédient principal
pour surmonter ces problèmes est de considérer les propriétés différentielles des termes,
ce qui permet, entre autre, de définir une nouvelle notion de σ-Hensélianité adaptée au
cadre analytique de différence.
Vuque c’est notre exemple principal, ondonne aussi dans ce chapitre une axiomatisationde
la théorie du corpsW(Fp

alg)muni de sa structure analytique et du relèvement duFrobenius
(dorénavant appeléWp) ainsi qu’un résultat de modération :

0.5 (Proposition (II.6.31) et Corollaire (II.7.5)) :
La théorie de Wp est axiomatisée par le fait que c’est un corps valué σ-Hensélien de caractéris-
tique mixte non ramifié avec structure analytique, que le corps résiduel est algébriquement clos,
que l’automorphisme induit sur le corps résiduel est le Frobenius, que le groupe de valeur est élé-
mentairement équivalent àZ et que l’automorphisme induit sur le groupe de valeur est l’identité.
De plus la théorie deWp est NIP.

Enfin, ce chapitre se veut aussi une approche systématique de certains faits bien connus au-
tour de la question de l’élimination des quantificateurs dans les corps valués enrichis mais
qui sont, en général, redémontrés dans chaque cas spécifique. Tout d’abord, pour mon-
trer l’élimination en caractéristique mixte il suffit de le faire en équicaractéristique nulle.
Ensuite, les résultats avec composantes angulaires découlent des résultats avec termes do-
minants. Enfin, les résultats d’élimination des quantificateurs de corps sont resplendissants,
c’est-à-dire que l’on peut enrichir arbitrairement les sortes autres que le corps valué sans
perdre l’élimination des quantificateurs de corps. Les Sections II.A et II.B contiennent donc
des considérations plus abstraites qui permettent de prouver ces trois faits dans la plupart
des enrichissements de corps valués que l’on pourrait vouloir étudier.

Chapitre III. Imaginaires dans certains enrichissements de ACVF : La motivation
principale de ce chapitre est la résolution de la question de la propriété d’extension inva-
riante dans la théorie VDFEC . Comme nous l’avons déjà mentionné, lorsqu’ils étudiaient
les imaginaires dans ACVF, Haskell, Hrushovski et Macpherson [HHM06] ont dévelop-
pé la notion de type stablement dominé, notion qui a ensuite été étudiée en détail dans
[HHM08] et a amené à la définition de la métastabilité. L’exemple emblématique de théo-
rie métastable est ACVF mais il serait intéressant de disposer d’autres exemples dans la-
quelle la partie stable est plus compliquée que ne l’est ACF. La théorie VDFEC est un bon
candidat.
L’un des problèmes liés aux types stablement dominés est qu’on ne sait prouver qu’une
forme de descente10 relativement compliquée, qui suppose l’existence d’extensions globales
invariantes, ce qu’on appelle communément la propriété d’extension invariante. C’est pour
10Le fait que tout type global stablement dominé surB et invariant surC ⊆ B est stablement dominé surC .
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cette raison que la définition de la métastabilité donnée par Haskell, Hrushovski et Mac-
pherson ne contient pas uniquement une propriété qui traduit la présence de nombreux
types stablement dominés mais aussi la propriété d’extension invariante.
Pour prouver que VDFEC est aussi un exemple de métastabilité et pouvoir, par exemple, y
étudier les groupes comme le fait Hrushovski pourACVF dans [Hrub], il faut donc d’abord
démontrer la propriété d’extension invariante dansVDFEC . Cette propriété n’étant pas sans
rapport avec les imaginaires, la question de leur élimination se pose donc aussi naturelle-
ment. Par analogie avec DCF0, il est raisonnable de penser que VDFEC n’a pas plus d’ima-
ginaires qu’ACVF et donc qu’elle élimine les imaginaires dans le langage géométrique.
Les techniques développées dans ce chapitre pour étudierVDFEC s’adaptent à un cadre plus
général. L’un des résultats que l’on obtient est un critère abstrait pour l’élimination des ima-
ginaires et la propriété d’extension invariante dans certains enrichissements deACVF. On
démontre au Chapitre IV, que ce critère s’applique à VDFEC . La raison pour laquelle on se
place dans un cadre aussi général est qu’il est vraisemblable que ces techniques s’avèreront
utiles dans d’autres cas que VDFEC , par exemple VDFEC avec une structure analytique ou
bien les vecteurs de Witt sur Fp

alg
.

Comme c’est le cas dans la version de la preuve de l’élimination des imaginaires dansACVF
[Hru14 ; Joh], les types définissables jouent un rôle central dans l’élaboration de ce critère.
En fait, le principal résultat de ce chapitre (ThéorèmeE) est un résultat de densité des types
définissables dont la base canonique est contrôlée. Pour la théorie VDFEC dans le langage
géométrique, ce résultat peut s’énoncer ainsi :

Théorème0.6 (ThéorèmeE dans le cas de VDFEC) :
SoientM ⊧ VDFEC , A ⊆M eq définissablement clos etX un ensemble A-définissable, alors
il existe un type définissable p qui estAut(M/G(A))-invariant et consistant avecX , où par
G(A) on entend l’ensemble des points deA qui sont dans les sortes du langage géométrique.

L’un des ingrédients qui joue un rôle déterminant dans le contrôle de la base canonique des
types que l’on construit dans ce chapitre est le résultat abstrait prouvé dans la Section III.1
à propos des ensembles extérieurement définissables dans les théories NIP, et qui a pour
corollaire l’énoncé suivant :

Théorème0.7 (Théorème (III.1.4) dans le cas de VDFEC) :
SoientM ⊧ VDFEC , A ⊆ M définissablement clos. Si X est un ensemble A-définissable au
sens de VDFEC qui est aussi extérieurement définissable au sens d’ACVF, alors il est G(A)-
définissable au sens de ACVF.

Cela peut se reformuler de la manière suivante : soit p un type de ACVF, supposons qu’il
existe un schéma de définition pour p qui soit composé de formules de VDFEC , alors il
existe un schéma de définition pour p qui est donné par des formules d’ACVF.

Chapitre IV. Un peu de théorie des modèles des corps valués différentiels : Le
dernier chapitre de ce texte contient plusieurs résultats sur la théorie VDFEC . Le plus im-
portant d’entre eux est le théorème suivant :
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ThéorèmeF :
La théorieVDFEC élimine les imaginaires dans le langage géométrique et a la propriété
d’extension invariante.

On étudie aussi dans ce chapitre certaines questions qui se posent quand on veut étudier
VDFEC . La première d’entres elles est de montrer que le corps des constantes est bien sta-
blement plongé et est un pur modèle d’ACVF. La preuve de ce résultat s’adapte naturelle-
ment à la théorie deW(Fp

alg)muni du relèvement du Frobenius. La deuxième question est
celle des clôtures définissables et algébriques. On démontre que la cloture définissable n’est
pas aussi simple que l’on pourrait espérer. Elle contient, en général, strictement la clôture
Hensélienne du corps différentiel engendré. On montre, tout de même, que :

0.8 (Corollaires (IV.3.3) et (IV.3.4)) :
SoientM ⊧ VDFEC et A ⊆ K(M). Le corpsK(dcl(A)) est une extension immédiate du corps
différentiel engendré par A et le corps K(acl(A)) est une extension immédiate de la clôture
algébrique du corps différentiel engendré par A.

On formalise aussi dans ce chapitre la relation entre les types dansVDFEC et les types dans
ACVF en introduisant une notion de prolongation au niveau de l’espace des types qui est
un analogue de celle définie dans DCF0. La principale différence est que, dans DCF0, la
prolongation d’un ensemble définissable est un ensemble définissable dansACF alors que,
pour VDFEC , c’est un type partiel de ACVF.
Enfin, dans la Section IV.5, on étudie les groupes définissables dans VDFEC et leurs liens
avec les groupes définissables dansACVF. La quasi-totalité de cette section consiste àmon-
trer, en suivant [Hrub], que certains outils développés dans les théories stables pour étudier
et construire des groupes se généralisent au contexte instable tant que les groupes que l’on
considère ont des génériques définissables. Onmontre en particulier l’analogue du résultat
de Hrushovski [Hru90] qu’un groupe ⋆-définissable dans une théorie stable est une pro-
limite de groupes définissables. On donne aussi un théorème de construction de groupes
à partir de « group chunks ». La notion de « group chunk » que nous utilisons ici est un
peu plus générale que celle considérée habituellement en théorie des modèles, ce qui nous
permet de traiter directement les groupes définissables non connexes.
À partir de ces considérations « néo-stables », onmontre que la preuve du fait qu’un groupe
définissable dans DCF0 s’injecte définissablement dans un groupe définissable dans ACF
(et donc dans un groupe algébrique), peut être reproduite dans un cadre abstrait et on en
déduit que certains groupes définissables dans VDFEC s’injectent définissablement dans
des groupes définissables dans ACVF.

xix





CHAPTER 0

Preliminaries

Bérenger, au Logicien.
Cela me semble clair, mais cela ne résout pas la question.

Le Logicien, à Bérenger, en souriant d’un air compétent.
Évidemment, cher Monsieur, seulement, de cette façon, le problème est posé de façon correcte.

E. Ionesco, Rhinocéros, Acte I

First of all, let me recall some notations and conventions. When a is a (potentially infinite)
tuple of elements from some setX , we will often write a ∈X when we should write a ∈XI

where I is the set of indices of the tuple.
When we assume that a structure M is κ-saturated (i.e. all types over set of parameters
A ⊆ M with ∣A∣ < κ are realized inM ) or strongly κ-homogenous (every elementary iso-
morphism between substructures of cardinal strictly less than κ extends to automorphism
M ) for some cardinal κ, whenever we considerA ⊆M , it is understood thatA is “small”, i.e.
∣A∣ < κ. Similarly if we consider a tuple, a substructure or a submodel it will be assumed
to be small. When we assume that a structure M is saturated or homogeneous enough,
it means that M is κ-saturated or strongly κ-homogeneous for some cardinal κ greater
than the cardinality of any tuple, subset, substructure or submodel ofM wemight have to
consider.
When φ is an L-formula with (tuple of) variables x and s, we will often write φ(x; s) to
specify that s is intended to be a tuple of parameters. LetM be some L-structure, A ⊆M
andm ∈M be a tuple, we will write φ(A;m) ∶= {a ∈ A ∶M ⊧ φ(a;m)}. Similarly ifX is an
L(M)-definable set, we will writeX(M) for theM-points ofX andX(A) ∶= X(M) ∩A.
Usually in this notation there is an implicit definable closure, but we want to avoid that
because more often than not there will be multiple structures and languages around and
hence multiple definable closures that could be implicit.
LetM be some L-structure,∆(x; s) be a set of L-formulas,A ⊆ B ⊆M and p ∈ S∆x (B) be a
∆-type (i.e. a maximal consistent set of formulas of the form φ(x; b) for φ ∈ ∆ and b ∈ B).
We will denote p∣A ∈ S∆x (A) the restriction of p to A: the set {φ(x;a) ∈ p ∶ a ∈ A}. When p
is definable (and the defining scheme also defines a global extension, cf. Remark (0.3.10)),
and C1 ⊆M contains B, we will also write p∣C for the extension of p to C .
Finally, when we say that a set is L-definable, we mean it is definable without parameters
and when we say it is L(A)-definable, this will obviously mean it is definable with param-
eters in A.
Most of the time, we will be working in multi-sorted languages.

1Because C is for Cookie, and that’s good enough for me [Fat].
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0. Preliminaries

0.1. Imaginaries
Let us begin these preliminaries by recalling the notion of imaginaries whose elimination is
quite central to this work. All of the definitions and results in this section are classical, but
we will try to be very precise as terminology and notations tend to vary from one author
to another.
In model theory, an imaginary is a point in a interpretable set or equivalently a class of a
definable equivalence relation and, just as quantifier elimination results are about giving a
simpler description of definable sets in term of boolean combination of certain atomic for-
mulas, elimination of imaginaries is about giving a simpler description of interpretable sets
in terms of definable sets (cf. Proposition (0.1.7)). Elimination of imaginaries is also linked
to the question of finding canonical parameters for definable sets (cf. Definition (0.1.4)).

0.1.1. Codes
Let L be a language, T an L-theory andM ⊧ T be a saturated and homogeneous enough
structure.

Definition 0.1.1 (Code):
LetM ⊧ T andX beL(M)-definable. We say thatA ⊆M is a code forX if for all σ ∈ Aut(M):

σ stabilizesX globally if and only if σ fixes A pointwise.

We allow a code to be ∅ to be able to code L-definable sets in theories without constants.
Following [Hod93], we want to distinguish between uniform and non-uniform versions of
codes. To do so we introduce the closely related (but more syntactic) notion of canonical
parameter. These two notions are not usually distinguished but the definition of canonical
parameter forces a canonical parameter to a be a finite tuple whereas we want to allow
potentially infinite sets as codes.

Definition 0.1.2 (Canonical parameter):
LetM ⊧ T ,X be L(M)-definable and θ(x; s) be an L-formula. We say that a tuple a ∈M is a
canonical parameter forX via θ if for allm ∈M θ(M ;m) =X if and only ifm = a.
LetX = (Xλ)λ∈Λ be an L-definable family of sets, i.e. there exists an L-formula φ(x; s) and an
L-definable setΛ such that for allλ ∈ Λ,Xλ is defined byφ(x;λ). We say thatX admits uniform
canonical parameters via θ if for all λ ∈ Λ(M), there exists aλ ∈ M a canonical parameter for
X via θ.

Proposition 0.1.3:
LetX be L(M)-definable and A ∈M be a finite tuple, then the following are equivalent:

(i) The set A is a code forX ;

(ii) There exists a finite tuple a ∈ Awhich is a canonical parameter forX via some L-formula
θ and such that A ⊆ dcl(a).

Proof .
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0.1. Imaginaries

(i)⇒(ii) Let us assume that A is a code for X . Let φ(x;m) be an L(M)-formula such that
X = φ(M ;m) and p ∶= tp(m/A). For all c ⊧ p, there exists σ ∈ Aut(M/A) such
that σ(m) = c. As σ fixes A, it stabilizes X globally and it follows that φ(M ; c) =
φ(M ;σ(m)) = σ(φ(M ;m)) = σ(X) =X = φ(M ;m). We have just proved that:

p(s) ⊢ ∀xφ(x; s) ⇐⇒ φ(x;m).

By compactness, there is an L(A)-formula ψ(s;a) where a is a tuple from A such
that ψ(s;a)⇒ (∀xφ(x; s) ⇐⇒ φ(x;m)). It follows thatX is defined by θ(x;a) ∶=
∀sψ(s;a)⇒ φ(x; s).
Let now q ∶= tp(a/∅). Let c ⊧ q be such that θ(M ; c) = θ(M ;a) = X . There exists
σ ∈ Aut(M) such that σ(a) = c. Moreover σ(X) = σ(θ(M ;a)) = θ(M ; c) = X .
Hence σ must fix A pointwise and c = σ(a) = a. It follows that:

q(t) ⊢ (∀xθ(x; t) ⇐⇒ θ(x;a))⇒ t = a.

By compactness, we can find an L-formula ξ(t) such that (ξ(t) ∧ (∀xθ(x; t) ⇐⇒
θ(x;a)))⇒ t = a. Then a is a canonical parameter forX via ξ(t) ∧ θ(x; t).

(ii)⇒(i) Let θ(x; s) be an L-formula such that a ∈ A is a canonical parameter for X via θ.
Then X is L(A)-definable and hence any σ ∈ Aut(M/A) must stabilize X globally.
Conversely, let σ ∈ Aut(M) be any automorphism which stabilizesX globally. Then
θ(M ;σ(a)) = σ(θ(M ;a)) = σ(X) =X = θ(M ;a) and hence σ(a) = a. ∎

∎

0.1.2. Elimination of imaginaries
Definition 0.1.4 (Elimination of imaginaries):
We say that T eliminates imaginaries if every definable set in every model of T is coded (equiva-
lently has a canonical parameter via some L-formula θ).
We say that T uniformly eliminates imaginaries if every L-definable family of sets admits uni-
form canonical parameters via some L-formula θ.

If S is a set of sorts from L, we will sometime say that T (uniformly) eliminates imaginar-
ies up to S to mean that every set definable in any model of T has a (uniform) canonical
parameter (via some L-formula θ) which is a tuple of points from the sorts S .
In [Poi83], where the notion of elimination of imaginaries was first introduced, it is shown
that if there are enough constants in the theory, non uniform and uniform version of elim-
ination of imaginaries are equivalent.

Proposition 0.1.5:
If L is such that there is a sort containing two constants and every sort contains at least one
constant, then T eliminates imaginaries if and only if T eliminates imaginaries uniformly.

Proof . LetM ⊧ T be saturated enough and φ(x; s) be an L-formula. For all tuplesm ∈ M
there exists a formula θm(x; tm) and a tuple am such that am is a canonical parameter for
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φ(M ;m) via θm. By compactness, there exists (θi(x; ti))0⩽i<k such that for all tuplesm ∈M
there exists im < k and am such that am is a canonical parameter for φ(M ;m) via θim .
Adding variables to ti and specifying in θi that they must be equal to a given constant in
the right sort, we may assume that all the ti are equal to some t. Replacing θi(x; t) by
θi(x; t) ∧⋀j<i ¬(∀xθj(x; t) ⇐⇒ θi(x; t)) for allm ∈ M there is a unique im and am such
that am is a canonical parameter for φ(M ;m) is via θim . Let c1 and c2 be two constants in
the same sort and let θ(x; t, u) ∶= ⋁i θi(x; s) ∧ ⋀j≠i uj = c1 ∧ ui = c2. Then for all m ∈ M ,
the tuple amdim is a canonical parameter for φ(M ;m) via θ where di is a tuple where every
element is c1 except the i-th which is c2. ∎

A theory T uniformly eliminates imaginaries if and only if the inclusion functor from the
category of definable sets in T into the category of interpretable sets in T is an equiva-
lence of categories. To reformulate that statement in a more model theoretic way, let me
introduce the notion of a representable quotient.

Definition 0.1.6 (Representable equivalence relation):
LetM ⊧ T ,D be L-definable and E ⊆D2 be an L-definable equivalence relation inM . We say
that E is represented inM if there exists an L-definable function f with domain D such that
the fibers of f are exactly theE-classes, i.e. for all x, y ∈D(M), xEy if and only if f(x) = f(y).

If an equivalence relationE on some setD is represented by the definable function f , then
the interpretable quotientD/E is definably isomorphic to the definable set Im(f).

Proposition 0.1.7:
The theory T uniformly eliminates imaginaries if and only for all M ⊧ T , every L-definable
equivalence relation inM is represented inM .

Proof . Assume T eliminates imaginaries uniformly and letE be anL-definable equivalence
relation on someD in someM ⊧ T . Then for all a ∈ D, let Ea be the E-class of a. By uni-
form elimination of imaginaries, there exists a formula θ(x; s) such that for all a ∈ D(M),
Ea admits a canonical parameter via θ. Let f(a) be the canonical parameter of Ea via θ.
Then f is anL-definable function and f(a1) = f(a2) if and only ifEa1(M) = θ(M ;f(a1)) =
θ(M ;f(a2)) = Ea2(M), i.e. a1Ea2.
Conversely, let φ(x; s) be an L-formula. Let s1Es2 hold if ∀x (φ(x; s1) ⇐⇒ φ(x; s2)).
Then E is an L-definable equivalence relation in any model of T and hence it must be
represented by some L-definable function f . Let θ(x; s) ∶= ∀t (f(t) = s ⇒ φ(x; t)). Then
φ(M ;m) = θ(M ; f(m)) and if c ≠ f(m), for any a such that f(a) = c, φ(M ;a) ≠ φ(M ;m)
and so θ(M ; c) ≠ φ(M ;m), i.e. f(m) is a canonical parameter for φ(M ;m) via θ. ∎

0.1.3. Shelah’s eq construction
The notion of imaginaries first appeared in work by Shelah (e.g. [She78]) through the fol-
lowing construction which consists in adding new sorts so that all interpretable sets be-
come definable. For the sake of simplicity, let us assume that T is complete until the end
of Section 0.1.
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Definition 0.1.8 (T eq):
For every L-definable E ⊆ (∏i⩽k Si)2, where Si is an L-sort, such that T implies that E is an
equivalence relation, let SE be a new sort and fE be a new symbol fE ∶ ∏i Si → SE . Let Leq be
the language L to which we add all the sorts SE and all the function symbols fE . Let T eq be the
Leq-theory:

T ∪ {fE is onto ∶ E is an L-definable equivalence relation}
∪ {∀x∀y fE(x) = fE(y) ⇐⇒ xEy ∶ E is an L-definable equivalence relation}

EveryM ⊧ T can be extended in a unique way into a modelM eq of T eq by interpreting SE as
(∏i Si(M))/E(M) and fE as the canonical projection.

Note that T eq is also complete.

Definition 0.1.9 (Dominant sorts):
Let S be a set of L-sorts. We say that the sorts inR are dominant in T if for every L-sort S there
exists a tuple of sorts (Ri)0⩽i<k ∈R and an L-definable surjective function f ∶∏iRi → S.

Remark 0.1.10:
1. LetR be the set of L-sorts. They are dominant in T eq. We usually call them the real

sorts while the new sorts SE are usually called the imaginary sorts;

2. LetM ⊧ T eq. The Leq(M eq)-structure induced onR is exactly the L(M)-structure,
i.e. for all Leq(M eq)-formula φ(x) where all the variables in x are in the real sorts,
there exists an L(M)-formula θ such that ∀xφ(x) ⇐⇒ θ(x);

3. The theory T eq uniformly eliminates imaginaries;

4. IfN ≼M thenN eq ≼M eq;

5. If T ismodel complete then so is T eq. However, if T eliminates quantifiers, T eq might
not.

Wewill denote the definable closure inT eq bydcleq (similarly for the algebraic closure acleq).

Proposition 0.1.11:
Let M ⊧ T , X be L(M)-definable and A and A′ ∈ M eq be codes for X . Then dcleq(A) =
dcleq(A′).

Proof .Wemay assumeM is saturated andhomogeneous enough. Letσ ∈ Aut(M eq). Then,
by definition, σ fixesA pointwise if and only if it stabilizesX globally, if and only if it fixes
A′ pointwise. It follows that A and A′ are interdefinable. ∎

Notation 0.1.12 (⌜X⌝):
It follows that the set ⌜X⌝ ∶= dcleq(A) does not depend on the actual choice of code forX
but just onX itself. It is also the largest (with respect to the inclusion) code forX . We call
it the code ofX .
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If we want to specify the theory (or the language) in which the code is considered, we will
write ⌜X⌝L. Note that, by definition, a is a code for X if and only if dcleq(a) = ⌜X⌝ =
dcleq(⌜X⌝).

0.1.4. Weak elimination
Sometimes (see Example0.1.18.3) sets are not exactly coded, but are coded up to finite per-
mutation. This is known as a weak code.

Definition 0.1.13 (Weak code):
LetM ⊧ T be saturated and homogeneous enough and letX be L(M)-definable. We say that
A ⊆ M is a weak code for X if there exists a finite number of (Ai)0⩽i<k ⊆ M such that A0 = A
and for all σ ∈ Aut(M):

σ stabilizesX globally if and only if σ stabilizes {Ai ∶ 0 ⩽ i < k} globally.

Definition 0.1.14 (Weak canonical parameter):
LetM ⊧ T , X be L(M)-definable and θ(x; s) be an L-formula. We say that a tuple a ∈ M is
a weak canonical parameter for X via θ if there exists a finite number of tuples (ai)0⩽i<k ∈ M
such that a0 = a and for all tuplesm ∈ M , φ(M ;m) = X if and only if there exists i such that
m = ai.
We also define a uniform weak canonical parameter in the obvious way.

Proposition 0.1.15:
LetM ⊧ T be saturated and homogeneous enough. LetX be L(M)-definable and a ∈M be a
finite tuple. The following are equivalent:

(i) The tuple a is a weak canonical parameter forX via some L-formula θ.

(ii) The tuple a (seen as a set) is a weak code ofX ;

(iii) We have ⌜X⌝ ∈ dcleq(a) and a ∈ acleq(⌜X⌝);

Proof .We obviously have (i) ⇒ (ii) and (ii) ⇒ (iii) follows from the fact that a ∈ dcleq(c)
if and only if a is fixed by Aut(M eq/c) and a ∈ acleq(c) if and only if the orbit under
Aut(M eq/c) of a is finite. Now, if (iii) holds, by Proposition (0.1.3), there exists c ∈ ⌜X⌝
a canonical parameter ofX via some Leq-formula θ. In particular, we have c ∈ dcleq(a) and
a ∈ acleq(dcleq(c)) = acleq(c). Then, there is a finite to one Leq-definable map f such that
f(a) = c.
Let φ(x; t) ∶= θ(x; f(t)). By Remark0.1.10.2, we may assume that φ is an L-formula. Then
for allm ∈M , φ(M ;m) = X if and only if θ(M ; f(m)) = X if and only if f(m) = c, i.e. m
is in the finite fiber of f above c. ∎

Definition 0.1.16 (Weak elimination of imaginaries):
We say that T weakly eliminates imaginaries if every definable set in every model of T admits a
weak canonical parameter via some L-formula θ.
We say that T uniformly weakly eliminates imaginaries if everyL-definable family of sets admits
a uniform weak canonical parameter via some L-formula θ.
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Let us now show that the one difference between weak elimination of imaginaries and
elimination of imaginaries is the ability to code finite sets.

Proposition 0.1.17:
Let T be a theory such that in everyM ⊧ T , any finite set (of finite tuples) is coded. Let X be
L(M)-definable. ThenX is weakly coded inM if and only if it is coded inM .

Proof . Let a be a weak canonical parameter of X via some L-formula θ. We have a ∈
acleq(⌜X⌝). LetA = {ai ∶ 0 ⩽ i < k} be the orbit of a under the action ofAut(M eq/⌜X⌝). For
all i, there exists σ ∈ Aut(M eq/⌜X⌝) such that σ(a) = ai. ThenX = σ(X) = θ(M ;σ(a)) =
θ(M ;ai). It follows that any automorphism σ ∈ Aut(M) that stabilizes A globally, sends
X = θ(M ;a) toX = θ(M ;ai) for some i and thus stabilizesX globally. Therefore, σ stabi-
lizesX globally if and only if σ stabilizesA globally, if and only if σ fixes e pointwise, where
e is a code for A. Thus e is also a code forX . ∎

Finally, let us give some examples.

Example 0.1.18:

1. The theory ACF of algebraically closed fields in the language of rings Lrg uniformly
eliminates imaginaries and so does the theory DCF0 of differentially closed fields of
characteristic zero in Lrg,∂ ∶= Lrg ∪ {∂}. These are in fact the two examples that
motivated the definition of the elimination of imaginaries in [Poi83].

2. The theory DOAG of divisible ordered abelian groups, i.e. the theory of (Q,+,0,<),
and the theory RCF of real closed fields both eliminate imaginaries, as they are o-
minimal groups. But, in the first case, the elimination is not uniform. Indeed, let
φ(x; s, t) ∶= s = t where ∣x∣ = ∣s∣ = ∣t∣ = 1. Then for allM ≡ (Q,+,0,<) and a, c ∈ M ,
φ(M ;a, c) =M orφ(M ;a, c) = ∅. If the eliminationwere uniform , therewould exist
a formula θ(x;u) and unique c1, c2 ∈ M such that θ(M ; c1) = M and θ(M ; c2) = ∅.
In particular c1 and c2 are distinct elements in dcl(∅) = {0}, a contradiction. In fact,
if the language is one sorted, we have just proved a converse to Proposition (0.1.5).

3. The theory of infinite sets weakly eliminates imaginaries. It cannot eliminate imag-
inaries because finite sets are not coded. For reasons similar to those in the previous
example, the weak elimination cannot be uniform either because acl(∅) = ∅. But
infinite sets with two distinct constants uniformly weakly eliminate imaginaries.

0.2. Valued fields
Wewill now consider the other central subject in this work: valued fields. They have been
studied by model theorists for more than half a century now, leading to a profusion of
results and applications. In this section, we will describe the different languages used in
model theory of valued fields and some of the most classical results of elimination. For
more detail on various topics we will refer the reader to the preliminaries included in the
relevant chapters of this text.
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0.2.1. Definition and examples
Definition 0.2.1 (Valued Field):
A valued field is a fieldK with a group morphism val fromK⋆ to some ordered abelian group Γ
such that for all x, y ∈K the ultrametric inequality holds:

val(x + y) ⩾min{val(x),val(y)}.

Remark 0.2.2:
1. The valuation of 0 is usually defined to be some new point +∞, bigger than any point

in Γ.

2. The set O ∶= {x ∈ K ∶ val(x) ⩾ 0} is a subring of K that is called the valuation ring.
The ring O is a local ring whose unique maximal ideal isM ∶= {x ∈ K ∶ val(x) > 0}
and such that for all x ∈ Frac(O) = K , either x ∈ O or x−1 ∈ O. In fact, any local ring
O with this property is called a valuation ring and is the valuation ring of a unique
valuation onK = Frac(O): the canonical projectionK⋆ →K⋆/O⋆.

3. The field k ∶= O/M is called the residue field and the canonical projection is usually
denoted res ∶ O → k.

Let us now consider classical examples of valued fields.

Example 0.2.3:

1. LetK be any field. For every irreducible polynomial P ∈ K[X], the ringK[X](P ) ⊆
K(X) is a valuation ring associated to the P -adic valuation valP (P nQ/R) ∶= n ∈ Z
whenever Q ∧ R = P ∧Q = P ∧ R = 1. For all e ∈ R strictly greater than one, ∣x∣ =
e−valP (x) defines an ultrametric norm on K(X) and all these norms are equivalent.
Let us now consider P = X . The completion of K[X] for the X-adic norm is the
field K((X)) of Laurent series over K whose valuation ring is K[[X]] the ring of
power series. The value group of K(X) and K((X)) is Z and their residue field is
K .

2. The Laurent series construction is in fact a special case of a more general construc-
tion: Hahnfields. Let k be a field andΓ be anordered abelian group. Then, let k((tΓ))
be the field whose elements are the formal series ∑γ∈Γ aγtγ such that {γ ∶ aγ ≠ 0} is
well-ordered. The valuation on k((tΓ)) is defined by val(∑γ∈Γ aγtγ) ∶= min{γ ∈ Γ ∶
aγ ≠ 0}. The value group of k((tΓ)) is Γ and its residue field is k. The Laurent series
field overK is exactlyK((tZ)).

3. Both of the previous examples have equicharacteristic, i.e. the characteristic of the
residue field equals the characteristic of the field. It is also possible to have a charac-
teristic zero valued field with a positive characteristic residue field. We then talk of
mixed characteristic.

Let p be a prime. The ring Z(p) ⊆ Q is a valuation ring. It is associated to the p-adic
valuation valp(pna/b) ∶= n ∈ Zwhen a∧b = a∧p = b∧p = 1. The completion ofQwith
respect to the p-adic norm associated to the p-adic valuation is calledQp the field of
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p-adic numbers. Its valuation ring is Zp = lim←ÐZ/pnZ the ring of p-adic integers. The
value group of bothQ andQp for the p-adic valuation is Z and their residue fields is
Fp.

More generally, for any number field L whose ring of integers is R and any prime
ideal ℓ in R, L can be endowed with an ℓ-adic valuation and the completion of L for
the associated ℓ-adic norm is a finite extension ofQp where p is such that ℓ∩Z = (p).

4. A mixed characteristic field is said to be unramified if val(p) has minimal positive
valuation in the value group. There is a construction similar to the Hahn field con-
struction in unramified mixed characteristic: the Witt vectors. Let k be a perfect
field of positive characteristic. There is a unique, up to unique isomorphism, unram-
ified mixed characteristic complete valued field with residue field k that we denote
W(k). Its valuation ring is denotedW[k] and its value group is Z. Note thatW(Fp)
is exactlyQp.

0.2.2. Algebraically closed valued fields
The theoryACVF of (non trivially valued) algebraically closed valued fields is the first the-
ory of valuedfields tohave been studiedbymodel theorists. In the past fifteen years, various
new aspects of this theory were studied extensively [HHM06; HHM08; HK06; HL]. There
are many languages in which one can work depending on whether one wants a sort for the
value group, the residue field or none of them.

Definition 0.2.4 (One sorted language):
The languageLdiv has one sortK and consists of the ring languageLrg ∶= {+,−, ⋅,0,1} enriched
with a predicate ∣ ⊆K2 which is interpreted as val(x) ⩽ val(y).

Definition 0.2.5 (Two sorted language):
The languageLΓ has two sortsK andΓ and consists of the language of rings onK, the language
of ordered groups Log ∶= {+,−,0,<} on Γ and a function val ∶K→ Γ.

Definition 0.2.6:
<Three sorted language) The language LΓ,k has three sortsK, Γ and k and consists of the lan-
guage of rings onK and k, the language of ordered groups on Γ, a function val ∶K → Γ and a
function res ∶K2 → k interpreted as the residue of xy−1.

Theorem0.2.7:
The theoryACVF eliminates quantifiers in the one sorted, the two sorted and the three sorted
languages. Its completions are given by fixing the characteristic of the valued field and of its
residue field.

Proof . All these results follow fromwork byAbrahamRobinson in [Rob77] althoughhe only
statedmodel completeness (in any of the three languages as they are equivalent). The elimi-
nationof quantifiers in the one sorted language follows immediately frommodel complete-
ness and the existence of primemodels (which are none other than the algebraic closures).
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Quantifier elimination in the two sorted language is stated in [Wei84, Theorem 3.2] and
quantifier elimination in the three sorted language follows from more general results in
[Del82].
The description of the completions follows from quantifier elimination. ∎
Note that it also follows from the quantifier elimination results that k and Γ are stably
embedded, thatk is a pure algebraically closed field andΓ is a pure divisible ordered abelian
group. Another consequence of these quantifier elimination results is that unary sets inside
the sortsK have a very specific form.

Definition 0.2.8 (Swiss cheese):
Let (K,val) be a valued field. The open ball of center a ∈ K and radius γ ∈ val(K) is the set
{x ∈ K ∶ val(x − a) > γ}. The closed ball of center a ∈ K and radius γ ∈ val(K) is the set
{x ∈K ∶ val(x − a) ⩾ γ}. We also consider the whole valued fieldK to be an open ball. Let b be
a ball and (bi)0⩽i<k be subballs of b. Then the set b ∖⋃i bi is called a swiss cheese.

Note that balls of radius +∞ are singletons. In particular the outer ball or the holes of a
swiss cheese can be singletons. We say that two swiss cheeses are trivially nested if the
outer ball of one coincides with one of the holes of the other.

Theorem0.2.9 ([Hol95]):
Any unary setX ⊆K definable inACVF with parameters can be expressed in a unique way
as a finite union of non trivially nested swiss cheeses.

0.2.3. Henselian fields
A larger class of valued fields that is also widely considered in model theory and is the set-
ting of a great variety ofmodel theoretic results, is the class of characteristic zeroHenselian
fields. For the more algebraic considerations around Henselian fields, we refer the reader
to [EP05].

Definition 0.2.10 (Henselianity):
Let (K,val) be a valued field. It is said to be Henselian if any of the following equivalent prop-
erties hold:

(i) For all polynomials P ∈ OX and a ∈ O such that res(P (a)) = 0 ≠ res(P ′(a)), there exists
c ∈ O such that P (c) = 0 and res(c) = res(a);

(ii) For all polynomials P ∈ OX and a ∈ O such that val(P (a)) > 2val(P ′(a)), there exists
c ∈ O sucht hat P (c) = 0 and val(c − a) > val(P (a)) − val(P ′(a));

(iii) There is a unique extension of val to any finite extension ofK;

(iv) There is a unique extension of val to any algebraic extension ofK;

Example 0.2.11:
All complete fields (Qp,K((t)) for example) are Henselian — this result is called Hensel’s
lemma and gave its name to the notion. Hahn fields are also Henselian.
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Foremost among the classic results on the model theory of Henslian valued fields is the
Ax-Kochen-Eršov principle (cf. [AK65; Erš65]) which was one of the first model theoretic
results to be proved about Henselian valued fields, was essential in creating the great in-
terest we witness today for the model theory of valued fields and still influences our vision
of this subject.

Theorem0.2.12 (Ax-Kochen-Eršov principle):
LetK and L be two characteristic zero Henselian valued fields which are unramified if they
have mixed characteristic. We have K ≡ L as valued fields if and only if Γ(K) ≡ Γ(L) as
ordered groups and k(K) ≡ k(L) as fields.

The Ax-Kochen-Eršov principle is an immediate consequence of some quantifier elimina-
tion theorems (e.g. (0.2.17)) but the original proof of the principle is 25 years older than
these quantifier elimination results.
Before considering more general Henselian fields, let me state another fundamental result
ofMacintyre in themodel theory of valued fields that is only concernedwith a very specific
Henselian field: Qp. For a generalization of this result to finite extensions ofQp, we refer
the reader to [PR84].

Theorem0.2.13 ([Mac76]):
Let Ldiv,P ∶= Ldiv ∪ {Pn ∶ n ∈N>0} where for all n ∈N>0, Pn is interpreted as the set of n-th
powers. The Ldiv,P -theory ofQp eliminates quantifiers.

Let us now define the leading term language, also known as amc-congruences in [Bas91;
BK92; Kuh94] or as theRV-language in [HK06] for example.

Definition 0.2.14 (Leading term language):
Let LRV+ be a language with a sort K, sorts RVn for all n ∈ N>0, the ring language of K, for
all n ∈ N>0 a function symbol rvn ∶ K → RVn and for all m∣n a function symbol rvm,n ∶
RVn →RVm. The sortRVn is interpreted asK⋆/(1+nM)∪ {0} and the function symbols rvn
and rvm,n are interpreted as the canonical projections. We also add to the language a constant
symbol 0n ∈RVn interpreted as 0, a binary predicate ∣n interpreted as valRV,n(x) ⩽ valRV,n(y)
where valRV,n is the function induced by val onRVn, and functions +m,n ∶RV2

n →RVm for all
m∣n interpreted as the trace of the addition onRV2

n ×RVm.

For more precisions on this language, the reader should refer to Section II.1.

Theorem0.2.15 ([Bas91; BK92].):
The LRV+-theory THen of characteristic zero Henselian fields eliminates field quantifiers re-
splendently.

Resplendent field quantifier elimination is essentially the property that whatever the en-
richment on the RVn sorts, any formula is equivalent to a formulas without field quanti-
fiers. This notion is explained at length in Section II.A. In equicharacteristic zero, one can
work in the restriction of LRV+ toK andRV1.

11
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0.2.4. Angular components
Historically, characteristic zero Henselian valued fields have not been considered in the
leading term language but first with a cross-section and then with angular components.
The latter are still used nowadays because, although they add new definable sets, they sep-
arate the value group from the residue field.

Definition 0.2.16 (Angular component language):
The angular component language Lac has a sort K, a sort Γ and sorts Rn for all n ∈ N>0, the
ring language onK and each of theRn, the ordered group language on Γ, for all n a function
symbol acn ∶K→Rn and for allm∣n a function symbol resm,n ∶Rn →Rm. For all n ∈N>0,Rn

is interpreted as the ringO/(nM). The maps resm,n are interpreted as the canonical projections
and the maps acn as angular components, i.e. group morphismsK⋆ →R⋆

n that send 0 to 0 and
such that acn∣O⋆ = resn∣O⋆ .

This language is usual known as the Denef-Pas language. Note thatR0 is the residue field
k. For more precisions and the relation between this language and leading terms, one may
look at Section II.1. As with leading terms, in equicharacteristic zero, one may work with
the restriction of Lac toK, Γ and k =R0.
Let Tac

Hen be the Lac-theory of Henselian valued fields with angular components, Tac
Hen,0 be

theLac-theory of equicharacteristic zeroHenselian valued fields with angular components
and for all p and e the Lac-theory Tac,e−fr

Hen,p of characteristic (0, p) Henselian valued fields
with ramification index at most e, i.e. val(p) is at most e times bigger than the smallest
positive element of Γ. In the latter case we add a constant symbol for a uniformizer π, i.e.
val(π) is the smallest positive element of Γ and we assume that, for all n ∈N>0, acn(π) = 1.

Theorem0.2.17 ([Pas89]):

The theories Tac
Hen,0 and T

ac,e−fr
Hen,p eliminate field quantifiers resplendently.

Note that, although angular components sometime enlarge the class of definable sets, any
saturated enough valuedfield can be equippedwith angular components (cf. [Pas90, Corol-
lary 1.6]).

0.2.5. Geometric sorts
Let me introduce one last language, the geometric language of [HHM06] that was intro-
duced in order to prove elimination of imaginaries in ACVF.

Definition 0.2.18 (Geometric language):
The geometric language LG consists of the sort K, for all n ∈ N>0, sorts Sn and Tn, the ring
language onK and functions sn ∶Kn2 → Sn and tn ∶ Sn ×Kn → Tn. The sort Sn is interpreted
as the sort of all O-lattices inKn, i.e. rank n free O-modules inKn. The sort Tn is interpreted
as ⋃s∈Sn

s/Ms, the function sn sends aK-linearly independent tuple (bi)0⩽i<n ∈ Kn to the O-
modules generated by the bi and any other tuple to, for example,On and tn sends a lattice s and
a point a ∈ s to the coset a +Ms. If a ∉ s, tn(s, a) =Ms, for example.
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The sort S1 is in fact Γ and s0 is exactly the valuation. There is also an LG-definable map
τn ∶ Tn → Sn sending a+Ms to s and the fiber of τ1 aboveO is k. A more detailed account
of those geometric sorts can be found in Section I.2.2. Let ACVFG be the LG-theory of
algebraically closed valued fields.

Theorem0.2.19 ([HHM06, Theorem 1.0.1]):
The theory ACVFG eliminates imaginaries.

0.3. The independence property
Because the value group is ordered, valued fields cannot be stable or even simple. But pro-
vided the residue field is tame enough, valued fields are still reasonably tame. In particu-
lar, many of the interesting theories of valued fields are NIP, a tameness assumption that
appeared independently in work of Shelah in [She71] and in learning theory as finite VC-
dimension in [VČ71].

0.3.1. Definitions and examples
Definition 0.3.1 (Independence property):
LetM be an L-structure. An L-formula φ(x, y) has the independence property inM if there
exist tuples (ai)i∈N ∈M and (bj)j∈P(N) ∈M such that for all i and j,M ⊧ φ(ai, bj) if and only
if i ∈ j.
An L-theory T is said to be NIP (not the independence property) or dependent if no L-formula
has the independence property in any model of T .

Definition 0.3.2 (VC-dimension):
LetX be a set and S ⊆ P(X). The VC-dimension of S is defined as the greatest n ∈N such that
there exists A ⊆X of cardinal at most n and {A ∩ Y ∶ Y ∈ S} = P(A).

As announced earlier, these two notions are closely linked.

Proposition 0.3.3:
LetM be ℵ0-saturated. An L-formula φ(x, y) has the independence property inM if and only
if the family {φ(M,m) ∶m ∈M is a tuple } has infinite VC-dimension.

Example 0.3.4:

1. Let X be a set and S be the set of all sets of cardinal at most n, then S has VC-
dimension n.

2. The theory ACF is NIP (as are all strongly minimal theories, cf. Definition (0.3.19)).

3. Let (X,<) be a totally ordered set and S be the set of all intervals. Then S has VC-
dimension 2.

4. Real closed fields are NIP (as are all o-minimal theories, cf. Definition (0.3.20)).

13
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5. Let (K,val) be a valued field and S be the set of all balls. Then S has VC-dimension
2.

6. The theory ACVF is NIP (as are all C-minimal theories, cf. Definition (0.3.22)).

7. By a theorem of [GS84], the theory of ordered abelian groups is NIP.

Let us nowgive a theorem that formalizes the principle,mentioned earlier, that aHenselian
valued field is tame if its residue field is tame (which, because the value groups is always
NIP, is a form of Ax-Kochen-Eršov principle for NIP). This theorem was first proved in
equicharacteristic zero by Delon in [Del81].

Theorem0.3.5 ([Bél99]):
Let T be any completion of Tac

Hen or THen that implies either equicharacteristic zero or non
ramification in mixed characteristic. Then T is NIP if and only if k, as a field, is NIP.

0.3.2. Some properties of NIP theories
First let us give a combinatorial result about families of finite VC-dimension known as the
(p, q)-theorem that will be used in Section III.1. To be precise, the statement we give here
is a special case of the dual version of the (p, q)-theorem (see [Sim, Corollary 6.13]). For the
full statement, one can look at [Mat04] or [Sim, Theorem6.10].

Theorem0.3.6:
For all k ∈ N, there exists q and n ∈ N such that for any set X , any finite A ⊆ X and any
S ⊆ P(X) of VC-dimension at most k, if for all A0 ⊆ A of size at most q there exists Y ∈ S
containing A0, then there exists Y1 . . . Yn ∈ S such that A ⊆ ⋃i Yi.

The other result aboutNIP theories thatwewill be using is the existence of uniformhonest
definitions.

Definition 0.3.7 (Externally definable set):
LetM be an L-structure and A ⊆ M . We say that X ⊆ A is externally definable if there exists
an L-formula φ(x; s) and a tuplem ∈M such thatX = φ(A;m).

Definition 0.3.8 (Stable embdedness):
Let M be an L-structure and A ⊆ M . We say that A is stably embedded if every externally
definable subset of A is in fact of the formX(A) whereX is L(A)-definable.

Before we go any further, let us recall a notion central to stable theories: definable types.
Not only will it allow to fix some notations, it will also shed some light on some later con-
ventions.

Definition 0.3.9 (Definable type):
LetM be an L-structure, A ⊆ M , ∆(x; s) be a set of L-formulas and p ∈ S∆x (A). We say that
the ∆-type p is L(A)-definable if for all φ(x; s) ∈ ∆(x; s), there exists an L(A)-formula θ(s)
such that for all tuplesm ∈M , φ(x;m) ∈ p if and only ifM ⊧ θ(m).
We will denote θ(s) by dpxφ(x; s).
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Remark 0.3.10:
1. Assume A ≼M , and∆ is closed under boolean combinations. For all φ ∈∆, we have

M ⊧ ∀s (dpx (φ(x; s) ∧ ψ(x; s)) ⇐⇒ (dpxφ(x; s) ∧ dpxψ(x; s))),

M ⊧ ∀s (dpx¬φ(x; s) ⇐⇒ ¬dpxφ(x; s))

and
M ⊧ ∀sdpxφ(x; s)⇒ ∃xφ(x; s).

It follows that p has a (unique) global definable extension and this extension has the
same defining scheme.

2. If A is not a model, the situation is more complicated. There is no reason for
the defining scheme of p to be compatible with ¬ and ∧ or to be consistent, i.e.
M ⊧ ∀sdpxφ(x; s) ⇒ ∃xφ(x; s). Therefore, we have to distinguish two notions
of definability: those definable types that have a global definable extension given by
the defining scheme and those that do not. Most of the time in this work, we will be
considering global definable types, but the rare time types are not over a model, we
will specify which notion we are considering.

One can check that a setA is stably embedded if every type overA is definable (by a defining
scheme that might not define a global type). Hence, in a stable theory T , every set A ⊆
M ⊧ T is stably embedded (and that is equivalent to stability). The existence of honest
definitions in NIP theories tells us that this fact remains “finitely” true in a uniform way:

Theorem0.3.11 ([CS13]):
Let T be an NIP L-theory and φ(x; s) be an L-formula,M ⊧ T , A ⊆M and b ∈M . There
exists a formula ψ(x; t) such that for any finiteA0 ⊆ φ(A; b), there exists a tuple d ∈ A such
that A0 ⊆ ψ(A;d) ⊆ φ(A; b).

In fact, the (p, q)-theorem can be used to show that these honest definitions are evenmore
uniform:

Theorem0.3.12 ([CS]):
Let T be anNIPL-theory and φ(x; s) be anL-formula. There exists a formula ψ(x; t) such
that for anyM ⊧ T , any A ⊆M , any tuple b ∈ N and any A0 ⊆ φ(A; b) finite, there exists a
tuple d ∈ A such that A0 ⊆ ψ(A;d) ⊆ φ(A; b).

We now want to define types that behave generically as if one were in a stable theory. But
first, we need some more definitions.

Definition 0.3.13 (p⊗ q):
LetM be a saturated enough L-structure. Let p and q ∈ S(M) be such that q is Aut(M/A)-
invariant for someA ⊆M . The type p⊗q ∈ S(M) is the type such that for allC ⊆M containing
A, p⊗ q∣C = tp(ab/C) for any a ⊧ p∣C and b ⊧ q∣Ca.
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One can check that because q is Aut(M/A)-invariant, this is well-defined. Note that if
p is also Aut(M/A)-invariant, p ⊗ q is Aut(M/A)-invariant and that if p and q are both
definable, p ⊗ q is defined by dpxdqyφ(x, y; s) where dpxφ(x, y; s) is the formula in the
defining scheme of p corresponding to φ and similarly for q.
Let T be an NIP L-theory.

Proposition 0.3.14:
Let (ai)i∈I be an indiscernible sequence and φ(x) be an L(M)-formula. Then there exists an
end segment I0 ⊆ I such that either for all i ∈ I0,M ⊧ φ(ai) or for all i ∈ I0,M ⊧ ¬φ(ai)

Definition 0.3.15 (lim(I)):
Let I = (ai)∈I be an indiscernible sequence. We define lim(I) to be the global type such that for
all L-formula φ(x; s) and m ∈ M , φ(x;m) ∈ lim(I) if and only if φ(x;m) holds on an end
segment of I . By Proposition (0.3.14), this is a complete type.

For any Aut(M/A)-invariant type p, we define p⊗1 ∶= p, p⊗n+1 ∶= p⊗n ⊗ p and p⊗ω(xi<ω) ∶=
⋃n p⊗n(xi<n). Note that because p⊗n(xi<n) ⊆ p⊗n+1(xi<n+1) this is a well-defined type. We
call its realisations Morley sequences of p.

Definition 0.3.16 (Generically stable type, [She04; HP11]):
LetM ⊧ T be a saturated enough and letA ⊆M and p ∈ S(M) beAut(M/A)-invariant, then
p is generically stable if any of the following equivalent properties hold:

(i) p is L(M)-definable and finitely satisfiable in some (small)N ≼M ;

(ii) For all q ∈ S(M) which is Aut(M/C)-invariant for some small C ⊆M , p⊗ q = q ⊗ p;

(iii) p⊗2(x, y) = p⊗2(y, x);

(iv) Any Morley sequence of p is totally indiscernible;

(v) For all I ⊧ p⊗ω ∣A, lim(I) = p.

Definition 0.3.17 (f⋆p):
Let p ∈ S(C) and f be an L(C)-definable function defined on p. The type f⋆p is tp(f(a)/C)
for any a ⊧ p.

One can check that if p ∈ S(M) is Aut(M/C)-invariant and f is L(C)-definable, then
f⋆p is also Aut(M/C)-invariant. Similarly if p ∈ S(M) is L(C)-definable and f is L(C)-
definable, f⋆p is L(C)-definable and we can take df⋆pyφ(y; s) = dpxφ(f(x); s). Similarly,
when (fi)i∈I is a tuple of L(C)-definable functions (what is usually called a ⋆-definable
function cf. Definition (IV.5.2)), f⋆p also makes sense.

Lemma0.3.18:
LetM ⊧ T , A ⊆M , p ∈ S(M) be Aut(M/A)-invariant and generically stable and f be L(A)-
definable and defined on p, then f⋆p is generically stable.

Proof . Let C ⊇ A, a ⊧ p∣C and b ⊧ p∣Ca. Then (a, b) ⊧ p⊗2∣C . As p is generically sta-
ble, we also have (b, a) ⊧ p⊗2. It follows that tp(f(a), f(b)/C) = tp(f(b), f(a)/C). But

16



0.3. The independence property

f(a) ⊧ f⋆p∣C and f(b) ⊧ f⋆p∣Cf(a). It follows that both (f(a), f(b)) and (f(b), f(a)) are
realisations of (f⋆p)⊗2∣C . ∎

0.3.3. C-minimality
This section is not exactly aboutNIP, but about subclasses ofNIP, among them the class of
C-minimal theories, which are all defined by asking that the unary sets definable in mod-
els of a given theory are all quantifier free definable in a particularly simple sublanguage.
The most simple of these minimality notions (and by far the oldest, it is already central
to the proof of the Baldwin-Lachlan theorem, cf. [BL71]) is minimality with respect to the
language of equality:

Definition 0.3.19 (Strong minimality):
An L-theory T is strongly minimal if every unary set definable in models of T is either finite or
cofinite.

Stronglyminimal theories are the tamest theories possible (they are, in some sense,ω-stable
theories of dimension one). Amongst them, we find infinite sets, infinite k-vector spaces
for some fixed field k and algebraically closed fields.
The next notion of minimality we will consider is minimality with respect to an order. It
was first studied in [PS86], based on previous work by van den Dries in [Dri84b].

Definition 0.3.20 (o-minimality):
Let L be a language containing a binary relation symbol < and T be an L-theory which implies
that < is a linear order. The theory T is o-minimal if every unary set definable in models of T is
a finite union of intervals.

Among o-minimal theories, one can find the theory of discrete orders with or without end
points, dense orders with or without end points, the theories DOAG (divisible ordered
abelian groups) and RCF (real closed fields), the theory of the fieldRwith the exponential
function and even the theory of the field R with the exponential function and analytic
functions on compact domains.
The last class we want to consider is somehow a mix of the two previous ones that was
introduced in [MS96].

Definition 0.3.21 (C-relation):
LetX be a set, a C-relation onX is a relation C ⊆X3 that verifies the following axioms:

(i) ∀x∀y∀z (C(x; y; z)⇒ C(x; z; y));

(ii) ∀x∀y∀z (C(x; y; z)⇒ ¬C(y;x; z));

(iii) ∀x∀y∀z∀w (C(x; y; z)⇒ (C(w; y; z) ∨C(x;w; z)));

(iv) ∀x∀y (x ≠ y⇒ ∃z z ≠ y ∧C(x; y; z)).

A C-relation is essentially linked to the presence of a tree with meets. Indeed for any C-
relation on a set X there exists a tree (T,⩽) with meets (where the root is at the bottom)
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such that the leaves of T are exactly the points in X and C(x, y, z) holds if and only if
x ∧ z < y ∧ z. If (K,val) is a valued field, the relation val(x − z) < val(y − z) is a C-relation
and the associated tree is the tree of closed balls. By analogy with valued fields, in a setX
with a C-relation, an open ball is a set of the form {x ∈ X ∶ C(a, x, b)} (we also consider
the whole setX to be an open ball), a closed ball in a set of the form {x ∈ X ∶ ¬C(x, a, b)}
and a swiss cheese is a ball from which a finite number of balls have been removed.

Definition 0.3.22 (C-minimality):
LetL be a language containing a ternary relation symbolC and T be anL-theory which implies
that C is a C-relation. The theory T is C-minimal if every unary set definable in models of T is
a finite union of swiss cheeses.

It follows from Theorem (0.2.9), that ACVF is a C-minimal theory for the C-relation de-
scribed above. Algebraically closed valued fields with analytic structure (cf. Section II.3) are
alsoC-minimal. To finish, let us give a formal statement, in the case of valued fields, of the
previous somewhat vague statement that C-minimality is a mix of strong minimality and
o-minimality.

Proposition 0.3.23:
Let T be a C-minimal L-theory of valued fields, where C is defined as above. Then k and Γ are
stably embedded, the induced structure on k is strongly minimal and the induced structure onΓ
is o-minimal.

Proof . LetM ⊧ T and X ⊆ Γ be a unary L-definable set. The set val−1(X) is both a (po-
tentially infinite) union of annuli around 0 and a finite union of swiss cheeses, hence it is a
finite union of annuli around 0 and X must be a finite union of intervals. Therefore, Γ is
o-minimal in T and by [HO10], Γ is stably embedded in models of T .
Similarly, let X ⊆ k be a unary L-definable set. The set val−1(X) is both a (potentially
infinite) union of disjoint open balls of radius 0 insideO and a finite union of swiss cheeses,
hence it must either be a finite union of disjoint open balls of radius 0 or O minus a finite
number of open balls of radius 0. In the first case,X is finite and in the otherX is cofinite.
Thus k is strongly minimal in T and that easily implies that k is stably embedded. ∎

0.4. Stable domination
InACVF, the value group, being ordered, is obviously unstable and the residue field, being
strongly minimal, is stable. To build on this idea that a valued field is controlled by its
residue field and value group, one would like to show that in some sense the theory is
stable-like over the value group. Let T be an L-theory.

0.4.1. Definition and properties
Let us first begin with some equivalent definitions of stable embeddedness for partial types
(cf. the appendix of [CH99]). Let M be a sufficiently saturated and homogeneous L-
structure.
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Proposition 0.4.1:
Let P be a partial L-type. The following are equivalent:

(i) P (M) is stably embedded inM ;

(ii) For all tuples a ∈M , tp(a/dcleq(a) ∩ dcleq(P (M))) ⊢ tp(a/P (M));

(iii) For all tuples a ∈M , tp(a/P0) ⊢ tp(a/P (M)) for some (small) P0 ⊆ P (M);

(iv) For all tuples a ∈M , tp(a/acleq(P0)) ⊢ tp(a/P (M)) for some (small) P0 ⊆ P (M);

(v) For all tuples a ∈M , tp(a/P (M)) is L(P (M))-definable.

Definition 0.4.2 (Stable stably embedded sets):
LetC ⊆M and P be a partial L(C)-type. We say that P is stable, stably embedded if any of the
following statements hold:

(i) There is no L(M)-formula φ(x, y), tuples (ai)i<ω ∈ P (M) and tuples (bi)i<ω ∈ M such
thatM ⊧ φ(ai, bj) if and only if i ⩽ j;

(ii) P is stably embedded and the L(C)-induced structure on P is stable;

(iii) For all tuples a ∈ P (M) and A ⊆M , tp(a/A) is definable;

(iv) Let κ > ∣L∣ + ∣C ∣ with κ = κℵ0 and B ⊆M which contains C and has cardinality κ, then
there are at most κ 1-types over B realized in P (M).

InACVFG , stable, stably embedded definable sets can all be described, and they are closely
linked to the residue field:

Proposition 0.4.3 ([HHM06, Lemma 2.6.2 and Remark 2.6.3]):
LetM ⊧ ACVFG , C ⊆M and P be an LG(C)-definable set. The following are equivalent:

(i) P is stable, stably embedded;

(ii) P is k-internal, i.e. there exists a finite A ⊆M such that P ⊆ dcl(A ∪ k);

(iii) P ⊆ dcl(E ∪ k) for some finite E ⊆ P ;

(iv) There is no LG(M)-definable map from P l for some l ∈N onto an infinite interval in Γ.

Let us go back to a more general setting and let L be a language, M be a saturated and
homogeneous enough L-structure that eliminates imaginaries and C ⊆M .

Definition 0.4.4 (StC ):
The stable part overC , denoted StC , is a structure whose sorts are all the L(C)-definable stable,
stably embedded sets with their L(C)-induced structure.

Remark 0.4.5:
1. Finite sets are stable, stably embedded, hence acl(C) ⊆ StC .
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2. The structure StC is stably embedded inM and its theory is stable. We will denote
by ⫝ the independence relation in StC .

3. At some point we might have two or more languages around so we will specify the
language by writing StLC .

Definition 0.4.6 (Stable domination):
Let p ∈ S(C), we say that p is stably dominated if for every a ⊧ p and B ⊆ M such that
StC(dcl(CB)) ⫝C StC(dcl(Ca)),

tp(B/StC(dcl(Ca))) ⊢ tp(B/Ca).

Let me now give some properties of stably dominated types.

Lemma0.4.7:
Let R be a set of dominant sorts in T and p ∈ S(C). Assume that for all B ⊆ R(M) such
that StC(dcl(CB)) ⫝C StC(dcl(Ca)), we have tp(B/StC(dcl(Ca))) ⊢ tp(B/Ca). Then p
is stably dominated.

Proof . Let a ⊧ p and B ⊆ M be such that StC(dcl(CB)) ⫝C StC(dcl(Ca)). By domina-
tion of R, there exists D ⊆ R(M) such that B ⊆ dcl(D). As StC is stably embedded, we
may assume that the StC(dcl(CD)) ⫝C StC(dcl(Ca)) and hence tp(D/StC(dcl(Ca))) ⊢
tp(D/Ca). Let B′ be such that B′ ≡StC(dcl(Ca)) B. There exists σ ∈ Aut(M/StC(dcl(Ca)))
such that σ(B) = B′. We have σ(D) ≡StC(dcl(Ca)) D and hence σ(D) ≡Ca D. Because
B ⊆ dcl(D), it follows that B′ = σ(B) ≡Ca B. ∎

Proposition 0.4.8 ([HHM08, Proposition 3.13]):
Let p ∈ S(C) be stably dominated, then p has a global L(acl(C))-definable extension.

Proposition 0.4.9 ([HHM08, Proposition 3.31.(iii)]):
Let a ∈M be a tuple. The type tp(a/C) is stably dominated if and only if tp(a/acl(C)) is.

Proposition 0.4.10 ([HHM08, Proposition 3.32.(iii)]):
Let c ∈M be a tuple and f be an L(C)-definable function. If tp(c/C) is stably dominated then
so is tp(f(c)/C).

Proposition 0.4.11 ([HHM08, Proposition 4.1]):
Let p ∈ S(M) be Aut(M/C)-invariant and let B ⊆ M contain C . If p∣C is stably dominated,
so is p∣B .

The other direction (i.e. a positive answer to the question whether a global C-invariant
type p is stably dominated over B ⊇ C is stably dominated over C) is called descent and is
muchmore complicated. In fact, we only know how to prove it under the assumption that
the type of B over C has a global invariant extension:

Proposition 0.4.12 ([HHM08, Theorem4.9]):
Let p and q ∈ S(M) be Aut(M/C)-invariant. Assume that for all b ⊧ q∣C , p∣Cb is stably domi-
nated. Then p∣C is also stably dominated.

Let us now define the invariant extension property:
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Definition 0.4.13 (Invariant extension property):
Let T be an L theory that eliminates imaginaries, A ⊆M for someM ⊧ T . We say that T has
the invariant extension property over A if, for all N ⊧ T , every type p ∈ S(A) can be extended
to an Aut(N/A)-invariant type.
We say that T has the invariant extension property if T has invariant extensions over any A =
acl(A) ⊆M ⊧ T .

Lemma0.4.14:
Let T be an L theory that eliminates imaginaries. Assume that T has the invariant extension
property. Let p and q ∈ S(M) beAut(M/C)-invariant andB ⊆M , C ⊆ B, be such that p∣B is
stably dominated. Then p∣C is also stably dominated.

Proof . Let q be an Aut(M/acl(C))-invariant extension of tp(B/acl(C)). Let B′ ⊧ q∣acl(C).
Then there is an automorphism τ ∈ Aut(M/acl(C)) such that τ(B′) = B. Because p is
Aut(M/C)-invariant p∣B′ = τ(p∣B). It follows that p∣B′ is stably dominated. Hence, by
Proposition (0.4.12), p∣acl(C) is stably dominated. We conclude by Proposition (0.4.9). ∎

In [HHM08], it is shown that there are many stably dominated types in ACVF. In fact,
ACVF is what is called a metastable theory. Let T be an NIP L-theory eliminating imagi-
naries and let Γ be a stably embedded L-definable set with an L-definable linear order.

Definition 0.4.15 (Maximally complete field):
A valued field K is said to be maximally complete if for every chain of balls (bi)i∈I in K , the
intersection ⋂i∈I bi(K) is non empty.

This is also often referred to as spherical completeness. Equivalently,K is maximally com-
plete if every pseudo-convergent sequence from K has a pseudo-limit in K (see Defini-
tion (II.4.12)). Note that a maximally complete field is in particular Henselian and that
Hahn fields are maximally complete.

Definition 0.4.16 (Metastability):
We say that T is metastable over Γ if:

(i) The theory T has the invariant extension property.

(ii) Existence of metastability bases: For all A ⊆M , there exists C ⊆M containing B such
that for all tuples a ∈M , tp(a/CΓ(dcl(Ca))) is stably dominated.

Theorem0.4.17 ([HHM08, Theorem 12.18.(ii) and Corollary 8.16]):
The theoryACVF is metastable over Γ. In fact, the metastability bases are exactly the max-
imally complete models of ACVF.

0.4.2. Orthogonality to Γ

The following definition of orthogonality is only equivalent to classical notions ifΓ is stably
embedded and eliminates imaginaries for the L-induced structure.
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Definition 0.4.18 (Orthogonality to Γ):
Let Γ be an L-definable set and p ∈ S(M) be anAut(M/C)-invariant type. It is orthogonal to
Γ if any of the following equivalent statements hold:

(i) For all B ⊆M containing A and a ⊧ p∣B , Γ(dcl(Ba)) = Γ(dcl(B)).

(ii) For all L(M)-definable functions f whose domain contains p and whose codomain is Γ,
the type f⋆p is realized inM .

The three notions we have defined: stable domination, generic stability and orthogonality
to Γ; are related.

Proposition 0.4.19:
Let T be an NIP L-theory eliminating imaginaries and let Γ be a stably embedded L-definable
set with an L-definable linear order. Let p ∈ S(M) be an Aut(M/C)-invariant type. We have:

(i) If p is stably dominated then it is generically stable;

(ii) If p is generically stable it is orthogonal to Γ.

Proof .

(i) By Definition (0.3.16), we have to show that p⊗p(x, y) = p⊗p(y, x). LetA = acl(A) ⊆
M contain C , a ⊧ p∣A and b ⊧ p∣Aa. We have to show that a ⊧ p∣Ab. We have
StA(dcl(Ab)) ⊧ (StA⋆p)∣Aa where StA is considered as a ⋆-definable function send-
ing x to StA(dcl(Ax)). As p is Aut(M/C) invariant and C ⊆ A, (StA⋆p)∣Aa does not
fork over A. In particular StA(dcl(Ab)) ⫝A StA(dcl(Aa)). By, Lemma (0.4.14), p∣A is
stably dominated and hence tp(a/AStA(dcl(Ab))) ⊢ tp(a/Ab).
Let a′ ⊧ p∣Ab. Then, as above StA(dcl(Ab)) ⫝A StA(dcl(Aa′)) and hence

StA(dcl(Aa′)) ≡L(AStA(dcl(Ab))) StA(dcl(Aa)).

Because StA is stably embedded, we have, in fact, a′ ≡L(AStA(dcl(Ab))) a and hence
tp(a/Ab) = tp(a′/Ab) = p∣Ab.

(ii) Let f be any L(M)-definable function into Γ defined on p. By Lemma (0.3.18) f⋆p is
generically stable. But becauseΓ has anL-definable order, the only generically stable
types in Γ are realized. ∎

∎
In ACVF, the instability is essentially contained in Γ and the three notions coincide. The
equivalence of (i) and (iii) is already proved in [HHM08, Section 10].

Proposition 0.4.20 ([HL, Proposition 2.8.1]):
LetM ⊧ ACVFG , C ⊆ M and p ∈ S(M) be an Aut(M/C)-invariant type. The following are
equivalent;

(i) p is stably dominated;
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(ii) p is generically stable;

(iii) p is orthogonal to Γ.

Proof . By Proposition (0.4.19), it suffices to prove that (iii)⇒(i). Let C0 ≼M contain C and
be maximally complete. Let a ⊧ p∣C0

. By Theorem (0.4.17), tp(a/C0Γ(dcl(C0a))) is stably
dominated. But, because p is orthogonal to Γ, Γ(dcl(C0a)) = Γ(C0) and hence tp(a/C0) =
p∣C0

is stably dominated. We can now conclude by Proposition (0.4.11). ∎

23





CHAPTER I

Imaginaries in p-adic fields

Le Logicien
La logique mène au calcul mental.

E. Ionesco, Rhinocéros, Acte I

This chapter contains [HMR], joint with Ehud Hrushovski and Ben Martin. In the paper,
one can also find an appendix by Raf Cluckers that is not included here. The Appendix
consists of a complete proof of the rationality results in Section I.6 for fixed p, which also
extends to the analytic case, while avoiding an explicit elimination of imaginaries.
Although I was not directly involved in the elaboration of sections I.7 and I.8 either, they
are included here both to keep the paper as awhole and to show an application of themodel
theoretic results.

I.1. Introduction
This paper concerns the model theory of the p-adic numbers Qp and applications to cer-
tain counting problems arising in group theory. Recall that a theory (in themodel-theoretic
sense of the word) is said to have elimination of imaginaries (EI) if the following holds: for
every modelM of the theory, for every definable subset D of someMn and for every de-
finable equivalence relationR onD, there exists a definable function f ∶D →Mm for some
m such that the fibers of f over f(D) are precisely the equivalence classes of R. In other
words, elimination of imaginaries states that every pair (D,E) (consisting of a definable
set D and a definable equivalence relation E on it) reduces to a pair (D′,E′) where E′ is
the equality—where, as in descriptive set theory, we say that (D,E) reduces to (D,E) if
there exists a ∅-definable map f ∶D′ →D with xE′y ⇐⇒ f(x)Ef(y).
The theory ofQp (in the language of rings with a predicate for v(x) ⩾ v(y)) does not admit
EI [SM93]: for example, no such f exists for the definable equivalence relation R on Qp

given by xRy if val(x − y) ⩾ 1, becauseQp/R is countably infinite but any definable subset
ofQm

p is either finite or uncountable. We show that the theory ofQp (and even of any finite
extension) with some extra sorts for Zp-lattices admits EI (cf. TheoremA). In TheoremB,
we show that the theory of ultraproducts ofQp also eliminates imaginaries ifwe add similar
sorts. It follows that the elimination inQp is uniform in p (see Corollary (I.2.7) for a precise
statement of the uniformity). In fact, we prove a more general result (Corollary (I.2.15)):
given two theories T̃ , T satisfying certain hypotheses, T̃ has EI ifT does. In our application,
T is the theory of algebraically closed valued fields of mixed characteristic (ACVF0,p) or
equicharacteristic zero (ACVF0,0) and T̃ is either the theory of a finite extension ofQp or
the theory of an ultraproduct ofQpwhere p varies, with appropriate extra constants in each
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cases (in fact in the latter case Corollary (I.2.15) does not apply immediately but a variant
does).
The notion of an invariant extension of a type plays a key part in our proof. If T is a theory,
M ⊧ T ,A ⊆M and p is a type overA then an invariant extension of p is a type q overM such
that q∣A = p and q is Aut(M/A)-invariant. The theory ACVF is not stable; in [HHM06;
HHM08], Haskell, the first author and Macpherson used invariant extensions of types to
study the stability properties ofACVF and to define notions of forking and independence.
They proved that ACVF plus some extra sorts admits EI.
Let us now come back to the meaning of our elimination of imaginaries result. It shows
that any (D′,E′) can be reduced to a (D,E) of a special kind—namely, the equivalence
relation on GLN(Qp) for some N whose equivalence classes are the left GLN(Zp)-cosets.
The quotients D/E have a specific geometric meaning; but can one explain abstractly in
what way they are special? One useful statement is that an arbitrary equivalence relation
is reduced to a quotient by a definable group action. Another property concerns volumes;
the E-classes have volumes that are motivically invertible; indeed, they are equivalent to a
polydisk of an appropriate dimension and size.
Indeed, it is only this property of the geometric imaginaries that is actually used in the ap-
plication in Section I.6 where we show an abstract uniform rationality result, TheoremC,
for zeta functions counting the number of classes in some definable family of equivalence
relations. The proof of this result relies on representing the number of classes of some de-
finable relationE on some definable setD as an integral. The idea, going back toDenef and
Igusa, is simple: the number of classes ofE onD equals the volume ofD, for any measure
such that each E-class has measure one. The question is how to come up (definably) with
such ameasure. The setting is that we already have theHaarmeasure µ onQp (normalized
so that µ(Zp) = 1), and for simplicity (one can easily reduce to this case) let us assume each
E-class [x]E ∈ D/E has finite, nonzero measure. The question then is to show that there
exists a definable function f ∶D → Qp such that the measure of each E-class [x]E is of the
form:

µ([x]E) = ∣f(x)∣ (I.1)

and then replace µ by f−1µ. In practice, f is usually given explicitly (cf. [GSS88, Section 2]).
This is straightforward for the case of p-power index subgroups of Γ coded in the usual
way. For more complicated equivalence relations, however, it is not clear a priori that such
an f can be found, even in principle.
Given EI to the geometric sorts, we can represent E as the coset equivalence relation of
GLn(Zp). In this case we can take Haar measure on GLn(Zp) where automatically each
class has measure one. Equivalently, with respect to the additive Haar measure, we use
the explicit factor 1/∣det(M)∣. In other words for this canonical E, the reciprocal of the
(additive) Haar measure of any E-class is represented.
We illustrate the power of TheoremC by using it to prove rationality results for certain
zeta functions of finitely generated nilpotent groups. Grunewald, Segal and Smith [GSS88]
showed that subgroups of p-power index of such a group Γ can be parametrized p-adically.
More precisely, these subgroups can be coded: that is, placed in bijective correspondence
with the set of equivalence classes of some definable equivalence relation on a definable
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subsetD of someQN
p . Let an <∞ denote the number of subgroups of Γ of index n. Using

p-adic integration overD and results of Denef andMacintyre, Grunewald, Segal and Smith
showed that the p-local subgroup zeta function ∑∞

n=0 apnt
n is a rational function of t, and

that the degrees of the numerator and denominator of this rational function are bounded
independently of p. Du Sautoy and others have calculated subgroup zeta functions explic-
itly in many cases [Sau01; SW08; Vol04] and studied uniformity questions (the behavior
of the p-local subgroup zeta function as the prime p varies). For instance, du Sautoy and
Grunewald proved a uniformity result by showing that the p-adic integrals that arise in
the calculation of subgroup zeta functions fall into a special class they call cone integrals
[SG00]. See the start of Section I.7 for further discussion of uniformity in the context of
subgroup zeta functions.
We also consider situations where it is not clear how to construct suitable definable p-adic
integrals. The main one, and the original motivation for our results, is in the area of repre-
sentation growth. This is analogous to subgroup growth: one counts not the number ap,n
of index pn subgroups of a groupΓ, but the number bp,n of irreducible pn-dimensional com-
plex characters of Γ (modulo tensoring by one-dimensional characters if Γ is nilpotent).
Jaikin [Jai06] proved, under mild technical restrictions, that the p-local representation zeta
functions of semi-simple compact p-adic analytic groups are rational (the second author
is grateful to him for explaining his work). Representation growth of finitely generated
pro-p groups was studied by Jaikin [Jai06]; Lubotzky and the second author gave a partial
criterion for an arithmetic group to have the congruence subgroup property in terms of
its representation growth [LM04, Theorem 1.2]. We prove that the p-local representation
zeta function ζΓ,p(s) ∶= ∑∞

n=0 bp,np
−ns of a finitely generated nilpotent group Γ is a rational

function of p−s and has good uniformity properties as p varies (Theorem I.8).
The results in Sections I.7 and I.8 both follow the same idea: we show how to interpret
(definably) in Qp the sets we want count. More precisely, in Section I.7 we show how to
interpret inQp the set of finite-index subgroupsH of Γ and we show that the equivalence
relations that arise are uniformly definable in p. This allows us to apply TheoremC. The
same idea is used in Section I.8, but the details are more complicated. We show how to
interpret in Th(Qp) the set of pairs (N,σ), where N is a finite-index normal subgroup
of Γ and σ is an irreducible character of Γ/N , up to twisting by one-dimensional char-
acters. The key idea is first to code triples (H,N,χ), where H is a finite-index subgroup
of Γ, N is a finite-index normal subgroup of H and χ is a one-dimensional character of
H/N—the point is that finite nilpotent groups are monomial, so any irreducible character
is induced from a one-dimensional character of a subgroup. The equivalence relation of
giving the same induced character can be formulated in terms of restriction, and shown to
be definable. Inspecting these constructions shows that they are all uniform in p, so again
TheoremC applies.
Since the first draft of this paper [HM08] was circulated, there has been considerable ac-
tivity in the field of representation growth. Jaikin (loc. cit.) used the coadjoint orbit formal-
ism of Howe and Kirillov to parametrize irreducible characters of p-adic analytic groups;
rationality of the representation zeta function then follows from the usual arguments of
semi-simple compact p-adic integration. Voll used similar ideas to parametrize irreducible
characters of finitely generated torsion-free nilpotent groups, and showed that represen-
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tation zeta functions are rational and satisfy a local functional equation [Vol10] (in fact,
he proved this for a very general class of zeta functions that includes representation zeta
functions and subgroup zeta functions as special cases). Stasinski and Voll [SV14] proved
a uniformity result for representation zeta functions and calculated these zeta functions
for some families of nilpotent groups. Ezzat [Ezz12] and Snocken [Sno13] have calculated
further examples of representation zeta functions of nilpotent groups. For work on repre-
sentation growth for other kinds of group, see [LL08; Avn+12; Avn+13; Avn11].
The Kirillov orbitmethod has the advantage that it linearises the problem of parametrizing
irreducible representations and simplifies the form of the imaginaries that appear. The
disadvantage is that the proof of rationality only applies to ζΓ,p(s) for almost all p—one
must discard a finite set of primes. We stress that our result Theorem I.8 is the only known
proof of rationality of ζΓ,p(s) that works for every p.
This paper falls naturally into two parts. The first part is model-theoretic: in Section I.2
we establish an abstract criterion, Proposition (I.2.11), for elimination of imaginaries and
apply it in Sections I.4 and I.5 to prove TheoremsA and B. Section I.3 consists of a study of
unary types in henselian valued fields, which is used extensively in Sections I.4 and I.5. In
Section I.6 we establish the general rationality result TheoremC.
In the second part (Sections I.7 and I.8), we apply TheoremC to prove rationality of some
group-theoretic zeta functions, including the representation zeta functions of finitely gen-
erated nilpotent groups (Theorem I.8). The main tools are results from profinite groups;
no ideas frommodel theory are used in a significant way beyond the notion of definability.

I.2. Elimination of imaginaries
I.2.1. Definition and first properties
We denote byN (respectivelyN>0) the nonnegative (respectively positive) integers, respec-
tively. For standard model-theoretic concepts and notation such as dcl (definable closure)
or acl (algebraic closure) we refer the reader to any introduction to model theory, e.g.
[Poi00].

Notation I.2.1:
IfX is a definable (possibly∞-definable) set in some structureM andA ⊆M , we will write
X(A) ∶= {a ∈ A ∶ M ⊧ X(a)}. If we want to make the parameters of X explicit, we will
writeX(A; b).

We say that the definable setX is coded (inM ) if it can be written as R(M ; b), where b is a
tuple of elements ofM , and where b ≠ b′ implies thatR(M ; b) ≠ R(M ; b′). In this situation
dcl(b) only depends onX and is called a code forX . It is denoted ⌜X⌝. We say T eliminates
imaginaries (EI) if every definable relation in every model of T is coded. Equivalently, if
there are at least two constants, T eliminates imaginaries if for any equivalence relationE
there is a definable functionwhose fibers are exactly the equivalence classes ofE (cf. [Poi83,
Lemme 2]).
For any theory T , by adding sorts for every definable quotient we obtain a theory T eq that
has elimination of imaginaries. These new sorts are called imaginary sorts and the old sorts
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from T are called the real sorts. Similarly, to any modelM of T we can associate a (unique)
modelM eq of T eq that has the same real sorts asM . In general, we use the notation ⌜X⌝ to
refer to the code of X with respect to T eq. We will denote by dcleq the definable closure in
M eq and similarly for acleq.
We will consider many-sorted theories with a distinguished collection S of sorts, referred
to as the dominant sorts; we assume that for any sort S, there exists a ∅-definable partial
function from a finite product of dominant sorts ontoS (and this function is viewed as part
of the presentation of the theory). The set of elements of dominant sorts in a modelM is
denoted dom(M).
The following lemma and remark—which reduce elimination of imaginaries to coding cer-
tain functions—will not be used explicitly in the p-adic case, but they are essential guide-
lines as unary functions of the kind described in the remark are central to the proof of
Proposition (I.2.11).

Lemma I.2.2 (cf. [HHM06, Remark 3.2.2]):
A theoryT admits elimination of imaginaries if every function definable (with parameters) whose
domain is contained in a dominant sort is coded in any model of T .

Proof . It suffices to show that every definable function f is coded. Indeed, to code a set, it
suffices to code the identity on this set. Pulling back by the given ∅-definable functions,
it suffices to show that every definable function whose domain is contained in a product
M1× . . .×Mn of dominant sorts is coded. For n = 1, this is our assumption. For larger n, we
use induction, considering a definable function f ∶M1 × . . . ×Mn →Mk as the function f ′

mapping c ∈M1 to the code of the function y ↦ f(c, y). By compactness there are finitely
many definable functions hi covering f ′. The codes of these hi allow us to code f . ∎

Remark I.2.3:
In Lemma (I.2.2), it suffices to consider definable functions f = fe on a definable subsetD of
a dominant sort, defined with a parameter e from an imaginary sort Y , such that either f is
the identity on its domain (unary EI), or there exists anA ⊆M such that e ∈ dcleq(A,fe(c))
for any c ∈D—i.e. fe is determined by any one of its values—and tp(e/A) implies the type
of e over Ac for any c ∈D.
Indeed, let e be imaginary. There exist c1, . . . , cn ∈ dom(M) such that e ∈ dcleq(c1, . . . , cn).
For all l, 0 ⩽ l ⩽ n, let Al ∶= dcleq(e, c1, . . . , cl) ∩M . We know that e ∈ dcleq(An) and we
want to show that e ∈ dcleq(A0) = dcleq(dcleq(e) ∩M); i.e. e is interdefinable with a tuple
of real elements.
Let us proceed by reverse induction. Suppose e ∈ dcleq(Al+1), let A ∶= Al and let c ∶= cl+1.
Then overAc, e is interdefinable with a real tuple d; so d = f(e, c) and e = h(d) for someA-
definable functions f, h. By unary EI, anyAe-definable subset of a dominant sort has a code
in dcleq(Ae)∩M = dcleq(A)∩M = A and hence isA-definable. Thus, tp(c/A) ⊢ tp(c/Ae)
and, for any c′ ⊧ tp(c/A), e = h(f(e, c′)). LetD be an A-definable set with c ∈ D and such
that e = h(f(e, c′)) for any c′ ∈ D. Then fe(y) = f(e, y) has a code in A = Al and we have
e ∈ dcleq(Al).
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Definition I.2.4:
Wewill say that a theory T eliminates imaginaries up to uniform finite imaginaries (EI/UFI)
if for allM ⊧ T and e ∈M eq, there exists a tuple d ∈M such that e ∈ acleq(d) and d ∈ dcleq(e).
The theory T is said to eliminate finite imaginaries (EFI) if any e ∈ acleq(∅) is interdefinable
with a tuple fromM .

Let us now give a criterion for elimination of imaginaries from [Hru09].

Lemma I.2.5:
A theory T eliminates imaginaries if it eliminates imaginaries up to uniform finite imaginaries
and for every set of parameters A, TA eliminates finite imaginaries.

Proof . Let e ∈M eq ⊧ T eq. Then by EI/UFI, there exists d ∈M such that e ∈ acleq(d) and d ∈
dcleq(e). Hence e is a finite imaginary in Td and there exists d′ ∈M such that e ∈ dcleq(dd′)
and dd′ ∈ dcleq(ed) = dcleq(e), i.e. e is coded by dd′. ∎

I.2.2. Valued fields
Let L be a valued field, with valuation ring O(L), maximal idealM(L) and residue field
k(L). We will find it convenient to consider the value group Γ(L) in both an additive
notation (with valuation val ∶ L→ Γ(L)∪{∞}) and a multiplicative notation (with reverse
order and absolute value ∣.∣), depending on the setting. In fact the latter notation will only
be used when L is a finite extension of Qp and in that case we will take ∣x∣ to be q−val(x)

where q = ∣res(L)∣.
We will consider valued fields in the geometric language whose sorts (later referred to as
the geometric sorts) are as follows. We take a single dominant sortK, for the field L itself.
The additional sorts Sn,Tn for n ∈N are given by

Sn ∶= GLn(K)/GLn(O) ≃ Bn(K)/Bn(O),

the set of lattices inKn, and

Tn ∶= GLn(K)/GLn,n(O) ≃ ⋃
m⩽n

Bn(K)/Bn,m(O) ≃ ⋃
e∈Sn

e/Me.

Here a lattice is a free O-submodule of Kn of rank n, Bn is the group of invertible upper
triangular matrices, GLn,m(O) is the group of matrices in GLn(O) whose mth column
reduces modM to the column vector of k having a one in themth entry and zeroes else-
where, andBn,m(O) ∶= Bn(O)∩GLn,m(O). There is a canonical map fromTn to Sn taking
f ∈ e/Me to the lattice e.
It is easy to see, using elementary matrices, that GLn(K) = Bn(K)GLn(O), justifying
the equivalence of the first two definitions of Sn. Equivalently, it is shown in [HHM06,
Lemma 2.4.8] that every lattice has a basis in triangular form.
Note that there is an obvious injective ∅-definable function Sm × Sm′ → Sm+m′ , namely
(λ,λ′)↦ λ×λ′, so we can identify any subset of a product of Sni

with a subset of Sn, where
n = ∑i ni.
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I.2. Elimination of imaginaries

Note also that S1 can be identified with Γ by sending the coset cO⋆ to v(c). Then k can
be identified with the fiber of T1 → S1 above the zero element of S1 = Γ. More generally,
let B ∶= {{x ∶ val(x − a) ⩾ val(b)} ∶ a, b ∈ K} and Ḃ ∶= {{x ∶ val(x − a) > val(b)} ∶
a, b ∈K} be the sets of closed (respectively open) balls with center inK and radius in v(K).
Then B embeds into S2 ∪K and Ḃ into T2. Indeed, the set of closed balls of radius +∞ is
identifiedwithK. The groupG(K) of affine transformations of the line acts transitively on
the closed balls of nonzero radius; the stabilizer ofO ∈ B isG(O), soB∖K ≅ G(K)/G(O) ⊆
GL2(K)/GL2(O). The groupG(K) also acts transitively on Ḃ and the stabilizer ofM ∈ Ḃ
is G(K) ∩GL2,2(O). We will write B ∶= B ∪ Ḃ for the set of all balls. Note, however, that
if Γ has a smallest positive element, the open balls are also closed balls.
In Sections I.3 and I.5, we will also consider the sortRV ∶=K⋆/(1 +M) and the canonical
projection rv ∶ K⋆ → RV. The structure on RV is given by its group structure and the
structure induced by the exact sequence k⋆ → RV → Γ where the second map is denoted
valrv—i.e. we have a binary predicate interpreted as valrv(x) ⩽ valrv(y), a unary predicate
interpreted as k⋆ and the ring structure on k (adding a zero to k⋆). This exact sequence
induces on each fiber of valrv the structure of a k-vector space (if we add a zero to the fiber).
When T ⊇ THen,0 (the theory of henselian valued fields with a residue field of characteristic
zero),RV is stably embedded and the structure induced onRV is exactly the one described
above. Note thatRV and T1 can be identified (if we add a zero to each fiber of valrv).
The theory of a structure is determined by the theory of the dominant sorts; so, for any
field L we can speak of Th(L) in the geometric sorts. We take the geometric language LG
to include the ring structure on the sortK, the naturalmapsGLn(K)→ Sn(K),GLn(K)×
Kn → Tn(K).
In [HHM06], it is shown that ACVF eliminates imaginaries in LG . Let us now give the
counterpart of this theorem for p-adic fields.
By LG− , we denote the restriction of LG to the sortsK and Sn. For all setsN ⊆N>0, we will
also consider an expansion LGN of LG− by a constant a and for all n ∈ N a tuple of constants
cn of length n in the field sort.
By an uniformizer of a valued field we mean an element a ∈ O whose valuation generates
the value group. By an (unramified) n-Galois uniformizer we mean a tuple c of elements of
the valued field whose residue generate T (k)/(T (k))⋅n where T is the restriction of scalar
ofGm from k[ωn] to k for ωn some primitive nth root of unity and T (k)⋅n denotes the nth
powers in T (k). Note that because k[ωn] is of degree at most n over k, c is a tuple of length
atmost n. Adding some zeroes at the end of the tuple, wemay assume it is a tuple of length
exactly n.
Let PL0 be the theory of pseudo-local fields of residue characteristic 0, i.e. henselian fields
with value group a Z-group (i.e. an ordered group elementarily equivalent to (Z,0,<)) and
residue field a pseudo-finite field of characteristic 0. So PL0 is the theory of ultraproducts
∏Qp/U of p-adics over non-principal ultrafilters on the set of primes. In fact, let Lp be
a set of finite extensions of Qp and L ∶= ⋃pLp. Any ultraproduct ∏L∈LL/U of residue
characteristic zero— i.e. the ultrafilter U does not contains any set included in some Lp0—
is a model of PL0. Note that if Lp is nonempty for infinitely many p there actually is an
ultrafilter on L such that∏L∈LL/U has residue characteristic zero.
Let L ⊧ PL0 be an LG

−-structure. A proper expansion of L to LGN is a choice of a and cn
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I. Imaginaries in p-adic fields

for each n ∈ N such that a is a uniformizer and cn is an unramified n-Galois uniformizer.
Note that because there are only finitely many possibilities for the minimal polynomial of
ωn over k, the class of proper expansions to LGN of models of PL0 is elementary. Let us call
it PL0

N .
A proper expansion of L ∈ Lp to LGN is a choice of a and cn for each n ∈ N such that a is a
uniformizer and if n is prime with p, cn is an unramified n-Galois uniformizer. If n is not
prime to p take all of the other constants to be zero except for one, in cp for example, which
is a generator of L overQp. Note that a residue characteristic zero ultraproduct of proper
expansions to LGN of L ∈ L is a model of PL0

N .
The two main elimination of imaginaries results in this paper are the following. The first
is for finite extensions ofQp:

TheoremA:
The theory ofQp eliminates imaginaries in LG− . The same is true for any finite extension L
ofQp, provided one adds a constant symbol for a generator of L ∩Q

alg
overQp ∩Q

alg
.

The second is for their ultraproducts of residue characteristic zero:

TheoremB:
PL0

N eliminates imaginaries in LGN>0 .

Remark I.2.6:
1. Although the Tn are needed to obtain EI in algebraically closed valued fields, they are

not needed here. Indeed, if a valued field L has a discrete valuation (i.e. the value
group has a smallest positive element val(λ0)), then for any lattice e, λ0e is itself a
lattice, and a coset h of λ0e— a typical element ofTn—can be coded by the lattice in
Kn+1 generated by h × {1}. Hence all elements of Tn(L) are coded in Sn+1(L).

2. In TheoremA, we need to add constants for elements of a subfield F with a certain
number of properties:

a. F contains a uniformizer;

b. res(F ) = k;

c. K
alg = F alg

K (in fact, we need that for every finite extension L ofK there is a
generator ofO(L) whose minimal polynomial is over F ).

It suffices to take F = Q[c], where c generates L over Qp. Note that we can choose
such a c ∈Qalg

.

Note also that a proper expansion of some finite extensionL ofQp toLGN>0 contains a
generator ofL overQp. Hence proper extensions ofL eliminate imaginaries inLGN>0 .

3. In TheoremB, we need to name elements of a subfield F satisfying (a), (c) as above,
and:

d. res(F )(k⋆)⋅n = k for all n;
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e. k admits EI in the language of rings augmented by constants for elements of
res(F ).

We can choose F to be generated by a uniformizer a and unramified n-Galois uni-
formizers cn for all n. It is clear that such an F satisfies (a). Furthermore, k

alg =
res(F )

alg
k. Indeed, let ωn be a primitive nth root of unity, and let dn ∶= ∑i cn,iωin.

The degree n extension of k[ωn] is contained in k[ωn, n
√
dn] by Kummer theory and

it contains the degree n extension of k.

Now (c) is a consequence of (a) and the above statement and (e) also follows as

any extension of degree n is generated by an element in res(F )
alg
, so there is an

irreducible polynomial of degree n with res(F )-definable parameters; this is the
hypothesis of [CH99, Proposition B.(3)]. Finally for any n, there is a d such that
{x ∈ k ∶ xn = 1} = {x ∈ k ∶ xd = 1} and k contains primitive dth roots of unity.
Then cd ∈ k generates k⋆/(k⋆)⋅d = k⋆/(k⋆)⋅n, so (d) holds.

4. It would be nice to find a more precise description of the imaginaries if no constants
are named. For finite extensions ofQp, this is done in Remark (I.4.6).

Before going any further, let us show that TheoremB allows us to prove a uniform version
of TheoremA.

Corollary I.2.7:
Let Lp be any set of finite extensions ofQp and let L ∶= ⋃pLp. Let E(x, y) be an LGN>0-formula
(where x, y range over definable setsX,Y ). Then there exist integersm, l, a set of integers N , a
prime p0 and some LGN>0-formula φ(x,w) such that the following uniform statement of elimi-
nation of imaginaries holds. For all p ⩾ p0 and all proper expansions to LGN of Lp ∈ Lp, φ(x,w)
defines a function

fLp ∶X → Sm(Lp) ×K(Lp)l

and
Lp ⊧ (∀x,x′)(fLp(x) = fLp(x′) ⇐⇒ (∀y)E(x, y) ≡ E(x′, y))

Proof . AssumeLp is nonempty for infinitelymany p, otherwise the statement is trivial. The
formula ∀yE(x, y) ≡ E(x′, y) defines an equivalence relation in any ultraproduct L of
fields inL. ByTheoremB, there is a formulaφ(x,w) (whichworks for anyproper expansion
to LGN>0 of any such ultraproduct of residue characteristic zero) such that φ(x,w) defines a
function f and f(x) = f(x′) if and only if ∀yE(x, y) ≡ E(x′, y). By compactness, for some
N , this equivalence is valid in proper expansions to LGN .
Let us now assume there is an infinite set I ⊆ L such that I has a nonempty intersec-
tion with infinitely many Lp and for every L ∈ I , there is a proper expansion of L to LGN>0
such that we do not have f(x) = f(x′) if and only if ∀yE(x, y) ≡ E(x′, y) in L. Then
there exists an ultrafilter onL containing I but containing no set included in someLp0 and
∏L∈LL/U ⊧ PL0

N; but we do not have f(x) = f(x′) if and only if ∀y E(x, y) ≡ E(x′, y) in
this ultraproduct, a contradiction. ∎
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Remark I.2.8:
1. In particular, wheneverE(x, y) is interpreted in Lp as an equivalence relation, fp(x)

codes the E-class ofX .

2. Assume Lp is finite for all p. Then ⋃p<p0 Lp is finite and, using TheoremA (and Re-
mark I.2.6.2), we can find a φ and anN that work for all L ∈ ⋃pLp and not just for p
big enough.

The proof of TheoremsA and B uses elimination of imaginaries and the existence of in-
variant extensions in the theory of algebraically closed valued fields. Recall that a theory T
has the invariant extension property if whenever A = acl(A) ⊆M ⊧ T and c ∈M , tp(c/A)
extends to an Aut(M/A)-invariant type over M . This holds trivially for any finite field,
and by inspection, for Th(Z,+,<) and, although we will only use a weaker version of the
extension property (Corollary (I.3.10)) in the proof of TheoremA, we will show that the
theory of a finite extension of Qp (with the geometric sorts) enjoys the stronger version
(Remark (I.4.7)).

I.2.3. Real elimination of imaginaries
To illustrate the idea of transferring imaginaries from one theory to the other, consider the
following way of deducing EI for RCF (the theory of real closed fields) from EI for ACF (the
theory of algebraically closed fields).

Example I.2.9:
Let F be a field considered in a language extending the language of rings. Assume for all
M ⊧ Th(F ):

(i) (Algebraic boundedness): Let A ⊆ M ; then acl(A) ⊆ Aalg
(where A

alg
denotes the

ACF algebraic closure);

(ii) (Rigidity of finite sets): No automorphism of M can have a finite cycle of size > 1.
Equivalently, for each n, there exists ∅-definable functions ri,n(x1, ..., xn) that are
symmetric in the xi, such that S = {r1,n(S), . . . , rn,n(S)}. (Here ri,n(S) denotes
ri,n(x1, ..., xn) when S = {x1, . . . , xn}, possibly with repetitions.);

(iii) (Unary EI): Every definable subset ofM is coded.

Then Th(F ) eliminates imaginaries (in the single sort of field elements).

Proof . Let f ∶M →M be a definable function. By Lemma (I.2.2), it suffices to prove that f
is coded. Let H be the Zariski closure of the graph of f . Since the theory is algebraically
bounded, the set H(x) ∶= {y ∶ (x, y) ∈ H} is finite for any x, of size bounded by some n.
Let Un,i be the set of x such that f(x) = ri,n(H(x)). Then, by elimination of imaginaries
in ACF,H—being a Zariski closed set—is coded inM

alg
. But the code is definable overM

and hence is in the perfect closure ofM . Replacing this code by some pnth power in the
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characteristic p case, we can suppose it belongs toM . Moreover, each Ui (being unary) is
coded; these codes together give a code for f . ∎
Note that RCF satisfies the hypotheses of Example (I.2.9), but Th(Qp) (in the field sort
alone) does not. More precisely, as shown in the introduction, the value group cannot be
be definably embedded into Qn

p . Hence hypothesis (iii) fails for Th(Qp) in the field sort
alone.

Remark I.2.10:
If F is a field satisfying (i), (iii), then F has EI/UFI. This is an immediate consequence of
Proposition (I.2.11) as hypotheses (ii) and (iv) of Proposition (I.2.11) are true ifT is the theory
of algebraically closed fields in the language of rings.

I.2.4. Criterion for elimination of imaginaries
Let T be a complete theory in a language L. Assume T eliminates quantifiers and imagi-
naries. Let T̃ be a complete theory in a language L̃ ⊇ L; assume T̃ contains the universal
part of T .
In a model M̃ of the theory T̃ , three kinds of definable closure can be considered: the
usual definable closure dclL̃, the definable closure in M̃ eq, denoted dcleqL̃ and the imaginary
definable closure restricted to real points dcleqL̃ ∩ M̃ . As dcleqL̃ ∩ M̃ and dclL̃ take the same
value on sets of real points, we will denote both of them dclL̃. Onemust take care however
that if A contains imaginary elements, A /⊆ dclL̃(A).
As T eliminates imaginaries, these distinctions are not necessary in models of T and we
will only need dclL. One should note that, as T eliminates quantifiers, dclL is the closure
under quantifier-free L-definable functions and hence that, for anyA ⊆ M̃ , dclL(A)∩ M̃ ⊆
dclL̃(A).
Analogous statements hold for aclL, aclL̃, acl

eq

L̃ , tpL, tpL̃, etc.
One should also be careful that if M̃ ⊧ T̃ is contained in someM ⊧ T , there is no reason
in general that M̃ eq should be contained inM . In fact, the whole purpose of the following
proof is to show that under certain hypotheses every element of M̃ eq is interdefinable with
a tuple in M̃ .
Since we are describing notation, let us also point out that we will write interchangeably
dcl(A, b) = dcl(Ab) = dcl(A ∪ {b}).
Proposition I.2.11:
Assume that T and T̃ are as above. Let M̃ be an ∣L∣+-saturated and ∣L∣+-homogeneous model of
T̃ and letM ⊧ T be such that M̃ ∣L ⩽LM and such that any automorphism of M̃ extends to an
automorphism ofM . If conditions (i)–(iv) below hold for anyA = aclL̃(A) ⊆ M̃ , then T̃ admits
elimination of imaginaries up to uniform finite imaginaries (see Definition (I.2.4)).

(i) (Relative algebraic boundedness) For all elements c ∈ dom(M̃) and M̃ ′ ≺ M̃ , dclL̃(M̃ ′c) ⊆
aclL(M̃ ′c).

(ii) (Internalizing L-codes) Let e ∈ dclL(M̃). Then there exists a tuple e′ of elements of M̃
such that an automorphism ofM stabilizing M̃ globally fixes e if and only if it fixes e′.

35



I. Imaginaries in p-adic fields

(iii) (Unary EI) Every L̃(M̃)-definable unary subset of dom(M̃) is coded in M̃ .

(iv) (Invariant types) For all c ∈ dom(M̃), there exists an Aut(M/A)-invariant type p over
M such that p∣M̃ is consistent with tpL̃(c/A).
Moreover, for any L(M)-definable function r whose domain contains p, let ∂pr be the
p-germ of r (where twoL(M)-definable functions r, r′ have the same p-germ if they agree
on a realization of p overM ). Then:

(∗) There exists a directed order I and a sequence (εi)i∈I , with εi ∈ dclL(A, ⌜r⌝) such that
σ ∈ Aut(M/A) fixes ∂pr if and only if σ fixes almost every εi—i.e. σ fixes all i ⩾ i0, for
some i0 ∈ I .

Some comments on the proposition:

1. There are two ways to ensure that automorphisms of M̃ extend to automorphisms
ofM . The first is to takeM homogeneous enough. The other is to takeM atomic
over M̃ ; in the case of valued fields, we could takeM to be the algebraic closure of
M̃ .

2. In fact, we will only need (iv) for ∣A∣ ⩽ ∣L̃∣.

3. If p is definable then, for a uniformly defined family of functions rb, ∂prb is an imag-
inary (and we could take εi to be that imaginary). Nevertheless, if p is not definable
and say (εi) is countable then Condition (iv) implies that the germ is a Σ0

2-hyper-
imaginary, i.e. an equivalence class of sequences indexed by I where the equivalence
relation is given by a countable union of countable intersections of definable sets (al-
though each definable set will involve only a finite number of indices, the countable
union of countable intersections can involve them all). In the case ofACVF one also
has that σ fixes ∂pr if and only if σ fixes cofinally many εi; in this case the equivalence
relation is also a countable intersection of countable unions of definable sets, so it is
∆0

2.

4. Hypotheses (ii) and (iii) are special cases of elimination of imaginaries. It would be
nice to move (iii) from the hypotheses to the conclusion, i.e. assuming only (i), (ii)
and (iv), to show that every imaginary is “equivalent” to an imaginary ofM definable
over M̃ .

First let us clarify how Aut(M̃) acts on dclL(M̃) as this action will be used implicitly
throughout the proof. Any σ̃ ∈ Aut(M̃) can be extended to an automorphism σ ∈ Aut(M)
and all these extensions are equal on dclL(M̃), hence we have a well-defined action of σ̃ on
dclL(M̃) and the notation Aut(M̃/B)makes sense even if B ⊆ dclL(M̃). Similarly, if p is
an Aut(M/B)-invariant type, Aut(M̃/B) acts on p-germs of L(M̃)-definable functions.
We begin our proof with elimination of finite sets:

Lemma I.2.12:
Assume (ii) holds in Proposition (I.2.11). Then every finite set E ⊆ M̃ is coded.
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Proof . By EI for T , the finite set E is coded by a tuple e′ ∈ M ; e′ may consist of elements
in dclL(M̃) but outside M̃ . By (ii), there exists a tuple e of elements of M̃ such that an
automorphism of dclL(M̃) leaving M̃ invariant fixes E if and only if it fixes e′ if and only
if it fixes e. Thus E and e ∈ M̃ are interdefinable. ∎
Proof (Proposition (I.2.11)). Let e ∈ M̃ eq. There exists c1, . . . , cn ∈ dom(M̃), we have e ∈
dcleqL̃ (c1, . . . , cn). Let Ai ∶= dclL̃(e, c1, . . . , ci) ⊆ M̃ . The claim is that e ∈ acleqL̃ (A0). We have
e ∈ acleqL̃ (An) and show by reverse induction on l ⩽ n that e ∈ acleqL̃ (Al). Assume inductively
that e ∈ acleqL̃ (Al+1). Let A ∶= Al, c ∶= cl+1. It is easy to check that

A = dclL̃(Ae).

As e ∈ acleqL̃ (Al+1), for some tuple d ∈ Al+1 = dclL̃(Ace), some L̃(A)-definable function f
and some L̃(A)-definable, finite-set-valued function g, we have

e ∈ g(d), d = f(c, e).

Let fe(x) ∶= f(x, e). Let Ā ∶= aclL̃(A) and p̃ ∶= tpL̃(c/Ā).
Let M̃0 ≺ M̃ such that M̃ eq

0 contains Ae. Note that for all c′ in the domain of fe, fe(c′) ∈
dclL̃(M̃0c). By (i), there exists an L(M̃0)-definable finite-set-valued function φc′ such that
fe(c′)∈φc′(c′). By compactness, for somefinite set I0 andL(M̃0)-definable finite-set-valued
functions (φi)i∈I0 , the following holds: for any c′ in the domain of fe, fe(c′)∈φi(c′) for some
i ∈ I0. Let φ(x) ∶= ⋃i∈I0 φi(x); so fe(c′)∈φ(c′) for all c′ in the domain of fe. Hence if Φ is
the set of all L(M̃)-definable, finite-set-valued functions ψ with a domain containing that
of fe and such that for all c′ in the domain of fe, fe(c)∈ψ(c), then Φ is nonempty.
Let p be an Aut(M/Ā)-invariant type overM extending p̃, as in (iv). Form ∈ N, let Φm be
the set of all L(M̃)-definable functions φ ∈ Φ such that for c ⊧ p, φ(c) is an m-element
set. Note that as p is a complete type,m does not depend on c. Letm be minimal such that
Φm is nonempty. Clearly all φ ∈ Φm share the same p-germ: if φ,φ′ do not have the same
p-germ, thenφ′′(x) ∶= φ(x)∩φ′(x) lies inΦm′ for somem′ <m. PickFE ∈ Φm, defined over
E ⊆ M̃ . So FE covers fe, FE is L(E)-definable, and the p-germ of FE is invariant under
Aut(M̃/Āe).

Claim I.2.13: The p-germ of FE is invariant under Aut(M̃/Ā).
Proof . Let (εi) be a sequence as in (iv), coding the germ of FE on p. Note that εi ∈ dclL(M̃)
(since FE isL(E)-definable andE ⊆ M̃ ). By (ii), wemay replace εi by a tuple of M̃ , without
changing Aut(M̃/εi); we do so.
Now, almost all εimust be in aclL̃(Āe). For otherwise, bymoving to a subsequence wemay
assume all εi are outside aclL̃(Āe). So Aut(M̃/Āeεi) has infinite index in Aut(M̃/Āe). By
Neumann’s Lemma, for any finite setX of indices, there exists τ ∈ Aut(M̃/Āe)with τ(εi) ≠
εi, for all i ∈X . By compactness (and homogeneity of M̃ ), there exists τ ∈ Aut(M̃/Āe)with
τ(εi) ≠ εi for all i. But then τ fails to fix the p-germ of F , contradicting the Aut(M̃/Āe)-
invariance of this germ.
So for almost all i, some finite set Ei containing εi is defined over Ae. By Lemma (I.2.12),
the finite set Ei is coded in M̃ . But A = dclL̃(Ae), so Ei is defined over A. Hence εi ∈ Ā, i.e.
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εi is fixed by Aut(M̃/Ā). This being the case for almost all i, the p-germ of FE is invariant
under Aut(M̃/Ā). ⧫

Claim I.2.14: e ∈ acleqL̃ (A).

Proof . It suffices to show that if ((ei,Ei) ∶ i ∈ N) is an indiscernible sequence over Ā with
e0 = e,E0 = E, then ei = ej for some i ≠ j. Let c ⊧ p∣A(Ei)i∈N such that c ⊧ p̃. By (iii) and
because A = dclL̃(Ae), tpL̃(c/A) implies tpL̃(c/Ae); hence tpL̃(e/A) implies tpL̃(e/Ac).
So tpL̃(ei/Ac) = tpL̃(e/Ac).
By Claim (I.2.13), the p-germs of the FEi

are equal; so FEi
(c) is a finite set F that does not

depend on i. But f(c, ei)∈F , so f(c, ei) takes the same value on some infinite set I ′ of
indices i. Hence so does the finite set g(f(c, ei)). As e ∈ g(f(c, e)), it follows that ei ∈
g(f(c, ei)), so infinitely many ei lie in the same finite set and ei = ej for some i ≠ j. ⧫
We have just shown that e lies in acleq(A) = acleq(dcleq(e) ∩ M̃). This concludes the proof
of Proposition (I.2.11). ∎
Let us now show that this first criterion can be turned into a criterion for elimination of
imaginaries.

Corollary I.2.15:
Let T̃ and T be as in Proposition (I.2.11) and let us suppose moreover that:

(v) (Weak rigidity) For all A = aclL̃(A) and c ∈ dom(M̃), aclL̃(Ac) = dclL̃(Ac).

Then T̃ eliminates imaginaries.

Proof . Let e ∈ M̃ eq be an imaginary element. There exists c1, . . . , cn ∈ dom(M̃) such that
e ∈ dcleqL̃ (c1, . . . , cn). For all l ⩽ n, let Al ∶= aclL̃(e, c1, . . . , cl) ⊆ M̃ . Then e ∈ dcleqL̃ (An);
we show by reverse induction on l ⩽ n that e ∈ dcleqL̃ (Al). We assume inductively that
e ∈ dcleqL̃ (Al+1). Let A ∶= Al, c ∶= cl+1 ∈ dom(M̃). It is easy to check that

A = aclL̃(Ae)

and that, for some tuple d,

d ∈ Al+1 = aclL̃(Ace), e ∈ dcl
eq

L̃ (Ad).

By Proposition (I.2.11), e ∈ acleqL̃ (A0), so d ∈ aclL̃(Ac). By weak rigidity (v), d ∈ dclL̃(Ac).
Thus e ∈ dcleqL̃ (Ac).
Say e = h(c), where h is an L̃eq(A)-definable function. Then h−1(e) is an L̃(M̃)-definable
subset of dom(M̃), hence by (iii) it has a code e′ ∈ M̃ . Clearly e and e′ are interdefinable
overA. As e′ ∈ M̃ , we have e′ ∈ dclL̃(Ae) = A. So e ∈ dcl

eq

L̃ (A) = dcl
eq

L̃ (Al). This finishes the
induction and shows that e ∈ dcleqL̃ (A0).
Let a be a tuple from A0 such that e is L̃eq(a)-definable. Let a′ be the (finite) set of conju-
gates of a over e. Then dcleqL̃ (e) = dcl

eq

L̃ (a
′) and, by Lemma (I.2.12), a′ is coded, hence e is

interdefinable with some sequence from M̃ . ∎
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Keeping (v) out of Proposition (I.2.11) makes the proof of the EI criterion messier than
strictly necessary. Nonetheless, distinguishing the case without (v) is important for ul-
traproducts of the p-adics where (v) fails.
The following lemma will be used to prove (v) in the p-adic case.

Lemma I.2.16:
Assume that for any a ∈ M̃ , there exists a tuple c from dom(M̃) with a ∈ dclL̃(c) and such that
tpL̃(c/aclL̃(a)) extends to an Aut(M̃/aclL̃(a))-invariant type over M̃ . Then (v) follows from:

(v′) If B ⊆ dom(M̃) then aclL̃(B) ⊆ dclL̃(B).

Proof . Let A = {ai ∶ i < κ}. For each i, pick a tuple ci of elements of dom(M̃) with ai ∈
dclL̃(ci), and extend tpL̃(ci/aclL̃(ai)) to an Aut(M̃/aclL̃(ai))-invariant type p̃i. Let A0 ∶=
A, and recursively let Ai+1 ∶= Ai ∪ {bi}, where bi ⊧ p̃i∣aclL̃(Aic), and Aλ ∶= ⋃i<λAi for limit λ.

Claim I.2.17: aclL̃(Ac) ∩ dclL̃(Aic) ⊆ dclL̃(Ac).

Proof .We proceed by induction on i. The limit case is trivial. To move from i to i + 1,
let d ∈ aclL̃(Ac) ∩ dclL̃(Ai+1c) and let σ ∈ Aut(M̃/Aic). As tpL̃(bi/aclL̃(Aic)) is invariant
under σ, d ∈ aclL̃(Aic) and d is definable over Aicbi, we have σ(d) = d, i.e. d is definable
over Aic and hence d ∈ dclL̃(Ac) by induction. ⧫

NowAκ ⊆ dclL̃(Aκ ∩dom(M̃)) and so dclL̃(Aκc) = dclL̃((Aκc)∩dom(M̃)). By (v′) this set
contains aclL̃(Aκc) and hence aclL̃(Ac). Applying Claim (I.2.17) with i = κ, we obtain (v).
∎

I.3. Extensible 1-types in intersections of balls
The goal of this section is to establish some results about unary types in henselian fields
(specifically, finite extensions ofQp and ultraproducts of such fields), which will be useful
to prove that Proposition (I.2.11) can be applied to these fields.
In this section, we will not be considering valued fields in the geometric language as we
need quantifier elimination and not elimination of imaginaries. Let R be a set of sym-
bols; we will be working in the countable language L ∶= {K,+, ⋅, −1,val ∶ K → Γ, r ∶ K →
Kr, . . .}r∈R where the Kr are new sorts, each r is such that r∣K⋆ is a surjective group ho-
momorphismK⋆ →Kr that vanishes on 1+M⋅ν for some ν = ν(r) ∈N and the . . . refer to
additional constants onK and additional relations on the sortsKr and Γ. Let T be some
theory of discretely valued fields in this language that eliminates quantifiers. Throughout
this sectionM will be a sufficiently saturated model of T and λ0 ∈ K(M) a uniformizer.
We will write r for the (possibly infinite) tuple of all r ∈R.
Assume Γ is definably well-ordered (every nonempty definable subset with a lower bound
has a least element). Let

QR ∶= {(u, vr, . . . )r∈R ∶ (∃x ∈K)val(x) = u,∀r ∈R, r(x) = vr}.

We write val(x)≫ val(y) if val(x) > val(y) +mval(λ0) for allm ∈N.
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Finite extensions of the p-adics fit in this setting, by Prestel-Roquette [PR84], if we take the
rn to be the canonical projectionsK⋆ →K⋆/(K⋆)⋅n. Note that every element of these finite
groups is in dcleq(∅). In the case of ultraproducts of p-adic fields of residue characteristic
zero andmore generally of henselian valued fieldswith residue characteristic zero (denoted
as THen,0), one map r suffices: the canonical projection rv ∶K⋆ →RV.
Observe that val(x − y) ≫ val(x − z) implies r(x − z) = r(y − z) for all r ∈ R. Indeed
(y − z)/(x − z) = 1 + (y − x)/(x − z) ∈ 1 +M⋅ν(r).

Notation I.3.1:
If b ∈ B(M), x ∈ dom(M) and x ∉ b, the valuation val(x − y) takes the same value for all
y ∈ b. We denote it val(x − b). By rad(b) we denote the infimum of val(y − y′), y, y′ ∈ b.
Moreover for all r ∈R, if val(x − b) + ν(r)val(λ0) ⩽ rad(b), then r(x − y) = r(x − y′) for all
y, y′ ∈ b. We write r(x − b) = r(x − y) in this case.

Definition I.3.2:
Let f = (fi)i∈I be a family of A-definable functions for some A ⊆M eq. A partial type p over A
is complete over A relative to f if the map tp(c/A) ↦ tp(f(c)/A) is injective on the set of
extensions of p to S(A).

Remark I.3.3:
The partial type p(x) is complete over A relative to f if and only if for every formula φ(x)
over A, there exists a formula θ(u) over A such that p ⊢ (φ(x) ⇐⇒ θ(f(x))).

For the rest of the section we are going to study generic types of intersections of balls.
Let b̄ = {bi ∶ i ∈ I} be a descending sequence of balls in B(M). Let P ∶= ⋂i∈I bi. Let
PΓ ∶= {γ ∈ Γ ∶ ∀i ∈ I γ > rad(bi)}. For any A with bi ∈ dcleq(A), we define the generic type
of P over A ⊆M eq to be

qP ∣A ∶= P (x) ∪ {x ∉ b ∶ b ∈ B(acl
eq(A)), b strictly included inP}.

In Section I.4, we will also be considering theACVF-generic of such an intersection P , i.e.
the same notion of genericity but considered in algebraically valued fields. Note that ifL is
a valued field,A ⊆ L and P is an intersection of balls inB(A), then the difference between
the generic type of P over A in L and in L

alg
is that the latter must also avoid balls that do

not have a center or a radius in L but in L
alg
.

Remark I.3.4:
If P is a strict intersection, i.e. P is not equal to a ball or equivalently b̄ does not have a
minimal element, then for an element to be generic inP overA it suffices to check that x is
not contained in any ball b ∈ B(dcleq(A)) contained in P . Indeed, if b ∈ B(acleq(A)), then
the smallest ball containing all A-conjugates of b is strictly included in P and is definable
over A.

In what follows, we will considerA ⊆M eq containing all constants inK, and b̄ a decreasing
sequence of balls inB(dcleq(A)) (indexed by some ordinal). Unless otherwise mentioned,
until Proposition (I.3.9), we will suppose that P = ⋂i bi is strict.
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Lemma I.3.5:
SupposeA ⊆K(M). Fix a ∈ Awith a ∈ bi for each i. Then qP ∣A is complete relative to val(x−a)
and to r(x − a). Moreover, if P (dcleq(A)) = ∅ then qP ∣A is complete.

Proof . Taking into account quantifier elimination, we must show the following: let c, c′ ∈
M be two realizations of q ∶= qP ∣A such that (val(c − a), r(c − a)) has the same type over
A as (val(c′ − a), r(c′ − a)); then the substructures A(c), A(c′) generated by c, c′ over A
(which are simply the fields generated by c, c′ over A) are isomorphic over A.

Extend the valuation fromK(M) to L ∶= K(M)
alg
—the algebraic closure ofK(M). The

intersection of K⋆(M) with ker(r) ⋅ (1 + λν(r)0 O(L)) is ker(r): indeed ker(r) ⊆ K⋆(M)
and (1+ λν(r)0 O(L)) ∩K⋆(M) = (1+ λν(r)0 O(K)) ⊆ ker(r). It follows that the natural map
K⋆(L) → K⋆(L)/ker(r) ⋅ (1 + λν(r)0 O(L)) extends r. We also call the extended map r. By
construction, the following still holds: for all x, y, z ∈ L, val(x − y) ≫ val(x − z) implies
r(x − z) = r(y − z).
Then it suffices to show thatA

alg(c),Aalg(c′) areAalg
-isomorphic, by an isomorphismcom-

muting with the extensions of the maps r (one can then restrict the isomorphism toA(c)).
As (val(c − a), r(c − a)) and (val(c′ − a), r(c′ − a)) realize the same type over A, by taking
a conjugate of c′ over A, we may assume the tuples are equal.
Take any d ∈ Aalg

. If d ∉ bi for some i, then val(c − d) = val(c′ − d). Moreover, for any
k ∈N, val(c− c′) ⩾ rad(bi+k) ⩾ rad(bi)+kval(λ0) > val(c−d)+kval(λ0); and it follows that
r(c − d) = r(c′ − d).
If d ∈ bi for each i, then the smallest ball b ∈ B(L) containing a and all the conjugates of
d over A is (quantifier-free) A-definable in L. As Γ is definably well-ordered, the K(M)-
points of b form a ball b′ ∈ B(dcleq(A)) which is included in P . Hence c and c′ are not
in b′ nor, in fact, in any of the balls centered around b′ with radius rad(b′) − kval(λ0). It
follows that val(c − d) = val(c − a) and r(c − d) = r(c − a), and similarly for c′. Thus
val(c′ − d) = val(c − d) and r(c − d) = r(c′ − d).
As any rational function g over A is a ratio of products of constant or linear polynomials,
it follows that val(g(c)) = val(g(c′)), r(g(c)) = r(g(c′)). This proves the first part of the
lemma.
If P does not contain any point in A, then there cannot be any d ∈ Aalg

such that d ∈ bi
for each i. Indeed, let dj⩽n be the L-conjugates of d over A; then e ∶= 1/n∑j dj ∈ dcleq(A)
and for all i, dj ∈ bi+k where k is such that kval(λ0) ⩾ val(n) and val(e − d) ⩾ val(1/n) +
rad(bi+k) ⩾ rad(bi). It follows that e ∈ P (dcleq(A)), a contradiction. But the hypothesis
about (val(x − a), r(x − a)) is only used when d ∈ P . Thus the second assertion follows. ∎

Remark I.3.6:
Suppose T extends THen,0 and A ⊆K(M). Without any assumption on P (it can be strict,
a closed ball or an open ball), if P (A) = ∅ then P is a complete type. The exact same proof
works as balls are convex in residue characteristic zero and the unique r = rv we need has
kernel 1 +M, i.e. val(x − y) > val(x − z) alone implies r(x − z) = r(y − z).

Wenowwant to prove (in Proposition (I.3.9)) that Lemma (I.3.5) is truewithout the assump-
tion that A ⊆K(M).
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Lemma I.3.7:
Suppose A ⊆M eq is such that P contains no b ∈ B(dcleq(A)). Then qP ∣A is a complete type.

Proof . Let us suppose A is countable. Then the partial type P = ⋂n=1,2,... bn is not isolated
over A; for if the formula θ(x) with parameters in A implies x ∈ bi for all i, then, as Γ is
definably well-ordered, there is a smallest ball b containing θ. This ball is strictly contained
in P and isA-definable, a contradiction. Then by the omitting types theorem, there exists
a modelM0 such that A ⊆ M eq

0 and P (M0) = ∅. By Lemma (I.3.5), qP ∣K(M0) is a complete
type, and, asK is dominant inM eq

0 , P is a complete type overM eq
0 and hence over A.

If A is not countable, let c and c′ be generic in P over A and let (M eq
0 ,A0) ≺ (M eq,A) be

countable (in the language where we add a predicate for A) and contain c and c′. Let Q be
the intersection of all A0-definable balls inM0 that contain c; then Q is strict, it contains
no A0-definable ball and also contains c′ (all of this is expressed in the type of c, c′ in the
language with the new predicate). By the countable case, c and c′ have the same type over
A0 inM

eq
0 and hence, they have the same type over A inM eq. ∎

Lemma I.3.8:
Let qR be a complete type overA extendingQR. Suppose qR implies both that u ∈ PΓ, and that,
for any γ ∈ PΓ(dcleq(A)), γ > u. Then

qP ∣M ∪ ⋃
a∈P (M)

qR(val(x − a), r(x − a))

is consistent.

Proof .Wemay assumeM has an element a′with a′ ∈ bi for each i. Note that qR is consistent
with {γ > u ∶ γ ∈ PΓ(M)}. Indeed, for any γ ∈ PΓ(M), if qr ⊢ u ⩾ γ, then some ψ ∈ qr is
bounded below by γ; but then the minimum γ′ ⩽ γ of ψ inM exists as Γ is definably well-
ordered, γ′ is in PΓ(dcleq(A)) and qR ⊢ γ′ ⩽ u, contradicting our hypothesis.
Let c′ be such that (val(c′), r(c′)) ⊧ qR ∪ {γ < u ∶ γ ∈ PΓ(M)} and d ∶= a′ + c′. Clearly
d ⊧ qP ∣M ; indeed val(d − a′) = val(c′) ∈ PΓ and thus d ∈ bi for all i. Now, let us assume
there exist b ∈ B(dcleq(M)) included in P and containing d. Taking a bigger ball, we can
suppose that a′ ∈ b, too; but then val(d − a′) = val(c′) > rad(b) ∈ PΓ(M) contradicting
the choice of c′. Moreover for any a ∈ P (M), val(d − a′) = val(c′) ≪ val(a − a′). Thus
val(d − a) = val(d − a′) = val(c′) and r(d − a) = r(d − a′) = r(c′), and d realizes the given
type. ∎

Proposition I.3.9:
Assume P is strict and fix a ∈ B(dcleq(A))with a ⊆ bi for each i. Then qP ∣A is complete relative
to val(x − a) and to r(x − a). Moreover, if P does not contain any ball in B(dcleq(A)) then
qP ∣A is complete.

Proof . The second case is tackled in Lemma (I.3.7). So we can suppose that such an a ∈
B(dcleq(A)) exists. Let c, c′ ⊧ qP ∣A such that qR ∶= tp(val(c − a)r(c − a)/A) = tp(val(c′ −
a)r(c′ − a)/A). LetM0 ≺ M such that A ⊆ M eq

0 . It follows from Lemma (I.3.8) that there
exists c0 ⊧ qP ∣Meq

0
∪ qR(val(x − a)r(x − a)). Taking conjugates of c and c′ over A, we can
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suppose that (val(c − a)r(c − a)) = (val(c0 − a)r(c0 − a)) = (val(c′ − a)r(c′ − a)) as these
three tuples have the same type over A.
Then, as shown in the proof of Lemma (I.3.8), c, c′ ⊧ qP ∣Meq

0
. By Lemma (I.3.5), c and c′ have

the type overM eq
0 and hence over A. ∎

Corollary I.3.10:
Let L be a finite extension of Qp, M ⊧ Th(L) and A ⊆ M such that B(acleq(A)) ⊆ A. Let
c ∈ dom(M). Then tp(c/A) extends to an Aut(M/A)-invariant type.

Proof . Let W (c;A) ∶= {b ∈ B(A) ∶ c ∈ b}, P ∶= ⋂b∈W (c;A) b. As the residue field of M
is finite, P cannot reduce to a single ball (that ball would be the union of finitely many
proper subballs, each inB(acleq(A)), hence in A and one of them would contain c). Note
that c ⊧ qP ∣A.
If there is no ball a ∈ B(dcleq(A)) contained in P , then let qR be anyAut(M/A)-invariant
type extendingQR which implies u ∈ PΓ and α > u for all α ∈ PΓ(M). If such a ball a exists,
we suppose qR also extends tp(v(c − a), r(c − a)/A). By Lemma (I.3.8), q∗ ∶= qP ∣M(x) ∪
⋃a∈P (M) qR(val(x − a), r(x, a)) is consistent. Clearly q∗ is Aut(M/A)-invariant. It follows
from Proposition (I.3.9) that q∗ is complete and that it extends tp(c/A). ∎

LetNn be the groupofmatrices of the form In+b, where In is the identitymatrix inGLn, and
b is an upper triangular matrix with all entries having valuation≫ 0. Thus Nn = Bn(O) ∩
⋂m(In + λm0 Bn(O)).

Lemma I.3.11:
There exists an Aut(M)-invariant type p∣M of matrices a ∈ Nn, invariant under right multi-
plication: for all A ⊆ M eq and b ∈ Nn(A), if c ⊧ p∣A, then cb ⊧ p∣A. The type p is complete
relative to the norms and r-values of the entries. Moreover, if QR has an Aut(M)-invariant
1-type t extending the cut defined by (val(λ0),2val(λ0), . . .) on the left, then p can be taken to
be complete.

Proof . Let P ∶= ⋂i(λi0O) and q ∶= qP ∣M ; then q is Aut(M)-invariant and complete relative
to val and r by Proposition (I.3.9) (asP contains 0). If t as above exists, then take q ∶= qP ∣M ∪
t(val(x), r(x)) which is consistent by Lemma (I.3.8), complete and Aut(M)-invariant.
Let p be the type of upper-triangular matrices obtained by taking the n(n + 1)/2th tensor
power of q (where by tensor product, here we mean the tensor product of types; see just
below for a more explicit statement), using the lexicographic order on the matrix entries,
and adding 1 on the diagonal: thus for all A ⊆M eq, if a ∈Mn, then In + a ⊧ p∣A if and only
if a11 ⊧ q∣A, a12 ⊧ q∣dcleq(Aa11), . . . a22 ⊧ q∣dcleq(Aa11...a1,n), . . . , an,n ⊧ q∣dcleq(Aa11,...an,n−1), while
aij = 0 for i > j.
The fact that p is an Aut(M)-invariant (partial) type of elements of Nn is clear. As for the
right translation invariance, let In + b ∈ Nn(A) and In + a ⊧ p∣A; we have to show that
(In + a)(In + b) = In + a + b + ab ⊧ p∣A. Let d ∶= a + b + ab. Then d11 = a11 + b11 + a11b11. We
have

val(a11b11) > val(b11)≫ val(a11)≫ 0.
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So val(d11) = val(a11) and hence d11 also realizes qP ∣A. Furthermore, we also have r(d11) =
r(a11); it follows that d11 ⊧ q∣A. Similarly

d12 = a12 + b12 + a11b12 + a12b22;
here a12 has strictly bigger valuation than any of the other summands, so again val(d12) =
val(a12) and r(d12) = r(a12), thus d12 ⊧ q∣dcleq(Aa11). But since b ∈ dcl

eq(A), we have d11 ∈
dcleq(Aa11), so d12 ⊧ q∣dcleq(Ad11). Continuing in this way we see that In + d ⊧ p∣A. ∎

Corollary I.3.12:
Let R be a left coset of Nn in Bn(K). There exists an Aut(M/⌜R⌝)-invariant type of elements
of R.

Proof . Pick g ∈ R, let p be the right-Nn-invariant type of Lemma (I.3.11), and for allA ⊆M eq,
let pg ∣A ∶= tp(cg/Ag), where c ⊧ p∣dcleq(Ag). Then pg ∣A = phg ∣A for h ∈ Nn(dcleq(A)), since p
is right-Nn-invariant. Thus any automorphism fixing ⌜R⌝must fix the global type pg ∣M . ∎

Corollary I.3.13:
Let L be a finite extension of Qp and letM ⊧ Th(L), e ∈ Sn(M), E ∶= acleq(e). Then there
exists an Aut(M/E)-invariant type of bases for e.

Proof . It was noted in Section I.2.2 that any lattice e has a triangular basis; this basis can
be viewed as the set of columns of a matrix in Bn(K). Let b, b′ be two such bases, and
suppose b′ = σ(b), σ ∈ Aut(M/E). Then as e/λm0 e is finite for all m, the columns of b, b′

must be in the same coset of λm0 e for each m. Thus if we write b′ = ab with a ∈ Bn(O),
then a = In modulo λm0 O for each m, so a ∈ Nn and Aut(M/E) preserves the coset Nnb.
So it suffices to take the Aut(M/⌜Nnb⌝)-invariant type of elements of Nnb guaranteed by
Corollary (I.3.12). ∎
Let us now suppose that T extends THen,0. Using similar techniques, we can extend the
previous results to the case when P is a closed ball (this case is only relevant to Section I.5).
For the last result, though, we will also need the residue field to be pseudo-finite.
Let b be a closed ball. We will write resb for the map that sends x ∈ b to x + rad(b)M, the
maximal open subball of b containing x.

Lemma I.3.14:
Let b ∈ B(dcleq(A)) a closed ball and q a complete type over A extending resb(b) such that
q ⊢ x ≠ b′ for all b′ ∈ resb(b)(acleq(A)). Then

qb∣M ∪ q(resb(x))

is consistent.

Proof . Let us first show that q is consistent with {x ≠ b′ ∶ b′ ∈ resb(b)(M eq)}. If not there is a
finite number of balls bi ∈ resb(b)(M eq) such that q ⊢ ⋁i x = bi. Ifwe take aminimal number
of such balls, each of them must realize q and hence be algebraic over A, a contradiction.
Now, let c be such that resb(c) ⊧ q ∪ {x ≠ b′ ∶ b′ ∈ resb(b)(M eq)}; then c ⊧ qb∣M . Indeed c ∈ b
and if c is in b′ ∈ B(M eq) such that b′ ⊆ b, then c ∈ resb(b′) ∈ resb(b)(M eq), contradicting
the choice of c. ∎
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Lemma I.3.15:
Suppose P = b is a closed ball. Then qb∣A, the generic type of b, is complete relative to resb.

Proof . IfA ⊆K(M) then, by the same considerations as in Lemma (I.3.5) (and, asTHen,0 ⊆ T ,
taking r = rv is enough), it suffices to show that if c and c′ are realizations of qb∣A such that

resb(c) = resb(c′) then for all d ∈ A
alg
, rv(c − d) = rv(c′ − d). If d ∈ resb(c), then c ∈ resb(c) =

resb(d) ∈ B(acleq(A)) as d ∈ A
alg
. This contradicts the fact that c ⊧ qb∣A. Hence d /∈ resb(c).

As c and c′ ∈ resb(c) = resb(c′), val(c − c′) > val(c − d) and rv(c − d) = rv(c′ − d).
If A is not contained inK, let c, c′ ⊧ qb∣A such that q ∶= tp(resb(c)/A) = tp(resb(c′)/A). By
Lemma (I.3.14), there exists c0 ⊧ qb∣M ∪ q. Taking A-conjugates of c and c′, we can suppose
that resb(c) = resb(c0) = resb(c′). Then, as seen in the proof of Lemma (I.3.14), c, c′ ⊧ qb∣M .
By the previous paragraph c and c′ have the same type overM and hence over A. ∎

Corollary I.3.16:
Suppose P = b is a closed ball and let a ∈ B(dcleq(A)) be contained in b. Then qb∣A is complete
relative to rv(x − a).

Proof . If c, c′ ⊧ qb∣A, then val(c−a) = val(c′−a) = rad(b) and hence resb(c) = resb(c′) if and
only if rv(c − a) = rv(c′ − a). Thus the corollary follows immediately from Lemma (I.3.15).
∎

Corollary I.3.17:
Suppose k is pseudo-finite, k(A) contains the constants needed for k to have EI and P = b is a
closed ball that contains no ball a ∈ B(dcleq(A)). Then x ∈ b generates a complete type overA.

Proof . By Lemma (I.3.15), it suffices to show that resb(b) is a complete type over A. But
resb(b) is a definable 1-dimensional affine space over k—i.e. a V ∶= γO/γM-torsor where
γ ∶= rad(b). Hence H ∶= Aut(resb(b)/k,A) is a subgroup of a semi-direct product of
V and the multiplicative group Gm(k). The subgroup H ∩ V (i.e. the group of trans-
lations of resb(b) that also are automorphisms over A and k) is ∞-definable over A. In-
deed, it is the set {u ∈ V ∶ ∀y∀x (x ∈ resb(b) ∧ y ∈ k) Ô⇒ (φ(x, y) ⇐⇒ φ(x +
u, y)) for all A-formulas φ(x, y)}.
As k is a pseudo-finite field, V has no nontrivial proper definable subgroup. And because
in a pseudo-finite field any∞-definable group is an intersection of definable groups, V has
no nontrivial proper∞-definable subgroup either. If H ∩ V = V then H acts transitively
on resb(b) (by translation) and, as H ⩽ Aut(resb(b)/A), we are done. On the contrary, if
H ∩V = {1}, thenH contains no translations and must either have exactly one fixed point
or be the trivial group and hence fix all points in resb(b).
SupposeH has only one fixed point a ∈ resb(b) and let θ ∈ Aut(resb(b)/A). For any σ ∈ H ,
θ−1 ○ σ ○ θ ∈ H and hence (θ−1 ○ σ ○ θ)(a) = a, i.e. θ(a) is fixed by σ. As a is the only point
fixed by H , θ(a) = a and a ∈ dcleq(A): but this is a contradiction. It follows that H fixes
every point in resb(b) and hence, because k is stably embedded, resb(b) ⊆ dcleq(k,A). But
then we must also have V ⊆ dcleq(k,A). Hence (V, resb(b)) is A-definably isomorphic to a
definable (regular) homogeneous space (G,R) of keq = k. As k is stably embedded, (G,R)
is definable over A′ ∶= keq(dcleq(A)) = k(dcleq(A)).
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Hence we only have to show that anyA′-definable 1-dimensional affine space in a pseudo-
finite field has an A′-point to obtain a contradiction. Let us consider k elementarily em-
bedded in the fixed field of L ⊧ ACFA and let A′ be the algebraic closure of A′ in L.
Note that A is algebraically closed in ACFA and is a model of ACF . By usual arguments
(e.g., [KP02]) there exists an ACF A′-definable homogeneous space (G′, S′) and interal-
gebraic group configurations in (G,R) and (G′, S′). Replacing G′ with its identity com-
ponent G′

0 and S′ with the G′
0-orbit of any A′-point in S′ (there is such a point because

A′ ⊧ ACF ), we can suppose that G′ is connected. By some additional classical arguments
(although the literature mainly concerns itself with groups and not homogeneous spaces
at this point: see [KP02] again), there is an A′-definable subgroup H of G ×G′, such that
H0 ∶= {x ∈ G ∶ (x,0) ∈ H} and H ′

0 ∶= {x ∈ G′ ∶ (0, x) ∈ H} are finite central subgroups
and the left and right projections of H must have finite index in G (respectively G′). But
as G and G′ are connected, these projections must be the groups themselves. As G has no
torsion (we are in characteristic 0),H0 is trivial. Taking the quotient of (G′, S′) byH ′

0—i.e.
considering the groupG′/H ′

0 acting on theH
′
0 orbits ofS′—the groupH is in fact (the graph

of) an isomorphism. In particular, asG has no proper definable subgroup, this implies that
the action ofG′ on S′ is also regular, i.e. S′ is aG′-torsor.
Let (a, a′) be generic inR×S′, letX be theH-orbit of (a, a′) and let P ∶= tp(aa′/A′). As P
andX have the same dimension (equal to 1), P cannot be covered with infinitely manyH-
orbits (pseudo-finite fields have the (E) property of [HP94]) and asA′ is algebraically closed
(including imaginaries),X must contain P and hence isA′-definable. Moreover, it is quite
easy to see thatX is (the graph of) an isomorphism between R and S′. As S′ contains A′-
points, so doesR. Let d be one of these points, and let (di)i=1...n be itsA′-conjugates. Then
1/n∑i di ∈ R(A′), and we have the A′-point we have been looking for. ∎

To conclude this section, let me summarize the classification of unary types in PL0.

Proposition I.3.18:
Suppose T extends PL0 and k(A) contains the constants needed for k to have EI. Let a ∈
B(dcleq(A))with a ⊆ bi for each i. Then qP ∣A is complete relative to val(x−a) and to r(x−a).
Moreover, if P does not contain any ball inB(dcleq(A)) then qP ∣A is complete.

Proof . If P is strict we can apply Proposition (I.3.9). If not apply Corollary (I.3.16) or Corol-
lary (I.3.17). ∎

I.4. The p-adic case
Let L be a finite extension of Qp. As stated in Remark I.2.6.2, it can be shown that there
exists a number field F ⊆ L that contains a uniformizer λ0 of L, such that res(L) = res(F )
and such that every finite extension L′ of L is generated by an element α whose minimal
polynomial is defined over F and such that α also generates the valuation ringO(L′) over
O(L). Let TL denote the theory of L in LG ∪ {Pn ∶ n ∈ N>0} ∪ {c}, where the predicates
Pn stand for the nonzero nth powers (in the sortK) and c generates F overQ. Then TL is
model complete (cf. [PR84]) and it is axiomatized by the fact thatK is a henselian valued
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field with value group aZ-group and residue field Fp, by the isomorphism type of F and by
the definition of the Pn predicates.
We now check the hypotheses of Corollary (I.2.15) for T̃ = TL and T = ACVFG0,p,F (the the-
ory of algebraically closed valued fields of mixed characteristic in the geometric language
with a constant for c; the F in the subscript is there to recall that we added a constant for
a generator of F to the theory). We use the same notation as in Proposition (I.2.11).

(i) Relative algebraic boundedness: By model completeness and the nature of the ax-
ioms (the only axioms that are not universal are the fact that the field is henselian and the
definition of the predicatesPn; but both state the existence of algebraic points) aclL(M̃ ′c)∩
M̃ is an elementary submodel of M̃ , hence certainly L̃-definably closed.

(ii) Internalizing L-codes: As K(M̃) is henselian, K(dclL(M̃)) = K(M̃), hence if e ∈
K, there is nothing to do. For any element e of Sn(M) let us write Λ(e) ⊆ Kn for the
lattice represented by e. If e ∈ Sn(dclL(M̃)), Λ(e) has a basis in some finite extension
L0 of L ∶= K(M̃). Say [L0 ∶ L] = m0; let L′ be the join of all field extensions of L of
degree m0. Then L′ is a finite extension of L such that any σ ∈ Aut(M) stabilizing M̃
globally, stabilizes L′ globally; let [L′ ∶ L] = m. By hypothesis, there is a generator a of L′

over L whose characteristic polynomial over L is defined over F . One has an a-definable
isomorphism fa ∶ L′ → Lm (as vector spaces overL), with fa(O(L′)) = O(L)m (i.e. O(L′) is
a freeO(L)-module of rankm). The morphism fa further induces an isomorphism of the
lattice Λ(e)(L′) with a lattice fa(Λ(e)(L′)) = Λ(e′)(L) for some e′ ∈ Snm(M̃). As any a′
of the (finitely many) that are Aut(L′/F )-conjugate to a is also Aut(L′/L)-conjugate to a,
we see that Λ(e′)(L) = fa′(Λ(e)(L′)) as well. Thus e and e′ are interdefinable in the sense
required in (ii).
Similarly forTn (alternatively, for finite extensions L′ of L, the value group also has a least
element, hence we can apply Remark I.2.6.1).

Remark I.4.1:
Wehave proved something slightly stronger than (ii): we also have e ∈ dclL(e′). The inverse
of fa is a linear map Lm → L′, say ga(α1, . . . , αm) ∶= ∑αiai. From the viewpoint ofM , ga
is an a-definable linear map with ga(Λ(e′)) = Λ(e) (as ga isK-linear, this remains true for
the lattices generated by the L- or L′- points of Λ(e) and Λ(e′)). Moreover this is also true
for any of the finitely many conjugates of a. Thus e ∈ dclL(e′).

The following corollary of this stronger version of (ii) is not needed for what follows but
it sheds some light on the interaction between automorphisms of M̃ and L(M)-definable
sets.

Corollary I.4.2:
Let A = dclL̃(A) ⊆ M̃ . Let G be the group of automorphisms ofM that stabilizes M̃ globally
and fixes A point-wise. Let e ∈M , and assume g(e) = e for all g ∈ G. Then e ∈ dclL(A).

Proof .We have e ∈ dclL(M̃), since Aut(M/M̃) fixes e. Let e′ be as in (ii). Then G fixes
e′; since G maps surjectively to Aut(M̃/A), we have e′ ∈ A. By the above Remark (I.4.1),
e ∈ dclL(e′). So e ∈ dclL(A). ∎
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(iii) Unary EI: In [Sco97] P. Scowcroft has proved a weak version of this, where the sets
are classes of equivalence relations in two variables. R. Cluckers has suggested that a strong
version may be true: every unary subset can be coded inB. This is what we prove here.
Let e be an imaginary code for a unary subsetD ⊆K(M̃). LetA ∶= acleqL̃ (e) andB ∶= B(A).

Claim I.4.3: For all c ∈K(M̃), tpL̃(c/B) ⊢ tpL̃(c/A).

Proof . Following the notation of Corollary (I.3.10), recall thatW (c;A) = {b ∈ B(A) ∶ c ∈ b}.
Let P ∶= ⋂W (c;A) = ⋂W (c;B), a strict intersection. Then tpL̃(c/B) ⊢ qP ∣B = qP ∣A.
By Proposition (I.3.9), either qP ∣A is a complete type and we are done, or there is some
a ∈ B such that a ⊆ P and qP ∣A is complete relative to r(x − a) and val(x − a). As
K⋆ = F (K⋆)⋅n for all n, tpL̃(r(c − a)/A) follows from its type over F , i.e. over dclL̃(∅).
Moreover Γ(dclL̃(B)) = Γ(dclL̃(A)) (as elements of Γ are coded by balls). Thus, as Γ is
stably embedded and has unary EI, tpL̃(val(c−a)/B) ⊢ tpL̃(val(c−a)/A) and we have the
expected result. ∎

As D is L̃(A)-definable, D is also Aut(M̃/B)-invariant, so that by compactness D is de-
finable over B. Hence e ∈ dcleqL̃ (B). We conclude as in Corollary (I.2.15): there is a tuple
a from B with a ∈ aclL̃(e) and e ∈ dcl

eq

L̃ (a); so dcleqL̃ (e) = dcleqL̃ (a
′), where a′ is the finite

set of L̃(e)-conjugates of a. We already know that finite sets are coded (e.g., by (ii) and
Lemma (I.2.12)).

(iv) Invariant types and germs: Themain ingredient for this proof is the C-minimality
of ACVF.
Let A = aclL̃(A), c ∈ K(M̃), W (c;A) = {bi ∶ i ∈ I} and P = ⋂i bi. The balls bi are lin-
early ordered by inclusion, and we order I correspondingly: i ⩽ j holds if bj ⊆ bi. As seen
previously, P is a strict intersection. Let p be the ACVF generic of P .
If r(x, b) is anL-definable function, letX(b′, b′′) ∶= {x ∶ r(x, b′) ≠ r(x, b′′)}. ThenX(b′, b′′)
is a finite Boolean combination of balls and there exists i = i(b′, b′′) such thatX(b′, b′′)∩P
is contained in a proper subball of P if and only if for each j ⩾ i,X(b′, b′′)∩ bj is contained
in a proper subball of bj .
Define an equivalence relation Ei by b′Eib′′ if and only if X(b′, b′′) ∩ bi is contained in a
proper subball of bi (i.e. r(x, b′) and r(x, b′′) have the same germ on the ACVF-generic of
bi). Let ei ∶= b/Ei. Then:

σ ∈ Aut(M/A) fixes the germ of r(x, b)
⇐⇒ r(x, b) and r(x,σb) have the same p-germ
⇐⇒ X(b, σb) ∩ P is contained in a proper subball of P
⇐⇒ for some i, for all j ⩾ i, bEjσ(b)
⇐⇒ for some i, for all j ⩾ i, σ fixes ej.

As for the consistency of p∣M̃ with tpL̃(c/A): by definition of the ACVF generic, p∣M̃ is
generated by P along with all formulas x /∈ b, where b ∈ B(dclL(M̃)) is a proper subball of
P . As P is part of tpL̃(c/A), it suffices to show that tpL̃(c/A) does not imply any formula
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x ∈ d with d an L(M̃)-definable finite union of balls dj ∈ B(dclL(M̃)) strictly included in
P .

Claim I.4.4: For all b ∈ B(dclL(M̃)), such that b(M̃) ≠ ∅, there exists b′ ∈ B(M̃) such that
b(M̃) = b′(M̃).
Proof . AsΓ is definably well-ordered, inf{val(a−c) ∶ a, c ∈ b(M̃)} = γ ∈ Γ(M̃). We can now
take b′ to be the ball of radius γ around any point in b(M̃). ∎
It follows that d(M̃) is equal to a finite union d′ of balls in B(M̃) and tpL̃(c/A) implies
x ∈ d′ ⊆ P . But this would contradict Lemma (I.3.8).

(v) Weak rigidity: We use Lemma (I.2.16). The hypothesis that for all a ∈ M̃ there is a
tuple c ∈K(M̃) such that a ∈ dclL̃(c) and tpL̃(c/aclL̃(a)) extends to an Aut(M̃/aclL̃(a))-
invariant type, holds trivially when a ∈ K(M̃) and follows from Corollary (I.3.13) when
a ∈ Λ(M̃). For a ∈ T(M̃), as the value group has a least element, a is coded by an element
of S(M̃) (see Remark I.2.6.1) and hence, applying Corollary (I.3.13) to the code in S(M̃), we
are done.
The assumption (v′) of Lemma (I.2.16) is proved forQp by van den Dries in [Dri84a]. Let us
briefly recall his proof to check that it adapts to the finite extension ofQp case.
Let B ⊆ K(M̃) (we can assume that B = dclL(B) ∩ K(M̃) is a field and contains F ).
Let σ ∈ Aut(M̃/B) and let B′ = {c ∈ K(aclL(B) ∩ M̃) ∶ σ(c) = c}. It suffices to show
that B′ ⊧ TL. Indeed, by model completeness, B′ ≺ M̃ will then contain aclL̃(B), hence
aclL̃(B) is rigid over B.
As noted in the proof of (i), in order to show that B′ ⊧ TL, we only have to show that B′ is
henselian and that the definition of the Pn is preserved.
By the universal property of the henselization,B′ is an algebraic extension ofBh and hence
it is henselian. Moreover, let x ∈ B′ ∩Pn(M̃) and let y ∈K(M̃) such that x = yn. Note first
that (y/σ(y))n = x/σ(x) = 1 and thus that y/σ(y) ∈ aclL̃(∅). Furthermore, for allm ∈ N,
there exists q ∈ F such that yq ∈ Pm(M̃) (because K(M̃) is henselian, Γ = val(F ⋆) +mΓ
andO = O(F ) + λm′0 O). But then y/σ(y) = yq/σ(yq) ∈ Pm(M̃). As ⋂mPm(aclL̃(∅)) = {1},
it follows that y = σ(y), i.e. y ∈ B′.

Remark I.4.5:
As in [Dri84a], it follows from this proof that the restrictionofTL to the sortKhas definable
Skolem functions.

Proof of Theorem A: By Corollary (I.2.15), we have EI to the sorts K,Sn,Tn. But as is
explained in Remark I.2.6.1, the sortsTn are not actually needed.

We finish the section with some additional remarks.

Remark I.4.6:
If we do not want to add a constant c to the language, then it suffices to add “Galois-twisted
Sn”, interpreted as Sn(K ′) forK ′ ranging over the finite extensions ofK.
Indeed, by TheoremA, any imaginary e is interdefinable over cwith some tuple of real ele-
ments e′. So we have an e-definable function fe with fe(c) = e′ and a ∅-definable function
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h with h(c, fe(c)) = e. As c is algebraic overQ, restricting to e-conjugates of c, we can take
the graph of fe (a finite set) to be a complete type over e.
With the new sorts, it is clear that (ii) holds without adding a constant and fe is coded by
some tuple d ∈ M̃ . Let us now show that d is a code for e. If e′ is L̃(d)-conjugate to e there
is some σ ∈ Aut(M̃/d) such that σ(e) = e′. As σ fixes d, σ(c) is also in the domain of fe and
hence tpL̃(c′/e) = tpL̃(c/e), i.e. e′ = σ(e) = σ(h(c, fe(c))) = h(σ(c), fe(σ(c))) = e. This
implies that d is a code for e.

Remark I.4.7:
Let A = aclL̃(A) ⊆ M̃ ⊧ TL. Then every type over A extends to an Aut(M̃/A)-invariant
type.

Proof . Let c ∈ M̃ ; then c = f(a1, . . . , an), where ai ∈ dom(M̃), and f is ∅-definable. It
suffices to extend tpL̃(a1, . . . , an/A) to an Aut(M̃/A)-invariant type. If tpL̃(c/M̃) and
tpL̃(d/M̃c) are Aut(M̃/A)-invariant, then so is tpL̃(cd/M̃); so it suffices to show that
tpL̃(ai/Ai) extends to anAut(M̃/Ai)-invariant type for each i, whereAi ∶= dclL̃(Ai−1ai−1).
But (by hypothesis (v) of Corollary (I.2.15)) we have that Ai = aclL̃(Ai), so Corollary (I.3.10)
applies. ∎

Remark I.4.8:
Rigidity of finite sets fails for the theory of the p-adics in the geometric language, i.e. aclL̃ ≠
dclL̃.

Proof . As the value group is stably embedded, one can find a non-trivial automorphism
σ fixing the value group in a sufficiently saturated model. By definability of the angular
component function ac, it follows that x and σ(x) have the same angular coefficient. Take
a ∈ O with σ(a) ≠ a. Let γ ∶= val(σ(a) − a), ac(σ(a) − a) =∶ α. Then val(σ2(a) − σ(a)) = γ,
ac(σ2(a)−σ(a)) = α, etc. As p⋅α = 0 in the residue field, (σp(a)−a) = ∑p−1i=0 (σi+1(a)−σi(a))
has valuation δ > γ. Thus in the ring O/δO, the image of a is not a fixed point, but has an
orbit of size p under σ. This set of size p is not rigid. ∎

Remark I.4.9:
The same techniques developed here to prove elimination of imaginaries inQp can also be
used to give an alternative proof for elimination of imaginaries in real closed valued fields
(see [Mel06]). Hypothesis (i) of Corollary (I.2.15) also follows from the fact that the algebraic
closure is a model, (ii) follows as in the p-adic case, (iii) follows from the description of 1-
types given in [Mel06, Proposition 4.8]; and so does the existence of the type in (iv). The
rest of (iv) is proved exactly as here and so is (v).

I.5. The asymptotic case
Recall thatTHen,0 denotes the theory of henselian fields of residue characteristic 0 andPL0

is the theory of henselian fieldswith value group aZ-group and residue field a pseudo-finite
field of characteristic 0. Our goal is now to prove that any completion TF of PL0 in the
language LG with constants added for some subfield F ⊆K (see Remark I.2.6.2) eliminates
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imaginaries. We will be using Proposition (I.2.11) with T̃ = TF and T = ACVFG0,0,F . We still
follow the notation of this proposition.
It is worth noting that we will not, in general, be able to use Corollary (I.2.15) as there are
some ultraproducts of p-adics where (v) is false. Indeed, it is shown in [BH12, Theorem7]
that there exist a characteristic zero pseudo-finite fieldL,A ⊆ L, and b ∈ L such that b has a
finite orbit over A. Then A can be identified with the set A = {at0 ∶ a ∈ A} ⊆ L((t)) ⊧ PL0

and b is algebraic but not definable overA′. It is easy to build a counter-example to (v) using
A′ and b.

(i) Relative algebraic boundedness: The proof is not as simple as in the p-adic case
and needs some preliminary lemmas and definitions.

Definition I.5.1:
We will say that that T̃ is algebraically bounded (with respect to T ) within the sort S if for
all M̃ ⊧ T̃ and A ⊆ dom(M̃), S(aclL̃(A)) ⊆ S(aclL(A)).
Even if S is stably embedded, one must beware that this is, in general, slightly different from
saying thatThL̃(S) (the theory induced by T̃ on the sort S) is algebraically bounded (with respect
to ThL(S)), as in the latter case, one requires that S(aclL̃(A)) ⊆ S(aclL(A)) holds for all
A ⊆ S.

Lemma I.5.2:
Let TF ⊇ THen,0 be such that k⋆/(k⋆)⋅n is finite and k⋆ = (k⋆)⋅nres(F ). Then:

(i) If A = aclL(K(A)) ∩ M̃ , then Γ(A) = val(K(A));

(ii) IfThL̃(k) andThL̃(Γ) are algebraically bounded, then T̃ is algebraically bounded within
k and Γ.

Proof .

(i) For any a ∈ K(M̃)⋆ and γ ∈ Γ(M̃) such that nγ = val(a) for some n ∈ N, there exist
x ∈ K(M̃) such that val(ax−n) = 0 and c ∈ F such that res(ax−nc−1) ∈ k⋅n. As M̃
is an equicharacteristic zero henselian field, ax−nc−1 ∈ (K(M̃)⋆)⋅n and hence ac−1 ∈
(K(M̃)⋆)⋅n, i.e. there exists a′ ∈ F (a)

alg
∩ M̃ ⊆ aclL(a) ∩ M̃ such that val(a′) = γ. As

Γ(aclL(K(A))) =Q⊗ ⟨val(K(A))⟩, the statement follows.

(ii) Delon shows in [Del82, Theorem2.1] that in the three-sorted language (K,k,Γ)with
val and res, field quantifiers can be eliminated up to formulas of the form

φ∗(x, r) = ∃y ∈K ⋀
i

yixi ∈ (K⋆)⋅ni ∧ val(yi) = 0 ∧ φ(r, res(y)),

where r is a tuple of variables from k. It follows immediately that if A ⊆ K(M̃)
then Γ(aclL̃(A)) ⊆ aclL̃(val(A)) ⊆ aclL(val(A)) ⊆ aclL(A), where the first inclusion
follows fromfield quantifier elimination and the second from algebraic boundedness
of ThL̃(Γ).
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The presence of the φ∗ makes it a little more complicated for k, but φ∗(a, r) implies
that aiyi ∈ (K⋆)⋅ni for some yi such that val(yi) = 0 and hence that ni∣val(ai). By
first statement, there exists bi ∈ aclL(A) ∩ M̃ such that nval(bi) = val(ai) and thus
that φ∗(a, r) ⇐⇒ ∃y ∈ k ⋀i yires(aib−ni ) ∈ (k⋆)⋅ni ∧ φ(r, y). It is now clear that
k(aclL̃(A)) ⊂ aclL̃(res(aclL(A) ∩ M̃)) and we can conclude as for Γ. ∎

∎
In the next three lemmas, wewill suppose that the hypotheses of the previous lemma apply
to T̃ .

Lemma I.5.3:
For allA ⊆K(M̃),RV(aclL̃(A)) ⊆RV(aclL(A)), i.e. T̃ is algebraically bounded withinRV.

Proof . Let c ∈ RV(aclL̃(A)) and let γ ∶= valrv(c). Then by Lemma (I.5.2), γ ∈ Q ⊗ val(A).
It follows that there exist c′ ∈ K(aclL(A) ∩ M̃) and n ∈ N such that val(c′) = nγ. Then
cn/rv(c′) ∈ k(aclL̃(A)) ⊆ k(aclL(A))—also by Lemma (I.5.2)—and hence c ∈ aclL(A). ∎

Lemma I.5.4:
For any A = aclL(K(A)) ∩ M̃ , B(aclL̃(A)) = B(A). Moreover, any ball b ∈ B(aclL̃(A))
contains a point in A.

Proof . Let b ∈ B(aclL̃(A)) and let Q be the intersection of all balls inB(A) that contain b.
AsQ isAut(M/A)-invariant, it suffices to show that b containsQ (and hence is equal toQ)
to show it is Aut(M/A)-invariant and thus in dclL(A) ∩ M̃ = A.
If Q(A) = ∅, it follows from Remark (I.3.6) that Q is a complete type over A in M̃ , so Q is
contained in b. Hence we can assume that we have a point a ∈ Q(A). We can suppose a /∈ b,
or, because rad(b) ∈ Γ(aclL̃(A)) ⊆ Γ(aclL(A) ∩ M̃) = Γ(A), we would be done.
If Q is a closed ball that strictly contains b, then b is contained in a unique maximal open
subball b′ of Q. This b′ is interdefinable over A (in M ) with rv(b − a) ∈ RV(aclL̃(A)) ⊆
RV(aclL(A)∩ M̃) =RV(A), where the first inequality follows from Lemma (I.5.3). Hence
b′ is in A, contains b and is strictly contained inQ, contradicting the definition ofQ.
Finally, if Q is a strict intersection or an open ball, then val(b − a) ∈ Γ(aclL̃(A)) = Γ(A),
thus the closed ball of radius val(b−a) around awould be inA, would contain b and would
be strictly contained inQ, a contradiction.
As for the second point, once we know that b ∈ B(A), since aclL(A) is a model of ACVF,

b contains a point c in K(aclL(A)) = K(A)
alg

and, as balls are convex in residue charac-
teristic zero, the average of the Aut(M,A)-conjugates of c is in b(dclL(A) ∩ M̃) = b(A).
∎

Lemma I.5.5:
For any A ⊆ dclL(K(A)) ∩ M̃ , aclL̃(A) ⊆ aclL(A). In particular, for any M̃ ′ ≺ M̃ and c ∈
K(M̃), aclL̃(M̃ ′c) ⊆ aclL(M̃ ′c).

Proof . Let C = aclL(A) ∩M , then C = aclL(K(C)) ∩M , and let e ∈ aclL̃(A). If e ∈K ⊆ B,
then Lemma (I.5.4) applies to e—viewed as a ball with an infinite radius—and we have e ∈
C ⊆ aclL(A).
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The remaining sorts Sn andTn can be viewed as Bn(K)/H (or a union of such in the case
ofTn) whereH is an L-definable subgroup. Note that there exists an increasing sequence
of L-definable subgroups (Gi)i=1...m of Bn(K) with G0 = {1} and Gm = Bn(K) such that
for every i, there exists an L-definable morphism φi ∶ Gi → G with kernel Gi−1, where G
is either the additive groupGa(K), or the multiplicative groupGm(K), and such that for
every point a ∈ G(C), φ−1(a) contains a point in Gi(C). It suffices to show by induction
on i that ifHi = Gi ∩H is an L-definable subgroup ofGi and e ∈ (Gi/Hi)(acleqL̃ (C)) then e
is L(C)-definable.
Let φ ∶ Gi → G, where G = Ga(K) or G = Gm(K), be a group homomorphism with
kernelGi−1. Then e ∈ (Gi/Hi)(acleqL̃ (C)) can be viewed as an almost L̃(C)-definable coset
eHi ⊆ Gi—i.e. a finite union of these cosets is L̃(C)-definable—and φ(eHi) is an almost
L̃(C)-definable coset of φ(Hi). Moreover, the groupH ∶= φ(Hi) is an L-defined subgroup
of G. If G = Ga,H has the form yO or yM̃ and if G = Gm,H = O⋆ orH = 1 + I where I is
some proper ideal ofO. Thus the cosets ofH are either balls or annuli of the form yO⋆. In
both cases, φ(eHi) has a point a ∈ C (in the ball case, apply Lemma (I.5.4), and in the other
case, this is because such an annulus is equal to some val−1(γ) where γ ∈ Γ(aclL̃(C)) =
Γ(C) = val(K(C)), by Lemma (I.5.2)).
Let a′ ∈ φ−1(a) ∩ Gi(C) = (a′Gi−1) ∩ Gi(C); then a′−1(eHi ∩ a′Gi−1) is a coset of Hi−1 =
Hi ∩Gi−1 inGi−1 that is almost L̃(C)-definable. By induction, a′−1(eHi ∩ a′Gi−1) is L(C)-
definable, but then (eHi ∩a′Gi−1) is also L(C)-definable and hence eHi—the only coset of
Hi that contains eHi ∩ a′Gi−1—is L(C)-definable. ∎

(ii) Internalizing L-codes: Let L =∏Qp/U be an non principal ultraproduct. Provided
we have a subfield of constants F such that every finite extension of L is generated by an
element whose minimal polynomial is over F and which also generates the valuation ring
overO(L), the proof for finite extensions ofQp goes through for Th(L).

(iii) Unary EI: In the following lemmas, we will consider a theory TF extending PL0

where we have added constants F containing a uniformizer λ0, such that res(F ) contains
the necessary constants for k to have EI and for all n ∈N>0, k⋆ = (k⋆)⋅nres(F ). Let M̃ ⊧ TF
be saturated and homogeneous enough.
We will first study the imaginaries in RV. For all γ ∈ Γ(M̃), let us write RVγ ∶= val−1rv (γ).
Let H be a (small1) subgroup of Γ(M̃) containing 1 ∶= val(λ0), and let RVH ∶= ⋃γ∈HRVγ
where a point 0γ is added to everyRVγ . The structure induced by TF,H onRVH is that of an
enriched family of (1-dimensional) k-vector spaces and we view it as a structure with one
sort for eachRVγ ∪ {0γ}. AsH is a group,RVH is closed under tensor products and duals.
These k-linear structures are studied in [Hru12]. Let us recall some of the definitions there.

Definition I.5.6:
Let A = (Vi)i∈I be a k-linear structure.

(i) We say that A has flags if for any vector space Vi in A with dim(Vi) > 1, there are vector
spaces Vj and Vl in A with dim(Vj) = dim(Vi) − 1, dim(Vl) = 1 and a ∅-definable exact

1With respect to the saturation and homogeneity of M̃ .
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sequence 0→ Vl → Vi → Vj → 0.

(ii) We say that A has roots if for any 1-dimensional Vi and any m ⩾ 2, there exist Vj and
Vl in A and ∅-definable k-linear embeddings f ∶ V ⊗m

j → Vl and g ∶ Vi → Vl such that
Im(g) ⊆ Im(f).

Lemma I.5.7:
The theory ofRVH with the structure induced by TF,H eliminates imaginaries.

Proof . It follows from [Hru12, Proposition 5.10] that it suffices to show that RVH has flags
and roots. As every RVa is 1-dimensional, the structure trivially has flags. But it does not
have roots. Let us extendH to someH ′ such thatRVH′ has roots.
Let R ∶= {r ∈ N>0 ∶ k(M̃) contains nontrivial rth roots of unity}, L ∶= K(M̃)[λ1/r0 ∶ r ∈ R]
andH ′ ∶= ⟨H,1/r ∶ r ∈ R⟩ ⊆ val(L). Note that L is a ramified extension ofK(M̃) and that
res(L) = k(M̃), hence RVH(M̃) = RVH(L). Now RV1 has rth roots in RVH′ for any r.
Indeed, if r ∈ R thenRV1/r is an rth root and if r /∈ R, then as the mapRV → RV ∶ x ↦ xr

is injective, V1 is its own rth root.
Let us show that for any γ ∈ H ′ and any r ⩾ 2,RVγ has an rth root. As γ ∈ H ′, there exists
n ∈ N such that nγ ∈ H ⊆ Γ(M̃), a Z-group. Hence there exist α ∈ H andm ∈ N such that
nγ = rnα +m. LetRVβ be an nrth root ofRV1; thenRVα ⊗RVβ

⊗m is an rth root ofRVγ .
By [Hru12, Proposition 5.10],RVH′ has elimination of imaginaries.
Any automorphism σ̃ ofRVH can be extended to an automorphism ofRVH′ . Indeed, if h ∈
RVH′ then valrv(h) = γ +n/r where γ ∈H , n ∈ Z and r ∈ R, and hrv(λ0)−n/r ∈RVH . Taking
σ(h) ∶= σ̃(hrv(λ0)−n/r)rv(λ0)n/r will work. Moreover, we can find an automorphism of
RVH′ fixing onlyRVH . Consider the homomorphism φ ∶H ′ → k(M̃) sending γ +n/r to dnr
where (dr)r∈N ∈ k(M̃) is such that for all r and l, we have drr = 1, dr ≠ 1 if r ∈ R and dllr = dr.
Then θ ∶ h↦ hφ(valrv(h)) is a group automorphism ofRVH′ inducing the identity on both
k andH ′ hence an automorphism of the full structure ofRVH′ . It is easy to see that θ fixes
onlyRVH .
Note that because each fiber is a sort, if X ⊆ RV l

H for some l ∈ N and X is definable in
RVH , then it is defined by the same formula inRVH′ . Hence it is coded by some x ∈RVH′ .
But as there are isomorphisms of RVH′ fixing only RVH , we must have x ∈ RVH , and as
automorphisms ofRVH extend toRVH′ , x is also a code forX inRVH . ∎

Proposition I.5.8:
The theory induced by TF on the sortRV (see Section I.2.2) eliminates imaginaries to the sorts
RV and Γ.

Proof . First let us show that for all n ∈ N>0, RV/RV⋅n is finite and RV = RV⋅nrv(F ).
Let a ∈ RV. As Γ is a Z-group, there exist y ∈ RV and r ∈ N such that r < n and
valrv(a) = valrv(yn) + val(λr0). Hence valrv(ay−nrv(λ0)−r) = 0, i.e. ay−nrv(λ0)−r ∈ k⋆.
As k⋆ = (k⋆)⋅nres(F ), there exists m ∈ res(F ) such that ay−nm−1rv(λ−r0 ) ∈ (k⋆)⋅n, i.e.
a ∈mrv(λr0)RV

⋅n.
Moreover, for any A ⊆ RV(M̃), valrv(dclL̃(A)) ⊆ Q ⊗ valrv(A). Indeed, let γ ∈ Γ(M̃) ∖
Q ⊗ valrv(A) and d ∈ ⋂ (k(M̃)⋆)⋅n ∖ {1}, then there exists a group homomorphism φd ∶
Γ(M̃) → k⋆(M̃) such that φd(valrv(A)) = {1}, φd(γ) = d and ψd ∶ t ↦ tφd(valrv(t))
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defines an automorphism of RV(M̃) fixing A, k and Γ, which sends any x ∈ val−1rv (γ) to
dx ≠ x. Hence val−1rv (γ) cannot contain any point definable over A.
Let us now code finite sets. For any tuple γ ∈ Γ, letRVγ denote∏iRVγi .

Claim I.5.9: In the theory induced by TF on the sortsRV ∪Γ, finite sets are coded.

Proof . LetX ⊆ RVi × Γj be finite. As Γ is ordered, we can suppose that there are tuples γ
and γ′ ∈ Γ such thatX ⊆RVγ ×{γ′}. By Lemma (I.5.7), the projection ofX onRVγ is coded
(over γ) by some x ∈RV⟨1,γ⟩. It is easy to see that xγγ′ is a code forX . ⧫
To prove elimination of imaginaries in RV to the sorts RV and Γ, by Lemma (I.2.2), it
suffices to code L̃(A)-definable functions f ∶RV → R, where R is eitherRV or Γ, for any
A ⊆ RV(M̃). Let us first consider the case R = RV. Let D be the domain of f and X its
graph.

Lemma I.5.10:
If there exist n andm ∈ Z such that for all x ∈D, nvalrv(f(x))−mvalrv(x) is constant, then f
is coded.

Proof . Let γf ∶= nvalrv(f(x)) −mvalrv(x) ∈ Γ(dclL̃(⌜f⌝)). For all y ∈ k
⋆ and x, z ∈ RV, let

y ⋅ (x, z) ∶= (ynx, ymz). This defines an action of k⋆ on any RVγ where γ is a 2-tuple. Let
y ∈ ⋂n (k⋆)⋅n and γ ∈ Γ(M̃)2 be such that nγ2 −mγ1 = γf and γ1 /∈ Q ⊗ ⟨valrv(A)⟩. By a
similar automorphism construction as above, there is ψ ∈ Aut(RV(M̃)/A) such that for
all x ∈ RVγ , ψ(x) = y ⋅ x and hence x ∈ X implies y ⋅ x ∈ X . By compactness, there exists
N ∈ N>0 such that for any x ∈ RV with valrv(x) /∈ Q⊗ ⟨valrv(A)⟩ and for any y ∈ (k⋆)⋅N , if
x ∈ X then y ⋅ x ∈ X . LetX ′ ∶= {x ∈ X ∶ ∀y ∈ (k⋆)⋅N , y ⋅ x ∈ X}. Then it suffices to codeX ′

andX ∖X ′. Note that (x, y) ∈X ∖X ′ implies valrv(x) ∈Q⊗ ⟨valrv(A)⟩.

Claim I.5.11: Suppose thatX is stable under the action of (k⋆)⋅N . Then f is coded.

Proof . Let E ⊆ rv(F ) intersect all the classes of RV modulo RV⋅(Nn). Fix γ ∈ Γ. For any
x ∈ Dγ ∶= D ∩RVγ , there are y ∈ RV⋅N and e ∈ E such that x = yne. AsX is (k⋆)⋅N -stable,
one can check that gγ(e) ∶= y−mf(x) depends only on e and γ. One can also check that
valrv(gγ(e)) = 1/n(γf +mvalrv(e)) ∈ Γ(dclL̃(⌜f⌝)) =∶H and gγ is in fact a function (with a
finite graph Gγ) definable inRVH . By Lemma (I.5.7) and compactness, there is a definable
function g ∶ Γ→RVH

l for some l ∈N such that g(γ) codes gγ (overH). It is quite clear that
g is L̃(⌜f⌝)-definable, but asX = ⋃γ∈Γ (k⋆)⋅NGγ , f is also L̃(H⌜g⌝)-definable.
Now, asΓ has Skolem functions, we can definably order Im(g), and, becauseRVHl is inter-
nal tok and the induced theory onk is simple, Im(g)must be finite (a simple theory cannot
have the strict order property). Thus Im(g) ⊆ aclL̃(⌜f⌝). For any e ∈ Im(g), g−1(e) ⊆ Γ is
coded. Let d be the tuple of all codes of fibers and corresponding images, then d ∈ aclL̃(⌜f⌝)
and ⌜f⌝ ∈ dcleqL̃ (γd) for some γ ∈ H = Γ(dclL̃(⌜f⌝)). We can conclude by coding the finite
set of ⌜f⌝-conjugates of γd (by Lemma (I.5.9)). ▲

Claim I.5.12: Suppose that for all x ∈D, valrv(x) ∈Q⊗ ⟨valrv(A)⟩. Then f is coded.

Proof . By compactness,Dmust be contained in only finitely manyRVγi . All of these γi are
L̃(⌜f⌝)-definable and hence f lies insideRVH , whereH ∶= Γ(dclL̃(⌜f⌝)). By Lemma (I.5.7),
f is coded by some d overH , hence there is some tuple γ ∈H such that dγ codes f . ▲
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Now, Claim (I.5.11) allows us to code X ′ and Claim (I.5.12) allows us to code X ∖X ′. This
concludes the proof of Lemma (I.5.10). ⧫

Let us now show that we can reduce to Lemma (I.5.10). As f(x) ∈ dclL̃(Ax), we have
valrv(f(x)) ∈ Q ⊗ ⟨valrv(Ax)⟩. By compactness, for all i in some finite set I , there exist
ni, mi ∈ Z and γi ∈ Q ⊗ valrv(A) ∩ Γ(M̃) such that for all x ∈ D, there exists i ∈ I with
gi(x) ∶= nivalrv(f(x)) −mivalrv(x) = γi. Define Ei,γ to be the fiber of gi above γ. Then
D ⊆ ⋃i∈I Ei,γi . Let us assume that ∣I ∣ is minimal such that this inclusion holds.

Claim I.5.13: The setX ∶= {(γi)i∈I ∈ Γ ∶D ⊆ ⋃i∈I Ei,γi} is finite.

Proof .We proceed by induction on ∣I ∣. Let us assume X is infinite, and pick any x ∈ D.
By the pigeon hole principle, there exists i0 ∈ I and an infinite set Y ⊆ X such that for all
(γi)i∈I ∈ Y , x ∈ Ei0,γi0 , i.e. gi0(x) = γi0 . It follows that for all (γi)i∈I and (δi)i∈I ∈ Y , γi0 = δi0
andEi0,γi0 = Ei0,δi0 =∶ E. By minimality of ∣I ∣,D ∖E is nonempty and the set {(γi)i∈I∖{i0} ∈
Γ ∶ D ∖E ⊆ ⋃i∈I∖{i0}Ei,γi} is finite by induction, but it contains {(γi)i∈I∖{i0} ∶ (γi)i∈I ∈ Y }
which is infinite, a contradiction. ⧫

Then any (γi)i∈I ∈ X is in aclL̃(⌜f⌝), fi ∶= f ∣Ei,γi
satisfies the conditions of Lemma (I.5.10)

and it suffices to code each fi. Indeed let d be the tuple of the codes for those functions;
then d ∈ aclL̃(⌜f⌝) and, as f = ⋃i∈I fi, ⌜f⌝ ∈ dcl

eq

L̃ (d). The code of the finite set of ⌜f⌝-
conjugates of d—which exists by Claim (I.5.9)—is a code for f .
Finally, if R = Γ, then for all γ ∈ Γ(M̃), f−1(γ) ⊆ RV is coded by the case R = RV. Hence
f is interdefinable with a function from Γ to RVl × Γm for some l and m. So we have to
code functions from Γ to Γ (which we already know how to code) and from Γ toRV. Let
g ∶ Γ → RV be a definable function and let h ∶= g ○ valrv. Then h ∶ RV → RV is coded as
we have just shown and, as for all γ ∈ Γ, h(val−1rv (γ)) = {g(γ)}, a code for h is also a code
for g. This concludes the proof of Proposition (I.5.8). ∎

Remark I.5.14:
1. Let Bm ∶= RV /(k⋆)⋅m. We have a homomorphism Bm → Γ whose finite kernel is

k⋆/(k⋆)⋅m. Hence B ⋅m
m maps injectively into Γ, and our assumptions on constants

imply that there is a set of ∅-definable representatives for the cosets of B ⋅m
m in Bm.

Thus the theory (and imaginaries) of Bm reduce to those of Γ.

2. On the other hand, it can be shown that every unary definable subset D of RV is
a finite union of pullbacks from Bm for some m and subsets of val−1rv (a) for a lying
in some finite subset FD of Γ. Thism is uniform in families, and FD can be defined
canonically as the set of a ∈ Γ such that val−1rv (a) is not a pullback fromBm. This gives
another proof of unary EI inRV (with the stated constants), given EI in anyRVH .

A similar (but slightlymore complicated) decomposition is also true in higher dimen-
sion (e.g., adapt [HK06, Lemma 3.25] to our case by replacing Γ by a suitable Bm).
Moreover, EI inRV also follows from this decomposition.

Let us come back to unary EI in TF (in fact, the proof given here would work in any theory
T ⊇ THen,0 such that Γ is definably well-ordered andRV has unary EI). We will proceed as
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in the case of finite extensions ofQp. First let us show that the analogue of Claim (I.4.3) is
still true in this case.

Claim I.5.15: Let A = acleqL̃ (A), B ∶= B(A) and c ∈K(M̃). Then tpL̃(c/B) ⊢ tpL̃(c/A).
Proof . As any element inRV is coded by a ball,RV is stably embedded and has unary EI, the
claim is true if c ∈ RV(M̃). Recall thatW (c;A) ∶= {b ∈ B(A) ∶ c ∈ b}. If P ∶= ⋂W (c;A) =
⋂W (c;B) does not contain any ball inB thenP is a complete type overA andB (by Propo-
sition (I.3.18)) and we are done. If P does contain a ball b ∈ B, then, by Proposition (I.3.18),
P is complete relative to rv(x − b). But tpL̃(rv(x − b)/B) ⊢ tpL̃(rv(x − b)/A) and we are
also done. ∎
Unary EI in TF follows as for finite extensions ofQp.

(iv) Invariant types and germs: The same proof as for finite extensions ofQp (nearly)
works as we only used there that Γ is definably well-ordered. The one difference is that
P can be a closed ball. But in that case p, the ACVF generic of P , is definable, thus the
p-germ of any r is an imaginary element e, and one may take I = {0} and e0 = e. Moreover,
the inconsistency of tp(c/A) and p∣M̃ would—by Claim (I.4.4)—contradict Lemma (I.3.14).

Corollary I.5.16:
Let TF ⊇ THen,0 be an L̃-theory such that ThL̃(k) and ThL̃(Γ) are algebraically bounded, Γ
is definably well-ordered, RV has unary EI, K has a finite number of extensions of any given
degree and k⋆/(k⋆)⋅n is finite. Suppose also that we have added constants for a field F ⊆ K
such that k⋆ = (k⋆)⋅nres(F ) and any finite extension of K is generated by an element whose
minimal polynomial is over F and which also generates the valuation ring overO(K). Then TF
has EI/UFI in the sortsK and Sn.
In particular this is true of ultraproducts of the p-adics (if we add some constants as in Re-
mark I.2.6.2).

Proof . By Proposition (I.2.11) we have EI/UFI in the sortsK, Sn and Tn but as noted earlier
the sorts Tn are not needed when the value group has a smallest positive element. ∎

Elimination of finite imaginaries: As we already know thatRV eliminates imaginaries,
it suffices to show that every finite imaginary in PL0 (over arbitrary parameters) can be
coded inRV (the proof is adapted from [Hru09, Lemma 2.10]).

Definition I.5.17:
If C ⊆ C ′, we say that C ′ is stationary over C if dcleq(C ′) ∩ acleq(C) = dcleq(C). A type
p = tp(c/C) is stationary if cC is stationary over C .

Remark I.5.18:
1. It is clear that is C ′′ is stationary over C ′ and C ′ over C , then so is C ′′ over C .

2. If tp(c/C) generates a complete type over acleq(C), then tp(c/C) is stationary. In-
deed, let x ∈ dcleq(Cc) ∩ acleq(C); then there is a C-definable function f such that
f(c) = x. As tp(c/C) generates a complete type over acleq(C), there is a C-definable
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setD such that for all c′ ∈D, f(c′) = x, hence x ∈ dcleq(C).

Lemma I.5.19:
Let T̃ be a theory extending PL0 (in the geometric language with possibly new constants). For
all M̃ ⊧ T̃ and A ⊆ M̃ , there exists C ⪯ M̃ containing RV(M̃) ∪ A and stationary over
RV(M̃) ∪A.

Proof . Let us first prove the following claim.

Claim I.5.20: Let B = dclL̃(B) ⊆ M̃ such thatRV(M̃) ⊆ B and b ∈ B(M̃). Then there exists
a tuple c ∈K(M̃) with tpL̃(c/B) stationary, b ∈ dclL̃(c) and b(M̃) ∩ c ≠ ∅.
Proof . Let us first suppose that b ∈RV(M̃), i.e. that b is of the form c(1+M̃). Let P ⊆ b be
aminimal (for the inclusion) intersection of balls inB(B). For any c ⊧ P we have b = rv(c),
hence it suffices to show that P is a complete stationary type over B.
As P does not strictly contain any ball in B(B) by definition, it cannot contain balls in
B(acleqL̃ (B)) (we are in residue characteristic zero) and by Proposition (I.3.18), P is a com-
plete type over acleqL̃ (B). By Remark I.5.18.2, P is stationary over B.
Now if b ∈ B(M̃), pick any r ∈ RV(M̃) such that valrv(r) = rad(b). Applying the claim to
r, we find c ∈K(M̃) such that tpL̃(c/B) is stationary and rad(b) ∈ dclL̃(c). It now suffices
to find a point d ∈ b whose type is stationary over dclL̃(Bc), but we can proceed as in the
first case. Then b ∈ dclL̃(cd) and tp(cd/B) is stationary. ⧫
Starting with B ∶= dclL̃(RV(M̃) ∪ A), and applying the claim iteratively, we find C ⊇
A∪RV(M̃) such thatC is stationary overA∪RV(M̃), dclL̃(C) = C ,B(M̃) ⊆ dclL̃(K(C))
and every ball inB(M̃) has a point in C .

Claim I.5.21: We have C ⊆ dclL̃(K(C)).
Proof . Let e ∈ C . If e ∈K then the result is trivial, thus we only have to consider e ∈ Sn or e ∈
Tn. Let us consider the same decomposition of Sn andTn as in the proof of Lemma (I.5.5)
and show by induction on i that for all e ∈ (Gi/Hi)(M̃), e is L̃(K(C))-definable.
If we write e as eHi then, as proved in Lemma (I.5.5), φi(eHi) is either a ball or a set of the
form yO⋆ and hence is definable overB(M̃) and has a point a′ ∈K(C). Let a ∈ φ−1i (a′)(C).
Then a−1eHi∩Gi−1 is a coset ofHi−1 inGi−1 which is L̃(K(C))-definable by induction, and
hence so is eHi. ⧫
As dclL̃(C) = C , K(C) = K(C)h ⊧ THen,0 and, as rv(K(C)) = RV(M̃), it follows from
field quantifier elimination inTHen,0 in the languagewith sorts theK andRV, thatK(C) ⪯
K(M̃). But this implies that C = dclL̃(K(C)) ⪯ M̃ . ∎

Lemma I.5.22:
Let T̃ be a theory that extends PL0 (in the geometric language) and A ⊆ M̃ ⊧ T̃ . Then every
finite imaginary sort of T̃A is in definable bijection with a finite imaginary sort ofRV (with the
structure induced by T̃A).

Proof . Let Y = D/E be a finite imaginary sort (in T̃A) and π ∶ D → Y be the canonical
surjection. As the field sort is dominant, we can assume that D is a definable subset of
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Kn for some n. Let C ⊇ A be as in Lemma (I.5.19). As Y is finite and C ≺ M̃ , Y (C) =
Y (M̃) and there exists a finite set H ⊆ Kn(C) meeting every E-class. Let W be some
finite set inRV(C), of bigger cardinality thanH , and h ∶W →H any surjection. Note that
any such surjection is L̃(C)-definable. Composing, we have an L̃(C)-definable surjection
ψ ∶ W → Y . But there are finitely many maps W → Y , hence they are all algebraic over
RV(C)∪A =RV(M̃)∪A and by stationarity ofC overRV(M̃)∪A, ψ is L̃(RV(M̃)∪A)-
definable. Let e ∈RV(M̃) be such that ψ andW are L̃(Ae)-definable.
Let W be defined by the L̃(Ae)-formula φ(x, e) and ψ by the L̃(Ae)-formula ψ(x, y, e)
(which implies that for any e′, ψ(M̃, M̃, e′) is the graph of a function whose domain is
φ(M̃, e′)). Then the formulas φ(x, z) and ψ(x, y, z) define, respectively, a subset D′ of
RV∣e∣+1 and a surjectionψ ∶D′ → Y . LetE′ be defined byE′((x, z), (x′, z′)) ⇐⇒ ψ(x, z) =
ψ(x′, z′). Then we have an L̃(A)-definable bijectionD′/E′ → Y and, asRV is considered
with the structure induced by T̃A,D′/E′ is a finite imaginary sort ofRV. ∎

Proof of Theorem B: LetK ⊧ PL0 and T̃ ∶= Th(K) (with constants added as in Corol-
lary (I.5.16)). As we have already proved EI/UFI in Corollary (I.5.16), by Lemma (I.2.5) it is
enough to show that for any A, TA eliminates finite imaginaries in the sorts K, Sn. Let
e ∈ acleqL̃ (A); then, by Lemma (I.5.22), there exists anRV-imaginary e′ interdefinable over
A with e. By EI in RV to the sorts RV and Γ (Proposition (I.5.8)), there exists a tuple
d ∈RV∪Γ such that e′ is interdefinable with d, hence e is interdefinable with d overA. We
have shown that any finite imaginary of TA is coded (over A) in RV ∪ Γ = S1 ∪T1 which
are themselves coded in S1 ∪ S2.

For amore canonical treatment of the parametersF in the pseudo-finite case, see [CH99]—
it would be interesting to adapt it to the pseudo-local setting.

I.6. Rationality
Let r ∈N. For all tuples l ∈Nr, when t = (ti)1⩽i⩽r, we write tl for∏i⩽r t

li
i . We say a power se-

ries∑l∈Nr altl ∈Q[[t1, . . . , tr]]with each al ∈N is rational if it is equal to a rational function
in t1, . . . , tr with coefficients from Q. In this section we prove that certain zeta functions
that come from counting the equivalence classes of definable equivalence relations are ra-
tional.
Let Lp be a finite extension of Qp. By a definable family RLp = (RLp,l)l∈Zr of subsets of
LNp we mean a definable subset RLp of LNp × Zr—where val(L⋆p) is identified with Z—and
we write RLp,l for the fiber above l of the projection from RLp to Zr. By a definable family
ELp = (ELp,l)l∈Zr of equivalence relations onRLp wemean a definable equivalence relation
ELp on RLp such that for every x, y ∈ RLp , if xELpy then there exists l ∈ Zr such that
x, y ∈ RLp,l. We then have a definable equivalence relation ELp,l on RLp,l for every l, and
by a slight abuse of notation we can regard (ELp,l)l∈Zr as a definable family of subsets of
Q2N
p . The setNr is a definable subset of Zr, so it makes sense to talk of definable families

RLp = (RLp,l)l∈Nr , etc.
Let Lp be a set of finite extensions of Qp and L ∶= ⋃pLp. We will say that (RLp)Lp∈L and
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(ELp)Lp∈L are uniformly ∅-definable in Lp if there exists two LG-formulas φ and θ inde-
pendent of Lp such that for all Lp ∈ L, RLp = φ(Lp) and ELp = θ(Lp).
Now we come to the main result of this section.

TheoremC:
LetLp andL be as above (note that we do not assume Lp is nonempty for infinitely many p).
For allLp ∈ L, letRLp = (RLp,l)l∈Nr be a family of subsets ofLNp and letELp = (ELp,l)l∈Nr be
a family of equivalence relations on (RLp,l)l∈Nr uniformly ∅-definable in Lp. Suppose that
for each l ∈Nr and Lp, aLp,l = ∣RLp,l/ELp,l∣ <∞. Then, for every Lp ∈ L, the power series

SLp ∶= ∑
l∈Nr

aLp,lt
l ∈Q[[t1, . . . , tr]] is rational.

Moreover, there exist k,n, d ∈N, there exist tuples (aj)j⩽k of integers and (bj)j⩽k of elements
ofNr, and for all tuples l ∈ Nr with ∣l∣ ∶= ∑i⩽r li ⩽ d there exist ql ∈ Q and varietiesXl over
Z, such that the following holds:

(1) for all j, aj and bj are not both 0;

(2) for all p≫ 0 and all Lp ∈ Lp, we have

SLp =
∑∣l∣⩽d ql∣Xl(res(Lp))∣tl

∣res(Lp)∣n∏k
j=1(1 − ∣res(Lp)∣aj tbj)

. (I.2)

We say that a family of power series∑l∈Nr ap,ltl ∈Q[[t1, . . . , tr]] for eachprime p isuniformly
rational if it is of the form given in (I.2).

Remark I.6.1:
1. Assume Lp is finite for all p. Let Lrg be the language of rings. At the cost of replacing
Xl by quantifier-freeLrg-definable sets, we canmake (I.2) hold for allLp. In particular,
suppose we are given definable Rp0 and Ep0 as above, but just for a single prime p0
and a single Lp0 . Then taking L = {Lp0}, we obtain that the power series

SLp0
∶= ∑

l∈Nr

aLp0 ,l
tl ∈Q[[t1, . . . , tr]]

and is of the form (I.2) whereXl can be assume to be a single point.

2. Note that the level of uniformity we obtain in TheoremC is very similar to the one
obtained in [SV14, TheoremA].

3. Usually, in this kind of rationality theorem, we can take ql = 1 for all l. There are two
reasons why more complicated rational coefficients appear here. The first reason is
to turn the Xl into varieties instead of definable sets and the other reason is to get
rid of the residual constant symbols that appear due to elimination of imaginaries.

For any finite extension Lp ofQp, it is natural here to consider the invariant Haar measure
µLp on GLN(Lp). In terms of the additive Haar measure µN2

Lp,+ on LN2

p , µLp can be de-
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fined thus: for any continuous f ∶GLN(Lp) → C with compact support, ∫ f(x)dµLp(x) =
∫ f(x)∣det(x)∣−NdµN

2

Lp,+(x). As det(x) is definable (uniformly in p), Denef’s results on de-
finability of p-adic integration [Den00] extend immediately to dµLp and the motivic coun-
terpart of this result—see [DL02], although the result we will be needing is already implicit
in older work by Denef and Pas (see, e.g., [Pas89])—also extends to dµLp .
By left invariance, µLp(A ⋅GLn(O(Lp))) = µLp(GLn(O(Lp))), a number that depends only
on the normalization. We choose a normalization for µLp,+ and µLp such that for any A ∈
GLN(Lp), we have

µLp(A.GLN(O(Lp))) = 1. (I.3)

Proof (TheoremC). By uniform EI (Corollary (I.2.7)) there exist integers m1 and m2, some
N ⊆N>0 and someLGN -formulaφ(x,w) such that for all p≫ 0, for allLp ∈ Lp, for any choice
of uniformizer aLp ∈ Lp and, for all n ∈ N , an unramified n-Galois uniformizer bn,Lp ∈ Lp,
φ defines a function f ′Lp

∶RLp → Lm2
p × Sm1(Lp) such that for every x, y ∈ RLp , xELpy ⇐⇒

f ′Lp
(x) = f ′Lp

(y). Let f ′Lp
= (f ′′Lp

, fLp) where f ′′Lp
∶ RLp → Lm2

p and fLp ∶ RLp → Sm1(Lp).
For l ∈ Nr, let ELp,l = {f ′Lp

(x) ∶ x ∈ RLp,l} and ELp = ⋃l ELp,l; so ELp,l ⊆ Lm2
p × Sm1(Lp) is

finite, and it is the series∑l ∣ELp,l∣tl we wish to understand. Let πLp ∶ ELp → Sm1(Lp) be the
projection, and let FLp,l = πLp(ELp,l).
It follows from Lemma (I.5.5) and the fact that on the valued field sort the model-theoretic
algebraic closure inACVF coincides with the field-theoretic algebraic closure, that the size
of the fiber eLp,l(x) = ∣π−1Lp

(x) ∩ ELp,l∣ is bounded by some positive integer N uniformly in
p ≫ 0. We may thus partition FLp,l into finitely many pieces F ν

Lp,l
= {x ∈ FLp,l ∶ eLp,l(x) =

ν}; then
∑
l

∣ELp,l∣tl = ∑
ν⩽N

ν∑
l

∣F ν
Lp,l
∣tl,

so it suffices to prove that the series for F ν
p,l has the form (I.2).

Fix ν and let FLp,l = F ν
Lp,l

; we need to retain only the information that FLp,l is a family of
finite subsets of Sm(Lp), uniformly ∅-definable in Lp. We can identify each element of
Sm(Lp) with an element ofGLm(Lp)/GLm(O(Lp)), i.e. with a left coset ofGLm(O(Lp));
letGLp,l be the union of these cosets. By Equation (I.3), we have

µLp(GLp,l) = ∣FLp,l∣.

Thus
∑
l

∣FLp,l∣tl =∑
l

µLp(GLp,l)tl ∈Q[[t1, . . . , tr]].

Uniform rationality now follows by Theorem [DL02, Theorem 1.1 and Theorem 3.1], up to
the fact that because the sets GLp,l are LGN -definable, the varietiesXl are over Z[T ] where
T is specialized in res(Lp) to any tuple (kn ∶ n ∈ N and kn is the residue of an unramified
n-Galois uniformizer).
Let Cn(Lp) ∶= {kn ∈ res(Lp) ∶ kn is the residue of an unramified n-Galois uniformizer}. If
res(Lp)[ωn] is of degree d = dn,Lp over res(Lp), then

∣Cn(Lp)∣ =
φ(n)(∣res(Lp)∣d − 1)

n
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where φ is the Euler totient function. Let C = ∏n∈N Cn and for all c ∈ C(Lp), let Xc,l(Lp)
be theLp-points of the specialization ofXl to c. Then Yl ∶=∐c∈CXc,l is anLrg-definable set
such that

∣Xl(res(Lp))∣ =∑
d∣n

1dn,Lp=d
−n
φ(n)

∣Yl(res(Lp))∣
1 − ∣res(Lp)∣d

where 1dn,Lp=d = 1 if dn,Lp = d and 0 otherwise. Replacing ∣Xl(res(Lp))∣ by this expression,
we obtain a rational function of the right form where the Xl are Lrg-definable, but, by
[DL02, Theorem2.1],Xl may be assumed to be a Z-variety for p≫ 0.
ForLp such that p is too small, we can still prove the rationality ofSLp by the same argument
using results for finite extensions of p-adic fields instead of those for ultraproducts: replace
Corollary (I.2.7) by TheoremA, Lemma (I.5.5) by the proof of (i) in Section I.4 and [DL02,
Theorem 1.1] by [Den00, Theorem 1.5 and Theorem 1.6.1]. ∎

It follows from the uniform formula I.2 we gave for SLp in TheoremC, that there exists a
tuple of polynomials (Pi)1⩽i⩽r from Q[X] and a polynomial Q ∈ Q[X] such that we have
the following uniform growth estimate on aLp,l: for all p≫ 0 and all Lp ∈ L,

aLp,l ⩽ Q(q)P1(q)n1⋯Pr(q)nr , (I.4)

where q = ∣res(Lp)∣.
Below we consider uniformly ∅-definable (in p) families that arise in the following way.
TakeLp to be {Qp} for all p. LetDp ⊆QN

p be uniformly∅-definable and let Ep be a uniformly
∅-definable equivalence relation on Dp. Suppose that fp,1, . . . , fp,r∶Dp →Qp ∖ {0} are uni-
formly ∅-definable functions such that for every l ∈ Zr, the subset {x ∈ Dp ∶ val(fp,i(x)) =
li} is a union of Ep-equivalence classes. Set Dp = {(x,val(fp,1(x)), . . . ,val(fp,r(x))) ∶ x ∈
Dp} ⊆ QN

p × Zr and define Ep ⊆ Dp × Dp by (x, s1, . . . , sr)Ep(x′, s′1, . . . , s′r) if xEpx′ and
si = s′i for all i. Then we can regardDp as a uniformly ∅-definable family of subsets ofQN

p

and Ep as a uniformly ∅-definable family of equivalence relations onDp.

I.7. Zeta functions of groups
Wenowconsider some applications to some zeta functions that arise in group theory. Most
of the examples in this section come from the theory of subgroup growth of finitely gen-
erated nilpotent groups. In Section I.8 we consider the representation zeta function of
finitely generated nilpotent groups. We use TheoremC to prove uniform rationality of
these zeta functions. In the subgroup case this gives alternative proofs of results of [GSS88]
and [SG00].
Throughout this section Γ is a finitely generated nilpotent group. For any n ∈N, the num-
ber an of index n subgroups of Γ is finite (for background on subgroup growth, see [LS03]).
The (global) subgroup zeta function of Γ is defined by ξΓ(s) ∶= ∑∞

n=1 ann
−s and the p-local

subgroup zeta function by ξΓ,p(s) ∶= ∑∞
n=0 apnp

−ns (the symbol ζ is commonly used to de-
note the subgroup zeta function but we reserve this for the representation zeta function
in Section I.8). These expressions converge ifRe(s) is large enough. Grunewald, Segal and
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Smith observed in [GSS88] that Euler factorization holds: we have

ξΓ(s) =∏
p

ξΓ,p(s),

where p ranges over all primes. Theorem I.7 below (and [GSS88, Theorem 1]) says that
ξΓ,p(s) is a rational function of p−s. Hence ξΓ(s) enjoys many of the properties of the Rie-
mann zeta function.
To understand the behavior of the global subgroup zeta function, one needs to study the
behaviour of the rational function ξΓ,p(s) as p varies (cf. [Avn11]). Du Sautoy andGrunewald
introduced a class of p-adic integrals they called cone integrals. They showed [SG00, The-
orem 1.3] that if τp(s) ∶= ∑∞

n=0 bp,np
−ns is the zeta function arising from an Euler prod-

uct of suitable cone integrals then τp(s) is uniformly rational (in the variable t ∶= p−s) in
the sense of Section I.6. In fact, they proved a considerably stronger result [SG00, Theo-
rem 1.4] and deduced various analytic properties of τ(s) [SG00, Theorem 1.5]: for instance,
they showed that τ(s) can be meromorphically continued a short distance to the left of
its abscissa of convergence [SG00, Theorem 1.1]. It follows from these results on cone
integrals that ξΓ,p(s) is uniformly rational [SG00, Section 5]. For Γ a finitely generated
free nilpotent group of class 2, a stronger uniformity result holds: there is a polynomial
W (X,Y ) ∈ Q[X,Y ] such that ξΓ,p(s) = W (p, p−s) for every prime p [GSS88, Theorem2].
Du Sautoy, however, has given an example showing that this stronger result does not hold
in general [Sau01].
Theorem I.7 below deals with some variations on the subgroup zeta function. In order to
formulate the problem in terms of definable equivalence relations, we need to recall some
facts about nilpotent pro-p groups, including the notion of a good basis for a subgroup of
a torsion-free nilpotent group [GSS88, Section 2]; we will need these ideas in Section I.8 as
well. We write Ĝp for the pro-p completion of a group G. Let j∶Γ → Γ̂p be the canonical
map. Then Γ̂p is finitely generated as a pro-p group, so every finite-index subgroup of Γ̂p is
open (cf. [Dix+99, Theorem 1.17]) and has p-power index (cf. [Dix+99, Lemma 1.18]). Since
Γ is finitely generated nilpotent, every subgroup of p-power index is open in the pro-p
topology on Γ; in particular, there is a bijection H ↦ j(H) between index pn subgroups
of Γ and index pn subgroups of Γ̂p, and j(H) ≅ Ĥp (see [GSS88, Proposition 1.2]). For any
H ⊴ Γ of index pn, we have Γ/H ≅ Γ̂p/j(H).
Let ∆ be a finitely generated torsion-free nilpotent group. A tuple a1, . . . , aR of elements
of ∆ is a Mal’cev basis if any element of ∆ can be written uniquely in the form aλ11 ⋯a

λR
R ,

where the λi ∈ Z. We call the λi Mal’cev coordinates. Moreover, we require that group
multiplication and inversion in ∆ are given by polynomials in the λi with coefficients in
Q, and likewise for the map ∆ × Z → ∆, (g, λ) ↦ gλ. We may regard the ai as elements
of the pro-p completion ∆̂p, and analogous statements hold, except that λ and the Mal’cev
coordinates λi now belong to Zp (see [GSS88, Section 2]). In particular, the map j∶∆→ ∆̂p

is injective and we may identify ∆̂p with ZRp .
Now let H be a finite-index subgroup of ∆̂p, of index pn, say. In [GSS88], a good basis for
H is defined as an R-tuple h1, . . . , hR ∈ H such that every element of H can be written
uniquely in the form hλ11 ⋯h

λR
R (λi ∈ Zp), and satisfying an extra property which does not
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concern us here. We say that h1, . . . , hR ∈ ∆̂p is a good basis if it is a good basis for some
finite-index subgroupH of ∆̂p. For each i, we can write

hi = aλi11 ⋯aλiRR (I.5)

and we recover ∣∆̂p∶H ∣ = pn from the formula

∣λ11λ22⋯λRR∣ = p−n. (I.6)

Any finite-index subgroup of ∆̂p admits a good basis. Often we will identify a good basis
h1, . . . , hR with the R2-tuple of coordinates (λij).

Proposition I.7.1:
The set Dp of good bases (λij) ⊆ ZR

2

p of ∆̂p is uniformly ∅-definable in p.

Proof . This follows from the proof of [GSS88, Lemma 2.3]. ∎

For each nonnegative n consider the following:
(a) the number of index pn subgroups of∆;
(b) the number of normal index pn subgroups of∆;
(c) the number of index pn subgroups A of∆ such that Âp ≅ ∆̂p;
(d) the number of conjugacy classes of index pn subgroups of∆;
(e) the number of equivalence classes of index pn subgroups of ∆, where we define A ∼ B
if Âp ≅ B̂p.
The rationality statement in (a)–(d) of the following result are due toGrunewald, Segal, and
Smith [GSS88, Theorem 1]; for uniformity statements in (a)–(d), see [SG00, Section 1] and
the start of this section. Here we give a different proof.

Theorem I.7.2:
Let bp,n be as described in any of (a)–(e) above. Then the power series∑∞

n=0 bp,nt
n is uniformly

rational.

Proof . Consider case (a). Let Dp be as in Proposition I.7. Define fp∶Dp → Zp by fp(λij) =
λ11⋯λRR; note that fp is uniformly ∅-definable in p. Define an equivalence relation Ep on
Dp as follows: two R-tuples (λij), (µij), representing good bases h1, . . . , hR and k1, . . . , kR
for subgroupsH ,K respectively, are equivalent if and only ifH =K .
Now Ep is uniformly ∅-definable in p: it is the subset of Dp ×Dp given by the conjunction
for 1 ⩽ i, j ⩽ R of the formulae

(∃σ(i)1 , . . . , σ
(i)
R ∈ Zp) ki = h

σ
(i)
1

1 ⋯hσ
(i)
R

R

and
(∃τ (j)1 , . . . , τ

(j)
R ∈ Zp) hj = k

τ
(j)
1

1 ⋯kτ
(j)
R

R ,

and these become polynomial equations independent of p overQ in the λij , the µij , the σi
and the τj whenwewrite the hi and kj in terms of theirMal’cev coordinates (Equation (I.5)).
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ConstructDp and Ep from Ep and Dp as at the end of Section I.6. Using Equation (I.6), we
see that for each n ∈N,Dp,n/Ep,n consists of precisely bp,n equivalence classes. We deduce
from TheoremC (taking Lp = {Qp}) that∑∞

n=0 bp,nt
n is uniformly rational.

The proofs in cases (b)–(e) are similar, modifying the definitions ofDp and Ep appropriately.
For example, in (b) we replace Dp by the set D⊴p of tuples (λij) that define a normal finite-
index subgroupH; a tuple (λij) corresponding to a finite-index subgroupH belongs toD⊴p
if and only if it satisfies the formula

(∀g ∈ ∆̂p)(∀h ∈H)(∃ν1, . . . , νR ∈ Zp) ghg−1 = hν11 ⋯h
νR
R ,

which is made up of polynomial equations independent of p over Q in the νi, the λij and
the Mal’cev coordinates of g and h. In case (d), the equivalence relation is the subset of
Dp ×Dp given by the formula:

there exists g ∈ ∆̂p, there exist σ
(j)
i , τ

(j)
i ∈ Zp for 1 ⩽ j ⩽ R such that ghjg−1 = k

σ
(j)
1

1 ⋯kσ
(j)
R

R

and g−1kjg = h
τ
(j)
1
1 ⋯hτ

(j)
R

R for 1 ⩽ j ⩽ R.
This is made up of polynomial equations independent of p over Q in the Mal’cev coor-
dinates of g and of the hi and the ki. In cases (c) and (e), we can express the isomorphism
condition in terms of polynomials in theMal’cev coordinates; compare the proof of Propo-
sition I.7 below. ∎

Remark I.7.3:
Du Sautoy and Grunewald prove that Theorem I.7 (a) and (b) actually hold for an arbitrary
finitely generated nilpotent group Γ, possibly with torsion. To prove this in our setting,
write Γ as a quotient ∆/Θ of a finitely generated torsion-free nilpotent group ∆. Theo-
rem I.7 now follow for cases (a)–(e) from our arguments above with suitable modifications:
for example, for case (a), we count not all index pn subgroups of∆, but only the ones that
containΘ. For details, compare the argument of the last two paragraphs of Lemma I.8.

The proof for case (d) of Theorem I.7 is not given explicitly in [GSS88], but the appropri-
ate definable integral can be constructed using the methods in the proof of [Sau05, The-
orem 1.2]; what makes this work is that the equivalence classes are the orbits of a group
action. The language of [Sau05] contains symbols for analytic functions, but our methods
still apply there because we can use the results of Cluckers from the Appendix, which do
hold in the analytic setting.
Observe that Theorem I.7 for case (e) is new; here the equivalence relation does not arise
from any obvious group action, and TheoremC gives a genuinely new way of proving uni-
form rationality.
Here is another application, to the problem of counting finite p-groups.

Proposition I.7.4:
Fix positive integers c, d. Let cp,n be the number of finite p-groups of order pn and nilpotency
class at most c, generated by at most d elements. Then the power series∑∞

n=0 cp,nt
n is uniformly

rational.

Proof . Let∆ be the free nilpotent group of class c on d generators (note that∆ is torsion-
free). Any finite p-group of order pn and nilpotency class at most c and generated by at
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most d elements is a quotient of ∆̂p by some normal subgroup of index pn. Let D⊴p and fp
be as in the proof of Theorem I.7. Define an equivalence relation Ep on D⊴p as follows: two
R-tuples (λij), (µij), representing good bases h1, . . . , hR and k1, . . . , kR for subgroups H ,
K respectively, are equivalent if and only if ∆̂p/H ≅ ∆̂p/K .
The result will follow as in Theorem I.7 if we can show that Ep is uniformly ∅-definable in
p. Let a1, . . . , aR be the Mal’cev basis of ∆̂p, as before. We claim that Ep ⊆ D⊴p ×D⊴p is given
by the following conditions:

∣fp(λij)∣ = ∣fp(µij)∣, (I.7)

(∃b1, . . . , br ∈ ∆̂p)(∀ν1, . . . , νr ∈ Zp) aν11 ⋯a
νR
R ∈H ⇐⇒ bν11 ⋯b

νR
R ∈K (I.8)

and
(∀σ1, . . . , σr, τ1, . . . , τr ∈ Zp)(∃ν1, . . . , νr ∈ Zp)

(aσ11 ⋯a
σR
R aτ11 ⋯a

τR
R = a

ν1
1 ⋯a

νR
R ) ∧ (b

σ1
1 ⋯b

σR
R bτ11 ⋯b

τR
R = b

ν1
1 ⋯b

νR
R ). (I.9)

To prove this, suppose Equations (I.7), (I.8) and (I.9) hold. Then ∣∆̂p∶H ∣ = ∣∆̂p∶K ∣ and the
map aiH ↦ biK defines an isomorphism from ∆̂p/H onto ∆̂p/K . Conversely, if g is an
isomorphism from ∆̂p/H onto ∆̂p/K then ∣∆̂p∶H ∣ = ∣∆̂p∶K ∣, so ∣fp(λij)∣ = ∣fp(µij)∣. More-
over, we can choose bi ∈ ∆̂p such that g(aiH) = biK for 1 ⩽ i ⩽ R. Then for all ν1, . . . , νr ∈ Z
we have

(∗) aν11 ⋯a
νR
R ∈H ⇐⇒ bν11 ⋯b

νR
R ∈K

and for all σ1, . . . , σr, τ1, . . . , τr ∈ Z there exist ν1, . . . , νr ∈ Z such that

(∗∗) (aσ11 ⋯a
σR
R aτ11 ⋯a

τR
R = a

ν1
1 ⋯a

νR
R ) ∧ (b

σ1
1 ⋯b

σR
R bτ11 ⋯b

τR
R = b

ν1
1 ⋯b

νR
R );

since H,K are closed and the group operations are continuous, (∗) and (∗∗) hold with
Z replaced by Zp. This proves the claim. The formulae above involve only the function
f—which is uniformly ∅-definable in p—and polynomials independent of p overQ in the
Mal’cev coordinates, so E is uniformly ∅-definable in p, as required. ∎

Du Sautoy’s proof [Sau99, Theorem2.2], [Sau00, Theorems 1.6 and 1.8] uses the fact that
an isomorphism ∆̂p/H → ∆̂p/K lifts to an automorphism of ∆̂p, which implies that the
equivalence relation Ep arises from the action of the groupAut(∆̂p), a compact p-adic ana-
lytic group. This allows one to express the power series∑∞

n=0 cp,nt
n as a cone integral, from

which uniform rationality follows (see the start of this section). Our proof is simpler in its
algebraic input, as elimination of imaginaries allows us to use less information about Ep.

Remark I.7.5:
Let Γ be a finitely generated nilpotent group and let cp,n be the number of isomorphism
classes of quotients ofΓ of order pn. Then the power series∑∞

n=0 cp,nt
n is uniformly rational.

If Γ is torsion-free then this follows immediately from the proof of Proposition I.7. If Γ has
torsion then we write Γ as a quotient ∆/Θ of a finitely generated torsion-free nilpotent
group∆ and modify the proof of Proposition I.7 accordingly (cf. Remark I.7).
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I.8. Twist isoclasses of characters of nilpotent groups
By a representationof a groupGwe shallmean afinite-dimensional complex representation,
and by a character ofGwe shall mean the character of such a representation. A character is
said to be linear if its degree is one. Wewrite ⟨ , ⟩G for the usual inner product of characters
ofG. If χ is linear then we have

⟨χσ1, χσ2⟩G = ⟨σ1, σ2⟩G (I.10)

for all characters σ1 and σ2. IfG′ ⩽ G has finite index thenwewrite IndGG′ ⋅ andResGG′ ⋅ for the
induced character and restriction of a character respectively. For background on represen-
tation theory, see [CR81]. Below when we apply results from the representation theory of
finite groups to representations of an infinite group, the representations concerned always
factor through finite quotients.
We denote the set of irreducible n-dimensional characters of G by Rn(G). If N ⊴ G then
we say the character χ of an irreducible representation ρ factors through G/N if ρ factors
throughG/N (this depends only on χ, not on ρ).

Notation I.8.1:
We say a character σ of G is admissible if σ factors through a finite quotient of G. If p is
prime then we say σ is p-admissible if σ factors through a finite p-group quotient ofG. We
write Rad

n (G) (R
(p)
n (G)) for the set of admissible (p-admissible) characters in Rn(G). Note

that R(p)n (G) is empty if n is not a p-power [CR81, (9.3.2) Proposition].

Given σ1, σ2 ∈ Rn(G), we follow [LM85] and say that σ1 and σ2 are twist-equivalent if σ1 =
χσ2 for some linear characterχ ofG. Clearly this defines an equivalence relation onRn(G);
we call the equivalence classes twist isoclasses.

Observation I.8.2:
Let σ1, σ2 be two irreducible degree n characters ofG that are twist-equivalent: say σ2 = χσ1. If
N ⊴ G such that σ1, σ2 both factor throughG/N , then χ also factors throughG/N .

IfN1,N2 ⊴ G have finite (p-power) index thenN1∩N2 also has finite (p-power) index. This
implies that when we are working with twist isoclasses in Rad

n (G) (R
(p)
n (G)), we need only

consider twisting by admissible (p-admissible) linear characters.
Fix a finitely generated nilpotent group Γ. The set Rn(Γ) can be given the structure of a
quasi-affine complex algebraic variety. Lubotzky and Magid analyzed the geometry of this
variety and proved the following result [LM85, Theorem6.6].

Theorem I.8.3:
There exists a finite quotient Γ(n) of Γ such that every irreducible n-dimensional represen-
tation of Γ factors through Γ(n) up to twisting. In particular, there are only finitely many
twist isoclasses of irreducible n-dimensional characters.

Thus the number of degree n twist isoclasses is a finite number an.
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Definition I.8.4:
We define the (global) representation zeta function ζΓ(s) by ζΓ(s) ∶= ∑∞

n=1 ann
−s and the p-local

representation zeta function ζΓ,p(s) by ζΓ,p(s) ∶= ∑∞
n=0 apnp

−ns.

It is shown in [SV14, Lemma 2.1] that ζΓ(s) converges on some right-half plane. Voll noted
[Vol11, Section 3.2.1] that ζΓ(s) has an Euler factorization

ζΓ(s) =∏
p

ζΓ,p(s)

for any finitely generated nilpotent group (cf. the proof of Lemma I.8).

Theorem I.8.5:
The power series∑∞

n=0 apnt
n is uniformly rational.

Note that we do not have to assume that Γ is torsion-free.
We prove Theorem I.8 by showing how to parametrize twist isoclasses in a definable way.
The equivalence relation in the parametrization is not simply the twist-equivalence rela-
tion, which arises from the action of a group—the group of linear characters of Γ—but a
more complicated equivalence relation.
The correspondence between index pn subgroups of Γ and index pn subgroups of Γ̂p gives a
canonical bijection betweenR

(p)
pn (Γ) andR

(p)
pn (Γ̂p), and it is clear that this respects twisting

by p-admissible characters.

Lemma I.8.6:
For every n ∈ N, there is a bijective correspondence between the sets Rpn(Γ)/(twisting) and
R
(p)
pn (Γ̂p)/(twisting).

Proof . It suffices to show that given any σ ∈ Rpn(Γ), some twist of σ factors through a
finite p-group quotient of Γ. By Theorem I.8, we can assume that σ factors through some
finite quotient F of Γ. Then F , being a finite nilpotent group, is the direct product of its
Sylow l-subgroups Fl, where l ranges over all the primes dividing ∣F ∣. Moreover [CR81,
Theorem 10.33], σ is a product of irreducible characters σl, where each σl is a character of
Fl. Since the degree of an irreducible character of a finite group divides the order of the
group [CR81, Proposition 9.3.2], all of the σl for l ≠ p are linear. Wemay therefore twist σ by
a linear character of F to obtain a character that kills Fl for l ≠ p, and this linear character
is admissible by Observation I.8. The new character factors through Fp, and we are done.
∎
The key idea is that finite p-groups are monomial: that is, every irreducible character is in-
duced from a linear character of some subgroup. We parametrize p-admissible irreducible
characters of Γ̂p by certain pairs (H,χ), whereH is a finite-index subgroup of Γ̂p and χ is

a p-admissible linear character of H: to a pair we associate the induced character IndΓ̂p

H χ.
We can parametrize these pairs using the theory of good bases for subgroups of Γ̂p, and this
description is well-behavedwith respect to twisting. Two distinct pairs (H,χ) and (H ′, χ′)
may give the same induced character; this gives rise to a definable equivalence relation on
the set of pairs.
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If ψ is a character of H then we denote by g.ψ the character of g.H ∶= gHg−1 defined by
(g.ψ)(ghg−1) = ψ(h).

Lemma I.8.7:
(a) Let σ ∈ R

(p)
pn (Γ̂p). Then there exists H ⩽ Γ̂p such that ∣Γ̂p∶H ∣ = pn, together with a p-

admissible linear character χ ofH such that σ = IndΓ̂p

H χ.
(b) Let H be a p-power index subgroup of Γ̂p and let χ be a p-admissible linear character of H .

Then Ind
Γ̂p

H χ is a p-admissible character of Γ̂p, and Ind
Γ̂p

H χ is irreducible if and only if for all
g ∈ Γ̂p ∖H , Resg.Hg.H∩Hg.χ ≠ Res

H
g.H∩Hχ. Moreover, if ψ is a p-admissible linear character of Γ̂p

and IndΓ̂p

H χ is irreducible then Ind
Γ̂p

H ((Res
Γ̂p

H ψ)χ) = ψ Ind
Γ̂p

H χ.

(c) LetH,H ′ ⩽ Γ̂p have index pn, and let χ,χ′ be p-admissible linear characters ofH,H ′ respec-

tively such that IndΓ̂p

H χ and IndΓ̂p

H′χ
′ are irreducible. Then IndΓ̂p

H χ = Ind
Γ̂p

H′χ
′ if and only if there

exists g ∈ Γ̂p such that Resg.Hg.H∩H′g.χ = Res
H′

g.H∩H′χ
′.

Proof . (a) Since σ is p-admissible, it factors through some finite p-group F . Since finite
p-groups are monomial [CR81, Theorem 11.3], there exist L ⩽ F of index pn and a linear
character χ of L such that σ—regarded as a character of F—equals IndFLχ. Let H be the
pre-image of L under the canonical projection Γ̂p → F . Regarding χ as a character ofH , it

is easily checked that ∣Γ̂p∶H ∣ = pn and σ = IndΓ̂p

H χ.
(b) Since χ is p-admissible, the kernel K of χ has p-power index in Γ̂p, so K contains a

p-power index subgroup N such that N ⊴ Γ̂p. Clearly N ⩽ ker (IndΓ̂p

H χ), so Ind
Γ̂p

H χ is p-
admissible. The irreducibility criterion follows immediately from [CR81, Theorem 10.25].
By Frobenius reciprocity,

⟨IndΓ̂p

H ((Res
Γ̂p

H ψ)χ), ψ Ind
Γ̂p

H χ⟩Γ̂p

= ⟨(ResΓ̂p

H ψ)χ,Res
Γ̂p

H (ψ Ind
Γ̂p

H χ)⟩H
= ⟨(ResΓ̂p

H ψ)χ, (Res
Γ̂p

H ψ)Res
Γ̂p

H (Ind
Γ̂p

H χ)⟩H
= ⟨χ,ResΓ̂p

H (Ind
Γ̂p

H χ)⟩H by Equation (I.10)

= ⟨IndΓ̂p

H χ, Ind
Γ̂p

H χ⟩Γ̂p

= 1.

Now ψ Ind
Γ̂p

H χ is irreducible, because Ind
Γ̂p

H χ is, and the degrees of Ind
Γ̂p

H ((Res
Γ̂p

H ψ)χ) and

ψ Ind
Γ̂p

H χ are equal. We deduce that ψ Ind
Γ̂p

H χ = Ind
Γ̂p

H ((Res
Γ̂p

H ψ)χ).
(c) The Mackey Subgroup Theorem [CR81, Theorem 10.13] gives

Res
Γ̂p

H′(Ind
Γ̂p

H χ) = ∑
g∈H′/Γ̂p/H

IndH
′

g.H∩H′(Res
g.H
g.H∩H′ g.χ). (I.11)

Here the sum is over a set of double coset representatives g for H ′/Γ̂p/H (the characters

on the RHS of the formula are independent of choice of representative). Since IndΓ̂p

H χ and
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Ind
Γ̂p

H′χ
′ are irreducible, they are distinct if and only if their inner product is zero. We have

⟨IndΓ̂p

H χ, Ind
Γ̂p

H′χ
′⟩

Γ̂p

= ⟨ResΓ̂p

H′(Ind
Γ̂p

H χ), χ′⟩H′ by Frobenius reciprocity

= ∑
g∈H′/Γ̂p/H

⟨IndH
′

g.H∩H′(Res
g.H
g.H∩H′ g.χ), χ′⟩H′ by the Mackey Subgroup Theorem

= ∑
g∈H′/Γ̂p/H

⟨Resg.Hg.H∩H′g.χ,Res
H′

g.H∩H′χ
′⟩
g.H∩H′

by Frobenius reciprocity.

This vanishes if and only if each of the summands vanishes, which happens if and only
if Resg.Hg.H∩H′g.χ ≠ ResH

′

g.H∩H′χ
′ for every g, since the characters concerned are linear. The

result follows. ∎
WriteΓ as a quotient∆/Θ of a finitely generated torsion-free nilpotent group∆: for exam-
ple, we may take ∆ to be the free class c nilpotent group on N generators for appropriate
N and c. Let π∶∆ → Γ be the canonical projection, and let i∶Θ → ∆ be inclusion. Let
∆̂p, Θ̂p be the pro-p completions of∆, Θ respectively. Then π (respectively i) extends to a
continuous homomorphism π̂p∶ ∆̂p → Γ̂p (respectively îp∶ Θ̂p → ∆̂p), and the three groups
îp(Θ̂p), ker π̂p, and the closure ofΘ in ∆̂p all coincide (compare [Dix+99, Chapter 1, Ex. 21];
because ∆ is finitely generated nilpotent, it can in fact be shown that îp is injective, and
hence an isomorphism onto its image). Clearly p-admissible representations of Γ̂p corre-
spond bijectively to p-admissible representations of ∆̂p that kill ker π̂p. Now Θ is finitely
generated (see, e.g., [Wag97, Lemma 1.2.2]), so we can choose a Mal’cev basis θ1, . . . , θs for
Θ. We identify the θi with their images in ∆̂p.
Let µpn be the group of all complex pnth roots of unity, and let µp∞ be the group of all
complex p-power roots of unity.

Lemma I.8.8:
The groups µp∞ andQp/Zp are isomorphic.

Proof . Let p−∞Z ⩽ Q be the group of rational numbers of the form np−r for n ∈ Z and r a
nonnegative integer. Then p−∞Z ∩Zp = Z and Zpp−∞Z = Qp, soQp/Zp ≅ p−∞Z/Z, by one
of the standard group isomorphism theorems. The map q ↦ e2πiq gives an isomorphism
from p−∞Z/Z to µp∞ . ∎
Let Φ∶µp∞ → Qp/Zp be the isomorphism described above. Any p-admissible linear char-
acter of a pro-p group takes its values in µp∞ , so we use Φ to identify p-admissible linear
characters with p-admissible homomorphisms toQp/Zp.

Lemma I.8.9:
LetDp ⊆ ZR

2

p ×QR
p be the set of tuples (λij, yk), where 1 ⩽ i, j ⩽ R and 1 ⩽ k ⩽ R, satisfying the

following conditions:
(a) theλij forma good basish1, . . . , hR for somefinite-index subgroupH of ∆̂p such thatker π̂p ⩽
H ;
(b) the prescription hi ↦ yi mod Zp gives a well-defined p-admissible homomorphism χ∶H →
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Qp/Zp that kills ker π̂p;
(c) the induced character Ind∆̂p

H χ is irreducible.

ThenDp is uniformly∅-definable in p. Moreover, Ind∆̂p

H χ is a p-admissible character of ∆̂p that
kills ker π̂p and hence induces a p-admissible character of Γ̂p, and every p-admissible irreducible
character of Γ̂p arises in this way.

Notation I.8.10:
Given (λij, yk) ∈ Dp, we writeΨ(λij, yk) for the pair (H,χ). Since the hi generateH topo-
logically, the p-admissible homomorphism χ defined by the yi is unique.

Proof . Condition (a) is uniformly ∅-definable in p, by Proposition I.7 (to the formulae that
define the set of good bases we add the formulae (∃ν1j, . . . , νrj ∈ Zp) θj = h

ν1j
1 ⋯hνRj

R for
1 ⩽ j ⩽ s). Given that (a) holds, we claim that (b) holds if and only if there exists an R2-
tuple (µij) such that:
(i) (µij) defines a good basis k1, . . . , kR for a finite-index subgroupK of ∆̂p;
(ii)K ⊴H;
(iii) ker π̂p ⊆K;
(iv) there exist y ∈ Qp, r1, . . . , rR ∈ Zp, h ∈ H such that ∣y∣ = ∣H/K ∣ and for every i we have
hri = hi and riy = yi mod Zp. (Here x denotes the image of x ∈ H under the canonical
projectionH →H/K .)

To see this, note that if (b) holds then kerχ is a finite-index subgroup ofH which satisfies
(ii) and (iii). Take (µij) to be any tuple defining a good basis for K . Then H/K , being
isomorphic to a finite subgroup of Qp/Zp, is cyclic, so choose h ∈ H that generates H/K
and choose y ∈ Qp such that χ(h) = y mod Zp. We can choose r1, . . . , rR ∈ Z such that
hi = h

ri for each i, and it is easily checked that (iv) holds.
Conversely, suppose there exists a tuple (µij) satisfying (i)–(iv). ThemapZp →H , λ↦ hλ is
continuous because it is polynomial with respect to theMal’cev coordinates, so there exists
an open neighborhood U of 0 in Zp such that hλ ∈ K for all λ ∈ U . Since Z is dense in Zp,
we may therefore find n1, . . . , nR ∈ Z such that hi = hni for each i. Hence H/K is cyclic
with generator h.
We have a monomorphism β∶H/K → Qp/Zp given by β(hn) = ny mod Zp. Let χ be the

composition H → H/K β→ Qp/Zp. The canonical projection H → H/K is continuous
[Dix+99, 1.2 Proposition], so we have χ(hλ) = λy mod Zp for every λ ∈ Zp. Condition (iv)
implies that χ(hi) = yi mod Zp for every i, as required.
Now condition (i) is uniformly ∅-definable in p, by Proposition I.7. Condition (iii) can be
expressed as

(∀ν1, . . . , νs ∈ Zp) [(∃σ1, . . . , σs ∈ Zp)θν11 ⋯θνss = h
σ1
1 ⋯h

νR
R ]

⇒ (∃τ1, . . . , τs ∈ Zp)θν11 ⋯θνss = k
τ1
1 ⋯k

τR
R . (I.12)

Equation (I.12) can be expressed in terms of polynomials independent of p over Q in the
λij , the µij , the νk, the σk and the τk, so condition (iii) is uniformly ∅-definable in p. (Note
that the θk are fixed elements of∆, so their Mal’cev coordinates are not just elements ofZp
but elements of Z.)
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Similar arguments show that conditions (ii) and (iv) are also uniformly ∅-definable condi-
tions in p. In (iv), note that the conditions hri = hi imply by the argument above that h is a
generator forH/K , so the condition ∣y∣ = ∣H/K ∣ can be expressed as

(hy−1 ∈K) ∧ ((∀z ∈Qp) ∣z∣ < ∣y∣ Ô⇒ hz
−1 /∈K) .

This shows that (condition (a))∧(condition (b)) is uniformly ∅-definable in p.
Condition (iii) implies that χ kills ker π̂p. Hence Ind

∆̂p

H χ kills ker π̂p, so Ind
∆̂p

H χ gives rise to
an irreducible p-admissible character of Γ̂p. By Lemma I.8 (b), irreducibility of the induced
character can be written as

(∀g ∈ ∆̂p ∖H)(∃h ∈H) ghg−1 ∈H and χ(ghg−1) ≠ χ(h).

Writing this in terms of the Mal’cev coordinates, we see that condition (c) is uniformly ∅-
definable in p.
By Lemma I.8 (a), any p-admissible irreducible character σ of Γ̂p is of the form Ind

Γ̂p

L χ for
some finite-index subgroup L of Γ̂p and some p-admissible linear character χ of L. LetH
be the pre-image ofL under the canonical projection ∆̂p → Γ̂p. Regarding σ,χ as represen-

tations of ∆̂p,H respectively, it is easily checked that σ = Ind
∆̂p

H χ. Choose (λij) defining
a good basis h1, . . . , hR for H , and choose yk such that χ(hk) = yk mod Zp for all k. The
above argument shows that (λij, yk) ∈ Dp. This completes the proof. ∎
Define fp∶Dp → Zp by fp(λij, yk) = λ11⋯λRR. Define an equivalence relation Ep on Dp by
(λij, yk) ∼ (λ′ij, y′k) if Ind

∆̂p

H χ and Ind
∆̂p

H′χ
′ are twist-equivalent, where (H,χ) = Ψ(λij, yk)

and (H ′, χ′) = Ψ(λ′ij, y′k). The degree of Ind∆̂p

H χ equals ∣fp(λij, yk)∣−1p , and likewise for
(λ′ij, y′k), so if (λij, yk) ∼ (λ′ij, y′k) then fp(λij, yk) = fp(λ′ij, y′k).
ConstructDp andEp from Ep andDp as at the end of Section I.6. It follows from Lemma I.8
and the definition of Ep thatDp,n is the union of precisely apn Ep,n-equivalence classes (note
that if one representation of Γ̂p is the twist of another by some linear character ψ of ∆̂p

then ψ is automatically a character of Γ̂p, by Observation I.8). To complete the proof of
Theorem I.8, it suffices by TheoremC to show that Ep is a family of equivalence relations
onDp that is uniformly definable over p. Hence it is enough to prove the following result.

Proposition I.8.11:
The equivalence relation Ep is uniformly ∅-definable in p.

Proof . Let D′p ⊆ QR
p be the set of R-tuples (z1, . . . , zR) such that the prescription ai ↦

zi mod Zp gives a well-defined p-admissible linear character of ∆̂p that kills ker π̂p. We
denote this character by Ξ(z1, . . . , zR) (or just Ξ(zk)). Similar arguments to those in the
proof of Lemma I.8 show that D′p is definable. Let (z1, . . . , zR) ∈ D′p, let (H,χ) = Ψ(λij, yk)
and let h1, . . . , hR be corresponding the good basis forH . Then hk = aλk11 ⋯aλkRR , so Ξ(zk) =
λk1z1+⋯+λkRzR. HenceRes∆̂p

H Ξ(zk) χ = Ψ(λij, yk+λk1z1+⋯+λkRzR). ApplyingLemma I.8
(b) and (c), we see that if (H ′, χ′) = Ψ(λ′ij, y′k) then (λij, yk) ∼ (λ′ij, y′k) if and only if

(∃(z1, . . . , zR) ∈ D′p) (∃g ∈ ∆̂p) (∀h ∈H) ghg−1 ∈H ′

⇒ (Res∆̂p

H Ξ(zk) χ) (h) = χ′(ghg−1).
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Writing this in terms of the Mal’cev coordinates, we obtain an equation independent of p
involving D′p and p-adic norms of polynomials overQ in the λij , the yk, the λ′ij , the y

′
k, the

zk, and the Mal’cev coordinates of g and h. We deduce that Ep is uniformly ∅-definable in
p, as required. ∎

We give a simple example. LetH be the Heisenberg group ⟨a, b, c ∶ [a, b] = c, [a, c] = [b, c] =
1⟩. Nunley and Magid [NM89] explicitly calculated the twist isoclasses of H and showed
that

ζH,p(s) = 1 +
∞
∑
n=1
(p − 1)pn−1p−ns.

The formula for the sum of a geometric progression gives

ζH,p(s) =
1 − p−s
1 − p1−s

.

Hence

ζH(s) =∏
p

ζH,p(s) =∏
p

1 − p−s
1 − p1−s

= ζ(s − 1)
ζ(s)

,

where ζ(s) denotes the Riemann zeta function. Ezzat [Ezz14, Theorem 1.1] and Stasinski
and Voll [SV14, TheoremB] calculated ζΓ(s) for various generalizations Γ ofH.
The subgroup zeta function of the Heisenberg group is given by

ζ(s)ζ(s − 1)ζ(2s − 2)ζ(2s − 3)
ζ(3s − 3)

[SG00, Section 1]. This and other calculations of [SV14] suggests that the representation
zeta function is better behaved than the subgroup zeta function. The same is true for
semisimple arithmetic groups [LM04].
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CHAPTER II

Analytic difference fields

Le Logicien, au Vieux Monsieur.
La logique n’a pas de limites !
E. Ionesco, Rhinocéros, Acte I

This chapter contains [Rid].

Introduction
Since the work of Ax, Kochen and Eršov on valued fields (e.g. [AK65]) and their proof that
the theory of a Henselian valued field is essentially controlled (in equicharacteristic zero)
by the theory of the residue field and the value group, model theory of Henselian valued
fields has been a very active and productive field. Among later developments onemay note
Macintyre’s result in [Mac76] of elimination of quantifiers for p-adic fields and the proof by
Pas of valued fields quantifier elimination for equicharacteristic zero Henselian fields with
angular components in [Pas89], which implies the Ax-Kochen-Eršov principle. Another
notable result is the one by Basarab and Kuhlmann (see [Bas91; BK92; Kuh94]) of valued
field quantifier elimination for Henselian valued fields with amc-congruences, a language
that does not make the class of definable sets grow (as angular components do). Another
result in the Ax-Kochen-Eršov spirit is the proof by Delon in [Del81] — extended by Bélair
in [Bél99] — that Henselian valued fields do not have the independence property if and
only if their residue field does not have it (their value group never has the independence
property by [GS84].)
But model theorists have not limited themselves to giving an increasingly refined descrip-
tion of the model theory of Henselian valued fields, there have also been attempts at ex-
tending those results to valued fields with more structure. The two most notable enrich-
ments that have been studied are, on the one hand, analytic structures as initiated by
[DD88] and studied thereafter by a great number of people (among many others [Dri92;
DHM99; LR00; LR05; CLR06; CL11]) and, on the other hand, D-structures (a generaliza-
tion of both difference and differential structures), first for differentials and certain isome-
tries in [Sca00] but also for greater classes of isometries in [Sca03; BMS07; AD10] and then
for automorphisms that might not be isometries [Azg10; Pal12; Hrua; GP10; DO]. The
model theory of valued differential fields is also quite central to the model theoretic study
of transseries (see for example [ADH13]) but the techniques and results in this last field
seem quite orthogonal to those in other references given above and to our work here.
The goal of the present paper is to study valued fields with both an analytic structure and an
automorphism. Themain result of this paper is TheoremD, which states that σ-Henselian
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II. Analytic difference fields

(cf. Definition (II.4.10)) valued fieldswith analytic structure and any automorphism σ elim-
inate field quantifiers resplendently in the leading term language (cf. Definition (II.1.1)).
We then deduce various Ax-Kochen-Eršov type results for analytic difference fields (both
with respect to the theory and the independence property). We also try to give a systematic
and comprehensive approach to quantifier elimination in (enriched) valued fields through
some more abstract considerations (mainly in the appendix).
In [Sca06], Scanlon already attempted to study analytic difference fields in the case of an
isometry, but the definition of σ-Henselianity given there is too weak to actually work, al-
though some incorrect computations hide this fact. The axiomatization and all the proofs
had to be redone entirely but, as stated earlier, this paper does not only contain a corrected
version of the results in [Sca06], it also generalizes these results from the isometric case to
the case of any valued field automorphism.
Some ideas from [Sca06] could be salvaged though, among them the fact that Weierstrass
preparation (see Definition (II.3.22)) allows us to be close enough to the polynomial case to
adapt the proofs from the purely valued difference setting. Nevertheless this adaptation
is not as straightforward as one would hope, essentially because Weierstrass preparation
only holds in one variable, but one variable in the difference world actually gives rise to
many variables in the non difference world. The main ingredient to overcome this obsta-
cle is a careful study of differentiability of terms in many variables (see Definition (II.4.4))
that allows us to give a new definition of σ-Henselianity in (II.4.10). These techniques can
probably be used to prove results in greater generality, for example: valued fields with both
analytic structure and D-structure, a notion, defined in [Sca00], that encompasses both
the differential and the difference case.
As explained in [Sca06], our interest in the model theory of valued fields with both ana-
lytic structure and difference structure is not simply a wish to see Ax-Kochen-Eršov type
of results extended tomore andmore complicated structures and in particular to the com-
bination of two structures where things are known to work well. It is also motivated by
the fact that this is the right model-theoretic setting in which to understand Buium’s p-
differential geometry. More precisely any p-differential function overW(Fp

alg) can be de-
fined in W(Fp

alg) equipped with the lifting of the Frobenius and symbols for all p-adic
analytic functions ∑aIxI where val(aI) → ∞ as ∣I ∣ → ∞. See [Sca06, Section 4] for an
example of how a good model theoretic understanding of this structure can help to show
uniformity of certain diophantine results.
The organization of this text is as follows. Section II.1 is a description of the languages, with
either angular components orRV-structure, that wewill be using. In Section II.2, we show
that it is possible to transfer elimination of quantifier results from equicharacteristic zero
tomixed characteristic (using the theoretical framework of Appendix II.B). Sections II.3 and
II.4 describe the class of analytic difference fields we will be studying. Section II.5 is con-
cernedwith purely analyticalmatters, it describes the link between analytic 1-types and the
underlying algebraic 1-type. In Section II.6 we prove the main result of this paper, Theo-
remD: a field quantifier elimination result for σ-Henselian analytic difference fields. We
also prove an Ax-Kochen-Eršov principle for these fields. Finally Section II.7 shows how
this quantifier elimination result also allows us to give conditions (on the residue field and
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II.1. Languages of valued fields

the value group) for such fields to have (or not have) the independence property. The ap-
pendix contains an account of the more abstract model theory at work in the rest of the
paper to help smooth out the arguments. Appendix II.B, in particular, sets up a general
setting for transfer of elimination of quantifier results.
I would like to thank Élisabeth Bouscaren and Tom Scanlon for our numerous discussions.
Without them none of the mathematics presented here would be understandable, correct
or even exist. I also want to thank Raf Cluckers for having so readily answered all my ques-
tions about analytic structures as I was discovering them. Finally, I would like to thank
Koushik Pal for taking the time to discuss the non-isometric case with me. Our discus-
sions led to the generalization of the proofs to the non-isometric case.

II.1. Languages of valued fields
We will be considering valued fields of characteristic zero. They will mainly be considered
in two kinds of languages. On the one hand, the language with leading terms, also known
in the work of Basarab and Kuhlmann (cf. [Bas91; BK92; Kuh94]) as amc-congruences and
in later work as RV-sorts (e.g. [HK06]) and on the other hand the language with angular
components, also known as the Denef-Pas language.

Definition II.1.1 (Leading term language):
The language LRV has the following sorts: a sort K and a family of sorts (RVn)n∈N>0 . On
the sort K, the language consists of the ring language. The language also contains functions
rvn ∶K→RVn for all n ∈N>0 and rvm,n ∶RVn →RVm for allm∣n.

Any valued field can be considered as an LRV-structure by interpretingK as the field and
RVn as (K⋆/1 + nM) ∪ {0} where M is the maximal ideal of the valuation ring O. We
will write RV⋆

n for (K⋆/1 + nM) = RVn ∖ {0}. Then rvn is interpreted as the canonical
surjectionK⋆ →RV⋆

n and it sends 0 to 0; rvn,m is interpreted likewise. We will denote the
LRV-theory of characteristic zero valued fields by Tvf . If we need to specify the residual
characteristic, we will write Tvf,0,0 or Tvf,0,p.
We will be denotingRV ∶= ⋃nRVn. These sorts are closed in LRV (see Definition (II.A.7)).
The sorts inRV have a lot of structure given by the following commutative diagram (where
Rn ∶= O/nM):

1 // O⋆ //

resn

��resm

��

K⋆

rvn

��

val

&&LL
LLL

L

rvm

��

Γ // 0

1 // R⋆
n

//

resm,n��

RV⋆
n

valRV,n

99sssss

rvm,n��
1 // R⋆

m
// RV⋆

m

valRV,m

OO

and all of this structure is definable in LRV, although not without quantifiers. In order to
eliminateK-quantifiers, we will have to add some structure on theRV sorts.
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II. Analytic difference fields

Definition II.1.2:
The languageLRV+ is the enrichment ofLRV with, on eachRVn, the language of (multiplicative)
groups {1n, ⋅n}, a symbol 0n and a binary predicate ∣n, and functions +m,n ∶RV2

n →RVm for all
m∣n.

Themultiplicative structure onRVn is interpreted as its multiplicative (semi-)group struc-
ture, i.e. the group structure of RV⋆

n and 0n ⋅n x = x ⋅n 0n = 0n, x∣ny is interpreted as
valRV,n(x) ⩽ valRV,n(y) and for all x, y ∈ K such that val(x + y) ⩽ min{val(x),val(y)} +
val(n) − val(m), rvn(x) +m,n rvn(y) = rvm(x + y) and 0n otherwise. This is well defined.
We will denote by THen the theory of characteristic zero Henselian valued fields in LRV+ .

Remark II.1.3:
1. IfK has equicharacteristic zero, then for allm∣n, rvm,n is an isomorphism. Hence if

we are working in equicharacteristic zero, we will only need to considerRV1. In that
case we also have that R1 = R⋆

1 ∪ {0} ⊆ RV⋆
1 ∪ {0} = RV1. The additive structure

is also simpler: we only need to consider the +1,1 function on RV1. It extends the
additive structure ofR1 and makes every fiber of valRV,1 into anR1-vector space of
dimension 1 (if we consider 01 to be the zero of every fiber).

2. IfK has mixed characteristic p, then wheneverm∣n and val(n) = val(m)— i.e. when
p does not divide n/m — rvm,n is an isomorphism. In particular for all n ∈ N>0,
rvn,pval(n) is an isomorphism (where we identify val(p) and 1).

3. One couldwonder thenwhy consider all theRVnwhen the only relevant ones are the
RVpn in mixed characteristic p andRV1 in equicharacteristic zero. The main reason
is that we want enough uniformity to be able to talk of Tvf without specifying the
residual characteristic or adding a constant for the characteristic exponent (in par-
ticular if one wishes to consider ultraproducts of valued fields with growing residual
characteristic, although we will not do so here).

The use of this language is mainly motivated by the following result that originates in
[Bas91; BK92], although the phrasing in terms of resplendence first appears in [Sca97]. By
resplendent quantifier elimination relative to RV, we mean that quantifiers on the sorts
other than those in RV can be elimated (namely the field quantifiers here) and that this
result is true whatever the enrichment on theRV-sorts (see Appendix II.A for precise def-
initions).

Theorem II.1.4:
The theory THen eliminatesK-quantifiers resplendently relative toRV.

Later, we will add analytic and difference structures, hence wewill consider an enrichment
ofLRV by new terms onK and predicates and terms onRV (although none on bothK and
RV; this is what we call in Appendix II.A an RV-enrichment of a K-term enrichment of
LRV). Let L be such a language and let ΣRV denote the new sorts coming from the RV-
enrichment.
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II.1. Languages of valued fields

Remark II.1.5:
Any quantifier free L-formula φ(x, y) where x are K-variables and y are RV-variables, is
equivalent modulo Tvf to a formula of the form ψ(rvn(u(x)), y) where ψ is a quantifier
free L∣RV∪ΣRV

-formula and u are L∣K-terms. Indeed the only predicate involvingK is the
equality and t(x) = s(x) is equivalent to rv1(t(x) − s(x)) = 0. The statement follows
immediately.

Here is an easy lemma that will be very helpful later on to uniformize certain results.

Corollary II.1.6:
Let T be an L-theory that eliminates K-quantifiers,M ⊧ T , C ⩽M — i.e. C is a substructure
ofM — and x, y ∈ K(M) be such that for all L∣K(C)-terms u, and all n ∈ N>0, rvn(u(x)) =
rvn(u(y)). Then x and y have the same L(C)-type.

Proof . Let f ∶ M → M be the identity on RV ∪ ΣRV(M) and send u(x) to u(y) for all
L∣K(C)-term u. By Remark (II.1.5), f is a partial LRV−Mor-isomorphism. ButK-quantifiers
elimination implies that f is in fact elementary. ∎
The other kind of language, the one with angular components, essentially boils down to
giving oneself a section of the short sequences defining theRVn. That statement is made
explicit in (II.1.8).

Definition II.1.7 (Lac):
The language Lac has the following sorts: sortsK and Γ∞ and a family of sorts (Rn)n∈N>0 . The
sortsK andRn comewith the ring language and the sortΓ∞ comeswith the language of ordered
(additive) groups and a constant∞. The language also contains a function val ∶ K → Γ∞, for
all n, functions acn ∶ K → Rn, resn ∶ K → Rn, valR,n ∶ Rn → Γ∞, sR,n ∶ Γ∞ → Rn and for all
m∣n, functions resm,n ∶Rn →Rm and tR,m,n ∶Rn →Rm.

As onemight guess, theRn are interpreted as the residue ringsO/nM. As withRV, wewill
writeR ∶= ⋃nRn. The resn and resm,n denote the canonical surjectionsO →Rn andRn →
Rm. The function acn denotes an angular component, i.e a multiplicative homomorphism
K⋆ → R⋆

n that extend the canonical surjection on O⋆ and send 0 to 0n. Moreover, the
system of the acn should be consistent, i.e. resm,n ○ acn = acm. The function valR,n is
interpreted as the function induced by val onRn ∖ {0} and sending 0n to∞. The function
sR,n is defined by sR,n(val(x)) = resn(x)acn(x)−1 and finally, the function tR,m,n is defined
by tR,m,n(resn(x)) = acm(x)when val(x) ⩽ val(n)− val(m) and 0m otherwise (this is well-
defined).
It should be noted that any valued field that is saturated enough can be endowed with
angular components (cf. [Pas90, Corollary 1.6]).
Let LRVs be the enrichment of LRV+ ∪ (Lac ∖ {val, resn,acn ∶ n ∈ N>0}) with symbols
valRV,n ∶ RVn → Γ∞ for the functions induced by the valuation, symbols in ∶ Rn →
RVn for the injection of R⋆

n → RVn extended by 0 outside R⋆
n, symbols resRV,n ∶ RVn →

Rn for the canonical projection, sn ∶ Γ∞ → RVn for a coherent system of sections of
valRV,n compatible with the rvm,n and symbols tn ∶ RVn → Rn interpreted as tn(x) =
in
−1(xsn(valRV,n(x))−1). Let Ts

vf be the LRVs-theory of characteristic zero valued fields
and Tac

vf the Lac-theory of characteristic zero valued fields.
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Let Ls,e be anRV-enrichment (with potentially new sorts ΣRV) of aK-enrichment (with
potentially new sortsΣK) ofLRVs andT e be anLs,e-theory extendingLRVs . We defineLac,e
to be the language containing:

1. Lac ∪ Ls,e∣K∪ΣK
;

2. The new sorts ΣRV;

3. For each new function symbol f ∶ ∏Si → RVn, two functions symbols fR ∶ ∏Ti →
Rn and fΓ ∶ ∏Ti → Γ∞ where Ti = Rm × Γ∞ whenever Si = RVm and Ti = Si
otherwise;

4. For each new function symbol f ∶ ∏Si → S, where S ≠ RVn, the same symbol f but
with domain∏Ti as above;

5. For each new predicateR ⊆∏Si, the same symbolR but as a predicate in∏Ti for Ti
as above.

We also define Tac,e to be the theory containing:

1. Tac
vf ;

2. For all new function symbol f , whenever f or fR and fΓ (depending on the case)
is applied to an argument — corresponding to an RVn-variable of f — outside of
R⋆
n ×Γ ∪ {0,∞}, then f has the same value as if f were applied to (0,∞) instead;

3. For all new symbol f with imageRVn, Im(fR, fΓ) ⊆R⋆
n ×Γ ∪ (0,∞);

4. For all new predicate R, R applied to an argument outside of R⋆
n × Γ ∪ {0,∞} is

equivalent to R applied to (0,∞) instead;

5. The theory T e translated in Lac,e as explained in the following proposition.

In the following proposition, Str(T ) denote the category of substructures of models of T ,
i.e. models of T∀. See Appendix II.B, for precise definitions.

Proposition II.1.8:
There exist functors F ∶ Str(Tac,e) → Str(T e) and G ∶ Str(T e) → Str(Tac,e) that respect
models, cardinality up to 1 and elementary submodels and induce an equivalence of categories
between Str(Tac,e) and Str(T e). MoreoverG sendsR ∪Γ∞ toRV ∪R ∪Γ∞.

Proof . Let C be an Lac,e-structure (inside some M ⊧ Tac,e), we define F (C) to have the
same underlying sets for all sorts common to Lac,e and Ls,e andRVn(F (C)) = (R⋆

n < C >
×(Γ∞(C) ∖ {∞})) ∪ {(0n,∞)}. All the structure on the sorts common to Ls,e and Lac,e is
inherited from C . We define rvm(x) = (acn(x),val(x)) and rvm,n(x, γ) = (resm,n(x), γ).
The (semi-)group structure onRVn is the product (semi-)group structure, 0n is interpreted
as (0n,∞). We set (x, γ)∣n(y, δ) to hold if and only if γ ⩽ δ and we define (x, γ) +m,n (y, δ)
as (resm,n(x), γ) if γ < δ, (resm,n(y), δ) if δ < γ and (tR,m,n(x + y), γ + valR,n(x + y)) if
δ = γ. The functions valRV,n are interpreted as the right projections and the functions tn
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as the left projections. Finally, define in(x) = (x,0) on R⋆
n and in(x) = (0,∞) otherwise,

resRV,n(x, γ) = xsR,n(γ), sn(γ) = (1, γ) if γ ≠ ∞ and sn(∞) = (0,∞). For each function
f ∶ ∏Si → RVn for some n, define u ∶ ∏Si → ∏Ti to be such that ui(x) = xi if Si ≠ RVm
and ui(x) = (tm(xi),valRV,m(xi)) if Si = RVm. Then fF (C)(x) = (fCR(u(x)), fCΓ (u(x))).
If f ∶ ∏Si → S where S ≠ RVn for any n, then define fF (C)(x) = fC(u(x)) and finally
F (C) ⊧ R(x) if and only if C ⊧ R(u(x)).
If f ∶ C1 → C2 is an Lac,e-isomorphism, we define F (f) to be f on all sorts common
to Lac,e and Ls,e and F (f)(x, γ) = (f(x), f(γ)). It is easy to check that F (f) is an Ls,e-
isomorphism.
Let D be an Ls,e-structure (inside some N ⊧ T e), define G(D) to be the restriction of D
to all Lac,e-sorts enriched with val = valRV,n ○ rv1, resn = resRV,n ○ rvn, acn = tn ○ rvn.
Moreover, for any function f ∶ ∏Si → RVn for some n, let v ∶ ∏Ti → ∏Si to be such that
vi(x) = xi if Si ≠ RVm for anym and vi(x) = im(yi)sm(γi) where xi = (yi, γi), if Si = RVm.
Then define fG(D)R (x) = tn(fD(v(x))) and fG(D)Γ (x) = valRV,n(fD(v(x))). If f ∶∏Si → S
where S ≠RVn for any n, then fG(D)(x) = fD(v(x)) and finallyG(D) ⊧ R(x) if and only if
D ⊧ R(v(x)). If f ∶ D1 → D2 is an Ls,e-isomorphism, it is easy to show that the restriction
of f to the Lac,e-sorts is an Lac,e-isomorphism.
Now, one can check that for any Ls,e-formula φ(x) there exists an Lac,e-formula φac,e(y)
such that for any C ∈ Str(Tac,e) and c ∈ C , C ⊧ φ(c) if and only if F (C) ⊧ φac,e(u(c))
where u is as above (for the sorts corresponding to x). Similarly, to any Lac,e-formula ψ(x)
we can associate an Ls,e-formula ψs,e(x) such that for any D ∈ Str(T ) and d ∈ D, D ⊧
ψ(d) if and only if G(D) ⊧ ψs,e(d). One can also check that for all Ls,e-formula φ, T ⊧
(φac,e)s,e(u(x)) ⇐⇒ φ(x) and for all Lac,e-formula ψ, Tac,e ⊧ (ψs,e)ac,e ⇐⇒ ψ. The rest
of the proposition follows. ∎

Remark II.1.9:
1. The functions tR,m,n are actually not needed, if we Morleyize onR∪Γ∞, as they are

definable using only quantification in theRn.

2. As with leading terms structure, in equicharacteristic zero, the angular component
structure is a lot simpler. We only need val and ac1 (and none of the valRV,n, sR,n or
tR,m,n).

3. In mixed characteristic with finite ramification — i.e. Γ has a smallest positive ele-
ment 1 and val(p) = k ⋅ 1 for some k ∈N>0 — the structure is also simpler. The func-
tions valR,n, sR,n and tR,m,n can be redefined (withoutK-quantifiers) knowing only
sR,n(1). Let Lac,fr be the language (Lac ∖ {valR,n, sR,n, tR,m,n ∶ m,n ∈ N>0}) ∪ {cn}
where cn will be interpreted as sR,n(1)— i.e. as resn(x)acn(x)−1 for x with minimal
positive valuation. This is the language in which finitely ramified mixed character-
istic fields with angular components are usually considered — and eliminate field
quantifiers.

To finish this section let us define balls and Swiss cheeses.
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Definition II.1.10 (Balls and Swiss cheeses):
Let (K,v) be a valued field, γ ∈ val(K) and a ∈K . Write B̊γ(a) ∶= {x ∈K(M) ∶ val(x−a) > γ}
for the open ball of center a and radius γ, and Bγ(a) ∶= {x ∈ K(M) ∶ val(x − a) ⩾ γ} for the
closed ball of center a and radius γ.
A Swiss cheese is a set of the form b ∖ (⋃i=1,...,n bi) where b and the bi are open or closed balls.

We allow closed balls to have radius∞—i.e. singletons are balls— andwe allow open balls
to have radius −∞— i.e. K itself is an open ball.

Definition II.1.11 (Ldiv):
The language Ldiv has a unique sortK equipped with the ring language and a binary predicate
∣.

In a valued field (K,val), the predicate x∣y will denote val(x) ⩽ val(y). If C ⊆ K , we will
denote by SC(C), the set of all quantifier free Ldiv(C)-definable sets in one variable. Note
that all those sets are finite unions of swiss cheeses.
Note that later on, our valued fields may be endowed with more than one valuation. In
that case, we will write B̊Oγ (a) or SCO(C) to specify that we are considering the valuation
associated to O. We will also extend the notation for balls by writing B̊γ(a) ∶= {b ∶ val(b −
a) > γ} and Bγ(a) ∶= {b ∶ val(b − a) ⩾ γ} where val(a) ∶=mini{val(ai)}.

II.2. Coarsening
The goal of this section is to provide the necessary tools for the reduction to the equichar-
acteristic zero case. This is a classical method , which underlies most existing proofs of
K-quantifier elimination for enriched mixed characteristic Henselian fields. We present it
here on its own, as a general transfer principle whichwewill then be able to invoke directly,
in order, I hope, to make the proofs clearer.

Definition II.2.1 (Coarsening valuations):
Let (K,val) be a valued field, ∆ ⊆ Γ(K) a convex subgroup and π ∶ Γ(K) → Γ(K)/∆ the
canonical projection. Let val∆ ∶= π ○ val, extended to 0 by val∆(0) =∞.

Remark II.2.2:
The valuation val∆ is a valuation coarser than val. Its valuation ring is O∆ ∶= {x ∈ K ∶ ∃δ ∈
∆, δ < val(x)} ⊇ O(K) and its maximal ideal isM∆ ∶= {x ∈ K ∶ val(x) > ∆} ⊆M(K). Its
residue fieldR∆

1 is in fact a valued field for the valuation ṽal
∆
defined by ṽal

∆
(x +M∆) ∶=

val(x) for all x ∈ O∆ ∖M∆ and ṽal
∆
(M∆) = ∞. Then ṽal

∆
(R∆

1 ) = ∆∞ = ∆ ∪ {∞}. The
valuation ring of R∆

1 is Õ∆ ∶= O/M∆, its maximal ideal is M/M∆ and its residue field is
R1. Moreover, if rv∆n ∶ K → K⋆/(1 + nM∆) ∪ {0} =∶ RV∆

n is the canonical projection, rvn
factorizes through rv∆n ; i.e. there is a function πn ∶RV∆

n →RVn such that rvn = πn ○ rv∆n .
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O⋆ � � //

��
res1

��

(O∆)⋆ � � //

res∆1
��

K⋆

rv∆1
��
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Before we go on let us explain the link between open balls for the coarsened valuations and
open balls for the original valuation.

Proposition II.2.3:
Let (K,val) be a valued field and ∆ a convex subgroup of its valuation group. Let S be an O-
Swiss cheese, b an O∆-ball, c, d ∈ K such that b = B̊O∆

val∆(d)(c). If b ⊆ S, there exists d
′ ∈ K such

that val∆(d′) = val∆(d) and b ⊆ B̊O
val(d′)(c) ⊆ S.

Proof . Let (gα) be a cofinal (ordinal indexed) sequence in ∆. We have b = ⋂α B̊Oval(dgα)(c).
Indeed, val∆(dgα) = val∆(d) and hence b = B̊O∆

val∆(dgα)
(c) ⊆ B̊O

val(dgα)(c). Conversely, if

x ∈ ⋂α B̊Oval(dgα)(c), then val((x − c)/d) > val(gα) for all α, hence (x − c)/d ∈M∆.

Let b′ be any O-ball, then b = ⋂α B̊Oval(dgα)(c) ⊆ b
′ if and only if there exists α0 such that

B̊O
val(dgα0)

(c) ⊆ b′ and b ∩ b′ = ⋂α B̊Oval(dgα)(c) ∩ b
′ = ∅ if and only if there exists α0 such that

B̊O
val(dgα0)

(c) ∩ b′ = ∅. These statements still hold for Boolean combinations of balls hence

there is some α0 such that B̊Oval(dgα0)
(c) ⊆ S. ∎

When (K,val) is a mixed characteristic valued field, the coarsened valuation we are inter-
ested in is the one associated to∆p the convex group generated by val(p) as (K,val∆p) has
equicharacteristic zero. We will write val∞ ∶= val∆p , R∞ ∶= R

∆p

1 , O∞ ∶= O∆p = Op−1 and
M∞ ∶=M∆p = ⋂n∈N pnM. As the coarsened field has equicharacteristic zero, allRV∆p

n are
the same and we will writeRV∞ ∶=K⋆/(1 +M∞) ∪ {0} =RV∆p

1 .

Remark II.2.4:
We can — and we will — identify RV∞ (canonically) with a subgroup of lim←ÐRVn and the
canonical projection K → RV∞ then coincides with lim←Ð rvn ∶ K → lim←ÐRVn, in particular,
RV∞ = (lim←Ð rvn)(K). Similarly, Õ∆p can be identified with a subring of lim←ÐRn andR∞ =
Frac(Õ∆p) ⊆ Frac(lim←ÐRn) = (lim←ÐRn)[rv∞(p)−1]. The inclusions are equalities if K is
ℵ1-saturated. In particular, lim←Ð rvn is surjective.
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Hence (K,val∞) is prodefinable — i.e. a prolimit of definable sets — in (K,val) with its
LRV-structure.
Let L be anRV-enrichment of aK-enrichment of LRV with new sorts ΣK and ΣRV resp..
We will write stillK forK ∪ΣK andRV for ⋃nRVn ∪ΣRV (and rely on the context for it
to make sense). Let T ⊇ Tvf,0,p an L-theory. Let LRV∞ be a copy of LRV (as LRV∞ will only
be used in equicharacteristic zero, we will only need its RV1, which we will denote RV∞
to avoid confusion with the originalRV1). Let L∞ be LRV∞ ∪ L∣K ∪ L∣RV ∪ {πn ∶ n ∈ N>0}
where πn is a function symbolRVn →RV∞. Let T∞ be the theory containing:

• T∞
vf,0,0, i.e. the theory of equicharacteristic zero valued fields in LRV∞ ;

• The translation of T into L∞ by replacing rvn by πn ○ rv∞.

Recall that Str(T ) is the category of substructures of models of T . See Appendix II.B for
precise definitions. The main goal of the following proposition is to show that quantifier
elimination results in equicharacteristic zero can be transferred to mixed characteristic
using result from Appendix II.B.

Proposition II.2.5 (Reduction to equicharacteristic zero):
We can define functors C∞ ∶ Str(T ) → Str(T∞) and UC∞ ∶ Str(T∞) → Str(T ) which respect
cardinality up toℵ0 and induce an equivalence of categories between Str(T ) and StrC∞,ℵ1(T∞).
Moreover,C∞ respectsℵ1-saturatedmodels andUC∞ respectsmodels and elementary submodels
and sendsRV toRV∞ ∪RV (which are closed).

Proof . Let C ⩽M ⊧ T be L-structures. Then C∞(C) has underlying sets K(C∞(C)) =
K(C), RV∞(C∞(C)) = lim←ÐRVn(C) andRV(C∞(C)) = RV(C), keeping the same struc-
ture onK andRV, defining rv∞ to be lim←Ð rvn and πn to be the canonical projectionRV∞ →
RVn. Now, if f ∶ C1 → C2 is an L-embedding, let us write f∞ ∶= lim←Ð f ∣RVn

. By def-
inition, we have πn ○ f∞ = f ∣RVn

○ πn and by immediate diagrammatic considerations,
rv∞ ○ f ∣K = f∞ ○ rv∞ and f∞ is injective. Then, let C∞(f) be f ∣K ∪ f∞ ∪ f ∣RV. As f is an
L-embedding, f ∣K respects the structure onK, f ∣RV respects the structure onRV and, as
we have already seen, C∞(f) respects rv∞ and πn. Hence C∞(f) is an L∞-embedding.
IfM ⊧ T isℵ1-saturated, it follows fromRemark (II.2.4) thatC∞(M) ⊧ T∞. Beware though
that C∞(M) is never ℵ0-saturated because if it were, we would find x ≠ y ∈RV∞(M1) such
that for all n ∈ N>0, πn(x) = πn(y), contradicting the fact thatRV∞(M1) = lim←ÐRVn(M1).
LetC be a substructure ofM . We will denote i the injection. Then C∞(i) is an embedding
of C∞(C) into C∞(M) and C∞ is indeed a functor into Str(T ).
The functor UC∞ is defined as the restriction to K ∪ RV. It is clear that if C is an L-
structure in some model of T , then UC∞ ○ C∞(C) is trivially isomorphic to C . Now if D
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is in Str(T∞) there will be three leading term structures (and hence valuations): the one
associated with the LRV∞-structure of C (which is definable), whose valuation ring is O,
the one given by rvn = πn ○ rv∞ (which is definable), whose valuation ring is O∞, and the
one given by lim←Ð rvn (which is only prodefinable), whose valuation ring is Op−1 . In general,
we have O ⊊ Op−1 ⊊ O∞, but if D = C∞(C)— or D embeds in some C∞(C)— Op−1 = O∞
and lim←Ð rvn(D) = rv∞(D). Hence, if C embeds in some C∞(M) then C∞ ○ UC∞(C) is
(naturally) isomorphic to C .
Functoriality of all the previous constructions is a (tedious but) easy verification ∎

II.3. Analytic structure
In [CL11], Cluckers and Lipshitz study valued fields with analytic structure. Let us recall
some of their results. From now on,Awill be a Noetherian ring separated and complete in
its I-adic topology for some ideal I . LetA⟨X⟩be the ring of power serieswith coefficients in
Awhose coefficients I-adically converge to 0. Let us also defineAm,n ∶= A⟨X⟩[[Y ]]where
∣X ∣ = m and ∣Y ∣ = n and A ∶= ⋃m,nAm,n. Note that A is a separated Weierstrass system
over (A, I) as in [CL11, Example 4.4.(1)]. The main example to keep in mind here will be
W[Fp

alg]⟨X⟩[[Y ]] which is a separated Weierstrass system over (W[Fp
alg], pW[Fp

alg]).

Definition II.3.1 (Q):
We will extensively use a quotient symbol Q ∶ K2 → K that is interpreted as Q(x, y) = x/y,
when y ≠ 0 andQ(x,0) = 0.

Definition II.3.2 (R):
LetR be a valuation ring ofK included inO, letN be its maximal ideal and valR its valuation.
We haveM ⊆N ⊆R ⊆ O. Also, note that 1+nM ⊆ 1+nN ⊆R⋆ and hence the valuation valR

corresponding toR factors through rvn, i.e. there is some function fn such that valR = fn ○ rvn.
We will also be using a new predicate x∣R1 y onRV1 interpreted by f1(x) ⩽ f1(y).

Note that O is the coarsening of R associated to the convex subgroup O⋆/R⋆ of K⋆/R⋆.
Note also thatR is then definable by the (quantifier free) formula, rv1(1)∣R1 rv1(x). In fact
the whole leading term structure associated to R is quantifier free interpretable in LRV ∪
{∣R1 }.

Definition II.3.3 (Fields with separated analyticA-structure):
Let LA be the language LRV+ enriched with a symbol for each element inA (we will identify the
elements in A and the corresponding symbols). For each E ∈ A⋆m,n let also Ek ∶RVm+n

k →RVk
be a new symbol and LA,Q ∶= LA ∪ {∣R1 ,Q} ∪ {Ek ∶ E ∈ A⋆m,n, m, n, k ∈ N}. The theory TA of
fields with separated analyticA-structure consists of the following:

(i) Tvf ;

(ii) Q is interpreted as in Definition (II.3.1);

(iii) ∣R1 comes from a valuation subringR ⊆ O with fraction fieldK;
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II. Analytic difference fields

(iv) Each symbol f ∈ Am,n is interpreted as a function Rm × Nn → R (the symbols will be
interpreted as 0 outsideRm ×Nn);

(v) The interpretations im,n ∶ Am,n →RR
m×Nn aremorphisms of the inductive system of rings

⋃m,nAm,n to ⋃m,nRR
m×Nn , where the inclusions are the obvious ones.

(vi) i0,0(I) ⊆N;

(vii) im,n(Xi) is the i-th coordinate function and im,n(Yj) is the (m + j)-th coordinate func-
tion;

(viii) For every E ∈ A⋆m,n, Ek is interpreted as the function induced by E onRVk (we will see in
Corollary (II.3.19) that E does induce a well defined function onRVk).

To specify the characteristic we will write TA,0,0 or TA,0,p.

Remark II.3.4:
• These axioms imply a certain number of properties that it seems reasonable to re-
quire. First (iv) implies that every constant in A = A0,0 is interpreted in R. By (v)
and (vii) polynomials in A are interpreted as polynomials. And (v) implies that any
ring equality between functions in Am,n for some m and n are also true in models
of TA. Using Weierstrass division (see Proposition (II.3.9)) one can also show that
compositional identities inA are also true in models of TA.

• We have the analytic structure over a smaller valuation ring in order to be able to
coarsen the valuation while staying in our setting of analytic structures.

From now on, we will write ⟨C⟩ ∶= ⟨C⟩LA,Q and C⟨c⟩ ∶= C⟨c⟩LA,Q for the LA,Q-structures
generated by C and Cc (cf. Definition (II.A.12)).
We could be working in a larger context here. What we really need in the proof is not that
A is a separatedWeierstrass system, as in [CL11], but the consequences of this fact, namely:
Henselianity, (uniform)Weierstrass preparation, differentiability of the new function sym-
bols and extension of the analytic structure to algebraic extensions. One could give an ax-
iomatic treatment along those lines, but to simplify the exposition, we restrict to a more
concrete case.
Also note that ifA is not countable we may now work with an uncountable language
Let us now describe all the nice properties of models of TA.

Proposition II.3.5:
LetM ⊧ TA, thenM is Henselian.

Proof . If O = R, this is proved exactly as in [LR99, Lemma 3.3]. The case R ≠ O follows as
coarsening preserves Henselianity. ∎

Remark II.3.6:
AsTA impliesTHen, by resplendent elimination of quantifiers inTHen (cf. Theorem (II.1.4)),
any LA,Q ∖ (A ∪ {Q})-formula is equivalent modulo TA to aK-quantifier free formula.
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Let us now (re)prove a well-known result from papers by Cluckers, Lipshitz and Robinson.
There are twomain reasons forwhich I reprove this result. The first reason is that although
the proof I give here is very close to the classical Denef-van den Dries proof as explained
in [LR05, Theorem4.2], the proof there only shows quantifier elimination for algebraically
closed fields with analytic structures over (Z,0). The second reason is to make sure that
O ≠R does not interfere.

Theorem II.3.7:
TA eliminatesK-quantifiers resplendently.

The proof of this theoremwill need many definitions and properties that will only be used
here and I will introduce them now.
For allm, n ∈ N, we define Jm,n to be the ideal {∑µ,ν aµ,νX

µ
Y
ν ∈ Am,n ∶ aµ,ν ∈ I} of Am,n.

Most of the time wewill only write J and rely on context for the indices. Wewill also write
X≠n for the tupleX without its n-th component.

Definition II.3.8 (Regularity):
Let f ∈ Am0,n0 ,m <m0, n < n0. We say that:

(i) f = ∑i ai(X≠m, Y )X i
m is regular inXm of degreed if f is congruent to amonic polynomial

inXm of degree dmodulo J + (Y );

(ii) f = ∑i ai(X,Y ≠n)Y i
n is regular in Yn of degree d if f is congruent to Y d

n modulo J +
(Y ≠n) + (Y d+1

n ).

If we do not want to specify the degree, we will just say that f is regular inXm (resp. Yn).

Proposition II.3.9 (Weierstrass division and preparation):
Let f, g ∈ Am0,n0 and suppose f is regular inXm (resp. in Yn) of degree d, then there exists unique
q ∈ Am,n and r ∈ A⟨X≠m⟩[[Y ]][Xm] (resp. r ∈ A⟨X⟩[[Y ≠n]][Yn]) of degree strictly lower than
d such that g = qf + r.
Moreover, there exists unique P ∈ A⟨X≠m⟩[[Y ]][Xm] (resp. P ∈ A⟨X⟩[[Y ≠n]][Yn]) regular in
Xm (resp. in Yn) of degree at most d and u ∈ A⋆m,n such that f = uP .

Proof . See [LR05, Corollary 3.3]. ∎
Wewill be orderingmulti-indices µ of the same length by lexicographic order and wewrite
∣µ∣ = ∑i µi.

Definition II.3.10 (Preregularity):
Let f = ∑µ,ν fµ,ν(X2, Y 2)X

µ

1Y
ν

1 ∈ Am1+m2,n1+n2 . We say that f is preregular in (X1, Y 1) of
degree (µ0, ν0, d) when:

(i) fµ0,ν0 = 1;

(ii) For all µ,and ν such that ∣µ∣ + ∣ν∣ ⩾ d, fµ,ν ∈ J + (Y 2);

(iii) For all ν < ν0 and for all µ, fµ,ν ∈ J + (Y 2);

(iv) For all µ > µ0, fµ,ν0 ∈ J + (Y 2).
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Remark II.3.11:
Note that if f = ∑ν fν(X)Y

ν
is preregular in (X,Y ) of degree (µ0, ν0, d) then fν0 is pre-

regular inX of degree (µ0,0, d).

Let Td(X) ∶= (X0 +Xdm−1

m−1
, . . . ,Xi +Xdm−1−i

m−1 , . . . ,Xm−2 +Xd
m−1,Xm−1) wherem = ∣X ∣. We

call Td a Weierstrass change of variables. Note that Weierstrass changes of variables are
bijective.

Proposition II.3.12:
Let f = ∑µ,ν fµ,ν(X2, Y 2)X

µ

1Y
ν

1 ∈ Am1+m2,n1+n2 . Then:

(i) If f is preregular in (X1, Y 1) of degree (µ0,0, d) then f(Td(X1),X2, Y ) is regular in
X1,m1−1.

(ii) If f is preregular in (X1, Y 1) of degree (0, ν0, d) then f(X,Td(Y 1), Y 2) is regular in
Y1,n1−1.

Proof . Let m = m1 − 1 and n = n1 − 1. First assume f is preregular in (X1, Y 1) of degree
(µ0,0, d), then

f ≡ ∑
µ<µ0,∣µ∣<d

fµ,0X
µ

1 mod J + (Y2) + (Y1).

Furthermore, Td(X1)µ = (∏m−1
i=0 (X1,i +Xdm−i

1,m )µi)X
µm
1,m is a sum of monomials whose high-

est degree monomial only contains the variable X1,m and has degree ∑mi=0 dm−iµi. It now
suffices to show that this degree is maximal when µ = µ0, but that is exactly what is shown
in the following claim.

Claim II.3.13: Let µ and ν be two multi-indices such that µ < ν and ∣µ∣ < d then
m

∑
i=0
dm−iµi <

m

∑
i=0
dm−iνi.

Proof . Let i0 be minimal such that µi < νi. Then for all j < i0, µj = νj . Moreover,

∑mi=i0+1 dm−iµi ⩽ ∑
m
i=i0+1 d

m−i(d − 1)
= dm−i0 − 1
< dm−i0 ,

hence
∑mi=0 dm−iµi < ∑i0−1i=0 dm−iµi + dm−i0µi0 + dm−i0

⩽ ∑i0−1i=0 dm−iµi + dm−i0νi0
⩽ ∑mi=0 dm−iνi

and we have proved our claim. ⧫

Let us now suppose that f is preregular in (X1, Y 1) of degree (0, ν0, d). Then

f ≡ Y ν0
1 + ∑

ν>ν0,µ
fµ,νX

µ

1Y
ν

1 mod J + (Y2).
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Now,

Td(Y 1)ν = (
n−1
∏
i=0
(Y1,i + Y dn−i

1,n )νi)Y νn
1,n ≡ Y

∑n
i=0 d

n−iνi
1,n mod J + (Y2) + (Y1≠n)

and we conclude again by Claim (II.3.13). ∎

Proposition II.3.14 (Bound on the degree of preregularity):
Let

f =∑
µ,ν

fµ,ν(X2, Y 2)X
µ

1Y
ν

1 ∈ Am1+m2,n1+n2 .

There exists d such that for any (µ, ν) with ∣µ∣ + ∣ν∣ < d, there exists gµ,ν ∈ Am1+m3,n1+n3 prereg-
ular in (X1, Y 1) of degree (µ, ν, d) and LA,Q∣K-terms uµ,ν and sµ,ν such that for allM ⊧ TA
and every a ∈R(M) and b ∈N(M), if f(X1, a, Y 1, b) is not the zero function, then there exists
(µ0, ν0) with ∣µ0∣ + ∣ν0∣ ⩽ d and

f(X1, a, Y 1, b) = fµ0,ν0(a, b)gµ0,ν0(X1, uµ0,ν0(a, b), Y 1, sµ0,ν0(a, b)).

Proof . This follows from the strong Noetherian property [CL11, Theorem4.2.15 and Re-
mark 4.2.16] as in [LR05, Corollary 3.8]. ∎
The natural setting to prove this quantifier elimination is to consider a languagewith three
sortsR,N andRV and then transport this elimination to the language LA,Q we have been
considering all along. But to avoid introducing yet another language we will prove the
result directly in LA,Q at the cost of a certain heaviness of the proof.
A K-quantifier free LA-formula φ(X,Y ,Z,R) will be said to be well-formed if X , Y , Z
areK-variables andR areRV-variables, symbols of functions fromA are never applied to
anything but variables andφ(X,Y ,Z,R) implies that⋀i valR(Xi) ⩾ 0,⋀i valR(Zi) ⩾ 0 and
⋀i valR(Yi) > 0. The (X,Y )-rank of φ is the tuple (∣X ∣, ∣Y ∣). We order ranks lexicograph-
ically.

Lemma II.3.15:
Let φ(X,Y ,Z,R) be a well-formed K-quantifier free LA-formula. Then there exists a finite
set of well-formed K-quantifier free LA-formulae φi(X i, Y i, Zi,R) of (X i, Y i)-rank strictly
smaller than the (X,Y )-rank of φ and LA,Q∣K-terms ui(Z) such that

TA ⊧ ∃X∃Y φ ⇐⇒ ⋁
i

∃X i∃Y iφi(X i, Y i, ui(Z),R).

Proof . Letm ∶= ∣X ∣ and n ∶= ∣Y ∣. As polynomials with variables inR are in fact elements of
A andA is closed under composition (for theR-variables), wemay assumes that any LA∣K-
term appearing in φ is an element of A. Let fi(X,Y ,Z) be the LA∣K-terms appearing in
φ. Splitting φ into different cases, we may assume that whenever a variable S appears as
anN-variable of an fi then φ implies that valR(S) > 0 (in the part of the disjunction where
valR(S) ⩽ 0 we replace this fi by zero).
If an Xi appears as anN variable in an fi, then φ implies that valR(Xi) > 0 and hence we
can safely rename thisXi into Yn and we obtain an equivalent formula of lower rank. If Yi
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appears as anR-variable in an fi, we can change this fi so that Yi appears as anN-variable.
Thus we may assume that the Xi only appear as R-variables and the Yi as N-variables.
Similarly adding new Zj variables, we may assume that each Zj appears only once (and in
the end we can put the old variables back in) and that φ implies that valR(Zj) > 0 if it is an
N-variable.
Applying Proposition (II.3.14) to each of the fi(X,Y ,Z) = ∑µ,ν fµ,ν(Z)X

ν
Y
µ
, we find d,

gi,µ,ν and ui,µ,ν(Z) such that gi,µ,ν is preregular in (X,Y ) of degree (µ, ν, d) and for every
M ⊧ TA and a ∈M , if fi(X,Y , a) is not the zero function, then there exists (µ, ν) such that
∣µ∣ + ∣ν∣ < d and fi(X,Y , a) = fi,µ,ν(a)gi,µ,ν(X,Y , ui,µ,ν(a)). Splitting the formula into the
different cases, we may assume that for each i, there are µi and νi such that fi(X,Y , a) =
fi,µi,νi(a)gi,µi,νi(X,Y , ui(a)) (in the case where no such µi and νi exist, thenwe can replace
fi by 0). Let us consider that every argument of a gi,µ,ν that is not in X or Y is named by
a new variable Tj (and for each of these new Tj we add to the formula valR(Tj) ⩾ 0 if Tj
is an R-argument of gi,ν,µ or val

R(Tj) > 0 if it is an N-argument). Let us write gi,µi,νi =
∑ν gi,νY

ν
. Note that gi,νi is preregular in X of degree (µi,0, d). We can split the formula

somemore (and still call itφ) so that for each i, one of the the two conditions valR(gi,νi) > 0
or valR(gi,νi) = 0 holds.
If a condition valR(gi,νi) > 0 occurs, let us add valR(Yn) > 0 ∧ gi,νi − Yn = 0 to the formula.
By Proposition (II.3.12), after a Weierstrass change of variable on the X , we may assume
that gi,νi −Yn is regular inXm−1. By Weierstrass division, we can replace every fj by a term
polynomial inXm−1 and byWeierstrass preparationwe can replace the equality gi,νi−Yn = 0
by the equality of a term polynomial in Xm−1 to 0. In the resulting formula, no f ∈ A is
ever applied to a term containing Xm−1 and we can apply Remark (II.3.6) to the formula
where every f ∈ A is replaced by a new variable Sf to obtain a K-quantifier free formula
ψ(X≠m−1, Y ,Z, T ,S,R) such that

TA ⊧ ∃Xm−1φ ⇐⇒ ψ(X≠m−1, Y ,Z, u(Z), f(X≠m−1, Y ,Z),R)
and ψ(X≠m−1, Y ,Z, T , f(X≠m−1, Y ,Z),R) is well-formed of (X,Y )-rank (m − 1, n + 1).
If for all iwe have valR(gi,νi) = 0, we add val

R(Xm) ⩾ 0∧Xm∏i gi,νi −1 = 0 to the formula.
As every gi,νi is preregular inX of degree (µi,0, d), g =Xm∏i gi,νi − 1 is preregular inX of
degree (µ,0, d′) for some µ and d′. After a Weierstrass change of variables in X , we may
assume that g and each gi,νi are in fact regular in Xm. Hence by Weierstrass preparation
we may replace g in g = 0 by a term polynomial in Xm. Furthermore, by Remark (II.1.5)
the fi appear as rvni

(fi) for some ni in the formula. Replacing fi by fµi,νigi,µi,νi , we only
have to show that rvni

(gi,µi,νi) can be replaced by a term polynomial in Yn−1 (andXn). Let
hi = Xn(∏j≠i gj,νj)gi,νi,µi = ∑ν hi,νY ν . Then hi,νi = Xn∏i gi,νi = 1 and if ν < νi, hi,ν =
Xn(∏j≠i gj,νj)gi,ν ≡ 0 mod J + (Zj ∶ Zj is an N-argument). Hence hi is preregular in
(X,Y ) of degree (0, νi, d). After aWeierstrass change of variables of the Y , wemay assume
that hi is in fact regular in Yn−1.
Note that rvni

(gi,νi,µi) = rvni
(Xn)−1∏j≠i rvni

(gi,νi)−1rvni
(hi). By Weierstrass preparation

we can replace hi by the product of a unit and pi a polynomial in Yn−1. As we have included
the trace of units on theRVn in our language, the unit is taken care of and by Weierstrass
division by g, we can replace each coefficients in the pi and each of the gi,νi by a term poly-
nomial in Xn. Note that because we allow quantification on RV, although the language
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does not contain the inverse onRV, the inverses can be taken care of by quantifying over
RV. Hence we obtain a formula where Xn and Yn−1 only occur polynomially and we can
proceed as in the previous case to eliminate them. ∎

Corollary II.3.16:
Let φ(X,Y ,Z,R) be a well-formedK-quantifier free LA-formula. Then there exists an LA,Q-
formula ψ(Z,R) such that TA ⊧ ∃X∃Y φ ⇐⇒ ψ.

Proof . This follows from Lemma (II.3.15) and an immediate induction. ∎

Proof (Theorem (II.3.7)). Resplendence comes for free (see Proposition (II.A.9)). Hence, it
suffices to show that if φ(X,Z) is a quantifier free LA,Q-formula, then there exists a quan-
tifier free LA,Q-formula ψ(Z) such that TA ⊧ ∃Xφ ⇐⇒ ψ. First, splitting the formula φ,
we can assume that for any of its variables S, φ implies either valR(S) ⩾ 0 or valR(S) < 0,
in the second case replacing S by S−1 we also have valR(S) > 0. We also add one vari-
able Xi (resp. Yi) per R-argument (resp. N-argument) of any f ∈ A applied to some non
variable term u and we add the corresponding equality Xi = u (resp. Yi = u) and the cor-
responding inequalities valR(Xi) ⩾ 0 (resp. valR(Yi) > 0) and quantify existentially over
this variable. Splitting the formula further — whether denominators in occurrences of Q
are zero or not — we can transform φ such that it contains no Q. Now ∃Xφ is equivalent
to a disjunction of formulas ∃X∃Y ψ where ψ is well-formed and we conclude by applying
Corollary (II.3.16).
This concludes the proof of Theorem (II.3.7). ∎

Let us now show that functions fromA have nice differential properties.

Definition II.3.17:
LetK be a valued field and f ∶Kn →K . We say that f is differentiable at a ∈Kn if there exists
d ∈Kn and ξ and γ ∈ val(K⋆) such that for all ε ∈ B̊ξ(a),

val(f(a + ε) − f(a) − d ⋅ ε) ⩾ 2val(ε) + γ.

There is a unique such d and we will denote it dfa. The di are usually called the derivatives
of f at a. We will denote them ∂f/∂xi(a).

Proposition II.3.18:
LetM ⊧ TA and f ∈ Am,n for somem and n. Then for all i <m+n there is gi ∈ Am,n such that
for all a ∈Km+n, f is differentiable at a and ∂f/∂xi(a) = gi(a).

Proof . If a ∉ Rm ×Nn then f is equal to 0 on B̊0(a) and the statement is trivial. If not, as
f ∈ A⟨X⟩[[Y ]], it has a (formal) Taylor development which implies differentiability of f in
K(M) at a. ∎

Corollary II.3.19:
LetM ⊧ TA, E(x) ∈ Am,n and S ⊆ K(M)m+n. If, for all x ∈ S, val(E(x)) = 0 then, for all
x ∈ S, rvn(E(x)) only depends on resn(x).
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In particular ifE ∈ A⋆m,n, then for all x ∈Rm×Nn, valR(E(x)) = 0 and hence val(E(x)) = 0
and thus rvn(E(x)) is a function of resn(x) which is a function of rvn(x). Outside of
Rm×Nn, rvn(E(x)) is constant equal to 0 and hence it is also a function of rvn(x). Hence,
as announced earlier, E does induce a function onRVk for any k.

Proof (Corollary (II.3.19)). Any element with the same resn residue as x is of the form x+nm
for some m ∈ M. By Proposition (II.3.18), E(x + nm) = E(x) + G(x) ⋅ (nm) +H(x,nm)
where G(x) ∈ R ⊆ O and val(H(x,nm)) ⩾ 2val(nm) > val(n), hence resn(E(x + nm)) =
resn(E(x)). As for all z ∈ S, val(E(z)) = 0, rvn(E(z)) = resn(E(z)) and we have the
expected result. ∎
Recall that we denote bySCR(C) the set of all quantifier freeLdiv(C)-definable sets (where
x∣y is interpreted by valR(x) ⩽ valR(y)).

Definition II.3.20 (Strong unit):
LetM ⊧ TA, C = K(⟨C⟩) and S ∈ SCR(C). We say that an LA,Q∣K(C)-term E ∶ K → K

is a strong unit on S if for any open O-ball b ∶= B̊O
val(d)(c) ⊆ S, there exists a, e ∈ C⟨cd⟩ and

F (t, z) ∈ A such that e ≠ 0 and for all x ∈ b,

val(F ((x − c)/d, a)) = 0

and
E(x) = eF ((x − c)/d, a).

It is not quite clear that being a strong unit is a first order property but ifM is taken satu-
rated enough— i.e. at least (∣A∣+ ∣C ∣)+-saturated— ifE is a strong unit on S then, by com-
pactness, there exist a tuple a(y, z) of LA,Q∣K(C)-terms, a finite number of LA,Q∣K(C)-
terms ei(y, z) and Fi[t, u] ∈ A such that for all balls b = B̊val(d)(c) ⊆ S, there is an i such
that for all x ∈ b,

E(x) = ei(c, d)Fi((x − c)/d, a(c, d))
and

Fi((x − c)/d, a(c, d)) ∈ O⋆.

Hence if E is a strong unit on S there is an LA,Q(C)-formula that says so. If E and S are
defined using some parameters y and for all y in some definable set Y , E = Ey is a strong
unit on S = Sy then we can choose this formula uniformly in y.
We will say that E is an R-strong unit on S if it verifies all the requirements of a strong
unit, where all references toO are replaced by references toR (and references toR remain
the same).

Proposition II.3.21:
If E is anR-strong unit on S then it is also a strong unit on S.

Proof . If b ⊆ S is an O-ball, then by Proposition (II.2.3) there exists d and c such that b =
B̊O
val(d)(c) ⊆ B̊RvalR(d)(c) ⊆ S. But E being a strong unit on S forR, it has the expected form

on B̊R
valR(d)(c) and hence also on B̊

O
val(d)(c). ∎
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Definition II.3.22 (Weierstrass preparation for terms):
Let M be an LA,Q-structure, C = K(⟨C⟩) ⊆ M , t ∶ K → K an LA,Q∣K(C)-term and S ∈
SCR(C). We say that t has a Weierstrass preparation on S if there exists an LA,Q∣K(C)-term
E that is a strong unit on S and a rational function R ∈ C(X) with no poles in S(K(M)

alg
)

such that for all x ∈ S, t(x) = E(x)R(x).
The structureM has a Weierstrass preparation if for any C =K(⟨C⟩) and LA,Q∣K(C)-terms t
and u ∶ R→K we have:

(i) There exists a finite number of Si ∈ SCR(C) that cover R such that t has a Weierstrass
preparation on each of the Si.

(ii) If t and u have aWeierstrass preparation on some open ball b, and for all x ∈ b, val(t(x)) ⩾
val(u(x)), then t + u also has a Weierstrass preparation on b.

Remark II.3.23:
1. An immediate consequence of Weierstrass preparation is that all LA,Q∣K(M)-terms

in one variable have only finitely many isolated zeroes. Indeed a zero of t is the zero
of one of theRi appearing in itsWeierstrass preparation. That zero is isolated ifRi is
non-zero or the corresponding Si is discrete, i.e. is a finite set. In particular, letm be
the parameters of t, then any isolated zero of t is in the algebraic closure (inACVF) of
K(⟨m⟩). As the algebraic closure inACVF coincideswith thefield theoretic algebraic
closure, any isolated zero of t is in fact also the zero of a polynomial (with coefficients
inK(⟨m⟩)).

2. As for strongunits, for each choice of term ty (with parameters y), there is anLA,Q(y)-
formula that states that (i) holds for ty inM and we can choose this formula to be
uniform in y. For each choice of terms t, u and formula defining S, there also is a
(uniform) formula saying that (ii) holds for t, u and b inM .

Proposition II.3.24:
AnyM ⊧ TA has Weierstrass preparation.

Proof . If R = O, then the proposition is shown in [CL11, Theorem 5.5.3] and (ii) — called
from now on invariance under addition — is clear from the proof given there. The one
difference in the Weierstrass preparation is that in [CL11], there is a finite set of points
algebraic over the parameters where the behavior of the term is unknown. But this finite
set can be replaced by discrete Si and as these exceptional points are common zeroes of
terms u and v such thatQ(u, v) is a subtermof t, it suffices to replaceQ(u, v) by 0 and apply
the theorem to the new term to obtain theWeierstrass preparation also on the discrete Si.
The fact that the strong units in [CL11] have the proper form on open balls follows, for
example, from the proof of [CL11, Lemma6.3.12].
IfR ≠ O, the proposition follows from theO =R case and Proposition (II.3.21). ∎

Remark II.3.25:
1. Let ty be an LA,Q∣K-term with parameters y. As shown in Remark II.3.23.2, there is

an LA,Q-formula θ that states that Weierstrass preparation holds for ty in models of
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T . More explicitly, there are finitely many choices of Ski ,E
k
i andR

k
i (with parameters

u(y)where u are LA,Q∣K-terms) such that for each y there is a k such that the Ski ,E
k
i

andRk
i work for ty. AsTA eliminatesK-quantifiers, for each k there is aK-quantifier

free LA,Q formula θk(y) that is true when the k-th choice works for t (and not the
ones before). Hence taking Si,k to be Ski ∧ θk, we could suppose that Weierstrass
preparation for terms is uniform, but we will not be using that fact.

2. The converse is also true, i.e. the proof of Proposition (II.5.3) can be adapted to show
that uniform Weierstrass preparation for terms implies K-quantifier elimination.
This is exactly the proof of quantifier elimination given in [CL11], although its au-
thors did not see at the time that they were relying on a more uniform version of
Weierstrass preparation for terms than what they had actually showed. Hence it
would be interesting to know if one could prove uniform Weierstrass preparation
for terms without usingK-quantifier elimination to recover their proof (see [CL] for
more on this subject).

Proposition II.3.26:
LetM ⊧ TA, then theLA,Q-structure ofM can be extended (uniquely) to any algebraic extension
ofK(M), so that it remains a model ofTA. Moreover, ifC ⩽M and a ∈K(M) is algebraic over
K(C), thenK(C⟨a⟩) =K(C)[a].

Proof . The case R = O is proved in [CLR06, Theorem2.18]. The same proof applies when
R ≠ O. ∎
To finish this section, let us show that under certain circumstances analytic terms have a
linear behavior.

Proposition II.3.27:
LetM ⊧ TA and suppose that K(M) is algebraically closed. Let t ∶ K → K be an LA,Q(M)-
term and b be an open ball inM with radius ξ ≠∞. Suppose that t has aWeierstrass preparation
on b— hence t is differentiable at any a ∈ b— and rv(dtx) is constant on b. Also assume that
val(t(x)) is constant or t(x) is polynomial. Then for all a, e ∈ b, rv(t(a) − t(e)) = rv(dta) ⋅
rv(a − e).
Moreover, if v(t(x)) is constant on b then val(t(a)) ⩽ val(dta) + ξ.

Proof . If val(t(x)) is constant on b, then val(t(x)) − val(t(a)) ⩾ 0 and by invariance under
addition, t(x) − t(a) has a Weierstrass preparation on b. If t(x) is polynomial this is also
clear. Hence there is Fa ∈ A (with other parameters in K(M)), Pa, Qa ∈ K(M)[X] such
that for all x ∈ b,

t(x) − t(a) = Fa (
x − a
g
) Pa(x)
Qa(x)

where val(Fa(y)) = 0 for all y ∈M and val(g) = ξ. If t is constant on b, i.e. Pa = 0, then the
proposition follows easily. If not, Pa has only finitely many zeroes. Let ai be the zeros of
Pa inK(M)— recall thatM is assumed algebraically closed — andmi be the multiplicity
of ai. Let cj be the zeroes of Qa and nj be their multiplicities. Note that every zero of
Qa(x) is outside b, hence for all j, val(cj − a) ⩽ ξ. For all e ∈ b, note that t(x) − t(a) is also
differentiable at e with differential dte and hence, if e is distinct from all ai, then:
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rv( dta
t(e) − t(a)

) = rv( dte
t(e) − t(a)

)

= rv
⎛
⎜
⎝

∂ (Fa (x−ag )) /∂xx(e)

Fa ( e−ag )
+
d(Pa)e
Pa(e)

+
d(Qa)e
Qa(e)

⎞
⎟
⎠

= rv
⎛
⎜
⎝

d(Fa) e−a
g

gFa ( e−ag )
+∑

i

mi

e − ai
+∑

j

nj
e − cj

⎞
⎟
⎠
.

For any y ∈ M, val(d(Fa)y) ⩾ 0 = val(Fa(y)), hence val(d(Fa)y/(gFa(y))) ⩾ −val(g) >
−val(e − a). We also have that for all j, val(1/(e − cj)) = −val(e − cj) > −val(e − a). Finally,
suppose that there is a unique ai0 such that val(e − ai0) is maximal, then, for all i ≠ i0,
val(1/(e−ai)) > val(1/(e−ai0)) and hence rv(mi0)rv(e−ai0)−1 = rv(dta)rv(t(e)− t(a))−1,
i.e. rv(t(e) − t(a)) = rv(dtam−1

i0
(e − ai1)).

As t(e) ≠ t(a), this immediately implies that dta ≠ 0. Let us now show that if ai ∈ b it cannot
be a multiple zero.

dtai = d(Fa((x − a)/c)/Qa(x))aiPa(ai) + P
′
a(ai)Fa((ai − a)/c)/Qa(ai) = 0

which is absurd. Hence for all ai ∈ b, mi = 1 and if we could show that there is a unique
ai ∈ b— namely a itself — we would be done.
Suppose there are more that one ai in b and let γ ∶=min{val(ai − aj) ∶ ai, aj ∈ b∧ i ≠ j}. We
may assume val(a0−a1) = γ. Let us also assume the ai have been numbered so that there is
i0 such that for all i ⩽ i0, val(ai − a0) = γ and for all i > i0, val(ai − a0) < γ. In particular, for
all i ≠ j ⩽ i0, val(ai−aj) = γ. For each i ⩽ i0, let ei be such that val(ei−ai) > γ. Then we can
apply the previous computation to ei and we get that rv(t(ei) − t(a)) = rv(dta)rv(ei − ai).
But

rv(t(ei) − t(a)) = rv(Fa (
ei − xα0+1

g
))rv(p)∏

k

(rv(ei − ak))mkrv(q)−1∏
j

(rv(ei − cj))−nj

where p and q are the dominant coefficients of respectively Pa andQa and hence

rv(dta) = rv(Fa (
ei − xα0+1

g
))rv(p)∏

k≠i
(rv(ei − ak))mkrv(q)−1∏

j

(rv(ei − cj))−nj .

As rv(Fa((ei − xα0+1)/g)), rv(ei − ak) for all k > i0 and rv(ei − cj) do not depend on i, and
for all k ⩽ i0, k ≠ i, rv(ei − ak) = rv(ai − ak), we obtain that for all i, j ⩽ i0:

∏
i≠k⩽i0

rv(ai − ak) = ∏
j≠k⩽i0

rv(aj − ak).

Replacing ai by (ai − a0)/g where val(g) = γ, we obtain the same equalities but we may
assume that for all i ⩽ i0, ai ∈ O and for all i ≠ j, ai − aj ∈ O⋆. The equations can now
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be rewritten as ∏i≠k res(ai − ak) = ∏i≠k(res(ai) − res(ak)) = c for some c ∈ R(M). Let
P = ∏k(X − res(ak)) then our equations state that P ′(res(ai)) − c = 0 for all i ⩽ i0. But
P ′ − c is a degree i0 polynomial, it cannot have i0 + 1 roots.
Finally, if val(t(x)) is constant on b, then, for all a and e ∈ b, val(t(a)) ⩽ val(t(a) − t(e)) =
val(dta) + val(a − e). As this holds for any e, we must have val(t(a)) ⩽ val(dta) + ζ . ∎

Remark II.3.28:
The conclusion of Proposition (II.3.27) seems very close to the Jacobian property (e.g. [CL11,
Definition 6.3.5]). In fact, this lemmas is very similar (both in its hypothesis and its conclu-
sion) to [CL11, Lemma6.3.9].

II.4. σ-Henselian fields
Definition II.4.1 (Analytic field with an automorphism):
Let us suppose that each Am,n is given with an automorphism of the inductive system t ↦ tσ ∶
Am,n → Am,n. An analytic fieldM with an automorphism is amodel ofTA with a distinguished
LRV ∪ {∣R1 }-automorphism σ such that for symbols t ∈ Am,n and x ∈ K(M)m+n, σ(t(x)) =
tσ(σ(x)).

Let LA,Q,σ ∶= LA,Q ∪ {σ} ∪ {σn ∶ n ∈ N}. An analytic fieldM with an automorphism τ can
bemade into anLA,Q,σ-structure by interpreting σ as τ ∣K and σn as τ ∣RVn

. Note that σ also
induces a ring automorphism on everyRn and an ordered group morphism on Γ. We will
write TA,σ for the LA,Q,σ-theory of analytic fields with an automorphism. We will most
often write σ instead of σn and σΓ as there should not be any confusion.
IfK is a field with an automorphism σ, we will write Fix(K) ∶= {x ∈ K ∶ σ(x) = x} for its
fixed field. For all x ∈ K , we will write σ(x) for the tuple x,σ(x), . . . , σn(x) where the n
should be explicit from the context.

Remark II.4.2:
In fact σ induces an action on all LA,Q∣K-terms and we have TA,σ ⊧ σ(t(x)) = tσ(σ(x)).
It follows immediately that for any LA,Q,σ ∣K-term t there is an LA,Q∣K-term u such that
TA,σ ⊧ t(x) = u(σ(x)).

Definition II.4.3 (Linearly closed difference field):
A difference field (K,σ) is called linearly closed if every equation of the form ∑ni=0 aiσi(x) = b,
where an ≠ 0, has a solution.

Definition II.4.4 (Linear approximation):
LetK be a valued field with an automorphism σ, f ∶Kn →Kn a (partial) function and d ∈Kn.

(i) Let b be a tuple of open balls inM . We say that d linearly approximates f on b if for all a
and c ∈ b we have:

val(f(c) − f(a) − d ⋅ (c − a)) >min
i
{val(di) + val(ci − ai)}.

(ii) Let b an open ball ofM . We say that d linearly approximates f at prolongations on b if
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for all a, c ∈ b we have:

val(f(σ(c)) − f(σ(a)) − d ⋅ σ(c − a)) >min
i
{val(di) + val(σi(c − a))}.

Remark II.4.5:
1. LetM ⊧ TA,σ. Suppose that σ is an isometry, i.e. σΓ = id. Let t be an LA∣K(O(M))-

term and a ∈ O(M), we can show that dta linearly approximates t on B̊γ(a) where
γ =mini{val(∂f/∂xi(a))}.

2. We allow a slight abuse of notation by saying that terms constant on a ball is lin-
early approximated (at prolongations) by the zero tuple, even though the required
inequality does not hold as∞ />∞.

Let us first show that it suffices to show linear approximation variable by variable to obtain
linear approximation for the whole function. We will write (a≠i, xi) for the tuple a where
the i-th component is replaced by xi (with a slight abuse of notations as the xi does not
appear in the right place) and a⩽i for the tuple a where the j-th components for j > i are
replaced by zeroes.

Proposition II.4.6:
Let (K,val) be a valued field, f ∶ Kn → K , d ∈ Kn and b a tuple of balls. If for all a ∈ b and
j < n, dj linearly approximates f(a≠j, xj) on bj , then d linearly approximates f on b.

Proof . Let a and e ∈ b and ε = e − a. Then, we have

val(f(a + ε) − f(a) − d ⋅ ε) = val(∑j f(a + ε⩽j) − f(a + ε⩽j−1) − djεj)
⩾ minj{f(a + ε⩽j) − f(a + ε⩽j−1) − djεj}
> minj{val(dj) + val(εj)}.

And that concludes the proof. ∎
Although linear approximation (at prolongations) looks like differentiability, one must be
aware that linear approximations are not uniquely determined, because, among other rea-
sons, we are only looking at tuples that are prolongations but also because the error term
is only linear. But when σ is an isometry, we can recover some uniqueness, and give an
alternative definition (perhaps of a more geometric flavor) of linear approximation at pro-
longations.

Definition II.4.7 (R1,γ):
Let (K,val) be a valued field and γ ∈ val(K). We define R1,γ ∶= Bγ(0)/B̊γ(0) and let res1,γ
denote the canonical projection Bγ(0) → R1,γ . Note that R1,γ can be identified (canonically)
with valRV,1

−1(γ) ∪ {0} ⊆RV1.

Proposition II.4.8:
Let (K,val) be a valued field with an isometry σ and a linearly closed residue field. Let f ∶Kn →
K , d be a linear approximation of f at prolongations on some open ball bwith radius ξ, e ∈Kn,
δ ∶= val(d) and η ∶= val(e). The following are equivalent:
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(i) e is a linear approximation of f at prolongations on b;

(ii) val(d − e) >min{δ, η};

(iii) η = δ and res1,δ(d) = res1,δ(e).

Proof .

(i)⇒(ii) Suppose d ≠ e. Let ε be such that val(ε) > ξ and let g ∈ K be such that val(g) =
val(d − e). Then P (σ(x)) ∶= ∑i(di − ei)σi(ε)g−1ε−1σi(x) is a linear difference poly-
nomial with a non zero residue. As K is residually linearly closed, the residue of P
cannot always be zero and hence there exists c ∈ O⋆ such that val(P (σ(c))) = 0, i.e.
val((d − e) ⋅ σ(εc)) = val(g) + val(ε). But then, for all a ∈ b:

val(g) + val(ε)
= val((d − e) ⋅ σ(εc))
= val(f(σ(a + εc)) − f(σ(a)) − e ⋅ σ(εb))

−f(σ(a + εc)) + f(σ(a)) + d ⋅ σ(εb)
> val(ε) +min{δ, η}

i.e. val(d − e) >min{δ, η}.

(ii)⇒(iii) First, suppose that δ < η, then if val(di) is minimal, val(di) = δ < η ⩽ val(ei) and
hence val(di − ei) = val(di) = δ = min{δ, η} contradicting our previous inequality.
Hence wemust have, by symmetry, δ = η. Now inequality (ii) can be rewritten val(d−
e) > δ which exactly means that res1,δ(d) = res1,δ(e).

(iii)⇒(i) For all ε such that val(ε) > ξ, as val(d − e) > δ, we have:

val(f(σ(a + ε)) − f(σ(a)) − e ⋅ σ(ε))
= val(f(σ(a + ε)) − f(σ(a)) − d ⋅ σ(ε) + (d − e) ⋅ σ(ε))
> δ + val(ε)
= η + val(ε).

This concludes the proof. ∎

∎
Remark II.4.9:

1. In the isometry case, linear approximations describe the trace of a given function on
RV1. More precisely, a function f is linearly approximated at prolongations on some
open ball b with radius ξ if and only if there exists δ ∈ val(K) and d ∈ R1,δ(K) such
that for all γ > ξ t and a ∈ b he function res1,γ(ε) ↦ res1,γ+δ(f(σ(a + ε)) − f(σ(a))) ∶
R1,γ →R1,γ+δ is well defined and coincides with the function x↦ d ⋅σ(x) (where the
sum is given by +1,1).

2. If we are working in a valued field with a linearly closed residue field, it follows from
Proposition (II.4.8), that δ and d from (i) are actually uniquely defined.
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Definition II.4.10 (σ-Henselianity):
LetM ⊧ TA,σ, t be a LA,Q∣K(M), d ∈K(M), a ∈K(M) and ξ ∈ Γ(M). Say that (t, a, d, ξ) is
in σ-Hensel configuration if d linearly approximates f at prolongations on B̊ξ(a) and:

val(t(σ(a))) >min
i
{val(di) + σi(ξ)}.

We say that M is σ-Henselian if for all (t, a, d, ξ) in σ-Hensel configuration, there exists c ∈
K(M) such that t(σ(c)) = 0 and val(c − a) ⩾maxi{val(σ−i(t(σ(a))d−1i ))}.

Remark II.4.11:
By Remark II.4.5.1, when σ is an isometry, this form of the σ-Hensel lemma is equivalent to
classical forms for difference polynomials — i.e without any analytic structure — as stated
in [Sca00; Sca03; AD10] for example. In particular, it implies Hensel’s lemma (for polyno-
mials).

Definition II.4.12 (Pseudo-convergence):
LetM ⊧ TA,σ .

(i) A sequence (xα)α∈β of (distinct) points inK(M) indexed by an ordinal is said to be pseudo-
convergent if for all α, γ, δ ∈ β such that α < γ < δ we have val(xα − xδ) < val(xγ − xδ);

(ii) We say that a ∈K(M) is a pseudo-limit of the pseudo-convergent sequence (xα)— and
we write xα↝a— if for all α < γ < β, val(xα − a) < val(xγ − a);

(iii) A pseudo-convergent sequence of elements of C ⊆ K(M) is said to be maximal if it has
no pseudo-limit in C;

(iv) We say that a sequence (xα) of tuples pseudo-solves an LA,Q∣K(M)-term t if t = 0 or for
α≫ 0— i.e. for α in a final segment — t(xα)↝0.

(v) We say that a sequence (xα) σ-pseudo-solves an LA,Q∣K(M)-term t if (σ(xα)) pseudo-
solves t.

(vi) We say thatM is maximally complete if any pseudo-convergent sequence inM (indexed
by a limit ordinal) has a pseudo-limit inM ;

(vii) We say M is σ-algebraically maximally complete if any pseudo-sequence (xα) from M
(indexed by a limit ordinal) σ-pseudo-solving an LA,Q∣K(M)-term t ≠ 0 has a pseudo-
limit inM .

Remark II.4.13:
1. Let (xα) be a pseudo-convergent sequence, then for all α < β, val(xα−xβ) = val(xα−
xα+1) =∶ γα. The γα form a strictly increasing sequence. If xα↝a then val(a−xα) = γα
and if b is such that for all i, val(b − a) > γα then we also have xα↝b.

2. As, in any valued field, balls with a non infinite radius always have more than one
point, if (xα) is maximal pseudo-convergent sequence then either γα is cofinal in
val(K⋆) and (xα) is indexed by the successor of a limit ordinal or (xα) is indexed by
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a limit ordinal.

Proposition II.4.14:
IfM isσ-algebraicallymaximally complete andR1(M) is linearly closed thenM isσ-Henselian.

Proof . First an easy claim:

Claim II.4.15: Let (t, a, d, ξ) be in σ-Hensel configuration, then

max
i
{val(σ−i(t(σ(a))d−1i ))} > ξ.

Proof . As (t, a, d, ξ) is in σ-Hensel configuration, there exists an i0 such that val(t(σ(a))) >
val(di0) + σi0(ξ) and hence val(σ−i0(t(σ(a))d−1i0 )) = σ−i0(val(t(σ(a))) − val(di0)) > ξ. ⧫

And now, two lemmas about finding better approximations to zeros of terms.

Lemma II.4.16:
Let (t, a, d, ξ) be in σ-Hensel configuration such that t(σ(a)) ≠ 0. Then there exists c such that
val(c − a) =maxi{val(σ−i(t(σ(a))d−1i ))}, val(t(σ(c))) > val(t(σ(a))) and (t, c, d, ξ) is also
in σ-Hensel configuration.

Proof . Pick any ε ∈ K(M) with val(ε) = maxi{val(σ−i(t(σ(a))d−1i ))}. By Claim (II.4.15),
val(ε) > ξ. For all x ∈ O, let R(a, ε, x) ∶= t(σ(a) + σ(εx)) − t(σ(a)) − d ⋅ σ(εx) and

u(x) ∶= t(σ(a) + σ(εx))
t(σ(a))

= 1 +∑
i

di(σ(a))σi(ε)
t(σ(a))

σi(x) + R(a, ε, x)
t(σ(a))

.

For all i,

val( diσ
i(ε)

t(σ(a))
) ⩾ val(di) + val(t(a)) − val(di) − val(t(a)) = 0

and for any i0 such that val(ε) = val(σ−i0(t(σ(a))d−1i0 )) it is an equality. As d linearly ap-
proximates t at prolongations on B̊ξ(a), we also have

val(R(a, ε, x)) >min
i
{val(σi(ε)) + val(di)} ⩾ val(t(σ(a)))

and res1(u(x)) = 0 is a non trivial linear equation in the residue field. AsR1(M) is linearly
closed, this equation has a solution res1(e). Note that we must have res1(e) ≠ 0.
Let c = a+ εe. It is clear that val(c− a) = val(ε) =maxi{val(σ−i(t(σ(a))d−1i ))} > ξ and that
val(t(σ(c))) = val(t(σ(a))u(e)) > val(t(σ(a))) >mini{val(di) + σi(ξ)}. ⧫

Lemma II.4.17:
Let (xα) be a pseudo-convergent sequence (indexed by a limit ordinal). Assume that for all α,
(t, xα, d, ξ) is in σ-Hensel configuration, val(xα+1 − xα) ⩾maxi{val(σ−i(t(σ(xα))d−1i ))} and
for all β > α, val(t(σ(xβ))) > val(t(σ(xα))). If c is such that xα↝c, then (t, c, d, ξ) is in
σ-Hensel configuration and for all α, val(t(σ(c))) > val(t(σ(xα))).
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Proof . First of all, as (t, x0, d, ξ) is in σ-Hensel configuration, d continuously linearly ap-
proximates t at prolongations on B̊ξ(x0). By Claim (II.4.15), val(c − x0) = val(x1 − x0) > ξ.
Moreover, let R(x, c) ∶= t(σ(c)) − t(σ(x)) − d ⋅ σ(c − x). Then for all α,

val(t(σ(c))) = val(t(σ(xα)) + d(σ(xα)) ⋅ σ(c − xα) +R(xα, c))
⩾ mini{val(t(σ(xα))),val(di) + val(σi(c − xα))}
⩾ val(t(σ(xα))).

Finally, as val(t(σ(c))) ⩾ val(t(σ(x0))) > mini{val(di) + σi(ξ)}, (t, c, d, ξ) is also in σ-
Hensel configuration. ⧫
Let (t, a, d, ξ) be inσ-Hensel configuration. If t = 0, we are done, if not let (xα)α∈β be amax-
imal sequence (with respect to the length) such that x0 = a and for all α, (t, xα, d, ξ) is in
σ-Hensel configuration, val(xα+1 − xα) ⩾ maxi{val(σ−i(t(σ(xα))d−1i ))} and t(σ(xα))↝0.
If α is a limit ordinal, as M is σ-algebraically maximally complete, and t ≠ 0, (xα) has a
pseudo-limit xβ . By Lemma (II.4.17), the sequence (xα)α∈β+1 still meets the same require-
ments, contradicting the maximality of (xα)α∈β . It follows that β = γ + 1. If t(σ(xγ)) ≠ 0,
then applying Lemma (II.4.16), to (t, xγ), we obtain an element xβ such that (xα)α∈β+1 still
meets the same requirements, contradiction the maximality of (xα)α∈β once again. Hence
we must have that t(σ(xγ)) = 0 and c = xγ is a solution to the σ-Hensel configuration
(t, a, d, ξ). ∎

Definition II.4.18 (TA,σ−Hen):
LetTA,σ−Hen be theLA,Q,σ-theory of analytic fields with an automorphism that are σ-Henselian
and have a non-trivial valuation group. To specify the characteristic we will write TA,σ−Hen,0,0

or TA,σ−Hen,0,p.

Proposition II.4.19:
LetA = ⋃X,Y W[Fp

alg]⟨X⟩[[Y ]] and letWp be theLA,Q-structure with base setW(Fp
alg), the

obvious valued field structure and analytic structure and taking σ to be the lifting toW(Fp
alg)

of the Frobenius automorphism on Fp
alg
. ThenWp ⊧ TA,σ−Hen,0,p.

Proof . It is clear that Wp ⊧ TA. As W(Fp
alg) is complete with a discrete valuation it is

maximally complete and σ-Henselianity follows from Proposition (II.4.14). ∎
In the definition of TA,σ−Hen, we have not required the residue field to be linearly closed,
since it comes for free:

Proposition II.4.20:
LetM ⊧ TA,σ−Hen, thenK(M) is linearly closed.

Proof . Let P (x) = ∑i aixi = c be a non zero linear equation. Let ε ∈ K(M) be such that
val(ε) < val(c)−val(a0). ThenP (εx) = ∑aiσi(ε)σi(x) andmini{val(aiσi(ε))} ⩽ val(a0)+
val(ε) < val(c). Finding a solution to P (εx) = c being the same as finding one for P (x) = c,
we may assume that mini{val(ai)} < c = val(P (0) − c). But, as P is linear, a linearly
approximates P at prolongations onM and (P − c,0, a,0) is in σ-Hensel configuration. As
M is σ-Henselian, there exists e ∈K(M) such that P (e) = c. ∎
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To conclude this section, let us show that TA,σ−Hen behaves well with respect to coarsen-
ing. Let L be an RV-enrichment of LA,Q,σ and T be an L-theory containing TA,σ−Hen,0,p

Morleyized on RV. By Section II.2 we can find an RV∞-enrichment L∞ of LRV∞ — the
∞ in LRV∞ is there to recall that the leading term structure is given by RV∞ and not the
RVn, although, to add to the general confusion, the RVn are indeed present in the en-
richment — an L∞-theory T∞

1 ⊇ T∞
vf,0,0 and two functors C∞1 ∶ Str(T ) → Str(T∞

1 ) and
UC∞1 ∶ Str(T∞

1 )→ Str(T ). For any C in Str(T ) we enrich C∞1 (C) by defining:

• ⋅∞ and 1∞ to be the multiplicative group structure ofRV∞;

• 0∞ to be (0n)n∈N>0 ;

• x∣∞y to hold if for some n, π1(x)∣1rv1(p−n)π1(y) holds;

• x+∞,∞y to be (πmn(x)+mn,mπmn(y))m∈N>0 if there exists n ∈N>0 such that πn(x)+n,1
πn(y) ≠ 01 and 0∞ otherwise;

• x∣R∞y to hold if π1(x)∣R1 π1(y) holds;

• E∞(x) to be (Ek(x))k∈N>0 for all E in someA⋆m,n;

• σ∞ to be (σn(x))n∈N>0 ;

and we obtain a new functor C∞2 ∶ Str(T )→ Str(T∞
2)whereT∞

2 ∶= T∞
1 ∪T∞

A,σ,0,0. One can
check that we still have an equivalence of categories induced by C∞2 and UC∞1 and that C∞2
also respects cardinality up to ℵ0 and ℵ1-saturated models. Finally, by Corollary (II.B.4),
as T is Morleyized on RV, we obtain functors C∞3 ∶ Str(T ) → Str(T (RV∞∪RV)−Mor

2 ) and
UC∞3 ∶ Str(T (RV∞∪RV)−Mor

2 ) → Str(T ). Note that in this case, because we only enrich by
predicates, the full subcategory F of Str(T ) is not actually needed.
Let us now show that for allM ⊧ T , C∞3 (M) ⊧ T∞

A,σ−Hen,0,0.

Proposition II.4.21:
LetM ⊧ T and t ∶Kn →K be an LA,Q∣K(M)-term, d ∈K(M) and b an openO∞-ball. Then
if, in C∞3 (M), d linearly approximates t at prolongations on b, then for any open O-ball b′ ⊆ b,
d also linearly approximates t at prolongations on b′ inM .

Proof . For all a and e ∈ b′ ⊆ b, we have val∞(t(σ(a))−t(σ(e))−d⋅σ(a−e)) >mini{val∞(di)+
val∞(σi(a− e))}. Let i0 be such that val∞(di0)+val∞(σi0(a− e)) is minimal, then we have
val(t(σ(a))−t(σ(e))−d⋅σ(a−e)) > val(di0)+val(σi0(a−e)) ⩾mini{val(di)+val(σi(a−e))}.
∎
Proposition II.4.22:
LetM ⊧ T , then C∞3 (M) is σ-Henselian (for the valuation val∞).

Proof . Let (t, a, d, ξ) be in σ-Hensel configuration inC∞3 (M) and i0 be such that val∞(di0)+
σi0(ξ) is minimal. As (t, a, d, ξ) be in σ-Hensel configuration, val(t(σ(a))) > val∞(di0) +
σi0(ξ). Let r = σ−i0(t(σ(a))d−1i0 p−1). Then

val(t(σ(a))) > val(di0) + val(σi0(r)) ⩾min
i
{val(di) + val(σi(r))}.
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Moreover,
val∞(σi0(r)) = val∞(t(a)) − val∞(di0) > σi0(ξ),

i.e. val∞(r) > ξ. It follows that B̊Oval(r)(a) ⊆ B̊
O∞
ξ (a) and hence, by Proposition (II.4.21),

d linearly approximates t at prolongations on B̊O
val(r)(a) and (t, a, d,val(r)) is in σ-Hensel

configuration.
It follows that we can find c ∈ K(M) such that val(c − a) ⩾ maxi{val(σ−i(t(σ(a))d−1i ))}
and t(σ(c)) = 0. But then we have that for all i, val∞(c − a) ⩾ val∞(σ−i(t(σ(a))d−1i )). ∎

It follows from those two propositions that we can further enrich T (RV∞∪RV)−Mor
2 so that it

is anRV-enrichment of T∞
A,σ−Hen,0,0. Hence we have proved:

Proposition II.4.23:
Let L be an RV-enrichment of LA,Q,σ and T be an L-theory containing TA,σ−Hen,0,p Morley-
ized onRV. There exists anRV∞-enrichmentL∞ ofL∞A,Q,σ —with new sortsRV = ⋃nRVn—
and an L∞-theory T∞ ⊇ T∞

A,σ−Hen,0,0 Morleyized onRV∞ ∪RV, and functors C∞ ∶ Str(T ) →
Str(T∞) and UC∞ ∶ Str(T∞)→ Str(T ) that respect cardinality up to ℵ0 and induce an equiv-
alence of categories between Str(T ) and StrC∞,(∣L∣ℵ1)+(T∞) and such that UC∞ respects models
and elementary submodels and sends RV∞ ∪RV to RV and C∞ respects (∣A∣ℵ1)+-saturated
models.

Similarly, we can prove the existence of these functors in the analytic and in the algebraic
setting, and these functors are actually induced by those in the analytic difference case.

Proposition II.4.24:
Let Lan be any RV-extension of LA,Q contained in L and Lalg be any RV-extension of LRV+

contained in Lan. Define Tan ∶= T ∣Lan
, and Talg ∶= T ∣Lalg

. Assume that both Tan and Talg are
Morleyized onRV.

(i) There exists anRV∞-enrichmentL∞an ofL∞A,Q and anL∞an-theoryT∞
an ⊇ T∞

A,0,0 Morleyized
onRV∞∪RV, and functors C∞an ∶ Str(Tan)→ Str(T∞

an) andUC∞an ∶ Str(Tan)→ Str(Tan)
with the same properties as in Proposition (II.4.23).

Moreover C∞an( ⋅ ∣Lan
) = C∞(⋅)∣L∞an and similarly for UC∞an.

(ii) There exists anRV∞-enrichment L∞alg of LRV∞+ and an L∞alg-theory T∞
alg ⊇ T∞

Hen,0,0 Mor-
leyized onRV∞∪RV, and functors C∞alg ∶ Str(Talg)→ Str(T∞

alg) andUC
∞
alg ∶ Str(T∞

alg)→
Str(Talg) with the same properties as in Proposition (II.4.23).

Moreover C∞alg( ⋅ ∣Lalg
) = C∞an( ⋅ ∣Lan

)∣L∞
alg

= C∞(⋅)∣L∞
alg

and similarly for UC∞alg.

II.5. Reduction to the algebraic case
In the following section, letLan be anRV-enrichment ofLA,Q and let Tan be anLan-theory
containing TA, Morleyized on RV. We define Lalg ∶= Lan ∖ (A ∪ {Q}) — it is an RV-
enrichment of LRV+ — and Talg = Tan∣Lalg

. As previously, if there are new sorts ΣRV, we
writeRV forRV ∪ΣRV.
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Remark II.5.1:
Let M1 and M2 ⊧ Tan, Ci ⊆ Mi and f ∶ C1 → C2 an Lan-isomorphism. Then f extends
uniquely to ⟨C1⟩. AsLan containsQ,K(⟨C1⟩) is a field. Hence any partialLan-isomorphism
with domain C has a unique extension to Frac(K(C)).

Although it is well-known, the algebraic case (i.e. inLalg) is a bit more complicated because
we do not haveQ in Lalg.

Proposition II.5.2:
LetM1 andM2 ⊧ Talg be two Lalg-structures, Ci ⊆Mi and f ∶ C1 → C2 an LRV+-isomorphism.
If rv(Frac(K(C1))) ⊆RV(C1), then f has a unique extension to Frac(K(C1)).

Proof . Let f ′∣K be the unique extension of f ∣K to Frac(K(C1)). It is a ring morphism. By
Lemma (II.A.13), it suffices to show that f ′∣K∪f ∣RV respects the rvn. As rv(Frac(K(C1))) ⊆
RV(C1), f ∣RV commutes with the inverse on any rvn and hence

rvn(f ′(a/b)) = rvn(f(a)f(b)−1) = f(rvn(a))f(rvn(b)−1) = f(rvn(a/b)).

This concludes the proof. ∎
In the following proposition we will be working in equicharacteristic zero, hence, to avoid
needlessly cluttered notations, we will writeR, res,RV and rv forR1, res1,RV1 and rv1.

Proposition II.5.3 (Reduction to the algebraic case):
Suppose Tan ⊇ TA,0,0. LetM1 andM2 ⊧ Tan, f ∶ M1 → M2 a partial Lan-isomorphism with
domain C1 ⩽M1 and a1 ∈ M1. If f can be extended to an Lalg-isomorphism f ′ whose domain
contains a1, then f can be extended to an Lan-isomorphism whose domain contains a1.

Proof . First, because Talg∣RV = Tan∣RV, Talg is also Morleyized on RV. By Lemma (II.A.11),
we can extend f ′ onRV and wemay assume thatRV(C1⟨a1⟩) ⊆RV(C1). Moreover, as f ′

respects ∣R1 , f ′ respects R and by Remark (II.5.1) and Proposition (II.5.2), replacing, if need
be, a1 by its inverse, we can assume that a1 ∈R.
Let a2 = f ′(a1) and let us define f ′′ on K(⟨C1⟩a1) by f ′′(t(a1)) = tf(a2) — clearly co-
inciding with f ′ on K(C1)[a1]. This is well defined. Indeed, it suffices to check that if
t(a1) = 0 then tf(a2) = 0. But, by Weierstrass preparation, there exists S ∈ SCR(C1), an
LA,Q∣K(C1) term E (a strong unit on S) and P , Q ∈K(C1)[X] such that Q does not have

any zero in S(K(C1)
alg
), a1 ∈ S and for all x ∈ S, t(x) = E(x)P (x)/Q(x). As t(a1) = 0 and

E(x) ≠ 0, we must have P (a1) = 0. As f ′ is a partial Lalg-isomorphism, we have a2 ∈ Sf
and P f(a2) = 0. As f is an Lan-isomorphism, by Theorem (II.3.7) it is in fact an elementary
partial Lan-isomorphism and we also have that for all x ∈ Sf , tf(x) = Ef(x)P f(x)/Qf(x)
and Ef is a strong unit on Sf . Hence, tf(a2) = Ef(a2)P f(a2)/Qf(a2) = 0.
Let us show that f ′′ ∪ f ∣RV is an LA,Q-isomorphism. By Lemma (II.A.13), it suffices to
show that for all LA,Q∣K(C1)-terms t, rv(tf(a2)) = f(rv(t(a1))). By Remark (II.1.5), S is
defined by a formula of the form θ(rv(R(x))) where θ is an Lalg∣RV-formula and the Ri

are polynomials inK(C1)[X]. By [CL07, proof of Theorem7.5], there exists an Lalg(C1)-
definable function g ∶ K → ∏iRVni

such that every fiber is an open O-ball and for any
polynomial T equal to P , Q or one of the Ri, rv(T (x)) is constant on any fiber of g. It
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follows immediately that every fiber of g is either in S or in its complement. Let α =
g(a1) and β = rv(t(a1)). As E is a strong unit, on g−1(α) = B̊val(d)(c) it is of the form
eF ((x − c)/d) with val(F ((x − c)/d)) = 0. As res((x − c)/d) = 0 on all of g−1(α), by Corol-
lary (II.3.19), rv(E(x)) is constant on g−1(α), and hence rv(t(x)) is constant on g−1(α). As
f is a partial elementary Lan-isomorphism and α and β ∈ RV(C1), the LA,Q(C1)-formula
∀x, g(x) = α ⇒ rv(t(x)) = β is preserved by f . And as f ′ is a partial elementary Lalg-
isomorphism (by Theorem (II.1.4)) and g is Lalg(C1)-definable, gf(a2) = f(α) and we have
that rv(tf(a2)) = f(β) = f(rv(t(a1))). ∎

Corollary II.5.4:
The previous proposition holds without any assumption on residue characteristic.

Proof . Recall Proposition (II.4.24) and assumeM1 andM2 have mixed characteristic and f
and f ′ are as in Proposition (II.5.3).
Then C∞alg(f ′) is an extension of C∞an(f) whose domain contains a1. Applying Proposi-
tion (II.5.3), we obtain f ′′ an L∞an-isomorphism extending C∞an(f) whose domain contains
a1 and we conclude by applying UC∞an. ∎

Corollary II.5.5:
Letφ(x, y, r) be anyLan-formula where x and y areK-variables and r areRV∪ΣRV-variables,
then there exists a K-quantifier free Lalg-formula ψ(x, z, r) and Lan∣K-terms u(y) such that
Tan ⊧ φ(x, y, r) ⇐⇒ ψ(x,u(y), r).

Proof . This follows from the previous corollary by a (classic) compactness argument. For
the sake of completeness (and also because the uniformization part of that argument may
be less usual), let us state it. Consider the set of formulae

Tan ∪ {φ(x1, y, r),¬φ(x2, y, r)}∪
{ψ(x1, u(y), r) ⇐⇒ ψ(x2, u(y), r) ∶ ψ is a Lalg-formula and the u are LA,Q∣K-terms}.

By Corollary (II.5.4), this set of formulas cannot be consistent. Hence there is a finite set
of Lalg-formulae (ψi)0⩽i<n — that we can takeK-quantifier free by Theorem (II.1.4)— and
LA,Q∣K-terms ui such that:

Tan ⊧ ∀yx1x2(⋀
i

ψi(x1, ui(y), r) ⇐⇒ ψi(x2, ui(y), r))⇒ (φ(x1, y, r) ⇐⇒ φ(x2, y, r)).

For all ε ∈ 2n, let θε ∶= ⋀ψi(x,ui(y), r)ε(i) where ψ1 = ψ and ψ0 = ¬ψ. For fixed y and r, the
θε(x, y, y) form a partition ofK compatible with φ(x, y, r). For all η ∈ 22n , let χη(y, r) be
aK-quantifier free Lan-formula equivalent to ⋀ε(∃xθε(x, y, r) ∧ φ(x, y, r))η(ε). Note that
for any choice of y and r there is exactly one η such that χη(y, r) holds. It is now quite easy
to show that φ(x, y, r) ⇐⇒ ⋁η(χη(y, r) ∧⋁ε∈η θε(x, y, r)). ∎

Remark II.5.6:
1. This corollary is a stronger version of [DHM99, TheoremB]. Not only is it resplen-

dent but it also has better control of the parameters (essentially due to a better control
of the parameters in Weierstrass preparation in [CL11]). In particular, it is uniform.
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2. Let LacA,Q be Lac enriched with symbols for all the functions from A, a symbol Q ∶
K2 →K , for all units E ∈ A a symbol Ek ∶Rk →Rk, a symbol ∣R ⊆ (Γ∞)2. Then, any
LacA,Q-formula (or even formulae in anR ∪ Γ-enrichment of LacA,Q) can be translated
into anRV-enrichment of LA,Q (see Proposition (II.1.8)), and hence Corollary (II.5.5)
also holds (resplendently) for the LacA,Q-theoryTac

A,Hen of Henselian valued fields with
separated A-structure and angular components. Note that some of the symbols we
should have added have disappeared, like the trace of Ek on Γ∞ which is constant
equal to 0. Similarly the Ek and ∣R1 are missing one of their arguments — the Γ∞-
argument in the case of Ek and theRn-argument for ∣R — but they depend trivially
on it.

II.6. K-quantifier elimination in TA,σ−Hen

Until Section II.6.3, wewill be working in equicharacteristic zero, hence, wewill once again
write RV and rv for RV1 and rv1. We will also be considering that variables are indexed
by N and we will sometime identify a variable and its index. But hopefully no confusion
should arise.
LetM ⊧ TA and C ⩽M .

Definition II.6.1 (Order-degree):
We say that an LA,Q∣K(C)-term t = ∑di=0 ti(x≠m)xim is polynomial of order (at most) d in xm.
If t is not of this form, we take the convention that t has infinite degree in xm. Let T (C) be the
set of tuples (t, I,m, d) where I is a finite set of variables, m ∈ I , d ∈ N ∪ {∞} and t ≠ 0 is an
LA,Q∣K(C)-term whose variables are contained in I and which is polynomial in xm of degree at
most d. Let T0(C) = T (C) ∪ {0}.
We (partially) order T (C) by saying that (u, J, n, e) has lower order-degree than (t, I,m, d) if
one of the following holds:

(i) max(J) <max(I);

(ii) max(J) =max(I) and J ⊊ I ;

(iii) J = I and n >m;

(iv) J = I and n =m and e < d.

We extend this order to T0(C) by making the zero term greater than any element of T (C).

Remark II.6.2:
1. This is a well-founded (partial) order.

2. In condition (iii), the order is inverse of what one would expect but that is because
we want minimal terms to be polynomial in the last variable.

3. We will also write J < I to mean that conditions (i) or (ii) hold.
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When a is indexed by some set I ⊆N and n ∈ I , we will denote by a≠n the tuple amissing its
n-th component and (a≠n, xn) for the tuple awhere the n-th component is replaced by xn.
We define σ≠n(a) and (σ≠n(a), xn) similarly and let σ⩽n(a) ∶= (a, σ(a), . . . , σn(a)). Finally,
we will write ⟨C⟩σ ∶= ⟨C⟩LA,Q,σ

and C⟨c⟩σ ∶= C⟨c⟩LA,Q,σ
(cf. Definition (II.A.12)).

II.6.1. Residual and ramified extensions
Definition II.6.3 (Regularity):
Let t(x) = ∑i ti(x≠m)xim be an LA,Q(M) term and a ∈K(M). We say that t is regular at a in
xm if

val(t(a)) =min
i
{val(ti(a≠m)) + ival(am)}.

By convention the zero term is never regular.

First, we state a proposition which has nothing to do with automorphisms:

Proposition II.6.4:
Let α ∈ rv(R(M)), a ∈ rv−1(α) and (t, I,m, d) ∈ T0(C) be of minimal order-degree such
that t(x) is polynomial in xm and t is not regular at a. Then for all (u, J, n, e) < (t, I,m, d),
rv(u(x)) is constant on rv−1(α). Moreover for all a≠n ∈ rv−1(α≠n), u(a≠n, xn) has Weierstrass
division on rv−1(αn).

Proof . First, we may assume thatK(M)
alg
=K(M) (see Proposition (II.3.26)). We work by

induction on J . The proposition is trivial for constant terms. Now, assume the proposition
is true for any (v,K, p, f) with K < J . Let us first assume that u is polynomial in xn.
Then, u = ∑i ui(x≠n)xin must be regular at a and hence val(u(a)) = mini{val(ui(a≠n)) +
ival(an)} and hence rv(u(a)) = ∑i rv(ui(a≠n))αin ≠ 0. For any e ∈ rv−1(α) and any i,
rv(ui(e≠n))rv(en)i = rv(ui(a≠n))αin. Moreover, if ∑i rv(ci) ≠ 0 then rv(∑i ci) = ∑i rv(ci)
hence we must also have rv(u(e)) = ∑i rv(ui(a≠n))αin ≠ 0. As u is polynomial in xn, it has
a Weierstrass preparation. Hence for polynomial u, the proposition is proved.
Suppose now that u is of infinite degree in xn and hence that all terms (v, J, n, e) with
e ≠ ∞ are smaller than (t, I,m, d) (and thus have been taken care of in the previous para-
graph). By Weierstrass preparation, there exists S ∈ SCR(C⟨a≠n⟩) such that u(a≠n, xn) has
a Weierstrass preparation on S and an ∈ S. But then either rv−1(αn) ⊆ S or rv−1(αn)
contains a K(C⟨a≠n⟩)

alg
-ball and hence a point c ∈ K(C⟨a≠n⟩)

alg
. Let P = ∑pi(a≠n)X i ∈

K(C⟨a≠n⟩)[X] be its minimal polynomial, then for all e ∈ rv−1(αn), rv(P (e)) = 0 — i.e.
P (e) = 0—but that is absurd. Hence t has aWeierstrass preparation on rv−1(αn) and there
exists F (x, z) ∈ A, c ∈K(C⟨a⟩), P andQ ∈K(C⟨a≠n⟩)[X] such that for all xn ∈ rv−1(αn):

u(a≠n, xn) = F (
xn − an
an

, c) P (xn)
Q(xn)

and val(F ((xn − an)/an, c)) = 0. But rv(P (xn)) and rv(Q(xn)) do not depend on xn and
rv(F ((xn−an)/an, c)) only depends on res((xn−an)/an) = 0 (seeCorollary (II.3.19)). Hence
β ∶= rv(u(a≠n, xn)) does not depend on xn ∈ rv−1(αn). The LA,Q-formula

∀xn rv(xn) = αn⇒ rv(u(a≠n, xn)) = β
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is in the LA,Q-type of a≠n over Cαnβ. By induction (and Corollary (II.1.6)), all tuples a≠n ∈
rv−1(α≠n) have the same LA,Q(Cαβ)-type and rv(u(a)) = β for all a ∈ rv−1(α). ∎
Let us now prove the first embedding theorem we will need for elimination of quantifiers.
LetM1 andM2 be models of TA,σ−Hen, Ci ⩽Mi and f ∶ C1 → C2 an LRV−Mor

A,Q,σ -isomorphism.

Proposition II.6.5:
Let α ∈ rv(R(M1)) ∩RV(C1), a ∈ rv−1(α) and (t, I,m, d) ∈ T0(C) be polynomial in xm for
some m ∈ N. Assume that (t, I,m, d) is of minimal order-degree such that t is not regular at
σ(a). Then:

(i) There exists a1 ∈ R(M1) and a2 ∈ R(M2) such that t(σ(a1)) = 0 = tf(σ(a2)), rv(a1) =
α and rv(a2) = f(α).

(ii) For any such ai, f can be extended to an LRV−Mor
A,Q,σ -isomorphism sending a1 to a2.

Proof . Let t = ∑di=0 ti(x≠m)xim. By minimality of t, we cannot have td(σ≠m(a)) = 0. Dividing
by td, we may assume that td = 1.

Claim II.6.6: There exists c ∈K(M) that linearly approximates t on rv−1(α) at prolongations
and such that

min
j
{val(cj) + val(σj(a))} =min

i
{val(ti(σ(a))) + ival(σm(a))}.

Proof . Let Ni = Mi
alg

(see Proposition (II.3.26)). Let se ∶= ∑i<e tixim and s ∶= sd. For all
i and j ≠ m, by Proposition (II.6.4) applied in N1, ti(σ≠j(a), xj) has Weiestrass prepa-
ration on the ball bj ∶= rv−1(αj) and constant valuation. By Proposition (II.6.4), for all
e ⩽ d, se also has constant valuation on rv−1(σ(α)). By invariance under addition — and
an induction on e — we can show that s(σ≠j(a), xj) also has Weiestrass preparation on
bj . Moreover ∂s/∂xj(x) is also given by an LA,Q(C1)-term of degree d − 1 in xm hence
rv(∂s/∂xj(σ≠j(a), xj)) is constant on bj (equal to some rv(cj), where cj ∈ K(M1)). By
Proposition (II.3.27), for all yj and zj ∈ bj:

rv(t(σ≠j(a), yj) − t(σ≠j(a), zj)) = rv(s(σ≠j(a), yj) − s(σ≠j(a), zj)) = rv(cj)rv(y − z).

This last statement is in the LA,Q-type of σ≠j(a) over C1rv(cj). By Proposition (II.6.4) and
Corollary (II.1.6), any e≠j ∈ rv−1(σ≠j(α)) has the same LA,Q(C1rv(cj))-type and hence the
same cj works for any e ∈ rv−1(σ(α)).
As val(s(σ≠j(a), xj)) =mini<d{val(ti(σ≠j(a))) + ival(xj)} is constant on bj , we also have:

val(cj) + val(σj(a)) ⩾ val(s(σ(a))) ⩾min
i
{val(ti(σ(a))) + ival(σm(a))}.

When j =m, as t is polynomial inxm and ∂t/∂xm(x) is of degree d−1 inxm, we can also find
cm ∈K(M1) that linearly approximates t(e≠m, xm) on rv−1(σm(α)) for any e ∈ rv−1(σ(α)).
And

val(cm)+val(σm(a)) = val(∂t/∂xm(x))+val(σm(a)) =min
i
{val(ti(σ(a)))+ ival(σm(a))}.
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It now follows from Proposition (II.4.6) that c linearly approximates t on rv−1(α) at pro-
longations. ⧫

If t ≠ 0, we have proved that (t, a, c,valRV(α)) is in σ-Hensel configuration. Hence there
exists a1 ∈M1 such that t(a1) = 0 and val(a1 − a) ⩾ maxi{σ−i(t(σ(a)c−1i ))}. In particular,
val(σm(a1 − a)) ⩾ val(t(σ(a)))− val(cm) >mini{val(ti(σ(a)))+ ival(σm(a))}− val(cm) =
val(σm(a)), i.e. rv(a1) = rv(a).
If xm is not the highest variable appearing in t— that we call xn — then, applying Propo-
sition (II.6.4) to (t, I, n,∞) < (t, I,m, d), we get that rv(t(x)) is constant equal to 0 on
all of rv−1(σ(α)). As t(σ≠m(a), xm) is polynomial and has infinitely many zeros, we must
have ti(σ(a)) = 0 for all i, but that contradicts the non-regularity of t in xm at σ(a). Thus
xm must be the highest variable appearing in t. For the same reasons, we cannot have
rv(cm) = 0.
Note that we have also proved that for all e ∈ rv−1(σ(α)), t is minimal such that it is not
regular in e, hence the LA,Q-type of σ(α) says so and hence, as TA eliminates field quan-
tifiers, tf has the same minimality property (relative to f(α)) and we find a2 in the exact
same way. If t = 0 then any a1 and a2 ∈ rv−1(α) will work.
Let us now show that f can be extended to send a1 to a2. First, extending f onRV, we can
assume thatRV(C1⟨a1⟩σ) ⊆ RV(C1). Let Ci,n ∶= Ci⟨σ⩽n(a1)⟩ and f−1 ∶= f ∶ C1 → C2. Let
us show that, for all n, we can extend fn−1 to fn ∶ C1,n → C2,n sending σn(a1) to σn(a2).
If n < m, for any term u polynomial in xn of order-degree strictly smaller than (t, I,m, d),
let us define fn(∑i ui(σ≠n(a1))σn(a1)i) = ∑i fn−1(ui(σ≠n(a1)))σn(a2)i. It follows from
regularity of u in xn at σ(a1) that if for some i ui(σ≠n(a1)) ≠ 0 then u(σ(a1)) ≠ 0. Thus
σn(ai) is transcendental over Ci,n−1 and fn is a field isomorphism. To show that this is an
LRV+-isomorphism, it suffices, by Lemma (II.A.13), to show that it respects rv. But this is
true, as for all terms of order-degree strictly smaller than (t, I,m, d), rv(u(σ(a1))) =∶ β
does not depend on the choice of a1 and the formula “∀x rv(x) = σ(α)⇒ rv(u(x)) = β” is
an LA,Q(C1)-formula respected by f .

Claim II.6.7: Let P ∶= t(σ≠m(a1), xm) ∈K(C1,m−1)[X]. For all n ⩾m, σn(a1) is the only zero
of P σn−m whose leading term is σn(α).

Proof . Because σ is an automorphism of valued fields, it suffices to prove the case n = m.
Let e ∈ rv−1(σm(α)), then rv(P (e)) = rv(P (e) − P (a)) = rv(cm)rv(e − σm(a1)) ≠ 0. ⧫

The same claim is true of σm(a2)with respect to f(P σn−m) and f(σn(α)). Thus, it suffices
to extend fm−1 to the LA,Q-definable closure of C1,m−1, which we can certainly do as fm−1
is an LA,Q-elementary isomorphism (by resplendent field quantifier elimination in TA).
Then f ′ = ⋃n fn is an LA,Q,σ-isomorphism between C1⟨a1⟩σ and C2⟨a2⟩σ. It is also an
LRV−Mor
A,Q,σ -isomorphism by Lemma (II.A.13), ∎

Corollary II.6.8:
Let α ∈ RV(C1), then there exists a1 ∈ M1 such that rv(a1) = α and f extends to an isomor-
phism on C1⟨a1⟩σ .

Proof . If α ∈ res(R(M1)), then Proposition (II.6.5) applies. If not apply Proposition (II.6.5)
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to α−1 and conclude by extending the isomorphism to the analytic field generated by its
domain by Remark (II.5.1). ∎

II.6.2. Immediate extensions
LetM ⊧ TA be saturated enough and C ⩽M .

Definition II.6.9 (pseudo-convergent ⋆-sequences):
Let (xα) be a sequence of tuples of the same length. We say that it is a pseudo-convergent se-
quence if for all i, (xi,α) is pseudo-convergent. Moreover, we will say that a is a pseudo-limit of
(xα) if for all i, xi,α↝ai.

Definition II.6.10 (Equivalent pseudo-convergent sequences):
We will say that two pseudo-convergent sequences are equivalent if they have the same pseudo-
limits.

Lemma II.6.11:
Let xα be a pseudo-convergent sequence, a a pseudo-limit of this sequence and yα such that
for all i, val(ai − yi,α) = val(ai − xi,α), then (yα) is also a pseudo-convergent sequence that is
equivalent to (xα).

Proof .Wemay assume that ∣xα∣ = 1. Note that for allβ > α, val(yβ−yα) = val(yβ−a+a−yα) =
val(a−xα) = val(xβ−xα), as val(a−xβ) > val(a−xα). Hence (yα) is also pseudo-convergent.
Moreover, if b is any pseudo-limit of (xα), then val(b−yα) = val(b−xα+1+xα+1−a+a−yα) =
val(a − yα) = val(a − xα) = val(b − xα) and yα↝b. The symmetric argument shows that if
yα↝b then xα↝b. ∎

Definition II.6.12 (Rich enough families):
We say that a familyF of equivalent pseudo-convergent sequences ofC is rich enough if for any
linear polynomial P (X) = ∑i πiXi ∈ rv(K(C))[X], there exists (xα) ∈ F such that for all
pseudo-limit a and all α, P (rv(a − xα)) ≠ 0, i.e. if rv(pi) = πi then val(∑i pi(ai − xi,α)) =
mini{val(pi) + val(ai − xi,α)}.

Wewill say that a term u = ∑di=0 ui(x≠m)σm(x)i is monic if ud = 1. As in section II.6.1, let us
begin by a proposition that does not seem to have anything to do with automorphisms.

Proposition II.6.13:
LetF be a rich enough family of equivalent pseudo-convergent sequences ofC that are eventually
inR and (t, I,m, d) ∈ T0(C). Suppose that (t, I,m, d) has minimal order-degree such that t is
a monic polynomial in xm and there exists a pseudo-convergent sequence (xα) ∈ F that pseudo-
solves t. Then for all (u, J, n, e) < (t, I,m, d), there exists α0 such rv(u(x)) is constant on b0 ∶=
B̊γ0(xα0+1), where γ0 ∶= val(xα0+1 −xα0)— it follows immediately that rv(u(x)) ∈ rv(K(C))
— and for any a ∈ b0, u(a≠n, xn) has a Weierstrass preparation on bn,0.

Proof .We may assume that K(M)
alg
= K(M). The proof proceeds by induction on J .

Suppose that Proposition (II.6.13) holds for any term (v,K, p, f) such that K < J . Let us
prove a few claims to take care of some induction steps.

110



II.6. K-quantifier elimination in TA,σ−Hen

Claim II.6.14: Fix e and n ∈ N. Suppose the lemma holds for all (u, J, n, e), then it holds for
any (u, J, n, e + 1) where u is a monic polynomial in xn.

Note that the case e = 0 does not require any hypothesis (other than the induction hypoth-
esis on J ).

Proof . Let u = xe+1n + ∑i⩽e ui(x≠n)xin and for all f ⩽ e, sf ∶= ∑i⩽f ui(x≠n)xin. Let a be a
pseudo limit of (xα). Then we can find α0 such that, for all j ≠ n, val(sf(a≠j, xj)) and
val(uf+1(a≠j, xj)) are constant on bj,0 and uf+1(a≠j, xj) has a Weierstrass preparation. By
induction on f and invariance under addition, se(a≠j, xj) has a Weierstrass preparation
on bj,0. Let s ∶= se. Making α0 bigger we can also assume that val(∂s/∂xj(a≠j, xj)) is
constant on bj,0. By Proposition (II.3.27), we find cj ∈K(C) such that for all yj and zj ∈ bj,0,
rv(u(a≠j, yj)−u(a≠j, zj)) = rv(s(a≠j, yj)−s(a≠j, zj)) = rv(cj)rv(yj−zj). By field quantifier
elimination, this statement only depends on the value of rv(v(a≠j)) for a finite number of
LA,Q∣K(C)-terms v and hence, by induction, making α0 bigger, we may assume that this
statement is true of all a ∈ b0. When j = n, the same arguments yields some cn ∈K(C) as u
is already polynomial in xn and ∂u/∂xn(x) is polynomial in xn of degree at most e. It now
follows from Proposition (II.4.6) that c linearly approximates u on b0.
Let (yα) ∈ F be such that for any pseudo-limit a, val(c ⋅ (a− yα)) =minj{val(cj)+ val(aj −
yj,α)}. Then val(u(a) − u(yα)) = minj{val(cj) + val(aj − yj,α)}. If for all α, val(u(a)) >
minj{val(cj)+val(aj−yj,α)}, then val(u(yα)) =minj{val(cj)+val(aj−yj,α)} and u(yα)↝0
contradicting the minimality of t. Hence val(u(a)) < minj{val(cj) + val(aj − yj,α)} for
α ≫ 0 and rv(u(a)) = rv(u(yα)) ∈ rv(K(C)). By compactness, making α0 bigger, this is
true for any a ∈ b0. ⧫

Claim II.6.15: Fix e and n ∈ N. Suppose the lemma holds for (u, J, n, e) monic polynomial in
xn, then it holds for any (u, J, n, e).

Proof . Dividing by the dominant coefficient ue (which has constant rv on b0 by induction),
we obtain a term v monic polynomial of degree at most e in xn and which must also have
constant rv on b0 if we take α0 big enough. ⧫

Claim II.6.16: Fix n ∈ N. Suppose that for all e ∈ N, the lemma holds for all (u, J, n, e). Then
it also holds for all (u, J, n,∞).

Proof . Let a be a pseudo-limit of (xα). Any S ∈ SCR(C⟨a≠n⟩) that contains an must con-

tain bn,0 for α0 big enough. If not, there exists c ∈ K(C⟨a≠n⟩)
alg

such that xn,α↝c. Let
P (a≠n, xn) = ∑i pi(a≠n)xin be its minimal polynomial. Then, by hypothesis, for all e ∈ b0
(for α0 big enough), rv(P (e)) = 0 and we must have pi(a≠n) = 0 for all i, but that is absurd.
It follows that we can find α0 such that, u(a≠n, xn) has a Weierstrass preparation on bn,0,
i.e. there exists F ∈ A, c ∈K(C⟨a≠n⟩) and LA,Q∣K(C)-terms P andQ polynomial in xn such
that for all xn ∈ bj,0,

u(a≠n, xn) = F (
xn − xn,α0+1

xn,α0+1 − xn,α0

, c) P (a≠n, xn)
Q(a≠n, xn)
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and val(F ((xn − xn,α0+1)(xn,α0+1 − xn,α0), c)) = 0. In turn, this implies that rv(u(a≠n, xn))
does not depend on xn ∈ bn,0 and by the usual uniformization argument (makingα0 bigger),
we can ensure that rv(u(e)) does not depend on e ∈ b0. ⧫

Proposition (II.6.13) follows by induction. ∎

Remark II.6.17:
Note that the proof of Claim (II.6.14) also shows that there exists d ∈ K(C) that linearly
approximates t on b0 for α0 big enough.

LetM ⊧ TA,σ be saturated enough and C ⩽M such that res(K(C)) is linearly closed.

Proposition II.6.18:
Let xα be a pseudo-convergent sequence ofC . The family {σ(yα) ∶ yα is a pseudo-convergent se-
quence ofC equivalent to xα} is a rich enough family of equivalent pseudo-convergent sequences
of C .

Proof . Let P (X) = ∑i piXi ∈ K(C)[X]. If for all i pi = 0, we are done. Otherwise, let
εα = xα+1 − xα, let i0 such that val(pi0) + val(σi0(εα)) is minimal, and let

Qα(σ(X)) = p−1i0 σ
i0(εα)−1P (σ(εαX)) =∑

i

pip
−1
i0 σ

i(εα)σi0(ε−1α )σi(X).

As res(Qα) is linear with coefficients in res(K(C)), which is linearly closed, we can find
dα ∈K(C) such that res(Qα(σ(dα))) ≠ res(Qα(σ(1))). In particular, res(dα) ≠ res(1) and
val(dα − 1) = 0. Let yα = xα + εαdα.
Let a be such that σ(xα)↝a, then

rv(ai − σi(yα)) = rv(ai − σi(xα+1) + σi(xα+1) − σi(xα) + σi(xα) − σi(yα))
= rv(σi(εα))rv(1 − σi(dα)).

It follows that val(a0 − yα) = val(εα) = val(a0 − xα). By Lemma (II.6.11), (yα) is equivalent
to (xα). Let ci = (ai − σi(yα))/σi(εα). Then

res(P (a − σ(yα))p−1i0 ε−1α ) = res(Q)(res(c))
= res(Q)(res(σ(1) − σ(dα)))
= res(Q(σ(1))) − res(Q(σ(dα)))
≠ 0.

Hence, we have val(P (a − σ(yα))) = val(pi0) + val(σi0(εα)) = mini{val(pi) + val(ai −
σi(yα))}. ∎

And now let us prove another embedding theorem for immediate extensions. LetM1 and
M2 ⊧ TA,σ−Hen be saturated enough, Ni ⩽Mi have no immediate extension inMi and be
σ-Henselian — as we will see in Remark (II.6.21) this second hypothesis follows from the
first one—,Ci ⩽Ni be such that res(K(C1)) is linearly closed and f ∶ C1 → C2 an LRV−Mor

A,Q,σ -
isomorphism.
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Definition II.6.19 (Minimal term of a pseudo-convergent sequence):
Let (xα) be a pseudo-convergent sequence ofC1. We say that (t, I,m, d) ∈ T0(C1) is its minimal
term if it is minimal such that it is monic polynomial in xn and it is σ-pseudo-solved by a pseudo-
convergent sequence equivalent to (xα).

Note that any pseudo-convergent sequence has aminimal term, as any pseudo-convergent
sequence σ-pseudo-solves 0.

Proposition II.6.20:
Let (xα) be a pseudo-convergent sequence ofK(C1) (indexed by a limit ordinal) which is even-
tually inR. Let (t, I,m, d) be its minimal term. Then:

(i) There exists a1 ∈ N1 and a2 ∈ N2 such that xα↝a1, f(xα)↝a2 and t(σ(a1)) = 0 =
tf(σ(a2)).

(ii) For any such a1, C1⟨a1⟩σ is an immediate extension of C1;

(iii) For any such ai, f can be extended into an LRV−Mor
A,Q,σ -isomorphism sending a1 to a2.

Proof . If t is zero, it suffices to choose any a1 and a2 such that xα↝a1 and f(xα)↝a2. These
exist in Mi and we will see in the end why they exist in Ni. Let us now assume that t is
not zero. By Remark (II.6.17) — and Propositions (II.6.13) and (II.6.18) — we find α0 and
d ∈ K(C1) that linearly approximate t at prolongations on b0 ∶= B̊val(xα0+1−xα0)(xα0+1). By
Proposition (II.6.18), we can find a pseudo-convergent sequence (zα) of C1 equivalent to
(xα) such that for all pseudo-limit a of (xα), val(t(σ(a)) − t(σ(zα))) = mini{val(di) +
val(σi(a − zα))}. If for all such a, val(t(σ(a))) < mini{val(di) + val(σi(a − zα))} for α big
enough, then val(t(σ(a))) = val(t(σ(yα))). By compactness, val(t(σ(x))) is constant on
some b0. But this contradicts the fact that we can find yα equivalent to xα that σ-pseudo-
solves t.
Hence there exists a pseudo-limit a such that val(t(σ(a))) > mini{val(di) + val(σi(a −
zα))} ⩾ mini{val(di) + val(σi(ξ0))} where ξ0 is the radius of b0 and (t, a, d, ξ0) is in σ-
Hensel configuration. As N1 is σ-Henselian, we can find a1 ∈ K(N1) such that t(a1) = 0
and val(a1 − a) ⩾ maxi{val(σ−i(t(σ(a))d−1i ))} > val(xα+1 − xα), i.e. xα↝a1. As f is an
LA,Q,σ-isomorphism, (tf , I,m, d) is the minimal term of (f(xα)) and the same argument
shows that there is a2 ∈K(N2) such that tf(a2) = 0 and f(xα)↝a2.
If t ≠ 0, let us now show that xm must be the last variable appearing in t. If it is not, let
xn be that last variable. By Proposition (II.6.13), we can find LA,Q∣K(A)-terms E, P andQ
such that E is a strong unit in xn, P and Q are polynomial in xn and for all a ∈ b0, t(a) =
E(a)P (a)/Q(a). As t(σ(a1)) = 0 we also have P (σ(a1)) = 0 and because (P, I, n,∞) <
(t, I,m, d), we have rv(P (a)) = 0— and hence rv(t(a)) = 0— for all a ∈ b0, contradicting
the fact that we can find yα equivalent to xα that σ-pseudo-solves t.
We can now conclude as in Proposition (II.6.5) by extending f to C1,n ∶= C1⟨σ⩽n(a1)⟩ pro-
gressively, by sending σn(a1) to σn(a2). For n < m, it is exactly the same and for n ⩾ m,
use the fact that σn(a1) is the only zero of P σn−m(X) in (bn,0) for α0 ≫ 0, where P (Xm) =
t(σ≠m(a1),Xm).
If n <m, we have proved in Proposition (II.6.13) that the extension is immediate. If n ⩾m,
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we have just seen that σn(a1) is ACVF-definable over K(C1⟨σ⩽n−1(a1)⟩). It follows that
σn(a1) ∈ K(C1⟨σ⩽n−1(a1)⟩)h which is an immediate extension of K(C1⟨σ⩽n−1(a1)⟩) and
we conclude by Proposition (II.3.26).
In the case where t is zero, we have yet to show that we can take ai ∈ Ni. Let (u, J, n, e) be
minimal over N1 that is σ-pseudo solved by a pseudo-converging sequence equivalent to
xα. We can find a1 inM1 such that u(σ(a1)) = 0 and xα↝a1. But then K(N1⟨a1⟩σ) is an
immediate extension ofN1 and we must have a1 ∈ N1. ∎

Remark II.6.21:
Note that we have just shown that if we only assume that N1 has no immediate exten-
sion inM1 (and not thatN1 is σ-Henselian), thenN1 is maximally complete and hence, by
Proposition (II.4.14) it is σ-Henselian.

Definition II.6.22 (Minimal term of a point):
Let a ∈ M1. We say that (t, I,m, d) ∈ T0(C1) is the minimal term of a over C1 if it is minimal
such that it is monic polynomial in xm and t(σ(a)) = 0.

Note that because of Weierstrass preparation, minimal terms will always be polynomial in
their last variable.

Definition II.6.23 ((t, I,m, d)-fullness):
Let (t, I,m, d) ∈ T0(C1). We will say that C1 is (t, I,m, d)-full if for all pseudo-convergent se-
quences (xα) (indexed by a limit ordinal) of elements inC1 that are eventually inRwithminimal
term (u, J, n, e) < (t, I,m, d), (xα) has a pseudo-limit in C1.

Corollary II.6.24:
Let (xα) be a maximal pseudo-convergent sequence in C1 (indexed by a limit ordinal) pseudo-
converging to some a1 ∈ R(M1). If (t, I,m, d) ∈ T0(C1) is its minimal term over C1 and C1

is (t, I,m, d)-full, then K(C1⟨a1⟩σ) is an immediate extension of K(C1) and f extends from
C1⟨a1⟩σ intoN2.

Proof . Since C1 is (t, I,m, d)-full, (xα) (or any equivalent pseudo-convergent sequence)
cannot pseudo-solve a term of order-degree strictly less than (t, I,m, d) (this would con-
tradict either (t, I,m, d)-fullness ofC1 ormaximality of (xα)). By Propositions (II.6.13) and
(II.6.18), there is a tuple d and a sequence (yα) equivalent to (xα) such that

val(t(σ(yα))) = val(t(σ(a)) − t(σ(yα))) =min
i
{val(di) + val(σi(a − yα))},

i.e. t(σ(yα))↝0. We have just showed that t is the minimal term of the pseudo-convergent
sequence (xα) and thus we can now apply Proposition (II.6.20). ∎

From now on, suppose thatK(Ni) is an immediate extension ofK(Ci), hence it is a max-
imal immediate extension ofK(Ci) inMi.

Corollary II.6.25:
Suppose that all a ∈R(N1)with aminimal term of order-degree strictly smaller than (t, I,m, d)
are already in C1, then C1 is (t, I,m, d)-full.
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Proof . Let (xα) be a pseudo-convergent sequence of C1 (indexed by a limit ordinal) that
is eventually in R and (u, J, n, e) < (t, I,m, d) that is σ-pseudo-solved by (xα). We may
assume that (u, J, n, e) is its minimal term. By Proposition (II.6.20), there is a1 ∈ N1 such
that xα↝a1 and u(a1) = 0. Hence a1 has a minimal polynomial of order-degree strictly
lower than (t, I,m, d), so a1 ∈ C1 and C1 is indeed (t, I,m, d)-full. ∎

Corollary II.6.26:
The isomorphism f extends to an isomorphism N1 → N2, i.e. maximum immediate extensions
(in some saturated model) — and hence maximally complete extensions — are unique up to
isomorphism.

We could prove this corollary without using the notion of fullness and without doing the
extensions in the right order — just pick any maximal pseudo-convergent sequence in-
dexed by a limit ordinal, find its minimal term and apply Proposition (II.6.20) to extend f
some more and iterate. But I find the following proof more informative in terms of the
information you need to describe the type of a given point in an immediate extension.

Proof . Let us consider the extensions C1 ⩽Lα ⩽N1 defined by taking Lα+1 = Lα⟨cα⟩σ where
cα ∈ R(N1) ∖Lα has a minimal term of minimal order-degree over Lα+1 and Lλ = ⋃α<λLα
for λ limit. Then we can show by induction that we can extend f to Lα in a coherent way.
Let us suppose we have extended f to fα on Lα. Let a = cα. Let xβ↝a be a maximal
pseudo-converging sequence of Lα. Then if (t, I,m, d) is a minimal term of a, then by
Corollary (II.6.25), Lα is (t, I,m, d)-full. Applying Corollary (II.6.24), we obtain that fα can
be extended to Lα⟨a⟩σ = Lα+1. The limit case is trivial.
AsN1 is the field generated by ⋃αLα, by Remark (II.5.1) we can extend f fromN1 intoN2.
Now if f is not onto, pick a ∈ K(N2) ∖K(f(N1)), (xα)maximal pseudo-converging to a
and (t, I,m, d) its minimal term. Then applying Proposition (II.6.20) the other way round,
we would find an immediate extension ofN1 inM1, but that is absurd. ∎

II.6.3. Relative quantifier elimination
TheoremD:

The theory TA,σ−Hen eliminates quantifiers resplendently relative toRV.

Proof . By Proposition (II.A.9), it suffices to show that TA,σ−Hen eliminates quantifiers rel-
ative to RV. Note that if two models of TA,σ−Hen contain isomorphic substructures they
have the same characteristic and residual characteristic, hence it also suffices to prove the
result forTA,σ−Hen,0,0 andTA,σ−Hen,0,p. Let us first consider the equicharacteristic zero case.
It suffices to show that if M1 and M2 are sufficiently saturated models of TRV−Mor

A,σ−Hen,0,0, f
a partial LRV−Mor

A,Q -isomorphism with (small) domain C1, and a1 ∈ K(M1), f can be ex-
tended to C1⟨a1⟩σ. Let N1 ⩽M1 with no immediate extension inM1 and containing both
C1 and a1. By Morleyization onRV and Lemma (II.A.11) we can extend f toD1 ⩽N1 such
thatRV(D1) = RV(N1). Then applying Corollary (II.6.8) repetitively we can extend f to
E1 ⩽N1 such that rv(K(E1)) = RV(E1). NowK(N1) is a maximal immediate extension
ofK(E1) and we can extend f toN1 by Proposition (II.6.20).
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Now that we know the equicharacteristic zero case, the mixed characteristic case follows
from Propositions (II.B.5) and (II.4.23). ∎
We also obtain the corresponding results when there are angular components. Let LacA,Q,σ
be LacA,Q enriched with a symbol σ ∶ K → K, symbols σn ∶ Rn → Rn and a symbol σΓ ∶
Γ∞ → Γ∞. LetTac

A,σ−Hen be the LacA,Q,σ-theory of σ-Henselian analytic difference fields with
a linearly closed residue field and angular components that are compatible with σ, i.e. acn○
σ = σn○acn. LetLac,frA,Q,σ be the enrichment ofLac,fr with the same symbols andTac,e−fr

A,σ−Hen,p be
the theory of finitely ramified characteristic (0, p) valued fields as above with ramification
index at most e, i.e. e ⋅ 1 ⩾ val(p).

Corollary II.6.27:
Tac
A,σ−Hen and T

ac,e−fr
A,σ−Hen,p for all p and e, eliminateK-quantifiers resplendently.

Proof . By Proposition (II.A.9), resplendence comes for free oncewehaveK-quantifier elim-
ination. Moreover, by Propositions (II.1.8) and (II.B.5), we can transfer quantifier elimi-
nation in an RV-enrichment of TA,σ−Hen (cf. TheoremD) to quantifier elimination in a
definableR ∪Γ-enrichment of Tac

A,σ−Hen and henceK-quantifier elimination in Tac
A,σ−Hen.

The proof for Tac,e−fr
A,σ−Hen,p now follows by Remark II.1.9.3. ∎

Remark II.6.28:
1. In a valued field with an isometry and val(Fix(K)) = val(K), angular components

that are compatible with σ are determined by their restriction to the fixed field. In-
deed if val(x) = val(ε)where ε ∈ Fix(K), then acn(x) =Rn(xε−1)acn(ε). In fact, any
angular components on the fixed field can be extended using this formula to angu-
lar components on the whole field that are compatible with σ and hence any valued
field with an isometry and val(Fix(K)) = val(K) can be elementarily embedded into
a valued field with an isometry and compatible angular components.

2. As amatter of fact, the existence of angular components in a σ-Henselian valued field
with an isometry implies that val(Fix(K)) = val(K).

Until the end of this section, we will add constants to LacA,Q,σ and Lac,frA,Q,σ for acn(t) and
val(t) where t is any LA,Q,σ ∣K-term without any free variables. The reason for which we
need to add theses constants is that although these areLacA,Q,σ-terms, wemay have no trace
of them in LacA,Q,σ∣R and LacA,Q,σ∣Γ. Ax-Kochen-Eršov type results now follow by the same
arguments as usual.

Corollary II.6.29 (Ax-Kochen-Eršov principle for analytic difference fields):

(i) LetL be anR-extension of aΓ-extension ofLacA,Q,σ,T anL-theory containingTac
A,σ−Hen,0,0

andM andN ⊧ T then:

(a) M ≡ N if and only ifR0(M) ≡ R0(N) as L∣R0
-structures and Γ∞(M) ≡ Γ∞(N)

as L∣Γ∞-structures;
(b) SupposeM ⩽N thenM ≼ N if and only if R0(M) ≼ R0(M) as L∣R0

-structures
and Γ∞(M) ≼ Γ∞(N) as L∣Γ∞-structures.
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(ii) LetL be anR-extension of aΓ-extension ofLacA,Q,σ, T anL-theory containingTac,e−fr
A,σ−Hen,p

andM andN ⊧ T then:

(a) M ≡ N if and only ifR(M) ≡ R(N) as L∣R-structures and Γ∞(M) ≡ Γ∞(N) as
L∣Γ∞-structures;

(b) SupposeM ⩽N thenM ≼ N if and only if R(M) ≼ R(N) as L∣R-structures and
Γ∞(M) ≼ Γ∞(N) as L∣Γ∞-structures.

Remark II.6.30:
1. In mixed characteristic with finite ramification and an isometry, if R = O, we have

better results. Indeed, the trace of any unit E on any RVk is given by the trace of a
polynomial (which depends only on E and not on its interpretation) and the Ek are
in fact useless. Hence the Rn are pure rings with an automorphism. If there is no
ramification (i.e. e = 1), theRn are ring schemes overR1 (the Witt vectors of length
n) — the ring scheme structure does not depend on the actual model we are looking
contrary to the general finite ramification case — and the automorphism onRn can
be defined using the automorphism onR1, henceR is definable inR1. Finally if σ is
a lifting of the Frobenius, σ1 is definable in the ring structure of R1. It follows that
we obtain Ax-Kochen-Eršov results looking only atR1 as a ring andΓ∞ as an ordered
abelian group (after adding some constants).

2. The fact that the E1 are useless is also true in equicharacteristic zero whenR = O.

3. It also follows that in equicharacteristic zero or mixed characteristic with finite ram-
ification (with angular component), R and Γ∞ are stably embedded and have pure
L∣R-structure (resp. L∣Γ∞-structure) whereL is either LacA,Q,σ or L

ac,fr
A,Q,σ. In particular

it will make sense to speak of the theory induced onR or Γ∞.

Proposition II.6.31:
Let L be the language LA,Q,σ enriched with predicates Pn onRV1 interpreted as n∣valRV,1(x).
The L-theory ofWp is axiomatized by TA,σ−Hen, σ1 is the Frobenius and, the induced theory on
R1 is ACFp, p has minimal positive valuation, Γ is a Z-group and σΓ is the identity. More-
over R0 is a pure algebraically closed valued field and Γ is a pure Z-group and they are stably
embedded.

Proof . Anymodel of that theory has definable angular components compatible with σ. And
these angular components extend the usual ones on the field of constantsW(Fp

alg). Hence
the only constants we add are for elements of Fp

alg ⊆ R0 and Z ⊆ Γ. The proposition
now follows from the discussion above (and the fact that ACF and Z-groups are model
complete). ∎

II.7. The NIP property in analytic difference fields
Let us first recall what is shown by Bélair and Delon in the algebraic case [Del81; Bél99].
Let Tac

Hen be the Lac-theory of Henselian valued fields with angular component maps.
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Theorem II.7.1:
LetL be anR-enrichment of aΓ∞-enrichment ofLac andT ⊇ Tac

Hen be anL-theory implying
either equicharacteristic zero or finite ramification in mixed characteristic. Then T isNIP if
and only ifR (with its L∣R-structure) and Γ∞ (with its L∣Γ∞ -structure) are NIP.

Proof . See [Bél99, Théorème 7.4]. The resplendence of the theorem is not stated there but
the proof is exactly the same after enriching onR and Γ∞. ∎

This result can be extended first to analytic fields then to analytic fields with an automor-
phism.

Corollary II.7.2:
LetL be anR-enrichment of aΓ∞-enrichment ofLacA,Q and T ⊇ Tac

A,Hen be anL theory implying
either equicharacteristic zero or finite ramification in mixed characteristic. Then T isNIP if and
only ifR (with its L∣R-structure) and Γ∞ (with its L∣Γ∞ -structure) are NIP.

Proof . Suppose T is not NIP. Then there is a formula φ(x, y) which has the indepen-
dence property. Note that, since for any sort there is an ∅-definable function from K
onto that sort, we may assume that x and y are K-variables. By Remark II.5.6.2, there is
an L∖ (A∪{Q})-formula ψ(x, z) and LA,Q∣Kterms u(y) such that φ(x, y) is equivalent to
a ψ(x,u(y)). But then ψ would have the independence property too, contradicting Theo-
rem (II.7.1). ∎

Corollary II.7.3:
Let L be an R-enrichment of a Γ∞-enrichment of LacA,Q,σ and T ⊇ Tac

A,σ−Hen be an L theory
implying either equicharacteristic zero or finite ramification in mixed characteristic. Then T is
NIP if and only ifR (with its L∣R-structure) and Γ∞ (with its L∣Γ∞ -structure) are NIP.

Proof . Suppose T is not NIP, then there is a formula φ(x, y) which has the independence
property (where x and the y are K-variables). By Corollary (II.6.27), we may assume that
φ is without K-quantifiers, i.e. there is a K-quantifier free LacA,Q,σ ∖ {σ}-formula ψ(x, z)
such that φ(x, y) is equivalent to ψ(σ(x), σ(y)). But then ψ would have the independence
property too, contradicting Corollary (II.7.2). ∎

Remark II.7.4:
In the isometry case with val(Fix(K)) = val(K), this last result also holds without angular
components because any such valued field can be elementarily embedded into a valued
field with angular components compatible with σ.

Corollary II.7.5:
The LA,Q,σ-theory ofWp is NIP.

Proof . This is an immediate corollary of Remark (II.7.4), Corollary (II.7.3) and the fact that
R is definable in R0 which is a pure algebraically closed field (where the Frobenius auto-
morphism is definable) and that Γ is a pure Z-group (see Proposition (II.6.31)). ∎
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II.A. Resplendent relative quantifier elimination
The following section, although it may appear fastidious and nitpicking, is actually an at-
tempt at clarifying some notions and properties that are often assumed to be clear when
studying model theory of valued fields, but may actually need precise and careful presen-
tation. In all this section, L will denote a language and Σ, Π a partition of its sorts.

Definition II.A.1 (Restriction):
If L′ ⊆ L be another language and T an L-theory we will denote by T ∣L′ the L′-theory {φ an
L′-formula ∶ T ⊧ φ} and if C is an L-structure, C ∣L′ will have underlying set ⋃S∈L′ S(C) with
the obvious L′-structure. In particular, when Σ is a set of L sorts, let L∣Σ be the restriction of
L to the predicate and function symbols that only concern the sorts in Σ. Then we will write
T ∣Σ ∶= T ∣L∣Σ and C ∣Σ ∶= C ∣L∣Σ .

Note that the restriction is a functor from Str(T ) to Str(T ∣L′) respecting models, cardi-
nality and elementary submodels (see Section II.B for the definitions).

Definition II.A.2 (Enrichment):
LetLe ⊇ L be a another language andΣe the set of newLe-sorts, i.e. theLe-sorts that are notL-
sorts. The language Le is said to be aΣ-enrichment of L if Le∖ Le∣Σ∪Σe

⊆ L, i.e. the enrichment
is limited to the new sorts and the sorts in Σ. If, moreover, Σe = ∅ and Le ∖ L consists only of
function symbols, we will say that Le is a Σ-term enrichment of L.
Let T be an L-theory. An Le-theory Te ⊇ T is said to be a definable enrichment of T if there are
no new sorts and for every predicate P (x) (resp. function f(x)) symbol in Le ∖ L, there is an
L-formula φP (x) (resp. φf(x, y) such that T ⊧ ∀x∃=1y, φf(x, y)) and that Te = T ∪{P (x)↔
φP (x)} ∪ {φf(x, f(x))}.

Definition II.A.3 (Morleyization):
The Morleyization of L on Σ is the language LΣ−Mor ∶= L ∪ {Pφ(x) ∶ φ(x) an L∣Σ-formula}.
If T is an L-theory, the Morleyization of T on Σ is the following LΣ−Mor-theory TΣ−Mor ∶= T ∪
{Pφ(x) ↔ φ(x)} and ifM is an L-structure, MΣ−Mor is the LΣ−Mor-structure with the same
L-structure asM and where Pφ is interpreted by φ(M).
On the other hand, we will say that an L-theory T is Morleyized on Σ if every L∣Σ-formula is
equivalent, modulo T , to a quantifier free L∣Σ-formula.

Note that TΣ−Mor is a definable Σ-enrichment of T and ifM ⊧ T thenMΣ−Mor ⊧ TΣ−Mor.

Definition II.A.4 (Elementary on Σ):
LetM1 andM2 be twoL-structures. A partial isomorphismM1 →M2 is said to beΣ-elementary
if it is a partial LΣ−Mor-isomorphism.

Definition II.A.5 (Resplendent relative elimination of quantifiers):
Let T be an L-theory. We say that T eliminates quantifiers relative to Σ if TΣ−Mor eliminates
quantifiers.
We say that T eliminates quantifiers resplendently relative to Σ if for any Σ-enrichment Le of
L (with possibly new sorts Σe) and any Le-theory Te ⊇ T , Te eliminates quantifiers relative to
Σ ∪Σe.
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Definition II.A.6 (Resplendent elimination of quantifiers from a sort):
Wewill say that anL-theory T eliminatesΠ-quantifiers if everyL-formula is equivalent modulo
T to a formula where quantification only occurs on variables from the sorts in Σ.
We will say that T eliminates Π-quantifiers resplendently if for any Σ-enrichment Le of L and
any Le-theory Te ⊇ T , Te eliminates Π-quantifiers.

Definition II.A.7 (Closed sorts):
We will say that Σ is closed if L ∖ (L∣Π ∪ L∣Σ) only consists of function symbols f ∶ ∏iPi → S
where Pi ∈ Π and S ∈ Σ. Equivalently, any predicate involving a sort inΣ and any function with
a domain involving a sort in Σ only involves sorts in Σ.

Remark II.A.8:
1. Note that if the sorts Σ are closed then in any Σ-enrichment — with possibly new

sorts Σe — of a Π-enrichment of L (or vice-versa), the sorts Σ ∪Σe are still closed.

2. Elimination of quantifiers relative toΣ implies elimination ofΠ-quantifiers. But the
converse is in general not true. Indeed, ifL is a languagewith two sortsS1 andS2 and
a predicate on S1 × S2, then the formula ∃xR(x, y) is an S2-quantifier free formula
but there is no reason for it to be equivalent to any quantifier free LS1−Mor-formula.

3. However, if the sortsΣ are closed, then it follows from Remark II.A.10.1 that T elim-
inates Π-quantifiers if and only if T eliminates quantifiers relative to Σ. If Le is a
Σ-enrichment ofLwith new sortsΣe, thenΣ∪Σe is still closed, thus the equivalence
is also true resplendently.

Wewill now suppose thatΣ is closed andwewill denote byF the set of functions f ∶∏iPi →
S where Pi ∈ Π and S ∈ Σ.

Proposition II.A.9:
Let T be an L-theory. If T eliminates quantifiers relative to Σ then T eliminates quantifiers
resplendently relative to Σ.

Let us begin with some remarks and lemmas that will have a more general interest.

Remark II.A.10:
1. Any atomicL-formulaφ(x, y)where x areΠ-variables and y areΣ-variables, is either

of the form ψ(x) where ψ is an atomic L∣Π-formula or of the form ψ(f(u(x)), y)
where ψ is an atomic L∣Σ-formula, u are L∣Π-terms and f are functions from F .

2. If T eliminates quantifiers relative to Σ, it follows from Remark II.A.10.1 above that
for anyM ⊧ T , any L(M)-definable set in a product of sorts from Σ is defined by a
formula of the formφ(x, f(a), b)whereφ is a L∣Σ-formula. HenceΣ is stably embed-
ded in T , i.e. any L(M)-definable subset of Σ is in fact L(Σ(M))-definable. More-
over, these sets are in fact L∣Σ(Σ(M))-definable. In that case, we say thatΣ is a pure
L∣Σ-structure.
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Lemma II.A.11:
Suppose T is an L-theory Morleyized on Σ, then for any sufficiently saturatedM1,M2 ⊧ T , any
partial L-isomorphism f ∶ M1 → M2 with small domain C1 and any c1 ∈ Σ(M1), f can be
extended to a partial L-isomorphism whose domain contains c1.

Proof . First we may assume that C1 ⩽M1 and in particular for all g ∈ F , g(C1) ⊆ Σ(C1).
Because f is a partial L-isomorphism and T is Morleyized onΣ, f ∣Σ is a partial elementary
L∣Σ-isomorphism. By saturation ofM2 we can extend f ∣Σ to f ′∣Σ ∶ M1∣Σ → M2∣Σ a partial
elementary L∣Σ-isomorphism whose domain contains c1. Let f ′ = f ∣Π ∪ f ′∣Σ.
As f ∣Π is a partial L∣Π-isomorphism, f ′ respects formulae φ(x) where φ is an atomic L∣Π-
formula (f ∣Π also respects L∣Π-terms). Moreover, as for all g ∈ F , f ′∣g(C1) = f ∣g(C1), f

′ still
respects g. As f ′∣Σ is a partial L∣Σ-isomorphism, it respects all atomic L∣Σ-formulae. It
follows that f ′ also respects formulae of the form ψ(g(u(x)), y)where ψ is an atomic L∣Σ-
formula, u are L∣Π-terms and g ∈ F . By Remark II.A.10.1, f ′ respects all atomic L-formulae
and hence is a partial L-isomorphism. ∎

Definition II.A.12 (Generated structure):
Let L be a language, M an L-structure and C ⊆ M . The L-structure generated by C will be
denoted ⟨C⟩L. If C is an L-structure and c ∈ M , the L-structure generated by C and c will be
denoted C⟨c⟩L.
Lemma II.A.13:
LetM1,M2 ⊧ T , f ∶M1 →M2 a partial L-isomorphism with domainC1 ⩽M1 and c1 ∈ Π(M1)
such that Σ(C1⟨c1⟩L) ⊆ Σ(C1). Suppose that f ′ is a partial L∣Π ∪F-isomorphism extending f
whose domain is C1⟨c1⟩L, then f ′ is also a partial L-isomorphism.

Proof . First, by hypothesis, f ′ respects atomic L∣Π-formulae. Moreover as Σ(C1⟨c1⟩L) ⊆
Σ(C1), f ′∣Σ = f ∣Σ and it is a partial L∣Σ-isomorphism. As, by hypothesis, f ′ respects g ∈ F ,
it respects all formulae of the form ψ(g(u(x)), y) where ψ is an atomic L∣Σ-formula, u are
L∣Π-terms and g ∈ F . Hence by Remark II.A.10.1, f ′ is a partial L-isomorphism. ∎
Proof (Proposition (II.A.9)). We want to show that if Le is a Σ-enrichment of L (with new
sortsΣe) andTe ⊇ T anLe-theory, thenTΣ∪Σe−Mor

e eliminates quantifiers. It suffices to show
that for allM1 andM2 ⊧ Te that are ∣Le∣+-saturated, for all partial LΣ∪Σe−Mor

e -isomorphism
f ∶ M1 → M2 of domain C1 with ∣C1∣ ⩽ ∣Le∣, and for all c1 ∈ M1, f can be extended to a
partial LΣ∪Σe−Mor

e -isomorphism whose domain contains c1.
Note first thatΣ∪Σe is closed. If c1 ∈ Σ∪Σe(M1), thenwe can conclude by Lemma (II.A.11)
(where L is now LΣ∪Σe−Mor

e ). If c1 ∈ Π(M1), by repetitively applying Lemma (II.A.11), we
can extend f to f ′ whose domain contains all of Σ ∪ Σe(C1⟨c1⟩Le). Then f ′ is in partic-
ular an LΣ−Mor-isomorphism and, as T eliminates quantifiers relative to Σ, f ′ is in fact a
partial elementary L-isomorphism that can be extended to a partial L-isomorphism f ′′

whose domain contain c1. But, by Lemma (II.A.13), f ′′∣C1⟨c1⟩Le
is also a partial LΣ∪Σe−Mor

e -
isomorphism. ∎

II.B. Categories of structures
May I recall that structures are always non empty.
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Definition II.B.1 (Str(T )):
LetL be a language, T anL-theory. We will denote by Str(T ) the category whose objects are the
L-structures that can be embedded in amodel of T — i.e. models of T∀—andwhose morphisms
are the L-embeddings between those structures.
Moreover, let Ti be an Li-theory for i = 1,2, F ∶ Str(T1) → Str(T2) be a functor and κ be a
cardinal. We will denote by StrF,κ(T2) the full sub category of Str(T2) of structures that embed
into some F (M) forM ⊧ T1 κ-saturated.

A functor F ∶ Str(T1)→ Str(T2) is said to respect:

• models if for allM ⊧ T1, F (M) ⊧ T2;

• κ-saturated models if for all κ-saturatedM ⊧ T1, F (M) ⊧ T2;

• cardinality up to κ if for all C ⊧ T∀, ∣F (C)∣ ⩽ ∣C ∣κ;

• elementary submodels if for allM1 ≼M2 ⊧ T1, F (M1) ≼ F (M2).

Let Σi be a closed set of Li-sorts for i = 1,2. We say that f ∶ C1 → C2 in Str(T1) is a
Σ1-extension if C2 ∖ f(C1) ⊆ Σ1(C2). We say that the functor F sends Σ1 to Σ2 if for all
Σ1-extensions C1 → C2, F (C1)→ F (C2) is a Σ2-extension.
Let me recall some basic notions of category theory. A natural transformation α between
functors F , G ∶ C1 → C2 associates a morphism αc ∈ HomC2(F (c),G(c)) to every object
c ∈ C1 such that for all morphism f ∈ HomC1(c, d), we haveG(f)○αc = αd ○F (f). A natural
transformation is said to be a natural isomorphism if for all c ∈ C1, αc is an isomorphism
in C2. It is easy to check that when α is a natural isomorphism, its inverse — namely the
transformation that associates α−1c to any c ∈ C1 — is also natural.
A pair of functors F ∶ C1 → C2 and G ∶ C2 → C1 are said to be an equivalence of categories
between C1 and C2 if GF and FG are naturally isomorphic to the identity functor of resp.
C1 and C2. We can always choose the natural isomorphisms α ∶ FG → Id and β ∶ GF → Id
such that αF = F (β) and βG = G(α) where αF ∶ c↦ αF (c) and F (α) ∶ c↦ F (αc).
Until the end of this section, let κ be a cardinal, Ti be an Li-theory andΣi be a set of closed
Li-sorts for i = 1,2 and F be a full subcategory of Str(T1) containing κ+-saturated models
such that for any C → M1 ⊧ T1 where M1 is κ+-saturated and ∣C ∣ ⩽ κ, there is some D
in F such that C → D → M1 and C → D is a Σ1-extension. Let F ∶ Str(T1) → Str(T2)
and G ∶ Str(T2) → Str(T1) be functors that respect cardinality up to κ and induce an
equivalence of categories between F and StrF,κ+(T2). We will also suppose thatG respects
models and elementary submodels and sendsΣ2 toΣ1 andF respects κ+-saturatedmodels.
The goal of this section is to show that these (somewhat technical) requirements are a way
to transfer eliminationof quantifiers results fromone theory to another and to give amean-
ing to—and in fact extend— the impression that if theories are quantifier free bi-definable
(whatever that means) then elimination of quantifiers in one theory should imply elim-
ination in the other. Proposition (II.B.5) will be used, for example, to deduce valued field
quantifiers eliminationwith angular components from valued field quantifiers elimination
with sectioned leading terms. It will also be used to reduce the mixed characteristic case
to the equicharacteristic zero case.
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Proposition (II.B.2) is only used to prove Corollary (II.B.4)which in turn will be very useful
to show that the functors between mixed characteristic and equicharacteristic zero can be
modified to take in account Morleyization on RV while remaining in the right setting to
transfer elimination of quantifiers.

Proposition II.B.2:
SupposeT1 isMorleyized onΣ1 and letM1 andM2 ⊧ T1 be (∣L2∣κ)+-saturated. Then any partial
L2-isomorphism f ∶ F (M1)→ F (M2) is Σ2-elementary.

Proof . To show that f is Σ2-elementary, it suffices to show that the restriction of f to any
finitely generated structure is Σ2-elementary. To do so it suffices to show that the restric-
tion of f can be extended (on both its domain and its image) to any finitely generated Σ2-
extension. By symmetry, it suffices to prove the following property: ifD1,D2 ⩽F (M1) are
such thatD1 → D2 is a Σ2-extension, ∣D2∣ ⩽ ∣L2∣ and f ∶ D1 → F (M2) is an L2-embedding,
then f can be extended to some g ∶D2 → F (M2).
ApplyingG to the initial data, we obtain the following diagram:

GF (M1) M2 GF (M2)
βM2oo

G(D2)

OO
g

::

G(D1)

OO G(f)

::uuuuuuuuuuuuuuuuuuuuuuuu

where g comes from the fact that, as T is Morleyized on Σ1, βM2 ○G(f)∣Σ1
is in fact ele-

mentary and, as ∣G(D2)∣ ⩽ ∣L2∣κ, M2 is (∣L2∣κ)+-saturated and G(D1) → G(D2) is a Σ1-
extension, by Lemma (II.A.11), βM2 ○G(f) can be extended to g ∶ G(D2) → M2. Applying
F , we now obtain:

D2

α−1D2// FG(D2)
F (g) // F (M2)

D1
//

OO

f

GG

FG(D1)

OO 99rrrrrrrrrr

and F (g) ○ α−1D2
is the extension we were looking for. ∎

Remark II.B.3:
1. One could hope the proposition to be true without the saturation hypothesis. But

without some saturation, it is not even true thatM1 ≼M2 implies F (M1) ≼ F (M2).
Take for example the coarsening functor C∞ of Section II.2 andQp ≼M whereM is
ℵ0-saturated, then C∞(Qp) is trivially valued but C∞(M) is not.

2. One should beware that as F (M1) and F (M2) are not saturated, we have not proved
that T2 eliminates quantifiers.
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3. We have proved nonetheless that, if Σi is the set of all Li sorts (in that case we ask
that T2 eliminates all quantifiers) then for allM1 andM2 ⊧ T1 sufficiently saturated,
M1 ≡M2 implies F (M1) ≡ F (M2).

Corollary II.B.4:
Let T e2 be a definable Σ2-enrichment of T2 (in the language Le2). Then F induces a functor
F e ∶ Str(T1) → Str(T e2 ) and G induces a functor Ge ∶ Str(T e2 ) → Str(T1). We can also find
a full subcategory Fe of F such that F e and Ge induce an equivalence of categories between Fe

and StrF e,(∣L2∣κ)+(T e2 ). The functorGe still respects cardinality up to κ, models and elementary
submodels and sendsΣ2 toΣ1 and F e respects cardinality up to κ+ ∣L2∣ and (∣L2∣κ)+-saturated
models. Finally, Fe contains all (∣L2∣κ)+-saturated models and any C in Str(T1) has a Σ1-
extension D in Fe. Moreover, if C ⩽M1 ⊧ T1 andM1 is (∣L2∣κ)+-saturated, then we can find
such aD ⩽M1.

Proof . Let C ⩽M ⊧ T1. We can suppose thatM is (∣L2∣κ)+-saturated. As F (M) ⊧ T2, we
can enrich F (M) to make it into anLe2-structure F (M)e ⊧ T e2 and we take F e(C) = ⟨C⟩Le

2
.

Note that if M1 and M2 are two (∣L2∣κ)+-saturated models containing C , then Proposi-
tion (II.B.2) implies that idF (C) is a partial isomorphism F (M1) → F (M2) Σ2-elementary
and hence the generated Le2-structures are Le2-isomorphic. As F e(C) does not depend (up
to Le2-isomorphism) on the choice of (∣L2∣κ)+-saturated model containing C , F e is well-
definedonobjects. If f ∶ C1 → C2 is amorphism inStr(T1), by the sameProposition (II.B.2),
F (f) isΣ2-elementary and can be extended to aLe2-isomorphism on theLe2-structure gen-
erated by its domain. Note that if we denote by iC the embeddingF (C)→ F e(C), we have
also defined a natural transformation fromF toF e (ameticulous readermight want to add
the forgetful functor Str(T e2 )→ Str(T2) for it all to make sense).
We define Ge to be G (precomposed by the same forgetful functor). All the statements
about Ge follow immediately from those about G. As ⟨F (C)⟩Le

2
has cardinality at most

∣C ∣κ∣L2∣ ⩽ ∣C ∣κ+∣L2∣, F respect cardinality up to κ + L2 and ifM ⊧ T1 is (∣L2∣κ)+-saturated
then seeing it as a substructure of itself we obtain that F e(M) ⊧ T e2 .
We define Fe to be the full-subcategory of F containing the C such that iC is an isomor-
phism. In particular, it contains (∣L2∣κ)+-saturated models. Let D be an Le2-substructure
of F e(M) for some (∣L2∣κ)+-saturatedM ⊧ T1. Then F eGe(D) = ⟨FG(D)⟩Le

2
, where the

generated structure is taken in F (M). By Proposition (II.B.2), the (natural) isomorphism
D → FG(D) is Σ2-elementary and can be extended (uniquely) into an Le2-isomorphism
between D = ⟨D⟩Le

2
and F eGe(D). This new isomorphism is also natural. It follows that

FG(D) = F eGe(D) and that iG(D) is in fact an isomorphism, henceG(D) ∈ Fe.
If C ∈ Fe, βC ○ G(i−1C ) ∶ GeF e(C) → C is a natural isomorphism. Finally, there remains
to show that any C → M ⊧ T1, whereM is (∣L2∣κ)+-saturated, can be embedded in some
E ∈ Fe such that C → E is a Σ1-extension and E →M . We already know that there exists
D ∈ F such that C → D → M and C → D is a Σ1-extension. Now F (D) → F e(D) is
a Σ2-extension hence D ≅ GF (D) → GF e(D) is a Σ1-extension. Moreover GF e(D) →
GF e(M) ≅ M and, as F e(D) is an Le2-structure of F e(M), GF e(D) ∈ Fe. Thus we can
take E = GF e(D). ∎
Let us now prove a second result in the spirit of Proposition (II.B.2), but the other way
round.
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Proposition II.B.5:
If T1 is Morleyized on Σ1 and T2 eliminates quantifiers, then T1 eliminates quantifiers.

Proof . To show that T1 eliminates quantifiers it suffices to show that for all κ+-saturated
Mi ⊧ T1, i = 1,2, and C1 ⩽C2 ⊆ M1 and f ∶ C1 → M2 an L1-embedding, then f can be
extended to an embedding from C2 into some elementary extension ofM2. LetD1 ∈ F be
such that C1 → D1 → M1 and C1 → D1 is a Σ1-extension. As T1 is Morleyized on Σ1, by
Lemma (II.A.11), we can extend f to an embedding fromD1 into an elementary extension
ofM2. Replacing C1 by D1, C2 by ⟨D1C2⟩L1 andM2 by its elementary extension, we can
consider that C1 ∈ F. Applying F , we obtain the following diagram:

F (M1) M⋆
2

F (C2)

OO
g

99

F (M2)

≼

OO

F (C1)

OO

F (f)

99sssssssss

whereM⋆
2 is a (∣C1∣ℵ0)+-saturated extension of F (M2) and g comes from quantifier elimi-

nation in T2 and saturation ofM⋆
2 . ApplyingG we obtain:

C2
// GF (C2)

G(g)
// G(M⋆

2 )

C1

OO

//

f

55GF (C1)

OO

GF (f)
// GF (M2)

≼

OO

oo //M2

≼
ddIIIIIIIII

and we have the required extension. ∎
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CHAPTER III

Imaginaries in enrichments of ACVF

Le Logicien, au Vieux Monsieur.
Tous les chats sont mortels. Socrate est mortel. Donc Socrate est un chat.

Le Vieux Monsieur
Et il a quatre pattes.

E. Ionesco, Rhinocéros, Acte I

The goal of this chapter is to show that certain enrichments ofACVF have no more imag-
inaries than ACVF itself — the so called geometric imaginaries of [HHM06] — and have
the invariant extension property, that is types over algebraically closed sets have invariant
global extensions (cf. Definition (0.4.13)). Themain example to keep inmind of such an en-
richment (and the only one so far where we can prove all the hypotheses that appear along
the way) isVDFEC , the model completion of differential valued fields where the derivation
preserves the valuation: for all x, val(∂(x)) ⩾ val(x) (cf. [Sca00] and Section IV.1). In fact,
the main motivation behind these results was to prove the elimination of imaginaries and
the invariant extension property in VDFEC .
To be precise, we will be working in the more general context of a theory T̃ enriching a
theory T which is itself a C-minimal enrichment of ACVF. But for the sake of clarity, in
this introduction, wewill focus on the examplewhere T isACVF and T̃ isVDFEC . The fact
that the abstract result proved in this chapter applies to VDFEC is shown in Section IV.1.
Following the general idea of [Hru14; Joh], elimination of imaginaries relative to the geo-
metric sorts is obtained as a consequence of the density of types definable over geometric
parameters (see the conclusion of TheoremE for a precise statement). Furthermore, the
invariant extension property is also a consequence of the density of definable types. Hence
the actual goal of this chapter is, given a setX definable in somemodel ofVDFEC , to find a
definable type of elements inX which is the most “generic” possible — in particular which
has only boundedly many conjugates under automorphisms that stabilize X globally —
and has a canonical basis in the geometric sorts.
Let us fix some notations. Let Ldiv be the one sorted language for ACVF and L∂,div ∶=
Ldiv ∪ {∂} be the one sorted language forVDFEC , where ∂ is a symbol for the derivation. It
follows from quantifier elimination inVDFEC that to describe theL∂,div-type of x (denoted
p) it suffices to give the Ldiv-type of ∂ω(x) ∶= (∂n(x))n<ω (denoted ∇ω(p)) and that p is
consistent with X if and only if ∇ω(p) is consistent with ∂ω(X), the image of X under
the map ∂ω. Note that ∇ω(p) is the pushforward of p by ∂ω restricted to Ldiv. If ∇ω(p)
is definable (in ACVF), because ACVF eliminates imaginaries relative to the geometric
sorts,∇ω(p) has a canonical basis in the geometric sorts and p is definable (inVDFEC) with
the same canonical basis. Hence it will be enough to find a “generic” definable Ldiv-type q
consistent with ∂ω(X).
Note that ∂ω(X) is not at all definable in ACVF but, in fact, it is ⋆-definable in VDFEC .
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The ⋆-definability is not very hard to deal with, but because ∂ω(X) lives in VDFEC , the
definable Ldiv-types we build will more naturally have a defining scheme of L∂,div(M)-
formulas, whereM is some model ofVDFEC —what we could call an L∂,div(M)-definable
Ldiv-type. But, because we do not know yet that VDFEC eliminates imaginaries in the ge-
ometric sorts, such a type has no reason to have a canonical basis in the geometric sorts.
In Section III.1, however, we show a general result about NIP theories which implies that
anyL∂,div(M)-definableLdiv-type also has a defining scheme ofLdiv-formulas and hence a
geometric canonical basis. Therefore, we need only find an L∂,div(M)-definable Ldiv-type
“generic” and consistent with ∂ω(X) (cf. Corollary (III.6.7)). But a definable Ldiv-type is a
consistent collection of definable ∆-types where ∆ is a finite set of Ldiv-formulas and so
we can ultimately reduce to finding, for any such finite ∆ a “generic” L∂,div(M)-definable
∆-type consistent with someL∂,div(M)-definable set (cf. Corollary (III.6.5)). It follows that
most of the preparatory work in this chapter — Sections III.3 to III.5 —will attempt to bet-
ter understand∆-types for finite∆ in ACVF.
An example of this somewhat convoluted back and forth between two languages Ldiv and
L∂,div, is essentially underlying the proof of elimination of imaginaries inDCF0 (themodel
completion of characteristic zero differential fields) — although, in the classical proofs, it
might not appear clearly. Onemight think that this example is too simple, but it is, in fact,
quite revealing of what is going on in theses pages. Take any setX definable in DCF0 and
letXn ∶= ∂n(X) where ∂n(x) ∶= (∂i(x))0⩽i⩽n and let Yn be the Zariski closure ofXn. Now,
choose a consistent sequence (pn)n<ω ofACF-types such that pn has maximal Morley rank
in Yn. Because ACF is stable all the pn are definable and they all have canonical bases of
field points by elimination of imaginaries inACF. Then the complete type of points x such
that ∂n(x) ⊧ pn is also definable with a canonical basis of field points and it is obviously
consistent withX .
InACVF, we cannot use the Zariski closure because we also need to take into account val-
uative inequalities. But the balls in ACVF are combinatorially well-behaved, and we can
approximate sets definable in VDFEC by finite fibrations of balls over lower dimensional
sets — i.e. cells in the C-minimal setting (cf. Section III.6). And, because C-minimality is
really the core property of ACVF that we are using, this chapter generalizes naturally to
any C-minimal extension of ACVF. Although that might seem like unnecessary general-
ization, we hope it might lead in the future to a proof that VDFEC with analytic structure
has the invariant extension property and has no more imaginaries than ACVF with an-
alytic structure (denoted ACVFA), even though we have no concrete idea of what those
analytic imaginaries are (see [HHM13]).
As for the organization of this chapter, in Section III.1, we show that being externally defin-
able is a first order property in NIP theories (see Proposition (III.1.2)) leading to the proof
(in Corollary (III.1.5)) that if p is a type in an NIP theory T with a defining scheme in an
enrichment T̃ of T such that T̃ has a “nice” model, then p has a defining scheme in T . This
is joint work with Pierre Simon whom I would like to thank for allowing me to include
these pages here.
Section III.2 studies the question of uniform stable embeddedness in pairs of valued fields
(following [Del89; Cub13]) to show that ACVF has “nice” models. To apply the results of
Section III.1 to some enrichment T̃ ofACVF, it will then suffice to find amodel of T̃ whose
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underlying valued field is one of those “nice” models. Note that this is the only section that
we do not know how to generalize to ACVFA.
In Section III.3, we consider definable families of functions into the value group, in ACVF
and ACVFA, and show that their germs are internal to the value group.
In Section III.4 we study certain “generic”∆-types, for∆ finite, in a C-minimal expansion
T of ACVF (see Definition (III.4.12)). These generic types are the n-ary generalization of
the unary notion of being generic in a ball (cf. [HHM06, Definition 2.3.4] and Section I.3).
We show that any ∆-type in these theories is implied by a “generic” type, at the cost of
making∆ a little bigger.
In Section III.5, we introduce and study the notion of implicatively definable types. Re-
call that a (complete) type is definable if for any formula φ(x; s) there is a formula θ(s)
such that θ(s) holds if and only if φ(x; s) is in p — equivalently if p implies φ(x; s). If p
is not complete, it still makes sense to require that θ(s) holds if and only if φ(x; s) is a
consequence of p (even if it is possible that the type implies neither a given formula nor its
complement). This is implicative definability (see Definition (III.5.1)). We show in particu-
lar that the “generic”∆-types introduced in Section III.4 — under somemore assumptions
— have this property with respect to sets definable in certain reasonable enrichments of T .
In Section III.6, we put everything together to prove, in Proposition (III.6.1), that sets de-
finable in reasonable enrichments of T can be approximated by finite fibrations of balls and
then go on to prove, as explained at the beginning of the introduction, in TheoremE, the
density of types definable over real parameters. We will check in Section IV.1 that Theo-
remE applies to VDFEC .
Finally, in Section III.7, we show how this density result can be used to give a criterion for
elimination of imaginaries and the invariant extension property.

III.1. Definability of externally definable sets in NIP

theories
This section is joint work with Pierre Simon.
In previous work (mainly [CS13; CS]) on the subject, it was shown that external definability
was rather tractable inNIP theories particularly because of the existence of honest defini-
tions. In stable theories, any externally definable set is definable — this, in fact, is equiv-
alent to the stability of the theory. More precisely, in a stable theory, a set is externally
φ-definable (see Definition (III.1.1)) if and only if it is definable by an instance of a fixed
formula ψ. In NIP theories, the picture is a bit more complicated but we show in Proposi-
tion (III.1.2) that external φ-definability is — almost — a first order property. We go on to
prove (in Theorem (III.1.4)) that if a set is externally definable in an NIP theory and defin-
able in some enrichment of the theory— under some hypothesis on the enrichment to get
rid of obvious counter-examples — then the set is already definable in the NIP theory.

Definition III.1.1 (Externally φ-definable):
Let M be an L-structure and φ(x; t) be an L-formula. We say thatX is externally φ-definable
if there existsN ≽M and a tuple a ∈ N such that φ(M ;a) =X .
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Proposition III.1.2:
Let T be an NIP L-theory. Let U be a new predicate symbol. Let LU ∶= L ∪ {U}. Then for
all L-formulas φ(x; t), there is an LU -sentence θU and an L-formula ψ(x; s) such that for all
M ⊧ T and any enrichmentMU ofM to LU , we have:

if U(MU) is externally φ-definable, thenMU ⊧ θU

and
ifMU ⊧ θU , then U(MU) is externally ψ-definable.

Proof . Let χ(x;u) be a uniform honest definition of φ (see [Sim, Theorem6.16]) — i.e. for
anyM ≼ N ⊧ T , any tuple b ∈ N and anyA ⊆ φ(M ; b) finite, there exists a tuple d ∈M such
thatA ⊆ χ(M ;d) ⊆ φ(M ; b). Let k be the V C-dimension of χ(x;u). By the dual version of
the (p, q)-theorem (see [Sim, Corollary 6.13]) there exists q and n such that for any set X ,
any finite A ⊆ X and any S ⊆ P(X) of VC-dimension at most k, if for all A0 ⊆ A of size at
most q there exists S ∈ S containing A0, then there exists S1 . . . Sn ∈ S such that A ⊆ ⋃i Si.
Let

θU ∶= ∀x1 . . . xq ⋀
i⩽q
U(xi)⇒ ∃u (∀xχ(x;u)⇒ U(x)) ∧⋀

i⩽q
χ(xi;u).

Now, letM ≼ N ⊧ T and b ∈ N be a tuple. Let U(MU) ∶= φ(M ; b). For any A ⊆ φ(M ; b) =
U(MU) of size at most q, as χ is an honest definition of φ, we find a tuple d ∈M such that
A ⊆ χ(M ;d) ⊆ φ(M ; b) = U(MU) i.eMU ⊧ θU .
Suppose now that MU ⊧ θU . The following set of formulas, where Del(M) denotes the
elementary diagram ofM ,

Del
LU
(MU) ∪ {

n

⋁
i=1
χ(a;ui) ∶ a ∈ U(MU) a tuple} ∪ {∀xχ(x;ui)⇒ U(x) ∶ 1 ⩽ i ⩽ n}

is finitely consistent. Indeed, letA ⊆ U(MU) be finite. The family {χ(M ;d) ∶ d ∈M a tuple
and χ(M ;d) ⊆ U(MU)} has VC-dimension at most k and — asMU ⊧ θU — for any A0 ⊆ A
of size at most q, there exists a tuple d ∈ M such that A0 ⊆ χ(M ;d) ⊆ U(MU). It follows
that there are tuples d1 . . . dn ∈M such that A ⊆ ⋁i χ(M ;di) ⊆ U(MU).
We can therefore findNU ≽MU and d1, . . . , dn such that U(MU) ⊆ ⋁i χ(M ;di) ⊆ U(NU)∩
M = U(MU), i.e. U(MU) is externally ⋁ni=1 χ(x;ui)-definable. ∎

Definition III.1.3 (Uniform stable embeddedness):
Let M be an L-structure and A ⊆ M . We say that A is uniformly stably embedded if for all
formulas φ(x; t) there exists a formula χ(x; s) such that for all tuples b ∈M there exists a tuple
a ∈ A such that φ(A, b) = χ(A,a).

Theorem III.1.4:

Let T be an NIP L-theory that eliminates imaginaries, L̃ ⊇ L be some language and T̃ ⊇ T
be a complete theory. Suppose that there exists M̃ ⊧ T̃ such that M̃ ∣L is uniformly stably
embedded in every elementary extension. Then for all Ñ ⊧ T̃ and Ã = dcleqL̃ (Ã) ⊆ Ñ

eq,
any externally L-definable setX that is also L̃eq(Ã)-definable is in fact L(R(Ã))-definable
whereR denotes the set of all L-sorts.
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Recall that whenX is L̃(Ñ)-definable for some Ñ ⊧ T̃ , we denote its code in Ñ eq by ⌜X⌝.

Proof . Let φ(x; t) be an L-formula and χ(x; s) be an L̃-formula. Let θ(s) be the L̃-formula
obtained from the formula θU of Proposition (III.1.2) by replacing U(x) by χ(x; s). Equiv-
alently, for any L̃-structure Ñ and any tuple d ∈ Ñ , we can make N ∶= Ñ ∣L into an LU -
structure Nd by interpreting U as χ(Ñ ;d). Then there exists an L̃-formula θ(s) such that
Nd ⊧ θU ⇐⇒ Ñ ⊧ θ(d). By Proposition (III.1.2) there also exists an L-formula ψ(x;u)
such that for all Ñ ⊧ T̃ and tuple d ∈ Ñ ,

χ(Ñ ;d) externally φ-definable implies Ñ ⊧ θ(d)

and
Ñ ⊧ θ(d) implies χ(Ñ ;d) externally ψ-definable.

Let M̃ ⊧ T̃ be as in the hypothesis,M ∶= M̃ ∣L, U ≽ M be saturated enough and ξ(x; v) be
an L-formula such for any tuple c ∈ U, there is a tuple a ∈M such that ψ(M,c) = ξ(M,a).
Then for all tuples d ∈ M̃ such that M̃ ⊧ θ(d), there is some tuple c ∈ U such that χ(M̃ ;d) =
ψ(M ; c) and hence some tuple a ∈M such that χ(M̃ ;d) = ξ(M ;a) = ξ(M̃ ;a), i.e.

M̃ ⊧ ∀s θ(s)⇒ ∃u (∀x (χ(x; s) ⇐⇒ ξ(x,u))).

But as T̃ is complete, this holds in any Ñ ⊧ T̃ and for any tuple d ∈ Ñ such thatX ∶= χ(Ñ , d)
is externally φ-definable — and hence Ñ ⊧ θ(d)— there exists a tuple a ∈ N ∶= Ñ ∣L such
thatX = ξ(N ;a), i.e. X is L(N)-definable.
As forXbeingL(A)-definable, wehave just shown thatwe canfind ⌜X⌝L ∈ N but becauseX
is also L̃eq(Ã)-definable, we also have that ⌜X⌝L ∈ dcleqL̃ (Ã) = Ã, i.e. ⌜X⌝

L ∈ Ã∩N =R(Ã).
∎

Corollary III.1.5:
Let T be an NIP L-theory that eliminates imaginaries and let L̃ ⊇ L be some language and
T̃ ⊇ T be a complete L̃-theory. Suppose that there exists M̃ ⊧ T̃ such that M̃ ∣L is uniformly
stably embedded in every elementary extension. Let ∆(x; t) be a set of L-formulas, Ñ ⊧ T̃ ,
Ã = dcleqL̃ (Ã) ⊆ Ñ

eq, N ∶= Ñ ∣L and p ∈ S∆x (N). If p is L̃eq(Ã)-definable, then it is in fact
L(R(Ã))-definable whereR denotes the set of all L-sorts.

Proof . Let a ⊧ p and φ(x; t) ∈ ∆. Then {m ∈ N ∶ φ(x;m) ∈ p} = {m ∈ N ∶⊧ φ(a;m)} is
L-externally definable and L̃eq(Ã)-definable. It follows from Theorem (III.1.4) that it is in
fact L(R(Ã))-definable. ∎

Remark III.1.6:
1. The assumption that T is NIP is not enough for the conclusion of Theorem (III.1.4)

to hold. Indeed, let T be the theory of dense linear orders— in the languageL ∶= {<}
— L̃ = LU , M̃ ∶= (Q,<, U) where U(M̃) is the initial segment of a non definable
cut — i.e. U has no maximal element and its complement does not have a minimal
element — and T̃ ∶= Th(M̃). Then the conclusion of Theorem (III.1.4) cannot hold
as U(M̃) is not L-definable, but like all cuts it is externally L-definable.
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But, it is also clear that in all Ñ ≡L̃ M̃ , the cut defined by U is never L-definable and
hence Ñ ∣L cannot be stably embedded in all its elementary extensions.

2. The second assumption is not sufficient either. TakeL ∶= {E,⩽} andTE be the theory
that states that E is an equivalence relation and x ⩽ y implies xEy. For all {⩽}-
formula φ(x), let φE(x, y)be the relativization of φ to the E class of y:

a. φE(x, y) ∶= φ(x) ∧⋀i xiEy for any quantifier free φ;
b. (∃xφ)E(z, y) ∶= ∃xxEy ∧ φE(x, z, y);
c. (∀xφ)E(z, y) ∶= ∀xxEy⇒ φE(x, z, y).

Let Rφ(x, y) be a new relation symbol L⋆ ∶= L ∪ {Rφ ∶ φ(x) is an {⩽}-formula} and
T ⋆
E ∶= TE ∪ {∀x(Rφ(x, y) ⇐⇒ φE(x, y))}. Then for all {⩽}-formula φ, M ⊧ T ⋆

E

tuples a ∈ M and elements b ∈ M , M ⊧ Rφ(a, b) if and only if all the ai are in the
E-class of b— denoted b̂— and b̂(M) ⊧ φ(a).

Claim III.1.7: Any complete L⋆-theory T ⊇ T ⋆
E eliminates quantifiers.

Proof . Let M and N ⊧ T be saturated enough, A ⊆ M , B ⊆ N , f ∶ A → B an L⋆-
isomorphism and c ∈M . LetA0 ∶= {a ∈ A ∶ aEc}. Let us first assume thatA0 ≠ ∅ and
let Â0(M) the E-class of A0 inM , B0 ∶= f(A0) and B̂0(N) the E-class of B0 in N .
Then f ∣A0

is a partial elementary {⩽}-isomorphism between Â0(M) and B̂0(N). It
follows that there exists a partial elementary {⩽}-isomorphism g ∶ Â0(M) → B̂0(N)
with domain A0 ∩ a. It is then easy to check, that g ∪ f is an L⋆-isomorphism.

If A0 = ∅, let φ(x) be any {⩽}-formula such that ĉ(M) ⊧ φ(c), i.e. M ⊧ φE(c, c). Let
n be the number of E-classes containing some a ∈ A such thatM ⊧ φE(a, a). InM ,
there are at least n + 1 E-classes where φE(x,x) is realized. As T is complete, this is
also the case in N and there exists a class with no points in B where this formula is
realized. By compactness, we can find d in a class with no intersection with B such
that for all {⩽}-formulas φ, ĉ(M) ⊧ φ(c) if and only if d̂(N) ⊧ φ(d), i.e. there exists
a partial elementary {⩽}-isomorphism g ∶ ĉ(M) → ĉ(N) with domain c. As before,
g ∪ f is an L⋆-isomorphism. ∎

Claim III.1.8: Any quantifier free L⋆-formula is equivalent modulo T ⋆
E to a formula of

the form⋀i(φi(x)∧⋀j Rφi,j
(x,xi,j))whereφi are quantifier free {E}-formulas andφi,j

are {⩽}-formulas.

Proof . As formulas have a conjunctive normal form, it suffices to prove that for all
{⩽}-formulasφ(x), ¬Rφ(x, y) is as in the claim. But for allM ⊧ T ⋆, tuples a ∈M and
elements b ∈M ,M ⊧ ¬Rφ(a, b) if and only if there exists i such that ¬aiEb or for all
i, ai ∈ b̂ and b̂(M) ⊧ ¬φ(a), i.e. M ⊧ ⋁i ¬bEai ∨R¬φ(a, b). ∎

LetMn be P({0, . . . , n}) where ⩽ is interpreted as the inclusion andM ∶= ∐n∈NMn

be the L-structure where the classes of E are exactly theMn. Then Th(M) has IP.
But because of Claims (III.1.7) and (III.1.8) and because the classes inM do not have
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new points in elementary extensions ofM ,M is uniformly stably embedded in every
elementary extension.

Now, let S(x) be the set of singletons, i.e. points x such that ∃=1y y ⩽ x. InM , every
(finite) subset of S(M) in a given E-class is definable by a formula of the form x ⩽ a.
By compactness, it follows that in every infinite E-class C ⊆ N ≽ M , every subset
of S(C) is externally definable by a formula of the form x ⩽ a for some external
parameter a. Let φi(x; yi) be an enumeration of all L-formulas such that ∣x∣ = 1 and
∣yi∣ < 1 − log2(i)/i. Then by a simple counting argument, for all n ∈ N, we can find
Un ⊆ S(Mn) such that Un ∉ {φi(Mn;m) ∶ i < n andm ∈Mn a tuple}. Let L̃ ∶= LU and
M̃ beM where U(M̃) ∶= ⋃nUn. Let Ñ ∶= M̃N/U be some non principal ultrapower.
For all n ∈ N, pick cn ∈ Mn and let c = (cn)n∈N/U and ĉ(Ñ) be its E-class in Ñ . As
we have seen above, U(Ñ) ∩ ĉ(Ñ) ⊆ S(ĉ(Ñ)) is externally L-definable, it is L̃(Ñ)-
definable, but it is not L(Ñ ∣L)-definable.

III.2. Uniform stable embeddedness of Henselian valued
fields

The goal of this section is to study stable embeddedness in pairs of valued fields and in
particular show that there exist models of ACVF uniformly stably embedded in every el-
ementary extension. These models will then be used to prove that there are models of
VDFEC whose under lying valued field is stably embedded in every elementary extension
(see the proof of TheoremF). Some of the results given here are not necessary to attain this
goal though, but they are of a similar nature and will be used in Section IV.2.
Following Baur, let us first introduce the notion of a separated pair of valued fields.

Definition III.2.1 (Separated pair):
Let L∣K be an extension of valued fields. Call a tuple a ∈ L K-separated if for any tuple λ ∈ K ,
val(∑i λiai) = mini{val(λiai)}. The pair L∣K is said to be separated if any finite dimensional
sub-K-vector space of L has aK-separated basis.

Recall that a maximally complete field is a field where every chain of balls has a point, se
Definition (0.4.15). Let us now reprove a well known result of [Bau82].

Proposition III.2.2:
LetK be a maximally complete field. Then any extension L∣K is separated.

Proof . Let us first prove the following result:

Claim III.2.3: Let x0 and x1 ∈ L. Then the set {val(x0 − λx1) ∶ λ ∈K} has a greatest element.

Proof . Let t = x0/x1. For all y ∈ K , let by = Bval(y−t)(x). As y ∈ by(K), the balls by(K)
form a chain of non empty balls from K , hence z ∈ ⋃ by(K). In particular, for all y ∈ K ,
val(t − z) ⩾ val(t − y) and hence val(x0 − zx1) is the maximal value we were looking for. ⧫
Let us nowprove by induction on ∣x∣ that for any choice ofx ∈ L, we canfind y ∈ L separated
and generating the same K-vector space as the xi. The case ∣x∣ = 1 is trivial. Let us now
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assume that n > 0 and by inductionwe find y generating the sameK-vector space as (xi)i>0
and such that the yi areK-separated.

Claim III.2.4: The set {val(x0 − λ ⋅ y) ∶ λ ∈K} has a greatest element.

Proof . For any choice of i ⩽ n and any choice of λ≠i, by Claim (III.2.3), there exists γ(i, λ≠i) ∈
val(L) and z(i, λ≠i) ∈K such that γ(i, λ≠i) = val(x0 −λ≠i ⋅ y≠i − z(i, λ≠i)yi) =max{val(x0 −
λ≠i ⋅ y≠i − λyi) ∶ λ ∈ K}. Then any z ∈ K is such that the maximum is reached if and only
if val(z − z(i, λ≠i)) ⩾ γ(i, λ≠i). Indeed, if z is such that val(x0 − λ≠i ⋅ y≠i − zyi) = γ(i, λ≠i),
then;

val(z − z(i, λ≠i)) + val(yi) = val(x0 − λ≠i ⋅ y≠i − z(i, λ≠i)yi − (x0 − λ≠i ⋅ y≠i − zyi)) ⩾ γ(i, λ≠i)

and if val(z − z(i, λ≠i)) ⩾ γ(i, λ≠i), then:

val(x0 − λ≠i ⋅ y≠i − zyi) = val(x0 − λ≠i ⋅ y≠i − z(i, λ≠i)yi + (z(i, λ≠i) − z)yi) ⩾ γ(i, λ≠i).

Hence the z such that the valuation is maximal form a closed ball with radius γ(i, λ≠i). Let
b(i, λ≠i) be this ball. Note that b(i, λ≠i)(K) ≠ ∅. Let us show that the b(i, λ≠i) form a chain.
Suppose thatµ≠i is such that γ(i, λ≠i) ⩾ γ(i, µ≠i), and let λ ∈ b(i, λ≠i) andµ ∈ b(i, µ≠i). Then
val(x0 − λ≠i ⋅ y≠i − λyi) ⩾ val(x0 − µ≠i ⋅ y≠i − µyi) and hence

γµ≠i ⩽ val((λ≠i − µ≠i) ⋅ y≠i + (λ − µ)yi) =min{λj − µj, λ − µ} ⩽ (λ − µ).

It follows that λ ∈ b(i, µ≠i) and b(i, λ≠i) ⊆ b(i, µ≠i).
AsK is maximally complete, there exists zi ∈ ⋃λ≠i b(i, λ≠i)(K), i.e. val(x0 − λ≠i ⋅ y≠i − ziyi)
is maximal for any choice of λ≠i. It follows that val(x0 − z ⋅ y) is maximal. ⧫
Let z be such that val(x0 − z ⋅ y) is maximal and t = x0 − z ⋅ y, then (t, y) generates the same
K-vector space as the xi. Let us now show that (t, y) is separated. For all µ and λ ∈ K , if
µ = 0, we have val(µt + λ ⋅ y) = val(λ ⋅ y) =min{val(λiyi)} =min{val(µt),val(λiyi)} as y is
K-separated. Otherwise, suppose val(µt + λ ⋅ y) >min{val(µt),val(λiyi)}. By maximality
of val(x0 − z ⋅ y) = val(t) we have:

val(t) + val(µ) ⩾ val(µt + λ ⋅ y) >min{val(µ) + val(t),val(λiyi)}

and thus val(µt) > min{val(λiyi)} = val(λ ⋅ y). But then val(µt + λ ⋅ y) = min{val(λiyi)} =
min{val(µt),val(λiyi)}, a contradiction. ∎
Following [Del89; Cub13], let us give the links between separation of the pair L∣K and uni-
form stable embeddedness of K in L. In fact the proof of Proposition (III.2.5) is taken al-
most word for word from the one in [Cub13], although we have slightly different assump-
tions and we put more emphasis on uniformity here. Let L be an RV-extension of LRV

and let THen be the LRV-theory of Henselian valued fields of characteristic zero. Recall
thatRV⋆

n =K⋆/(1+nM) and thatTHen resplendently eliminates field quantifiers (cf. The-
orem (II.1.4)).
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Proposition III.2.5:
Let M ⊧ THen be an L-structure and φ(x; s) an L-formula. There exists an L∣RV-formula
ψ(y;u) and polynomialsQi ∈ Z[X,T ] such that for anyN ⩽M , where the pairK(M)∣K(N)
is separated, and any a ∈ M there exists b ∈ K(N) and c ∈ RV(M) such that φ(N ;a) =
ψ(rvn(Q(N, b)); c).

Proof . By (resplendent) elimination of field quantifiers (and the fact that K is dominant),
we may assume that φ(x;a) is of the form θ(RVn(P (x))) where P ∈ K(M)[X], n ∈ N
and ψ is an L∣RV-formula. Let us write each Pi as ∑µ ai,µX

µ
. As the pairK(M)∣K(N) is

separated, theK(N)-vector space generated by the ai,µ is generated by aK(N)-separated
tuple d ∈ K(M). Note that ∣d∣ ⩽ ∣a∣ and adding zeros to d we may assume ∣d∣ = ∣a∣. For
each i and µ, find λi,µ,j ∈ K(N) such that ai,µ = ∑j λi,µ,jdj . We can rewrite each Pi as
∑j djQi,j(X,λ), where Qi,j ∈ Z[X,T ] does not depend on a, and for all x ∈ K(N) we
have val(Pi(x)) = minj{val(djQi,j(x,λ))}. As rvn(x + y) = rvn(x) +n,n rvn(y) whenever
val(x + y) =min{val(x),val(y)}, it follows immediately that

rvn(Pi(x)) = ∑
j∈Ji(x)

rvn(dj)rvn(Qi,j(x,λ))

where Ji(x) = {j ∶ val(dj)val(Qi,j(x,λ)) is minimal}.
The proposition now follow easily with b = λ and c = rvn(d). ∎

Let Log be the language of ordered groups. If M is algebraically closed, we can obtain a
stronger statement.

Proposition III.2.6:
LetM ⊧ ACVF andφ(x, y) anLdiv-formula. There is anLog-formulaψ(y;u) and polynomials
Qi ∈ Z[X,T ] such that for any N ⩽M , where the pair K(M)∣K(N) is separated, and any
a ∈M there exists b ∈K(N) and c ∈ Γ(M) such that φ(N ;a) = ψ(val(Q(N, b)); c).

Proof . The proof is essentially the same as for Proposition (III.2.6) except that we use the
quantifier elimination in the two sorted language. ∎

Let us now give the two consequences of these computations that we will be using later
on.

Theorem III.2.7 (AKE for stable embeddedness; algebraically closed case):
LetL∣K be a separated pair valued fields such thatL is algebraically closed. ThenK is stably
embedded in L if and only if Γ(K) is stably embedded in Γ(L) — as an ordered abelian
group.
Moreover, if Γ(K) is uniformly stably embedded in Γ(L), then K is uniformly stably em-
bedded in L.

Proof . This follows immediately from Proposition (III.2.6). ∎

Wewill now be considering angular components in mixed characteristic (0, p). Recall that
Rn = O/(pnM), R = ⋃nRn and that angular component maps are compatible systems
of group morphisms acn ∶ K⋆ → R⋆

n such that acn∣O⋆ = resn∣O⋆ . Note that we changed
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conventions slightly compared to Chapter II because we fixed the residual characteristic
and hence we can restrict ourselves to the relevant residual rings.

Theorem III.2.8 (AKE for stable embeddedness; unramified mixed characteristic with ac):
Let L∣K be a separated pair of unramified mixed characteristic valued fields with angular
component maps such thatL is Henselian andR0(L) is perfect. ThenK is stably embedded
in L if and only if Γ(K) is stably embedded in Γ(L)— as an ordered abelian group — and
R0(K) is stably embedded inR0(L)— as a ring.
Moreover if Γ(K) is uniformly stably embedded in Γ(L) and R0(K) is uniformly stably
embedded inR0(L), thenK is uniformly stably embedded in L.

Proof . As explained in Section II.1, an angular component is nothingmore than a section of
the short exact sequence R⋆

n → RV⋆
n → Γ. Therefore, it follows from Proposition (III.2.5)

that we only need to prove that R ∪ Γ(K) is (uniformly) stably embedded in R ∪ Γ(L).
Because L is unramified, it follows from the quantifier elimination result mentioned in
Remark II.1.9.3 that Γ and R are orthogonal — i.e. any definable subset of Rn × Γm is a
union of products X × Y where X ⊆ Rn is definable in R and Y ⊆ Γm is definable in
Γ. Hence it suffices to prove that Γ(K) is (uniformly) stably embedded in Γ(L) and that
R(K) is (uniformly) stably embedded inR(L).
For all n, the canonical projection res0,n ∶Rn →R0 has a definable section defined by τn(x)
is the only y such thatR0,n(y) = x and y is a pn-th power. Using this residual version of the
Teichmüller liftings, one can show that Rn(L) is ∅-definably isomorphic to Wn(R0(L))
and hence thatR(K) is (uniformly) stably embedded inR(L) if and only ifR0(K) is (uni-
formly) stably embedded inR0(L). ∎

Corollary III.2.9:
Let k be any algebraically closed field. TheHahnfieldK ∶= k((tR)) is uniformly stably embedded
— as a valued field — in any elementary extension.

Proof . The fieldK is maximally complete — as are all Hahn fields — and so it is Henselian.
Moreover its residue field k is algebraically closed and its value group R is divisible. It fol-
lows thatK is algebraically closed. By Proposition (III.2.2), any extensionL∣K is separated.
By Theorem (III.2.7), it suffices to show that R is uniformly stably embedded — as an or-
dered group — in any elementary extension. But that follows from the fact that (R,<) is
complete and (R,+,<) is o-minimal, see [CS, Corollary 64]. ∎

III.3. Γ-reparametrization
Let L ⊇ Ldiv, T ⊇ ACVF be an L-theory that eliminates imaginaries. Assume that T is
C-minimal, i.e. K is dominant — every L-sort is the image of an L-definable map with
domain someKn — and for allM ⊧ T , every L(M)-definable unary set X ⊆ K is a finite
union of swiss cheeses (cf. Definition (0.2.8)). The two main examples of such theories are
ACVFG and ACVFeq

A for some separated Weierstrass systemA (cf. Section II.3).
LetM ⊧ T , f = (fλ)λ∈Λ be an L(M)-definable family of functions Kn → Γ, ∆(x; t) be a
finite set of L-formulas and p ∈ S∆x (M). We wish to study the family f and in particular
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its germs over p (see Definition (III.3.3)), to show that they are internal to Γ. This is later
used as a partial elimination of imaginaries result in enrichments T̃ of T where Γ is stably
embedded: any subset of these germs definable in T̃ is coded in Γeq — where eq is taken
relative to the theory induced by T̃ . We only achieve this goal in ACVFG and ACVFA

eq ∶=
(ACVF ∪TA)eq. The idea of the proof is to reparametrize the family of functions (see
Definition (III.3.2)).

Remark III.3.1:
1. Recall that Γ is stably embedded and o-minimal in T (cf. Proposition (0.3.23)).

2. As Γ is an o-minimal group, the induced structure on Γ eliminates imaginaries.

Let g = (gγ)γ∈G be an L(M)-definable family of functionsKn → Γ, whereG ⊂ Γk for some
k.

Definition III.3.2 (Γ-reparametrization):
We say that g Γ-reparametrizes f over p if for all λ ∈ Λ(M), there is γ ∈ G(M) such that

p(x) ⊢ fλ(x) = gγ(x).

We say that T admits Γ-reparametrizations if for all L(M)-definable families f = (fλ)λ∈Λ of
functions Kn → Γ there exists a finite set of L-formulas ∆(x; s) such that for allM ⊧ T and
p ∈ S∆x (M), there exists an L(M)-definable family g = (gγ)γ∈G of functions Kn → Γ that
Γ-reparametrizes f over p.

We will say that ∆ is adapted to f (resp. to g) when any ∆-type decides when fλ1(x) =
fλ2(x) (resp. gγ1(x) = gγ2(x)).

Definition III.3.3 (p-germ):
Assume that∆ is adapted to f and that p is L(M)-definable. We say that fλ1 and fλ2 have the
same p-germ if p(x) ⊢ fλ1(x) = fλ2(x). Let us denote ∂pfλ ∈ M eq the code of the equivalence
class of λ under the equivalence relation “having the same p-germ”.

Proposition III.3.4:
Let us assume that g is aΓ-reparametrization of f over p, that∆ is adapted to both f and g and
that p isL(M)-definable. The set {∂pfλ ∶ λ ∈ Λ} is internal toΓ, i.e. there is anL(M)-definable
one to one map from this set into some cartesian power of Γ.

Proof . As γ is a tuple from Γ and Γ is stably embedded in T and eliminates imaginaries
(see Remark (III.3.1)), we may assume that ∂pgγ ∈ Γ. Now pick any λ. Let γ be such that
p(x) ⊢ fλ(x) = gγ(x). Then ∂pgγ only depends on ∂pfλ and not on λ or γ. It follows that
the set {∂pfλ ∶ λ ∈ Λ} is in L(M)-definable one to one correspondence with — a subset of
— the set {∂pgγ ∶ γ ∈ G} which is itself a subset of some cartesian power of Γ. ∎
Let T now be eitherACVFG orACVFeq

A andL be respectivelyLG orLeqA,Q. Let us now show
that we can reparametrize the valuation of certain terms.
If Z1 and Z2 ⊆ K are finite sets, we will denote D(Z1, Z2) ∶= {val(z1 − z2) ∶ z1 ∈ Z1 and
z2 ∈ Z2}. Let us order the elements inD(Z1, Z2) as d1 > d2 > ⋯ > dk and let di(Z1, Z2) ∶= di.
If Z1 = {z} is singleton we will write di(z,Z2).
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Proposition III.3.5:
Let t(x, y, λ) ∶Kn+1+l →K be an L∣K(M)-term polynomial in y where ∣x∣ = n, ∣y∣ = 1 and ∣λ∣ =
l. Let Zλ(x) ∶= {y ∶ t(x, y, λ) = 0}. Then there exists an L(M)-definable family q = (qη)η∈H of
functionsKn → Γ such that for allN ≽M , x ∈Kn(N) and y ∈K(N), there exists µ0 ∈ Λ(M)
such that for all λ ∈ Λ(M) there exists η ∈ H(M) and n smaller than the degree of t in y such
that:

val(t(x, y, λ)) = qη(x) + n ⋅ d1(y,Zµ0(x)).

Proof . For all α ∈ Zλ(x), letmα be its multiplicity and let us define:

u(x,λ) ∶= t(x, y, λ)
∏

α∈Zλ(x)
(y − α)mα

which is L-definable and does not depend on y, and

qλ,k,j,η(x) ∶= val(u(x,λ)) +
k

∑
i=0
dji(Zλ(x), Zη(x)).

where k is at most the degree of t in y and ji ⩽ l2. Note that because we can code disjunc-
tions on a finite number of integers, q can be considered as an L(M)-definable family of
functionsKn → Γ.
Let N ≽M , x ∈ Kn(N) and y ∈ K(N) and let us first assume that there exists µ0 ∈ Λ(M)
such that d1(y,Zµ0(x)) =maxµ{d1(y,Zµ(x))} and letα0 ∈ Zµ0(x)be such thatval(y−α0) =
d1(y,Zµ0(x)). Now pick any λ ∈ Λ(M) and α ∈ Zλ(x). Let η = µ0.

Claim III.3.6: Either val(y −α) = d1(y,Zµ0(x)) or val(y −α) = dj(Zλ(x), Zη(x)) for some j.

Proof . If val(y−α) ≠ d1(y,Zµ0(x)), then val(y−α) < d1(y,Zµ0(x)) and val(y−α) = val(α−
α0) = dj(Zλ(x), Zµ0(x)) for some j. ⧫

In the other case, if there does not exist a maximum in {d1(y,Zµ(x))}, pick any λ ∈ Λ(M).
Then there exists η ∈ Λ(M) such that d1(y,Zη(x)) > d1(y,Zλ(x)). Let α0 be such that
val(y−α0) = d1(y,Zη(x)), then for allα ∈ Zλ(x), val(y−α) = val(α−α0) = dj(Zλ(x), Zη(x))
for some j and that concludes the proof.
In both cases, as val(t(x, y, λ)) = val(u(x,λ)) +∑α∈Zλ(x)mαval(y − α), it follows that

val(t(x, y, λ)) = val(u(x,λ)) +∑ki=0 dji(Zλ(x), Zη(x)) + n ⋅ d1(y,Zµ0(x))
= qλ,k,j,µ0(x) + n ⋅ d1(y,Zµ0(x))

for some n, k and j. ∎

Proposition III.3.7 (Existence of Γ-reparametrization):
Let f = (fλ)λ∈Λ be anL(M)-definable family of functionsKn → Γ. Then there exists anL(M)-
definable family g = (gω,γ)ω∈Ω,γ∈G of functionsKn → ΓwhereG ⊆ Γk for some k and a finite set
ofL-formulas∆(x; t) such that for any p ∈ S∆x (M) there existsω0 ∈ Ω(M) such that (gω0,γ)γ∈G
is a Γ-reparametrization of f over p.
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Proof .Wework by induction on n. The case n = 0 is trivial as f is nothingmore than a fam-
ily of points inΓ that can be reparametrized by themselves. Let us now assume thatn =m+
1 and x = (y, z)where ∣z∣ = 1. BecauseK is dominant, wemay assume up to reparametriza-
tion that λ is a tuple fromK. If T = ACVFG , the graph of fλ is given by anLG(M)-formula.
If T = ACVFeq

A , by Corollary (II.5.5) there exists an LG(M)-formula ψ(z,w, γ) and L∣K-
terms r(x,λ) such thatM ⊧ fλ(y, z) = γ if and only ifM ⊧ ψ(z, r(y, λ), γ). Taking r to be
the identity, the graph of fλ also has this form when T = ACVFG . By elimination of quan-
tifiers in ACVFG (or in the two sorted language), we know that ψ(z,w, γ) is of the form
χ((val(Pi(z,w)))0⩽i<k, γ)where χ is an LG ∣Γ-formula and Pi ∈K(M)[Y,W ]. Wemay also
assume that χ defines a function h ∶ Γk → Γ.
Let ti(y, z, λ) = Pi(z, r(y, λ)) and qi = (qi,η)η∈Hi

be an L(M)-definable family of functions
Km → Γ as in Proposition (III.3.5) with respect to ti. By the usual coding tricks we may
assume that there is only one family q = (qη)η∈H such that for all i and η ∈ Hi there exists
ε ∈ H such that qi,η = qε. By induction, Proposition (III.3.7)holds for q and there exist a finite
set ofL-formulasΞ(y; s) and anL(M)-definable family (uε,δ)ε∈E,δ∈D of functionsKm → Γ,
whereD ⊆ Γl for some l, such that for any p ∈ SΞy (M), for some ε0 ∈ E(M), (uε0,δ)δ∈D is a
Γ-reparametrization of q. Let Zi,λ(y) ∶= {z ∶ Pi(y, z, λ) = 0} and

gε,µ,δ,n(y, z) ∶= h((uε,δi(x) + ni ⋅ d1(z,Zi,µi(y)))0⩽i<k).

Let also φn(y, z;λ, ε, µ, δ):=“fλ(y, z) = gε,µ,δ,n(y, z)” and ∆(y, z; s, λ, ε, µ, δ, n) ∶= Ξ(y; s) ∪
{φn(y, z;λ, ε, µ, δ) ∶ n ∈N}. For all p ∈ S∆y,z(M), there exists ε0 ∈ E(M) such that (uε0,δ)δ∈D
Γ-reparametrizes q over p∣Ξ. Let (y, z) ⊧ p. By Proposition (III.3.5) there exists a tuple
µ0 ∈ Λ(M) such that for all λ ∈ Λ(M), there exists tuples η ∈ H(M) and n such that
val(ti(y, z, λ)) = qηi(y) + ni ⋅ d1(y,Zi,µ0,i(x)). As y ⊧ p∣Ξ, there exists δi ∈ D(M) such that
qηi(y) = uε0,δi(y) and hence

fλ(y, z) = h((val(ti(y, z, λ)))0⩽i<k)
= h((uε0,δi(y) + ni ⋅ d1(y,Zi,µ0,i(x)))0⩽i<k)
= gε0,µ0,δ,n(y, z).

Because p decides such equalities, this holds in fact for all realizations of p. We have just
shown that (gε0,µ0,δ,n,)δ∈D,n∈N reparametrizes f over p. But because δ is a tuple from Γ and
disjunctions on a finite number of bounded integers can be coded in Γ, it is in fact a Γ-
reparametrization. ∎

Corollary III.3.8:
The theories ACVFG and ACVFeq

A admit Γ-reparametrizations.

Proof . This is an immediate consequence of Proposition (III.3.7). ∎
In fact, in Proposition (III.3.7), we have proved a slightly stronger result. These theories
admit what we could call uniformΓ-reparametrizations because theΓ-reparametrizations
of a given family f come in a definable family that does not depend on the type p. But we
will not be needing this stronger result afterwards.

Question III.3.9: Do all C-minimal extensions of ACVF admit Γ-reparametrizations?
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III.4. Types and uniform families of balls
Let L ⊇ Ldiv and T ⊇ ACVF be a C-minimal L-theory that eliminates imaginaries. In
this section, we wish to make precise the idea that in C-minimal theories, n + 1-types can
be viewed as generic types of balls parametrized over realizations of an n-type. This is
an obvious higher dimensional generalization of the unary notion of genericity in a ball
(cf. [HHM06, Definition 2.3.4] and Section I.3). To do so, we define a class of ∆-types (see
Definition (III.4.12)) for∆ a finite set of L-formulas that will play a central role in the rest
of this chapter. We also show that at the cost of enlarging∆, we may assume that all types
are of this specific form.
We take the convention that points in K are closed balls of radius +∞ and K itself is an
open ball of radius −∞.

Definition III.4.1 (B[l] andB
[l]
st ):

Let B be the set of all closed balls (potentially with radius +∞), Ḃ be the set of all open balls
(potentially with radius −∞),B ∶= B ∪ Ḃ and l ∈N>0. We defineB[l] ∶= {B ⊆ B ∶ ∣B∣ ⩽ l}. We
also defineB[l]st ∶= {B ∈ B[l] ∶ all the balls inB have the same radius and they are either all open
or all closed}.

Notation III.4.2:
For allB ∈ B[l], we will be denoting⋃b∈B b— i.e. the valued field points in the balls inB—
by S(B). Because the balls can be nested, S is not an injective function. But in each fiber of
S there is a unique elementwithminimal cardinal— the onewhere there is no intersection
between the balls. We will denote by B this canonical section of S.

Remark III.4.3:
1. As B is the disjoint union of the sets of codes for open balls and the set of codes for

closed ones, one can decide wether a given code is the code of an open or a closed ball
and henceB[l]st is indeed an interpretable set. In fact, one can also recognize if a ball
b is open or closed by looking if the set {val(x − y) ∶ x, y ∈ b} has a smallest element
or not.

2. Note that ∅ ∈ B[l]st

3. Points inB
[l]
st behave more or less like balls. For example ifB1 andB2 ∈ B[l]st are such

that SB1 ⊂ SB2, where ⊂ denotes the strict inclusion, then either all the balls in B1

have smaller radius than the balls in B2 or if they have equal radiuses, then the balls
in B1 must be open and those in B2 must be closed, or else the inclusion would not
be strict.

Definition III.4.4 (Generalized radius):
LetB ∈ B[l]st ∖ {∅}. We define the generalized radius ofB— denoted grad(B)— to be the pair
(γ,0) when the balls inB are closed of radius γ and (γ,1) when they are open of radius γ. The
set of generalized radii — a subset of (Γ ∪ {−∞,+∞}) × {0,1}— is ordered lexicographically.
We also define the generalized radius of∅ to be (+∞,1), i.e. greater than any generalized radius
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of non empty B ∈ B[l]st .

Proposition III.4.5:
Let (Bi)i∈I ⊆ B

[l]
st . Assume that there exists i0 such that the balls in Bi0 have greater — or

equal — generalized radius than in all the otherBi — in particular this holds if I is finite. Then
B(⋂i S(Bi)) ⊆ Bi0 . Moreover, there exists (ij)0<j⩽l ∈ I such that ⋂i S(Bi) = ⋂lj=0 S(Bij).

Proof . For any b ∈ Bi0 , if ⋂i S(Bi) ∩ b ≠ ∅ then b ⊆ ⋂i S(Bi). Hence ⋂i S(Bi) = S({b ∈ Bi0 ∶
b ∩⋂iBi ≠ ∅}) and B(⋂i S(Bi)) ⊆ Bi0 . Moreover, if ⋂i S(Bi) ∩ b = ∅, then there exists ib
such that b ∩ S(Bib) = ∅ and ⋂i S(Bi) can be obtained by intersecting Bi0 with the Bib of
which there are at most l. ∎

Definition III.4.6 (di(B1,B2)):
Let b1 and b2 ∈ B. When b1 ∩ b2 = ∅, we define d(b1, b2) to be val(x1 − x2), where xi ∈ bi, which
does not depend on the choice of the xi. When b1 ⊆ b2 (and vice versa), we define d(b1, b2) =
min{rad(b1), rad(b2)}.
For all B1 and B2 ∈ B[l], let us defineD(B1,B2) ∶= {d(b1, b2) ∶ b1 ∈ B1 and b2 ∈ B2} and let us
list the elements inD(B1,B2) as d1 > d2 > ⋯ > dk. For all i ⩽ k, we define di(B1,B2) ∶= di.

This definition coincides with the definition in Section III.3 for finite sets of points. We
also define d0(B1,B2) ∶= min{rad(B1), rad(B2)} — which is equal to d1(B1,B2) when
S(B1) ∩ S(B2) ≠ ∅. For later coding purpose we might want di(B1,B2) to be defined for
all i ⩽ l2 in which case, for i > k, we set di(B1,B2) = dk.
LetM ⊧ T , F = (Fλ)λ∈Λ be an L(M)-definable family of functionsKn → B

[l]
st — in partic-

ular Λ is an L(M)-definable set — and ∆(x, y; t) a finite set of L-formulas where x ∈ Kn,
y ∈ K and t is a tuple of variables. To simplify notations, we will be denoting S(Fλ(x)) by
F S
λ(x). Note that if n = 0 all of what we prove in this section and in Section III.5 still hold

(and is in fact much simpler because we are considering fixed balls instead of parametrized
balls).

Definition III.4.7 (∆ adapted to F ):
Say that∆ is adapted to F if there are λ∅ and λK ∈ Λ such that for all x ∈Kn, Fλ∅(x) = ∅ and
FλK(x) = {K} and for all p ∈ S∆x,y(M), p(x, y) decides:

(i) For ◻ ∈ {=,⊆}, λ and (µi)0⩽i<l ∈ Λ(M), if F S
λ(x) ◻⋃0⩽i<l F S

µi
(x);

(ii) For ◻ ∈ {=,⊆}, λ and (µi)0⩽i<l ∈ Λ(M), if Fλ(x) ◻⋃i<l Fµi(x);

(iii) For λ1, λ2 and µ ∈ Λ(M), if F S
µ(x) = F S

λ1
(x) ∩ F S

λ2
(x);

(iv) For λ ∈ Λ(M), if the balls in Fλ(x) are closed;

(v) For ◻ ∈ {=,⩽}, λ, µ1 and µ2 ∈ Λ(M) and i ⩽ l2, if rad(Fλ1(x)) ◻ di(Fµ1(x), Fµ2(x));

Note that none of the above formulas (and many later on) actually depends on y so what is
really relevant is not p but the closed set induced by p in SLx (M).
Until Proposition (III.4.15), let us assume that∆ is adapted to F and let p ∈ S∆x,y(M).
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Definition III.4.8 (Generic intersection):
We say that F is closed under generic intersection over p if for all λ1 and λ2 ∈ Λ(M), there exists
µ ∈ Λ(M) such that

p(x, y) ⊢ F S
µ(x) = F S

λ1
(x) ∩ F S

λ2
(x).

Let us assume, until Proposition (III.4.15), that F is closed under generic intersection over
p.

Definition III.4.9 (Generic irreducibility):
For all λ ∈ Λ(M), we say that Fλ is generically irreducible over p if for all µ ∈ Λ(M), if p(x, y) ⊢
Fµ(x) ⊆ Fλ(x) and p(x, y) ⊢ Fµ(x) ≠ ∅ then p(x, y) ⊢ Fµ(x) = Fλ(x).
We say that F is generically irreducible over p if for every λ ∈ Λ(M), Fλ is generically irreducible
over p.

Let us now show that generically irreducible families of balls behave nicely under generic
intersection.

Proposition III.4.10:
Let λ1 and λ2 ∈ Λ(M) be such that Fλ1 and Fλ2 are generically irreducible over p and p(x, y)
implies that the balls in Fλ1(x) have smaller — or equal — generalized radius than the balls in
Fλ2(x). Then either p(x, y) ⊢ F S

λ1
(x) ∩ F S

λ2
(x) = ∅ or p(x, y) ⊢ F S

λ1
(x) ∩ F S

λ2
(x) = F S

λ1
(x).

Proof . Let (a, c) ⊧ p. By Proposition (III.4.5), we have that B(F S
λ1
(a) ∩ F S

λ2
(a)) ⊆ F S

λ1
(a).

By generic intersection, there exists µ such that p(x, y) ⊢ F S
µ(x) = F S

λ1
(x) ∩ F S

λ2
(x). Then

Fµ(a) ⊆ Fλ1(a) and hence, if Fµ(a) ≠ ∅, Fµ(a) = Fλ1(a). ∎

Corollary III.4.11:
Assume p is L(M)-definable. Then Λp ∶= {λ ∈ Λ ∶ Fλ is generically irreducible over p} is L(M)-
definable and the L(M)-definable family (Fλ)λ∈Λp is closed under generic intersection over p.

Proof . The definability of Λp is a consequence of the definability of p and the closure of
(Fλ)λ∈Λp under generic intersection follows from Proposition (III.4.10). ∎
Until Proposition (III.4.15), let us also assume that F is generically irreducible over p.

Definition III.4.12 ((∆, F )-Generic type of E over p):
Let E ⊂ Λ(M). LetΨ∆,F (x, y; t, λ) denote the set∆(x, y; t) ∪ {y ∈ Fλ(x) ∧ λ ∈ Λ}. We define
αE/p(x, y) to be the (∆, F )-generic type of E over p to be the followingΨ∆,F -type:

p(x, y) ∪ {y ∈ F S
λ(x) ∶ λ ∈ E}

∪ {y ∉ F S
µ(x) ∶ µ ∈ Λ(M) and for all λ ∈ E, p(x, y) ⊢ F S

µ(x) ⊂ F S
λ(x)}.

Note that most of the time,∆ and F will be obvious from the context and it will not be an
issue that the notation αE/p mentions neither∆ nor F .

Proposition III.4.13:
Let E ⊂ Λ(M) be such that αE/p is consistent, then αE/p generates a completeΨ∆,F -type.

Therefore, when it is consistent, we will identify αE/p with the type it generates.
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Proof . Pick any µ ∈ Λ(M). Either there exists λ ∈ E such that p(x, y) ⊢ F S
µ(x)∩F S

λ(x) = ∅,
in which case αE/p(x, y) ⊢ y ∉ F S

µ(x), or there exists λ ∈ E such that p(x, y) ⊢ F S
λ(x) ⊆

F S
µ(x), and then αE/p(x, y) ⊢ y ∈ F S

µ(x), or for all λ ∈ E, p(x, y) ⊢ F S
µ(x) ⊂ F S

λ(x) and
hence αE/p(x, y) ⊢ y ∉ F S

µ(x). ∎

Remark III.4.14:
Any q ∈ SΨ∆,F

x,y (M) is of the form αE/p. Indeed let p ∶= q∣∆ and E = {λ ∈ Λ(M) ∶ q(x, y) ⊢
y ∈ Fλ(x)}, then, quite clearly, q = αE/p.

Although this will not be used afterwards, when y does not appear in∆, we can also prove
consistency under some obvious hypothesis:

Proposition III.4.15:
Assume that y does not appear in any of the formulas in ∆(x, y; t) and let E ⊆ Λ(M) be such
that for allλ1 andλ2 ∈ E, p(x) ⊢ Fλ1(x)∩Fλ2(x) ≠ ∅. Then αE/p∣M is consistent and generates
a completeΨ∆,F -type overM .

Proof . Let us show consistency — completeness then follows from Proposition (III.4.13). If
this type is not consistent, there exists finitely many λi ∈ E and finitely many µj ∈ Λ(M)
such that for all λ ∈ E, p(x) ⊢ F S

µj
(x) ⊂ F S

λ(x) and p(x) ⊢ ⋂iF S
λi
(x) ⊆ ⋃j F S

µj
(x). Replacing

⋂iF S
λi
(x) by their generic intersection — which is also in E by Proposition (III.4.10)—we

find λ ∈ E such that p(x) ⊢ F S
λ(x) ⊆ ⋃j F S

µj
(x). Let x ⊧ p and b be one of the balls in

Fλ(x). This ball is covered by finitely subballs from ⋃j Fµj(x) and, as the residue field is
infinite, it must be included in one of those balls. Let us assume that b ⊆ F S

µ1(x). Then
the balls of Fλ(x) must have smaller generalized radius than those of Fµ1(x). Hence by
Proposition (III.4.10), F S

µ1(x) ∩ F S
λ(x) = F S

λ(x), i.e. F S
λ(x) ⊆ F S

µ1(x), a contradiction. ∎

Now that we have found finite sets Θ of L-formulas, namely those of the form Ψ∆,F , for
which we understand theΘ-types, let us show that any finite set of formulas with variables
inKn+1 can be decided by someΨ∆,F for well chosen∆ and F .

Proposition III.4.16 (Reduction toΨ∆,F -types):
Let Θ(x, y; t) be a finite set of L-formulas where x ∈ Kn and y ∈ K. Then there exists an L-
definable family (Fλ)λ∈Λ of functions Kn → B[l] and a finite set of L-formulas ∆(x; s) such
that anyΨ∆,F -type decides all the formulas inΘ.

Proof . Letφ(x, y; t) be a formula inΘ. For all tuples a ∈K and c ∈M , the setφ(a,M ; c) has
a canonical representation as a swiss cheese, i.e. is of the form⋃i(bi∖bi,j)where the bi and
bi,j are algebraic over ac. In particular, there exists l ∈ N>0 and L(c)-definable functions
Hφ,c ∶ Kn → B[l] and Gφ,c ∶ Kn → B[l] such that M ⊧ ∀y (y ∈ HS

φ,c(a) ∖ GS
φ,c(a) ⇐⇒

φ(a, y; c)). By compactness, we can find finitely many L-definable families (Hi,φ,c)c and
(Gi,φ,c)c of functionsKn → B[li,φ] such that for any choice of c and a there is an i such that
φ(a, y; c) ⇐⇒ y ∈ HS

i,φ,c(a) ∖ GS
i,φ,c(a). Choosing l to be the maximum of the li,φ and

using any coding trick, one can find an L-definable family (Fλ)λ∈Λ of functionsKn → B[l]

such that for any φ ∈ Θ, i and c we find µ and ν ∈ Λ such thatHi,φ,c = Fµ andGi,φ,c = Fν .
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Now let ∆(x; t, µ, ν) = {∀y (φ(x, y; t) ⇐⇒ y ∈ F S
µ(x) ∖ F S

ν (x)) ∶ φ ∈ Θ}. Then for any
p ∈ SΨ∆,F

x,y (M), φ ∈ Θ and tuple c ∈ M , there exists µ and ν ∈ Λ(M) such that p(x, y) ⊢
φ(x, y; c) ⇐⇒ y ∈ F S

µ(x)∖F S
ν (x) and either p(x, y) ⊢ y ∈ F S

µ(x)∧ y ∉ F S
ν (x) in which case

p(x, y) ⊢ φ(x, y; c) or not, in which case p(x, y) ⊢ ¬φ(x, y; c). ∎
And now let us show that we can refine any ∆ and F into a family verifying all previous
hypotheses.

Proposition III.4.17 (Reduction toB[l]st ):
Let A ⊆ M and (Fλ)λ∈Λ be an L(A)-definable family of functions Kn → B[l]. Then there
exists an L(A)-definable family (Gω)ω∈Ω of functionsKn → B

[l]
st such that for all λ there exist

(ωi)0⩽i<l such that Fλ(x) = ⋃iGωi
(x) and for all ω there exists λ such thatGω(x) ⊆ Fλ(x).

Proof .We define Gλ,i,j(x) ∶= {b ∈ Fλ(x) ∶ b is open if j = 0 closed otherwise and b has
the i-th smallest radius among the balls in Fλ(x)}. As we can code disjunctions on a finite
number of bounded integers, G = (Gω)ω∈Ω can indeed be viewed as an L(A)-definable
family. Then for all x, Gω(x) ∈ B[l]st and for all x and λ, Gλ,i,j(x) ⊆ Fλ(x) and Fλ(x) =
⋃i,jGλ,i,j(x) and at most l of them are non empty. ∎

Definition III.4.18 (Generic complement):
We say that F is closed under generic complement over p if for all λ and µ ∈ Λ(M) such that
p(x) ⊢ Fµ(x) ⊆ Fλ(x), there exists κ ∈ Λ(M) such that

p(x) ⊢ Fλ(x) = Fµ(x) ⊍ Fκ(x).

Note that p can indeed decide any such statement because it is equivalent to Fλ(x) =
Fµ(x) ∪ Fκ(x) and F S

µ(x) ∩ F S
κ (x) = ∅.

Lemma III.4.19:
Let F = (Fλ)λ∈Λ be an L(M)-definable family of functions Kn → B

[l]
st , ∆(x; t) a finite set of

L-formulas adapted to F and p ∈ S∆x (M). Assume that F is closed under generic complement
over p. Let Λp ∶= {λ ∈ Λ ∶ Fλ is generically irreducible over p}, then for all λ ∈ Λ(M) there exists
(λi)0⩽i<l ∈ Λp(M) such that p(x) ⊢ Fλ(x) = ⋃iFλi(x).

Proof . Let x ⊧ p. We work by induction on ∣Fλ(x)∣. If there exists µ ∈ Λ(M) such that
Fµ(x) ⊂ Fλ(x) andFµ(x) ≠ ∅, then there exists κ ∈ Λ(M) such thatFλ(x) = Fµ(x)⊍Fκ(x).
We now apply the induction hypothesis to Fµ(x) and Fκ(x). Finally, because ∣Fλ(x)∣ ⩽ l,
we cannot cut it in more than l distinct pieces. ∎

Proposition III.4.20 (Reduction to irreducible families):
Let A ⊆ M , (Fλ)λ∈Λ be an L(A)-definable family of functionsKn → B

[l]
st and ∆(x; t) a finite

set ofL-formulas. Then, there exists anL(A)-definable family (Gω)ω∈Ω of functionsKn → B
[l]
st

and a finite set of L-formulas Θ(x; t, s) ⊇ ∆(x; t) such that Θ is adapted to G and for any
p ∈ SΘx (M):

(i) G is closed under generic intersection and complement over p;
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(ii) For all ω ∈ Ω(M) there exists λ ∈ Λ(M) such that p(x) ⊢ Gω(x) ⊆ Fλ(x);

(iii) For all λ ∈ Λ(M), there exists ω ∈ Ω(M) such that p(x) ⊢ Fλ(x) = Gω(x);

(iv) For all ω ∈ Ω(M), there exists (ωi)0⩽i<l ∈ Ωp(M) such that p(x) ⊢ Gω(x) = ⋃iGωi
(x);

where Ωp ∶= {ω ∈ Ω ∶ Gω is generically irreducible over p}.

Proof . Adding them if necessary, we may assume that F contains the constant functions
equal to ∅ and {K} respectively. Let Hλ(x) ∶= B(⋂i⩽l F S

λi
(x)). It follows from Proposi-

tion (III.4.5), that H = (Hλ)λ∈Λl+1 is well-defined and that III.4.20.(ii) holds for H . Adding
finitely many formulas to∆(x; t), we obtain Ξ(x; s) that is adapted toH . Let p ∈ SΞx (M).
Proposition (III.4.5) also implies that for a given x, the intersection of any number ofF S

λ(x)
is given by the intersection of r + 1 of them and hence is an instance ofH . As Ξ is adapted
toH , we have proved thatH is closed under generic intersection over any Ξ-type p. Con-
dition III.4.20.(iii) also clearly holds forH .
Let B ∈ B[l]st , we define B1 to be B and B0 to be its complement (in B). As previously, to
simplify notations, for ε ∈ {0,1}, we will writeHε

µ(x) for (Hµ(x))ε.

Claim III.4.21: LetB ∈ B[l]st . Any boolean combination of sets (Ci)i⩽r ⊆ B (where the negation
is given by the complement inB, i.e. C0∩B) lives inB[l]st and can be written as⋂j<l⋃k<l(C

εj,k
j,k ∩

B) where the Cj,k are taken among the Ci and εj,k ∈ {0,1}.

Proof . Such a boolean combination lives in B
[l]
st because it is a subset of B. The fact that

it can be written as ⋂j ⋃k(C
εj,k
j,k ∩B) is just the existence of the conjunctive normal form.

Moreover, as in Proposition (III.4.5), any intersection⋂kC
εj,k
j,k ∩B for fixed j can be rewrit-

ten as the interaction of at most l of then (for each ball from B missing from the intersec-
tion, choose a k such that this ball is not inCεj,k

j,k ∩B). Similarly, the union can be rewritten
as the union of at most l of them by choosing, for all b ∈ B that appears in the union a j
such that b appears in ⋃k(C

εj,k
j,k ∩B). ⧫

Let Gν,µ,ε(x) = ⋂i<l⋃j<l((H
εi,j
µi,j(x)) ∩Hν(x)) whenever all the Hµi,j ⊆ Hν(x) and Hν(x)

otherwise. Adding somemore formulas to Ξ, we obtain a finite set of formulasΘ(x; t, s, u)
that is adapted toG. It is clear that III.4.20.(ii) and III.4.20.(iii) still hold. Furthermore,

GS
ν,µ,ε(x) ∩GS

σ,τ ,η(x) =⋂
i,k
⋃
j,r

(S(Hεi,j
µi,j(x)) ∩ S(Hηk,r

τk,r (x)) ∩HS
ν (x) ∩HS

σ(x)).

AsH is closed under generic intersection there exists ρ such thatHS
ρ(x) =HS

ν (x)∩HS
σ(x).

By Proposition (III.4.5), we have bothB(S(Hεi,j
µi,j(x))∩HS

ρ(x)) ⊆Hρ(x) andB(S(H
ηk,r
τk,r (x))∩

HS
ρ(x)) ⊆Hρ(x) andwe can conclude by Claim (III.4.21) thatG is also closed under generic

intersection over p. Similarly we show that wheneverGν,µ,ε(x) ⊆ Gσ,τ ,η(x) thenG0
ν,µ,ε(x)∩

Gσ,τ ,η(x) is also an instance of G, i.e. G is closed under generic complement over p and
hence III.4.20.(iv) is proved in Lemma (III.4.19). ∎
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III.5. Implicative definability
Let us beginwith the example thatmotivated the definitionof implicatively definable types.
Let b be an open ball in some model of ACVF and αb be its generic type — i.e. the type
of points that are in b but avoid all its strict subballs. Let X be any set definable in an
enrichment of ACVF. Then αb ⊢ x ∈ X if and only if there exists b′ ∈ B such that b′ ⊂ b
and b ∖ b′ ⊆ X . Thus, although for most definable setsX , bothX and its complement are
consistent with αb but if it happens that αb(x) ⊢ x ∈ X , then there is a formula that says
so. We have just shown that αb is L̃-implicatively definable — see Definition (III.5.1)— for
any enrichment L̃ of ACVF. If (bi)i∈I is a strict chain of balls, i.e. P ∶= ⋂i bi is not a ball,
the exact same proof shows that the generic type of P is also L̃-implicatively definable.
If b is a closed ball, the situation is somewhat more complicated because αb(x) ⊢ x ∈ X
if and only there exists finitely many maximal open subballs (bi)0⩽i<k of b such that for all
x ∈ K, x ∈ b ∖ ⋃i bi ⇒ x ∈ X . Because the set of maximal open subballs of a given ball
is internal to the residue field, to obtain that αb is L̃-implicatively definable, we need to
know that the L̃-induced structure on k eliminates ∃∞ to bound the number of maximal
open subballs we have to remove. Recall that an L-theory T eliminates ∃∞ if for every L-
formulas φ(x; s) there is an n ∈ N such that for allM ⊧ T and m ∈ M , if ∣φ(M ;m)∣ < ∞
then ∣φ(M ;m)∣ ⩽ n.
The notion of implicative definability will play a fundamental role in Section III.6. The
main result of this section is Corollary (III.5.12)which says that, under somemore hypoth-
esis on the families of parametrized balls we consider, the types of the form αE/p (cf. Defi-
nition (III.4.12)) are implicatively definable ifE is definable and p is implicatively definable.
The proof is essentially a parametrized version of the argument above. We then prove that
we can refine families of parametrized balls so that they have the necessary properties.
Let L be a language andM an L-structure.

Definition III.5.1 (L-implicative definability):
Let p be a partial L(M)-type. We say that p is L-implicatively definable if for all L-formulas
φ(x; s) there exists an L(M)-formula θ(s) such that for all tuplesm ∈M ,

M ⊧ θ(m) if and only if p(x) ⊢ φ(x;m).

LetA ⊆M . If we want to specify that θ is anL(A)-formula, we will say that p isL-implicatively
L(A)-definable.

Remark III.5.2:
1. The notion of implicative definability is a generalizes definability of types to partial

types. If p is a completeL-type then it isL-definable if and only if it isL-implicatively
definable.

2. The partial types we will consider here are ∆-types for some finite set ∆(x; t) of L-
formulas. Note that if p ∈ S∆x (M) isL-implicativelyL(A)-definable, it is in particular
L(A)-definable as a∆-type, i.e. for any formulaφ(x; t) ∈∆, there is anL(A)-formula
θ(t) such that for all tuplesm ∈M , φ(x;m) ∈ p if and only ifM ⊧ θ(m).
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III.5. Implicative definability

Let us nowprove some results on implicative definability thatwill not be needed afterwards
but that shed some light on this notion.

Proposition III.5.3:
Let ∆(x; t) be a set of L-formulas and p ∈ S∆x (M) be L-implicatively definable. Assume that
M is (ℵ0 + ∣∆∣)+-saturated, then for all N ≽ M , p∣N is L-implicatively definable — using the
same formulas.

Proof . Let φ(x; s) be any L-formula. By L-implicative definability of p, there exists θ(s)
such that for all tuplesm ∈M , p∣M(x) ⊢ φ(x;m) if and only ifM ⊧ θ(m), which in turn is
equivalent to the existence of a finite number of ψi(x;mi) ∈ p∣M — i.e. M ⊧ dpxψi(x;mi)
where dpxψi(x; ti) is the L(M)-formula in the defining scheme of p relative to ψi — such
thatM ⊧ ∀x ⋀iψi(x;mi)⇒ φ(x;m). Hence

θ(s)⇒ ⋁
ψ∈∆

∃t (⋀
i⩽d
dpxψi(x; ti) ∧ (∀x ⋀

i⩽d
ψi(x; ti)⇒ φ(x; s))).

Because there are at most ℵ0 + ∣∆∣ parameters involved in the formulas above and M is
(ℵ0 + ∣∆∣)+-saturated, there exists finitely many tuples (ψj)0⩽j<k such that

θ(s)⇒ ⋁
0⩽j<k

∃t (⋀
i⩽d
dpxψj,i(x; tj,i) ∧ (∀x ⋀

i⩽d
ψj,i(x; tj,i)⇒ φ(x; s))).

It follows that in anyN ⊧M , the same implicationholds andhence for allm ∈ N ,N ⊧ θ(m)
implies that p∣N ⊢ φ(x;m).
Now assume, assume that there exists m ∈ N such that N ⊧ ¬θ(m) but p∣N ⊢ φ(x;m).
Then there exists (ψi(s;mi))0⩽i<k ∈ p∣N such that N ⊧ ∀x ⋀ψi(x;mi)⇒ φ(x;m). There-
fore

N ⊧ ∃s¬θ(s) ∧ ∃t (⋀
i

dpxφi(x; ti) ∧ (∀x ⋀ψi(x;mi)⇒ φ(x;m))).

BecauseN ≽M , this also holds inM , contradicting the L-implicative definability of p. ∎

Remark III.5.4:
The saturation hypothesis is not superfluous. Indeed, let L ∶= E, M be the L-structure
where E is an equivalence relation with exactly one class of every finite cardinality. Let
∆(x; t) ∶= {x = t} and p ∶= {x ≠ m ∶ m ∈ M}. Then by quantifier elimination and the fact
that {m ∈ M ∶ p(x) ⊢ xEm} = ∅ is definable, p is L-implicatively definable. But for all
N ≽M , {n ∈ N ∶ p∣N(x) ⊢ ¬xEn} =M is not definable ifN ≠M .

Proposition III.5.5:
LetA ⊆M . AssumeM is ∣A∣+-saturated and strongly ∣A∣+-homogeneous. If p is L-implicatively
definable and Aut(M/A)-invariant, then it is L-implicatively L(A)-definable.

Proof . Let φ(x; s) be any L-formula and θ(s) be the L-formula such that for all tuplesm ∈
M ,M ⊧ θ(m) if and only if p(x) ⊢ φ(x;m). Let σ ∈ Aut(M/A) andm ∈ M be such that
M ⊧ θ(m). Then p = σ(p) ⊢ θ(x;σ(m)) and henceM ⊧ θ(σ(m)), i.e. θ(M) is stabilized
globally by Aut(M/A). ∎
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As previously, let now L ⊇ Ldiv, T ⊇ ACVF be aC-minimal L-theory that eliminates imag-
inaries, R be the set of L-sorts, L̃ be an enrichment of L, T̃ an L̃-theory containing T ,
M̃ ⊧ T̃ andM ∶= M̃ ∣L. We will also be assuming that k is stably embedded in T̃ and that
the induced theory on k eliminates ∃∞.
Let Ã ⊆ M̃ , A ∶= R(Ã), F = (Fλ)λ∈Λ be an L(A)-definable family of functionsKn → B

[l]
st

and∆(x, y; t) a finite set of L-formulas where x ∈Kn and y ∈K, p ∈ S∆x,y(M) be definable.
Assume that∆ is adapted to F and that F is closed under generic intersection over p and
is generically irreducible over p.

Definition III.5.6 (Generic covering property):
We say that F has the generic covering property over p if for any E ⊆ Λ(M) and any finite set
(λi)0⩽i<k ∈ Λ(M) such that for all µ ∈ E, p(x, y) ⊢ F S

λi
(x) ⊂ F S

µ(x), there exists (κj)0⩽j<l ∈
Λ(M) such that:

(i) For all j, p(x, y) ⊢ “the balls in Fκj(x) are closed”;

(ii) For all µ ∈ E and j, p(x, y) ⊢ F S
κj
(x) ⊆ F S

µ(x);

(iii) For all i, p(x, y) ⊢ F S
λi
(x) ⊆ ⋃j F S

κj
(x);

Note that if E = {λ0} and p(x, y) ⊢ “the balls in Fλ0(x) are closed”, then the generic cov-
ering property holds trivially as it suffices to take all κj = λ0. It will only be interesting if
p(x, y) ⊢ “the balls in Fλ0(x) are open” or E does not have a smallest element.
Let E ⊆ Λ be L̃(Ã)-definable and assume E ⊆ Λ be L̃(Ã)-definable.

Proposition III.5.7:
Assume that one of the following holds:

(i) E(M̃) does not have a smallest element over p, i.e. for all λ ∈ E(M̃) there exists µ ∈ E(M̃)
such that p(x, y) ⊢ F S

µ(x) ⊂ F S
λ(x);

(ii) there is aλ0 ∈ E(M̃) such that for allλ ∈ E(M̃) , p(x, y) ⊢ F S
λ0
(x) ⊆ F S

λ(x) and p(x, y) ⊢
“the balls in Fλ0(x) are open”.

If p is L̃-implicatively L̃(Ã)-definable and F has generic covering property over p, then αE(M̃)/p
is L̃-implicatively L̃(Ã)-definable.

Proof . Let φ(x, y; t) be an L̃-formula. Then, for all tuplesm ∈ M̃ such that αE(M̃)/p(x, y) ⊢
φ(x, y;m), there exists λ0 ∈ E(M̃) and a finite number of (λi)0<i<k ∈ Λ(M) such that for
all µ ∈ E(M̃) and i > 0, p(x, y) ⊢ F S

λi
(x) ⊂ F S

µ(x) and p(x, y) ⊢ y ∈ F S
λ0
(x) ∖⋃i>0F S

λi
(x)⇒

φ(x, y;m). By the generic covering property, we can find (κj)0⩽j<l ∈ Λ(M) such that, for all
j, p(x, y) ⊢ “the balls inFκj(x) are closed”, for allµ ∈ E(M̃) and j, p(x, y) ⊢ F S

κj
(x) ⊆ F S

µ(x)
and for all i > 0, p(x, y) ⊢ F S

λi
(x) ⊆ ⋃j F S

κj
(x).

If E(M̃) does not have a smallest element over p, for all µ ∈ E(M̃) and j, we have that
p(x, y) ⊢ F S

κj
(x) ⊂ F S

µ(x). If E(M̃) has a smallest element, because the balls in Fλ0(x)
are open and those in Fκi(x) are closed, we also have p(x, y) ⊢ F S

κj
(x) ⊂ F S

λ0
(x). As the
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⋃j F S
κj
(x) covers ⋃iF S

λi
(x), it follows that:

p(x, y) ⊢ y ∈ F S
λ0
(x) ∖ ⋃

0⩽j<l
F S
κj
(x)⇒ φ(x, y;m).

By L̃-implicative L̃(Ã)-definability of p and L(A)-definability of F there exists an L̃(Ã)-
formula δ1(κ,µ) equivalent to p(x, y) ⊢ F S

κ (x) ⊂ F S
µ(x) and an L̃(Ã)-formula δ2(λ0, κ,m)

equivalent to p(x, y) ⊢ y ∈ F S
λ0
(x) ∖ ⋃j<l F S

κj
(x) ⇒ φ(x, y;m). We have just shown that,

for all tuplesm ∈ M̃ , αE(M̃)/p(x, y) ⊢ φ(x, y;m) implies that:

M̃ ⊧ ∃λ0 ∈ E ∃κ ∈ Λ ⋀
j<l
∀µ ∈ E δ1(κj, µ) ∧ δ2(λ0, κ,m).

The converse is trivial. ∎

Definition III.5.8 (Maximal open subball property):
Say that F has the maximal open subball property over p if for all λ1 and λ2 ∈ Λ(M) such that
p(x, y) ⊢ F S

λ1
(x) ⊂ F S

λ2
(x), there exists (µi)0⩽i<l ∈ Λ(M) such that:

(i) For all i, p(x, y) ⊢ “the balls in Fµi(x) are open”;

(ii) For all i, p(x, y) ⊢ rad(Fλ2(x)) = rad(Fµi(x)).

(iii) p(x, y) ⊢ F S
λ1
(x) ⊆ ⋃iF S

µi
(x);

Note that when the balls in Fλ2(x) are open, it suffices to take all µi = λ2. Hence this
property is only really useful when the balls in Fλ2(x) are closed.

Proposition III.5.9:
Assume that there is a λ0 ∈ E(M̃) such that for all λ ∈ E(M̃), p(x, y) ⊢ F S

λ0
(x) ⊆ F S

λ(x) and
that p(x, y) ⊢ “the balls in Fλ0(x) are closed”. Assume also that p is L̃-implicatively L̃(Ã)-
definable and that F has the maximal open subball property over p, then the type αE(M̃)/p is
L̃-implicatively L̃(Ã)-definable.

Proof . If the balls in Fλ0(x) have radius +∞, they are singletons. By irreducibility, Fλ0(x)
does not have any strict subset of the form Fλ(x) and αE(M̃)/p ⊢ φ(x, y;m) if and only if
p(x, y) ⊢ y ∈ F S

λ0
(x)⇒ φ(x, y;m). We can conclude immediately by L̃-implicative L̃(Ã)-

definability of p. We may now assume that the balls in Fλ0(x) have a radius different from
+∞. Let us begin with some preliminary results.

Claim III.5.10: Let (Yα,x)α∈A,x∈Kn ⊆ {b ∶ b is a maximal open subball of some b′ ∈ Fλ0(x)} be
an L̃(M̃)-definable family of sets. Then there exists k such that for all α ∈ A and x ∈Kn, either
∣Yα,x∣ ⩾∞ or ∣Yα,x∣ ⩽ k.
Let Bγ(a) denote the closed ball of radius γ around a.
Proof . Let Y1,α,x,a,c ∶= {b ∈ B ∶ b ∈ Yα,x, b is a maximal open subball of Bval(c)(a)}. Note
that for any maximal open subball b of Bval(c)(a), the set {(x − a)/c ∶ x ∈ b} is a coset ofM
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in O, i.e. an element of k that we denote resa,c(b). The function resa,c is one to one. Let
Y2,α,x,a,c ∶= resa,c(Y1,α,x,a,c).
Then Y2 = (Y2,α,x,a,c)α,x,a,c is an L̃(M̃)-definable family of subsets of k and hence by stable
embeddedness of k in T — as well as compactness and some coding — there exists an
L̃(k(M̃))-definable family (Xd)d∈D where D ⊆ kr for some r such that for all (α,x, a, c),
there exists d ∈D such that Y2,α,x,a,c =Xd. Moreover as the theory induced on k eliminates
∃∞, there exists k such that for all d ∈ D, either ∣Xd∣ ⩾∞ or ∣Xd∣ ⩽ k. It follows that for all
(α,x, a, c), either ∣Y1,α,x,a,c∣ ⩾∞ or ∣Y1,α,x,a,c∣ ⩽ k. But, as there are at most l balls in Fλ0(x)
and that each of these balls contains infinitely or at most k maximal open subballs from
Yα,x, we have that for all x and α, ∣Yα,x∣ ⩾∞ or ∣Yα,x∣ ⩽ lk. ⧫

Let Xm ∶= {λ ∶ p(x, y) ⊬ y ∈ F S
λ(x) ⇒ φ(x, y;m) and p(x, y) ⊢ “the balls in Fλ(x) are

maximal open subballs of the balls in Fλ0(x)” }. By L̃-implicative definability of p, Xm is
an L̃(M̃)-definable family. Let Ym,x ∶= {b ∶ ∃λ ∈ Xm, b ∈ Fλ(x)}. Then by Claim (III.5.10),
there exists k such that for allm and x, ∣Ym,x∣ <∞ implies ∣Ym,x∣ ⩽ k.
Let us now assume that αE(M̃)/p(x, y) ⊢ φ(x, y;m). Then there exists a finite number
of (µi)0⩽i<r ∈ Λ(M) such that p(x, y) ⊢ F S

µi
(x) ⊂ F S

λ0
(x) and p(x, y) ⊢ y ∈ F S

λ0
(x) ∖

⋃iF S
µi
(x) ⇒ φ(x, y;m). As F has the maximal open subball property over p and is closed

under generic intersection, we may assume that p(x, y) ⊢ “the balls in the Fµi(x) are max-
imal open subballs of the balls in Fλ0(x)”.

Claim III.5.11: Xm(M) ⊆ {λ ∈ Λ(M) ∶ for some i, p(x, y) ⊢ Fλ(x) = Fµi(x)}. In particular
∣Ym,x∣ <∞ and hence ∣Ym,x∣ ⩽ k.

Proof . Let λ ∈Xm. There exists x, y ⊧ p such that y ∈ F S
λ(x), the balls in Fλ(x) are maximal

open subballs of the balls in Fλ0(x) and ⊧ ¬φ(x, y;m). Hence y ∈ ⋃iF S
µi
(x). We may

assume that y ∈ F S
µ0(x) and hence that F S

µ0(x) ∩ F S
λ(x) ≠ ∅. By Proposition (III.4.10), we

must have F S
µ0(x) ∩ F S

λ(x) = F S
κ (x) for both κ = λ and κ = µ0, i.e. Fλ(x) = Fµ0(x) and

because such an equality is decided by p this holds for all realizations of p.
It follows that Ym,x ⊆ ⋃iFµi(x) and ∣Ym,x∣ ⩽ rl <∞. ⧫

Thus for all (x, y) ⊧ p, only k balls among the ones in ⋃iFµi(x) cover φ(x,F S
λ0(x);m).

By similar arguments as in Proposition (III.4.5), we may assume that for all i, Fµi(x) ⊆
⋃kj=1Fµj(x). It follows that:

p(x, y) ⊢
k

⋀
j=1
F S
µj
(x) ⊂ F S

λ0
(x) ∧ (y ∈ F S

λ0
(x) ∖

k

⋃
i=1
F S
µi
(x)⇒ φ(x, y;m)).

We can now conclude as in Proposition (III.5.7). ∎

Corollary III.5.12:
If p is L̃-implicatively L̃(Ã)-definable and F has the generic covering property and the maximal
open subball property over p, then αE(M̃)/p is L̃-implicatively L̃(Ã)-definable.

Proof . This follows immediately from Propositions (III.5.7) and (III.5.9) and the fact that
either E(M̃) is non empty and has no smallest element or it has a smallest element that
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consists of open balls or it has a smallest element that consists of closed balls or it is empty
in which case we could also take E to consist of all the λ ∈ Λ such that Fλ is constant equal
toK. ∎
Let us conclude this section by showing that, as previously, we can find families of balls
verifying all the necessary hypotheses. But because both the generic covering property and
the maximal open subball property are instances of more generally being able to find large
balls in the family, let us first consider the following definition. Recall that di(B1,B2) is
the i-th distance between balls of B1 and balls of B2 (see Definition (III.4.6))

Definition III.5.13 (Generic large ball property):
We say that F has the generic large ball property over p if for all λ1 and λ2 ∈ Λ(M) and i ∈ N,
there exists (µj)0⩽j<l ∈ Λ(M) such that:

(i) For all j, p(x, y) ⊢ “the balls in Fµj(x) are closed”;

(ii) For all j, p(x, y) ⊢ rad(Fµj(x)) = di(Fλ1(x), Fλ2(x)).

(iii) p(x, y) ⊢ F S
λ1
(x) ⊆ ⋃j F S

µj
(x);

and, if p(x, y) ⊢ “the balls in Fλ1(x) are open” or p(x, y) ⊢ rad(Fλ1(x)) < di(Fλ1(x), Fλ2(x)),
there exists (ρj)j<l ∈ Λ(M) such that:

(i) For all j, p(x, y) ⊢ “the balls in Fρj(x) are open”;

(ii) For all j, p(x, y) ⊢ rad(Fρj(x)) = di(Fλ1(x), Fλ2(x)).

(iii) p(x, y) ⊢ F S
λ1
(x) ⊆ ⋃j F S

ρj
(x);

Definition III.5.14 (Good representation):
Let ∆(x, y; t) and Θ(x, y; s) be two finite sets of L-formulas where x ∈ Kn and (Fλ)λ∈Λ and
(Gω)ω∈Ω be two L-definable families of functions Kn → B

[l]
st . We say that (Θ,G, x) is a good

representation of (∆, F, x) if for all L(M)-definable p ∈ SΘx (M):

(i) Θ is adapted toG;

(ii) (Gω)ω∈Ωp is closed under generic intersection over p;

(iii) (Gω)ω∈Ωp has the generic large ball property over p;

(iv) p decides all formulas in∆;

(v) For all λ ∈ Λ(M), there exists a finite number of (ωi)0⩽i<l ∈ Ωp(M) such that p(x, y) ⊢
Fλ(x) = ⋃iGωi

(x).

where Ωp ∶= {ω ∈ Ω ∶ Gω is generically irreducible over p}.

If we only want to say that III.5.14.(i) to III.5.14.(iii) hold we will say that (Θ,G, x) is a good
representation.
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Proposition III.5.15 (Existence of good representations):
Let (Fλ)λ∈Λ be any L-definable family of functions Kn → B

[l]
st and ∆(x; t) any finite set of

L-formulas where x ∈Kn. Then, there exists a good representation (Ψ,G, x) of (∆, F, x).

Proof . Let us begin with some lemmas.

Lemma III.5.16:
There exists (Hρ)ρ∈P an L-definable family of functions Kn → B

[l]
st and Ξ(x; t, s) ⊇ ∆(x; t) a

finite set of L-formulas adapted to H such that H has the generic large ball property over any
Ξ-type and for all λ ∈ Λ, there exists ρ ∈ P such thatHρ = Fλ.

Proof . For all λ, µ and η ∈ Λ and i ⩽ l2, defineHλ,µ,η,i,1(x) to be the closed balls with radius
di(Fµ(x), Fη(x)) around the balls in Fλ(x). If the balls in Fλ(x) are open or if they are
closed of radius strictly smaller than di(Fµ(x), Fη(x)), define Hλ,µ,η,i,0(x) to be the open
balls with radius di(Fµ(x), Fη(x)) around the balls in Fλ(x)— which does exist. Other-
wise, defineHλ,µ,η,i,0(x) to be the closed balls with radius di(Fµ(x), Fη(x)) around the balls
in Fλ(x). By usual coding tricks, we may assume that H is an L-definable family of func-
tions. Adding finitely many formulas to∆ we obtain Ξ(x; t, s) which is adapted toH . Let
p ∈ SΞx (M) and x ⊧ p.
Let us first show the closed ball case of the generic large ball property. For all λk, µk and
ηk ∈ Λ(M) and ik and jk ∈N for k ∈ {1,2} and r ∈N, dr(Hλ1,µ1,η1,i1,j1(x),Hλ2,µ2,η2,i2,j2(x))
is either the radius of the balls inHλk,µk,ηk,ik,jk(x), i.e. dik(Fµk(x), Fηk(x)) or the distance
between two disjoint balls from theHλk,µk,ηk,ik,jk(x) in which case it is also the distance be-
tween some disjoint balls in theFλk(x). In the first case, it is easy to check thatHλ1,ηk,µk,ik,1

has all the suitable properties—and that this one instance suffices. In the second case there
exists somem such thatHλ1,λ1,λ2,m,1(x) is suitable.
The same reasoning applies to open ball case (the extra conditions under which we have to
work are just here to ensure that the balls in Fλ1(x) are indeed smaller than those we are
trying to build around them). ⧫

Lemma III.5.17:
Assume that F has the generic large ball property over any∆-type. Let (Gω)ω∈Ω be any L(M)-
definable family of functionsKn → B

[l]
st andΘ(x; s) be any finite set of L-formulas adapted to

G such that for all p ∈ SΘx (M), we have:

(i) For all ω ∈ Ω(M), there exists λ ∈ Λ(M) such that p(x) ⊢ Gω(x) ⊆ Fλ(x);

(ii) For all λ ∈ Λ(M), there exists (ωi)0⩽i<l ∈ Ω(M) such that p(x) ⊢ Fλ(x) = ⋃iGωi
(x).

ThenG also has the generic large ball property over anyΘ-type.

Proof . Let ω1 and ω2 ∈ Ω(M), i ∈ N>0 and x ⊧ p. Then there exists λ1 and λ2 ∈ Λ(M)
such that Gωk

(x) ⊆ Fλk(x). Then di(Gω1(x),Gω2(x)) is either the radius of one of the
balls involved and hence is the radius of one of Fλk(x) or the distance between a ball in
Gω1(x) and a ball in Gω2(x), i.e. the distance between a ball in Fλ1(x) and one in Fλ2(x).
In both cases, the large closed ball property in F allows us to find (µj)0⩽j<l ∈ Λ(M) such
that GS

ω1
(x) ⊆ F S

λ1
(x) ⊆ ⋃j F S

µj
(x), for all j, the balls in Fµj(x) are closed and their radius
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is di(Gω1(x),Gω2(x)). But, by hypothesis there are (ρj,k)0⩽k<l ∈ Ω(M) such that Fµj(x) =
⋃kGρj,k(x). By picking one ρ per ball inGω1(x), we see that l of them are enough to cover
Gω1(x) andwe are done. The open ball case is proved similarly as the extra conditions hold
forGω1 andGω2 if and only if they hold for Fλ1 and Fλ2 . ⧫

Adding them if we have to, we may assume that there is an instance of F constant equal
to ∅ and another constant one equal to {K}. Let (Hρ)ρ∈P and Ξ be as in Lemma (III.5.16),
(Gω)ω∈Ω and Θ(x;u) be as given by Proposition (III.4.20) and p ∈ SΘx (M). Then Condi-
tions III.5.14.(i), III.5.14.(iv) and III.5.14.(v) hold. Condition III.5.14.(ii) also holds, by Corol-
lary (III.4.11), and by Lemma (III.5.17) applied to (Gω)ω∈Ωp , III.5.14.(iii) also holds. ∎

Proposition III.5.18:
Let (∆(x; t), (Fλ)λ∈Λ, x) be a good representation and p ∈ S∆x (M) be L(M)-definable. Then
Fp = (Fλ)λ∈Λp has the generic covering property and the maximal open subball property over p.

Proof . Let x ⊧ p, λ1 and λ2 ∈ Λp(M) be such that F S
λ1
(x) ⊂ F S

λ2
. Then by the generic large

ball property — because F S
λ1
(x) ⊂ F S

λ2
, the necessary conditions hold — there exists µj ∈

Λp(M) such that the balls in Fµj(x) are open of radius rad(Fλ2) and F S
λ1
(x) ⊆ ⋃j Fµj(x)S

and we have proved the maximal open subball property.
Let now E ⊆ Λp(M) and (λi)0⩽i<k ∈ Λp(M) be such that for all µ ∈ E, F S

λi
(x) ⊂ F S

µ(x).
For any two µ1 and µ2 ∈ E, if the balls in Fµ1(x) are smaller than the balls in Fµ2(x), by
irreducibility, as F S

µ1(x) ∩ F S
µ2(x) ⊇ Fλ0(x) ≠ ∅, we must have F S

µ1(x) ⊆ F S
µ2(x). Let us

define the following equivalence relation on ⋂λ∈E F S
λ(x): y1 ≡ y2 if for all µ ∈ E, y1 and y2

are in the same ball fromFµ(x). If we take two non equivalent points y1 and y2, there exists
µ ∈ E such that y1 and y2 are not in the same ball from Fµ(x) and in fact this also holds for
any η such that F S

η (x) ⊆ F S
µ(x). In particular it follows that there are at most l equivalence

classes and that there exists µ0 such that each equivalence class is contained in a different
ball from Fµ0(x). Moreover each of these equivalence classes is in fact the intersection of
balls — from the Fµ(x) for µ ∈ E. We will denote these equivalence classes by (Pj)j∈J .
For any j, let Bj = {b ∈ ⋃iFλi(x) ∶ b ⊆ Pj}. Then the set Rj ∶= {d(b1, b2) ∶ b1, b2 ∈ Bj} ∪
{rad(b) ∶ b ∈ Bj} is finite and hence has a minimum γ. By the generic large ball property,
there exists µj ∈ Λp(M) such that the balls in Fµj(x) are closed of radius γ and one of its
balls — call it b0 — contains one of the balls inBj . In fact b0 contains all of them as γ is the
minimum of Rj . For all κ ∈ E, all b ∈ Bj are such that b ⊂ F S

κ(x). If rad(b0) = d(b1, b2) for
some some b1 and b2 ∈ Bj then , because b1 and b2 are in the same ball fromFκ(x), rad(b0) =
d(b1, b2) ⩽ rad(Fκ(x)). If rad(b0) = rad(b) for some b ∈ Bj , then because b is inside one
of the balls from Fκ(x), rad(b0) = rad(b) ⩽ rad(Fκ(x)). In both cases, b0 ⊆ F S

µ(x). Let
ηj be such that F S

ηj
(x) = F S

µj
(x) ∩ ⋂κ∈E F S

κ (x). Such an ηj exists by generic intersection
and because, by Proposition (III.4.5), this intersection is given by the intersection of a finite
numbers of its elements.
Then, as Fηj(x) ⊆ Fµj(x), the balls in Fηj(x) are closed. Obviously, for all κ ∈ E, F S

ηj
(x) ⊆

F S
κ (x). Moreover, for all i, F S

λi
(x) ⊆ ⋃j F S

µj
(x) and for all κ ∈ E, F S

λi
(x) ⊆ F S

κ (x), hence we
also have F S

λi
(x) ⊆ ⋃j F S

ηj
(x). As there are at most r of the ηj , we are done. ∎
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III.6. Approximating sets with balls
In this section we bring together all the work we have done in Sections III.1, III.4 and III.5
to actually construct definable types. The core of the work is done in Proposition (III.6.1),
after that, it is only a question of proving the various reductions sketched in the introduc-
tion.
As above, let L̃ ⊇ L ⊇ Ldiv be languages,R be the set of L-sorts, T ⊇ ACVF be aC-minimal
L-theory that eliminates imaginaries and admits Γ-reparametrizations, T̃ a complete L̃-
theory containing T , Ñ ⊧ T̃ , N ∶= Ñ ∣L, Ã = acleqL̃ (Ã) ⊆ Ñ

eq and A ∶= R(Ã). Let us
assume that k and Γ are stably embedded in T̃ and that the induced theories on k and
Γeq eliminate ∃∞ — where eq is taken for the L̃-induced structure on Γ. Finally we will
also assume that there exists M̃ ⊧ T̃ such that M̃ ∣L is uniformly stably embedded in every
elementary extension.

Proposition III.6.1:
Let Y ⊂Kn+1 be a non empty L̃eq(Ã)-definable set. Let (∆(x, y; t), (Fλ)λ∈Λ, x) be a good rep-
resentation where x ∈Kn. Let p(x, y) ∈ S∆x,y(N) be L(A)-definable, L̃eq-implicatively L̃eq(Ã)-
definable and consistent with Y . Let g = (gγ)γ∈G be an L(N)-definable family of functions
Kn → Γ that Γ-reparametrizes the family (rad ○ Fλ)λ∈Λ over p.
Then there exists an L(A)-definable q(x, y) ∈ SΨ∆,F

x,y (N) which is L̃eq-implicatively L̃eq(Ã)-
definable and consistent with p and Y .

We are looking for a type q = αE/p (see Definition (III.4.12)) so most of the work consists in
finding the right E.

Proof .We define the preorder P on Λp ∶= {λ ∈ Λ ∶ Fλ is generically irreducible over p}
by λ P µ if and only if p(x, y) ⊢ y ∈ F S

λ(x) ∧ (x, y) ∈ Y ⇒ y ∈ F S
µ(x). Note that, by

L̃eq-implicative L̃eq(Ã)-definability of p, P is L̃eq(Ã)-definable. Let ∼ be the associated
equivalence relation, i.e λ ∼ µ if and only if p(x, y) ⊢ (y ∈ F S

λ(x) ∧ (x, y) ∈ Y ) ⇐⇒ (y ∈
F S
µ(x) ∧ (x, y) ∈ Y ). Then P induces a (partial) order on Λp/∼ that we will also denote P.

For any λ, let us denote by λ̂ ⊆ Λp the ∼-class of λ. The set Λp/∼ has a greatest element
given by the class of any λ ∈ Λp(N) such that Fλ(x) = {K} for all x and a smallest element
given by the class of any λ ∈ Λp(N) such that Fλ(x) = ∅ for all x. Let K̂ be the greatest
element of Λp/∼ and ∅̂ be its smallest element. Because p is consistent with Y , K̂ ≠ ∅̂.

Claim III.6.2: Let λ ∈ Λp ∖ ∅̂, then P totally orders {µ̂ ∶ µ ∈ Λp ∧ λ P µ}.

Proof . It suffices to prove this statement in Ñ . Let µ1 and µ2 ∈ Λp(N) such that λ P µi.
Because λ ∉ ∅̂ there exists (x, y) ⊧ p such that y ∈ F S

λ(x) and (x, y) ∈ Y . As λ P µi, we
also have y ∈ F S

µi
(x) and hence F S

µ1(x) ∩ F S
µ2(x) ≠ ∅. By Proposition (III.4.10), we have

F S
µ1(x) ⊆ F S

µ2(x) or F S
µ2(x) ⊆ F S

µ1(x) and we may assume that the first one holds. Then
µ1 P µ2. ⧫

Hence ((Λp/∼)∖{∅̂},P) is a tree—with the root on top. Let us now show that the branches
of this tree are internal to Γ. Let h(λ) ∶= (∂prad(Fλ),0) if p(x, y) implies that the balls in
Fλ(x) are closed and h(λ) ∶= (∂prad(Fλ),1) otherwise — where the p-germ ∂p is defined
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in (III.3.3). By Proposition (III.3.4), wemay assume— after adding some parameters— that
the image of h is in some cartesian power ofΓ. Let us also define h⋆ ∶ λ̂↦ ⌜h(λ̂)⌝. By stable
embeddedness of Γ, h⋆ takes its values in Γeq.

Claim III.6.3: Pick any λ ∈ Λp ∖ ∅̂, then the function h⋆ is injective on {µ̂ ∶ λ P µ}.
Proof . It suffices to prove this statement in Ñ . Let µ1 and µ2 be such that λ P µi. We have
seen in Claim (III.6.2), that we may assume for all (x, y) ⊧ p, F S

µ1(x) ⊆ F S
µ2(x). Let (x, y) ⊧

p. If µ̂1 ≠ µ̂2 then wemust have F S
µ1(x) ⊂ F S

µ2(x). Hence either rad(Fµ1(x)) < rad(Fµ2(x))
or the balls in Fµ1(x) are open and those in Fµ2(x) are closed. In any case, h(µ1) ≠ h(µ2).
In fact for all ωi ∈ µ̂i we obtain by the same argument that h(ω1) ≠ h(ω2) and hence
h⋆(µ̂1) ≠ h⋆(µ̂2). ⧫
Let λ ∈ Λp(N) be such that ⌜λ̂⌝ ∈ Ã. If αλ̂(Ñ)/p the generic type of λ̂(Ñ) over p is consistent
with Y , it is consistent and it is consistent with p. By Proposition (III.4.13), it is a complete
Ψ∆,F -type. By Corollary (III.5.12), αλ̂(Ñ)/p is L̃eq-implicatively L̃eq(Ã)-definable. Then it is
L̃eq(Ã)-definable. By Corollary (III.1.5), it is in fact L(A)-definable. It follows that taking
q = αλ̂(Ñ)/p would work. Therefore, it suffices to find a λ ∈ Λp(N) such that ⌜λ̂⌝ ∈ Ã and
αλ̂(Ñ)/p is consistent with Y .

Claim III.6.4: Let λ ∈ Λp(N). If λ̂ ≠ ∅̂ and αλ̂(Ñ)/p is not consistent with Y , there exists µ such
that µ̂ is an immediate P-predecessor of λ̂ and ⌜µ̂⌝ ∈ acleqL̃ (Ã⌜λ̂⌝).

Proof . If αλ̂(Ñ)/p is not consistent with Y , there exists µ0 ∈ λ̂(Ñ) and (µi)0<i<k ∈ Λp(N)
such that for all µ ∈ λ̂(Ñ), p(x, y) ⊢ F S

µi
(x) ⊂ F S

µ(x) and

p(x, y) ⊢ y ∈ F S
µ0(x) ∧ (x, y) ∈ Y ⇒ y ∈

k

⋃
i=1
F S

µi(x).

In particular µi ◁ λ. Removing some µi, we may assume that for all i, µi ∉ ∅̂ and that
p(x, y) ⊢ F S

µi
(x) ∩ F S

µj
(x) = ∅ for all i ≠ j.

Let κ ∈ Λp(N) be such that µi0 P κ P λ for some i0. As κ P λ, we have p(x, y) ⊢ (y ∈
F S
κ (x) ∧ (x, y) ∈ Y )⇒ (y ∈ F S

λ(x) ∧ (x, y) ∈ Y )⇒ ⋁
k
i=1(y ∈ F S

µi(x) ∧ (x, y) ∈ X). Because
µi0 P κ, we have p(x, y) ⊢ F S

κ (x) ∩ F S
µi0
(x) ≠ ∅. If p(x, y) ⊢ F S

κ (x) ⊆ F S
µi0
(x) then κ P µi0

and hence κ ∼ µi.
Otherwise, for any i ≠ i0, if p(x, y) ⊢ F S

κ (x) ∩ F S
µi
(x) ≠ ∅ then we must have p(x, y) ⊢

F S
µi
(x) ⊆ F S

κ(x) and hence for I = {i ∶ F S
µi
(x) ∩ Fκ(x)S ≠ ∅} we have p(x, y) ⊢ (y ∈

F S
κ (x) ∧ (x, y) ∈ Y ) ⇐⇒ ⋁i∈I(y ∈ F S

µi
(x) ∧ (x, y) ∈ Y ).

It follows that the set {κ̂ ∶ µi P κ P λ for some i} is finite. In particular we could choose
µi such that there is no κ such that µ̂i◁ κ̂◁ λ̂. The µ̂i are then the — finite number of —
direct P-predecessors of λ̂ and for all i, µ̂i ∈ acleqL̃ (Ã⌜λ̂⌝). ⧫

If there does not exist λ such that ⌜λ̂⌝ ∈ Ã and αλ̂(Ñ)/p is consistent with Y , then starting
with λ0 ∈ K̂(Ñ) we construct by induction — using Claim (III.6.4) — a sequence (λi)i∈ω
such that λ̂i+1 is a direct P-predecessor of λ̂i. For all i, ∣{µ̂ ∶ λ̂i P µ̂}∣ = i + 1 = ∣h⋆({µ̂ ∶ λ̂i P
µ̂})∣ but that contradicts the elimination of ∃∞ in Γeq. ∎
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Corollary III.6.5:
Let Y ⊆ Kn+m be an L̃eq(Ã)-definable set, ∆(x, y; t) and Θ(y; s) be finite sets of L-formulas
where ∣x∣ = n and ∣y∣ = m. Let p ∈ S∆x,y(N) be L(A)-definable, L̃eq-implicatively L̃eq(Ã)-
definable and consistent with Y . Then there exists a finite set of L-formulas Ξ(x, y; s, t, r) ⊇
∆ ∪ Θ and an L(A)-definable type q ∈ SΞx,y(N) which is L̃eq-implicatively L̃eq(Ã)-definable
and consistent with p and Y .

Proof .We proceed by induction on ∣y∣. The case ∣y∣ = 0 is trivial. Let us now assume that y =
(z,w)where ∣w∣ = 1. By Proposition (III.4.16) there existsΦ(z;u) a finite set of L-formulas
andF = (Fλ)λ∈Λ anL-definable family of functionsKm−1 → B[l] such thatΨΦ,F decides any
formula in Θ. By Propositions (III.4.17) and (III.5.15) we can assume that Fλ ∶Km−1 → B

[l]
st

and (Φ, F, z) is a good representation. We can easily make F into an L-definable family of
functionsKn+m−1 → B

[l]
st by setting Gλ(x, z) = Fλ(z). As T admits Γ-reparametrizations,

there existsΥ(x, z; v) such that for any p ∈ SΥy (N), there exists aΓ-reparametrization (gγ)γ
of (rad ○Gλ)λ∈Λ over p.
By induction applied to∆0((x,w), z; t) ∶=∆(x, z,w; t),Θ0(z;u, v) ∶= Φ(z;u)∪Υ(z; v) and
p, we obtain a finite set of L-formulas Ω(x,w, z; r) ⊇ ∆ ∪ Φ ∪ Υ and an L(A)-definable
q1 ∈ SΩx,z,w(N) which is L̃eq-implicatively L̃eq(Ã)-definable and consistent with p and Y .
Let g = (gγ)γ be aΓ-reparametrization of (rad○Gλ)λ∈Λ over q1∣Υ. We can now apply Propo-
sition (III.6.1) to Y , (Ω,G, (x, z)), q1 and g to find an L(A)-definable type q2 ∈ S

ΨΩ,F
x,w,z (N)

which is L̃eq-implicatively L̃eq(Ã)-definable and consistent with q1 and Y . As all the for-
mulas inΘ are decided byΨΦ,F — and hence byΨΩ,F —wemay assume that q2 is in fact a
(ΨΩ,F ∪Θ)-type. ∎

Definition III.6.6 (Strict ⋆-definable sets):
LetL be a language,N anL-structure and x = (xi)i∈I an (potentially infinite) tuple of variables.
Let P be a set of L-formulas with variables. The set P (N) ∶= {m ∈ Nx ∶ ∀φ ∈ P, N ⊧ φ(m)} is
said to be (L, x)-definable — or simply (L,⋆)-definable if we do not want to specify x. We say
that an (L,⋆)-definable set is strict (L,⋆)-definable if the projection on any finite subset of x is
L-definable.

When x is finite we often call these sets∞-definable sets.

Corollary III.6.7:
Let X be non empty strict (L̃eq(Ã), x)-definable where all the variables in x are K-variables
and ∣x∣ ⩽ ℵ0. Assume also that ∣L∣ ⩽ ℵ0. Then there exists an L(A)-definable type p ∈ SLx (N)
consistent withX .

Note that this is the only proof where we need a cardinality hypothesis on L.

Proof . Let {φj(xj; tj) ∶ j < ω} be an enumeration of allL-formulas such that xj is a tuple of
variables from x. Let∆−1 ∶= ∅ and p−1 ∶= ∅ and we construct by induction on j a finite set
∆(x⩽j; sj) of L-formulas and an L(A)-definable type pj ∈ S

∆j

⩽xj(N) such that for all j < ω,
∆j ∪ {φj} ⊆∆j+1, pj+1 is L̃eq-implicatively L̃eq(Ã)-definable and consistent with pj andX .
Let us assume that pj and ∆j have been constructed. Let Yj+1 be the projection of X on
the variables x⩽j+1. Then Yj+1 is L̃eq(Ã)-definable. We can then apply Corollary (III.6.5) to
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∆j(x⩽j; sj), {φ(xj+1; tj+1)}, pj and Yj+1. As Yj+1 is the projection ofX on the variables that
appear in pj and pj+1, and p1, pj+1 and Y are consistent, pj , pj+1 andX are also consistent.
We can now take p ∶= ⋃j<ω pj . As the pj are L(A)-definable so is p. ∎

Note that p might not be L̃eq-implicatively definable anymore. Although the fact that pj
is L̃eq-implicatively L̃eq(Ã)-definable is necessary to carry out the induction, we will not
need L̃eq-implicative L̃eq(Ã)-definability afterwards, except if we were to continue the in-
duction. This is exactly why we cannot prove Corollary (III.6.7), and hence TheoremE, if
L is not countable. Nevertheless, we will see later that TheoremE is stronger than what is
needed to prove elimination of imaginaries which we will be able to show even when L is
not countable.
We now prove the main result we have been aiming for.

TheoremE:
Let L̃ ⊇ L ⊇ Ldiv be languages such that ∣L̃∣ ⩽ ℵ0, R be the set of L-sorts, T ⊇ ACVF be a
C-minimal L-theory that eliminates imaginaries and admits Γ-reparametrizations and T̃
a complete L̃-theory containing T such that,K is dominant in T̃ and:

(i) The sets k and Γ are stably embedded in T̃ and the induced theories on k and Γeq

eliminate ∃∞;

(ii) There exists M̃ ⊧ T̃ such that M̃ ∣L is uniformly stably embedded in every elementary
extension;

(iii) For any Ñ ⊧ T̃ , A = K(dclL̃(A)) ⊆ Ñ and any L̃(A)-definable set X ⊆ Kn, there
exists an L̃-definable bijection f ∶ Kn → Y such that f(X) = Y ∩ Z where Z is
L(A)-definable — note that f has to be defined without parameters.

Then for all Ñ ⊧ T̃ and all non empty L̃(Ñ)-definable setsX , there exists p ∈ S L̃(Ñ)which
is consistent withX and L̃(R(acleqL̃ (⌜X⌝)))-definable.

This really is a result on the density of definable types with canonical basis inR. Indeed let
Ã = acleqL̃ (Ã), the conclusion of TheoremE states that the set {p ∈ S L̃(Ã) ∶ p is L̃(R(Ã))-
definable} is dense in S L̃(Ã). Here, by definable type, we mean that the definable type has
a global definable extension given by the defining scheme.
As we will see later this result is important in two respects. On the one hand, it shows
the density of definable types (and hence invariant types) over algebraically closed sets, and
on the other hand, because these definable types have a canonical basis in R, it also gives
information on the imaginaries in T̃ .

Proof . Let Ã ∶= acleqL̃ (⌜X⌝). It suffices to prove this forX ⊂ Kn for some n. Indeed, asK is
dominant, there is an L̃-definable surjection π ∶ Kn → ∏Si for some n where the sorts Si
are such that X ⊆ ∏Si. If we find p consistent with Y ∶= π−1(X) and L̃(R(acleqL̃ (⌜Y ⌝)))-
definable, then π⋆p is consistent withX and L̃(R(acleqL̃ (⌜X⌝)))-definable.
Let F ∶= {f is an L̃-definable bijection whose domain is Kn} and ∂ω(X) = ∏f∈F f(X).
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Then ∂ω(X) is strict (L̃eq(Ã), I)-definable for some I with ∣I ∣ ⩽ ℵ0. By Corollary (III.6.7),
there exists an L(R(Ã))-definable type p ∈ SLI (N) consistent with ∂ω(X).
Let ∂ω(x) = (f(x))f∈F . Then q = {x ∶ ∂ω(x) ⊧ p}. Then q is consistent withX . There only
remains to show that it is a complete type and that it is L̃(R(Ã))-definable. Let φ(x; s)
be an L̃-formula where x ∈ Kn. AsK is dominant we may assume s is a tuple of variables
from K too. By (iii), for all tuples m ∈ K(Ñ), there exists (f ∶ Kn → Y ) ∈ F and an
L̃-definable map g (into Kl for some l) such that f(φ(Ñ ;m)) = Y (Ñ) ∩ Z(Ñ) where Z
is L(g(m))-definable. As Ñ is arbitrary, we may assume that it is saturated enough and
by compactness there exists a finite number of (fi ∶ Kn → Yi) ∈ F , L̃-definable maps
gi and L-formulas ψi(yi; t) such that for any tuple m ∈ K(Ñ) there exists i0 such that
fi0(φ(Ñ ;m)) = ψi0(Ñ ; gi0(m)) ∩ Yi0(Ñ).
Let c1 and c2 ⊧ q — i.e. ∂ω(cj) ⊧ p, for j ∈ {1,2} — and assume that ⊧ φ(c1;m). Then
fi0(c1) ∈ ψi0(Ñ ; gi0(m)) ∩ Yi0(Ñ). As fi0(c1) ≡L fi0(c2) and fi0(c2) ∈ Yi0(Ñ) we also have
fi0(c2) ∈ ψi0(Ñ ; gi0(m))∩Yi0(Ñ) = fi0(φ(Ñ ;m)) and, because fi0 is a bijection,⊧ φ(c2;m).
As for definability, we have just shown that φ(x;m) ∈ q if and only if ψi0(yi; gi0(m)) ∈ p for
some i0 such that fi0(φ(Ñ ;m)) = ψi0(Ñ ; gi0(m)) ∩ Yi0(Ñ) but that can be stated with an
L̃(R(Ã))-formula. ∎

III.7. Imaginaries and invariant extensions
As stated earlier, the conclusion of TheoremE is very strong. We will show in this sec-
tion that it implies both elimination of imaginaries and the invariant extension property
(cf. Definition (0.4.13)). I am very much indebted to [Hru14; Joh] for making me realize
that the density of definable types could play an important role in proving elimination of
imaginaries. To be precise, both elimination of imaginaries and the invariant extension
property follow from the density of types invariant over real parameters.

Remark III.7.1:
Because types definable over some parametersA are alsoA-invariant, the density of defin-
able types over some parameters implies the density of invariant types. But the converse
is false even in NIP theories. Consider M ≡ Qp in the three sorted language with an-
gular components (cf. Section II.1). Assume M is ℵ0-saturated. Let γ ∈ Γ(M) be such
that γ > n ⋅ val(p) for all n ∈ N and b ∶= {x ∈ K(M) ∶ val(x) = γ ∧ ac1(x) = 1}. Note
that b is a ball. Because the residue field is finite, in acl(⌜b⌝) there are all the balls b′ ⊆ b
such that rad(b′) − rad(b) ∈ Z ⋅ val(p). Let (bi)i∈N be a chain of balls such that bi ⊆ b and
rad(bi) = rad(b)+ ival(p). Then for all x, y ∈ ⋂i bi, val(x) = val(y) = γ and acn(x) = acn(y).
Let P = ∑i aiX i ∈ Q[X], let i0 be minimal such that ai ≠ 0, then for all i ≠ i0, val(ai0xi0) =
val(ai0yi0) < val(aixi) = val(aiyi). In fact, val(aixi) − val(ai0xi0) ⩾ n ⋅ val(p) for all n ∈ N.
Thus val(P (x)) = val(P (y)) and that acn(P (x)) = acn(P (y)). It now follows from field
quantifier elimination that x ≡∅ y and because any automorphism sending x to y must fix
b they have the same type over b. Thus, there cannot be any ball in ⋂i bi algebraic over b
and hence, by Proposition (I.3.9), x and y have the same type over acl(b). Every type in b is
of this form and none of them can be definable because ⋂i bi is a strict intersection.
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Nevertheless, by Remark (I.4.7),Th(Qp) has the invariant extension property and hence by
Proposition (III.7.4), invariant types are dense over algebraically closed sets.

In the following proposition, we show that the density of ∆-types invariant over real pa-
rameters for∆ finite suffices to prove weak elimination of imaginaries.

Proposition III.7.2:
Let T be an L-theory and R a set of its sorts such that for all N ⊧ T , all non empty L(N)-
definable setsX and all L-formulas φ(x; s), there exists p ∈ Sφx (N) which is consistent withX
and Aut(N/R(acleq(⌜X⌝)))-invariant. Then T weakly eliminates imaginaries up toR.

Proof . LetM be a saturated and homogeneous enough model of T̃ , E be any L-definable
equivalence relation,X be one of its classes inM , φ(x, y) be an L-formula defining E and
A = R(acleqL̃ (⌜X⌝)). By hypothesis, there exists an Aut(M/A)-invariant type p ∈ Sφx (M)
consistent with X . Because X is defined by an instance of φ, we have in fact p(x) ⊢ x ∈
X . For all σ ∈ Aut(M/A), σ(X) is another E-class and σ(p) = p ⊢ x ∈ X . It follows
that X ∩ σ(X) ≠ ∅ and hence X = σ(X). We have just proved that ⌜X⌝ ∈ dcleq(A) =
dcleq(R(acleqL̃ (⌜X⌝))), i.e. X is weakly coded inR. ∎

Corollary III.7.3:
In the setting of TheoremE without the cardinality assumption on L̃, T̃ eliminates imaginaries.

Proof . By Corollary (III.6.5) and using similar techniques to those used in the proof of the
theorem, we can prove that the assumption of Proposition (III.7.2) holds in T̃ and hence
that T̃ weakly eliminates imaginaries up to the sortsR. But because any finite sets inR are
also definable in T and hence are coded in T , T̃ eliminates imaginaries up to the sortsR. ∎

Let us now consider the invariant extension property (cf. Definition (0.4.13)).

Proposition III.7.4:
Let T be an L-theory, A ⊆M for someM ⊧ T . The following are equivalent:

(i) For all L(A)-definable non empty setsX andN ⊧ T ,N ⊆ A, there exists p ∈ S(N) such
that p is Aut(N/A)-invariant and is consistent withX ;

(ii) T has the invariant extension property over A.

Proof . Let us first show that (ii) implies (i). Let N ⊧ T , X be L(A)-definable and p ∈ S(A)
be any type containingX . Let q ∈ S(N) be anAut(N/A)-invariant extension of p. Then q
is consistent withX .
Let us now assume (i) and let Inv(N/A) = {p ∈ S(N) ∶ p is Aut(N/A)-invariant }.

Claim III.7.5: The set Inv(N/A) ⊆ S(N) is closed and hence compact.

Proof . Let p ∈ S(N) ∖ Inv(N/A). There exists φ(x; s), a tuple m ∈ N and σ ∈ Aut(N/A)
such that φ(x;m) ∈ p and φ(x;σ(m)) ∉ p. Then, the set {q ∈ S(N) ∶ φ(x;m) ∈ q and
φ(x;σ(m)) ∉ q} = {q ∈ S(N) ∶ φ(x;m) ∧ ¬φ(x;σ(m)) ∈ q} is open and has empty inter-
section with Inv(N/A). ⧫
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Let p ∈ S(A). By hypothesis, for all L(A)-definable setsX ≠ ∅, there exists qX ∈ Inv(N/A)
which is consistent with X . It follows that for all L(A)-definable sets X , the closed set
FX ∶= ⟨X⟩ ∩ Inv(N/A) ≠ ∅. Moreover, for any finite number of Xi ∈ p, ∩iFXi

= F⋀iXi
is

non empty. As Inv(N/A) is compact, there exists q ∈ ⋂X∈pFX . Then q ∈ Inv(N/A) and for
allX ∈ p, q ∈ FX ⊆ ⟨X⟩ so q does extend p. ∎

To conclude:

Theorem III.7.6:

In the setting of TheoremE, T̃ eliminates imaginaries and has the invariant extension prop-
erty.

Proof . Elimination of imaginaries is proved inCorollary (III.7.3) and the invariant extension
property then follows from TheoremE and Proposition (III.7.4). ∎

160



CHAPTER IV

Somemodel theory of valued differential
fields

Le Vieux Monsieur
C’est vrai, j’ai un chat qui s’appelle Socrate.

E. Ionesco, Rhinocéros, Acte I

Building on the quantifier elimination result of [Sca00], this chapter aims at laying the
foundations for a more sophisticated model theoretic study of VDFEC the model comple-
tion of valued differential fields with a valuation preserving derivation (the definitions can
be found in Section IV.1.1). There are mainly two motivations behind looking at VDFEC .
The first reason is that it is a somewhat more complicatedNIP theory thanACVF, for ex-
ample. The analogy with stability theory is quite tempting: among stable fields, ACF is
extremely well understood but is too tame (it is strongly minimal) for any of the more sub-
tle behavior of stability to show. The theoryDCF0 on the other hand is still very reasonable
(it is ω-stable) but some pathologies begin to show and in studyingDCF0 one gets a better
understanding of stability. The theory VDFEC could play the similar role with respect to
ACVF: it is a more complicated but still very tractable theory in which to experiment with
NIP or metastability.
The other reason why VDFEC is interesting is much more application oriented. Valued
fields appear naturally in algebraic geometry (among other things when studying singu-
larities). Similarly, some diophantine questions have been shown to be closely related to
differential fields. It only seems natural to think that the combination of the two should
have natural applications (see for example [Sca97]). Furthermore, the model theory of dif-
ference valued fields also plays a role in Hrushovksi’s work [Hrua] on “difference algebraic
geometry”. Difference valued fields also appear naturally in number theory and diophan-
tine geometry, among them the Witt vectors over Fp

alg
equipped with the lifting of the

Frobenius — although, to be completely honest, this field usual appears with its analytic
structure (which is studied in Chapter II). We hope that the results in this chapter can also
be seen as first steps in a more general program to study the model theory of valued fields
with operators.
This chapter begins, in Section IV.1 with some definitions followed by the most important
result in this chapter, Theorem F: the elimination of imaginaries and the invariant exten-
sion property for VDFEC . In fact, this question was the motivation for the development
of Chapter III and what we actually prove is the stronger result that types definable over
geometric parameters are dense in VDFEC .
In Section IV.2, we study the field of constants in VDFEC and show that it is a stably em-
bedded puremodel ofACVF. This section also contains the equivalent result forW(Fp

alg)
equipped with the lifting of the Frobenius automorphism.
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Section IV.3 is concerned with the definable and algebraic closure inVDFEC and essentially
shows that it is more complicated than what one could hope for. We do show though that
in the value group, the residue field and the constant field it is what could be expected.
In Section IV.4, we explore more methodically the fact that there is a good notion of pro-
longation on the space of types in VDFEC and study some of its properties. This idea was
already sketched, in a more abstract setting, in the proof of TheoremE.
Finally, Section IV.5 is about definable groups. Most of this section is an account, following
[Hrub], of how to adapt the proofs of [Hru90] to the unstable setting as long as there is
a definable generic around. We also generalize somewhat the notion of group chunk to
be able to talk about non connected group more directly. The main goal is to produce
an abstract version (cf. Theorem (IV.5.42)) of the classical proof that a group definable in
DCF0 (or in separably closed fields) definably embeds into an algebraic group so that we
can apply it in other contexts. For example, we obtain an embedding theorem into groups
interpretable in ACVF for a certain class of groups definable in VDFEC .

IV.1. Imaginaries in VDFEC

After definingVDFEC and recalling the known results about this theory, we will show that
all of the work in Chapter III applies to VDFEC to obtain new results in Theorem F: elimi-
nation of imaginaries, invariant extension property and density of definable types.

IV.1.1. Some background
Let L∂ be the three sorted language for valued fields with two new symbols ∂ ∶ K → K
and ∂ ∶ k → k. We define DVal to be the theory of L∂-structuresM such that Γ(M) is an
abelian ordered group, k(M) is a differential field and (K(M),val,k) is a valued field with
a valuation preserving derivation — i.e. for all x ∈ K, val(∂(x)) ⩾ val(x). Note that the
residual map and the valuation map are not supposed to be onto in DVal.
The notion of ∂-Henselianity can take many equivalent forms but I will give the one con-
sidered in [Sca00], which is quite close to the one considered in Definition (II.4.10). Recall
that ∂ω(x) is defined to be (∂n(x))n∈N.

Definition IV.1.1 (∂-Henselian):
Let (K,val, ∂) be a valued differential field. K is ∂-Henselian if for all P ∈ O(K)[X] and
a ∈ O(K) such that val(P (∂ω(a))) > 0 andmini{val( ∂

∂Xi
P (∂ω(a)))} = 0, there exists c ∈ O

such that P (∂ω(c)) = 0 and res(c) = res(a).

Definition IV.1.2 (Enough constants):
Let (K,val, ∂) be a valued differential field. We say thatK has enough constants if val(CK) =
val(K) where CK ∶= {x ∈K ∶ ∂(x) = 0} denotes the field of constants.

Now, let VDFEC be the L∂-theory of valued fields with a valuation preserving derivation
which are ∂-Henselian with enough constants, such that the residue field is differentially
closed of characteristic zero and the value group is divisible — and val and k are onto.
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Note that we call it VDFEC and not VDFEC,0 or VDFEC,0,0 because we will only work in
equicharacteristic zero in this chapter. Similarlywewill not specify the characteristic when
speaking of ACVF, but it is understood that we are speaking of ACVF0,0.
As in the case of ACVF, VDFEC can be considered in the one sorted, two sorted or three
sorted languages (cf section 0.2.2) that are enrichments of the valued field versions with
symbols for the derivation. We will be denoting L∂,div the one sorted language forVDFEC .

Theorem IV.1.3 ([Sca00]):

(i) The theory VDFEC is the model completion of DVal;

(ii) The theoryVDFEC eliminates quantifiers (and is complete) in the one sorted language,
the two sorted language and the three sorted language;

(iii) The value group Γ is stably embedded and a pure divisible ordered abelian group;

(iv) The residue field k is stably embedded and a pure model of DCF0;

(v) The theory VDFEC is NIP.

Proof . Item (i) follows from [Sca00, Theorem7.1] and the fact that the theory of divisible
ordered abelian groups is the model completion of abelian ordered groups and the theory
of differentially closed fields is the model completion of differential fields.
By [Sca00, Theorem7.1] we also have field quantifier elimination (in the three sorted lan-
guage) relative to k and Γ (cf. Definition (II.A.5)). The stable embeddedness and purity
results follow. Now, the theory induced on k and Γ are, on the one hand, differentially
closed fields and, on the other, divisible ordered abelian groups that both eliminate quan-
tifiers. Quantifier elimination in the three sorted language follows and so does qualifier
elimination in the two other languages.
The fact thatVDFEC isNIP is an easy consequence of elimination of quantifiers (in the one
sorted language for example) because ACVF is NIP. ∎
Note that inM ⊧ VDFEC , the field of constants CK(M) is relatively algebraically closed
insideK(M) which is algebraically closed, thus CK(M) is algebraically closed.

IV.1.2. Imaginaries and invariant types in VDFEC

Using the results of Chapter III, we can prove new results about VDFEC . The question of
elimination of imaginaries in VDFEC had remained open since it came up naturally af-
ter elimination of imaginaries to the geometric sorts was proved for ACVF. Apart from
the general importance of describing interpretable sets, the question of the elimination
of imaginaries in VDFEC was also linked to the question of the existence of invariant ex-
tensions in that theory. It is true that those two questions are quite distinct but a good
knowledge of imaginaries usually helps to prove the invariant extension property (see for
example Remark (I.4.7) in the case ofQp).
At the end of [HHM08], where it is shown thatACVF is metastable (see Theorem (0.4.17))
two other examples of metastable theories are given: the theory of C((t)), and the theory

163



IV. Some model theory of valued differential fields

of VDFEC . But the proof sketched there for the invariant extension property in VDFEC is
incorrect. There are two problems: the first is that it relies on a problematic reduction to
the field sort that is correct when proving the existence of metastability basis but is not in
the case of the invariant extension property. The second is that even when both variables
and parameters are in the valued field, the construction of the invariant type does not take
in account the fact that the derivation in VDFEC has to preserve the valuation. To recover
the fact that VDFEC is an example of metastability, it became necessary to find another
proof of the invariant extension property.
The proof that we give here does not, per se, rely on the fact that we also prove elimination
of imaginaries to the geometric sorts but, rather, both results follow from a stronger result
about density of definable types over geometric parameters.
Let LG∂ be the language LG enriched with a symbol for the derivation ∂ ∶ K → K and let
VDFGEC be the LG∂ -theory of models of VDFEC .

TheoremF:
The theory VDFGEC eliminates imaginaries and has the invariant extension property. More-
over, over algebraically closed parameters, definable types are dense.

Proof .We apply TheoremsE and (III.7.6).
HypothesisE.(i) follows from Theorem IV.1.3.(iii) and IV.1.3.(iv) and the fact that, because
the algebraic closure inDCF0 is the field algebraic closure of the generated differential field
and because DOAG is o-minimal, both of these theories eliminate ∃∞.
HypothesisE.(ii) follows from the fact that if k ⊧ DCF0 then the Hahn field k((tR)) with
the derivation ∂(∑i aiti) = ∑i ∂(ai)ti, i.e. ∂(t) = 0, is a model of VDFEC and, by Corol-
lary (III.2.9) the underlying valued field is uniformly stably embedded in every elementary
extension.
Finally, HypothesisE.(iii) is an easy consequence of elimination of quantifiers: let φ(x; s)
be an L∂,div-formula, then there exists an Ldiv-formula ψ(u; t) and n ∈N such that φ(x; s)
is equivalent moduloVDFEC to ψ(∂n(x);∂n(s)), i.e. for allm ∈ Ñ , ∂n is an L∂,div-definable
bijection between φ(Ñ ;m) and ψ(x, ∂n(m)) ∩ ∂n(K∣x∣). ∎

IV.2. Stable embeddedness of the field of constants
In this section we wish to study the stable embeddedness of the field of constants CK in
VDFEC . We will be using the results of Section III.2 and we will be working in the one
sorted language L∂,div.

Proposition IV.2.1:
Any pair L∣K that is elementarily equivalent to a pair L⋆∣K⋆, whereK⋆ is maximally complete,
is separated. In particular, in models of VDFEC , the pairK∣CK is separated.

Proof . The first part of the corollary is an immediate consequence of Propositions (III.2.2)
and the the fact that separation is preserved by elementary equivalence of the pair. The
rest of the corollary then follows because, asVDFEC is complete, all the pairsK∣CK are ele-
mentary equivalent and, for anyK ⊧ DCF0 and Γ ⊧ DOAG,K((tΓ)) withD(∑γ∈Γ aγtγ) =
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∑γ∈ΓD(aγ)tγ is a model of VDFEC whose constant field is CK((tΓ)) which is maximally
complete. ∎

Proposition IV.2.2:
The field of constants CK is stably embedded in models of VDFEC . It follows that it is a pure
model of ACVF.

Proof . LetM ⊧ VDFEC and φ(x,m) be a formula with parameters inK(M). By quantifier
elimination, we may assume that φ is of the form ψ(∂n(x), ∂n(m)) where ψ is an Ldiv-
formula and n ∈ N. For all x ∈ CK , φ(x,m) is equivalent to ψ(x,0, . . . ,0, ∂n(m)), i.e. an
Ldiv(K(M))-formula, hence it suffices to prove thatCK(M) is stably embedded inK(M)
as a valued field. ButK(M) is algebraically closed, the pairK(M)∣CK(M)is separated (cf.
Proposition (IV.2.1)) and, because there are enough constants, val(K(M)) = val(CK(M)),
hence we can apply Theorem (III.2.7).
It now follows fromquantifier elimination that any subset ofCK definable inM is definable
by a quantifier-free Ldiv(CK(M))-formula and hence is defined in CK(M) by the same
formula. ∎

These result can be transposed easily to the Witt vectors over Fp
alg

with the lifting of the
FrobeniusW(Frobp). Recall that in this field there are definable angular component maps
acn for all the residue rings Rn ∶= O/pnM that are compatible with the automorphism.
Indeed, Fix(W(Fp

alg)) = Qp where angular component maps acn (cf. section II.1) are de-
finable and for all x ∈W(Fp

alg) define acn(x) ∶= resn(xy−1)acn(y) for any y ∈Qp such that
val(x) = val(y).
Thus we will consider the theory of this field in the three sorted language Lacσ,P with the
angular componentmaps described above and divisibility predicatesPn on the value group.
LetWFp denote ThLac

σ,P
(W(Fp

alg),W(Frobp),acn).

Theorem IV.2.3 ([BMS07]):
The theoryWFp eliminates quantifiers (and is complete).

Proof . By [BMS07, Theorem 11.4], WFp eliminates quantifiers in Lacσ,P relative to R and Γ.
The theoremnow follows from the fact that algebraically closed fields eliminate quantifiers
and Z-groups eliminate quantifiers once we add divisibility predicates. ∎

Proposition IV.2.4:
The fixed field Fix(K) is stably embedded in models ofWFp and is a pure valued field elemen-
tarily equivalent toQp

Proof . It is essentially the same proof as in Proposition (IV.2.2). LetM ⊧WFp. By quantifier
elimination, the intersection of any definable set in M with Fix(K) is the intersection
with Fix(K) of a set definable inM as a valued field with angular components. Because
(W(Fp

alg),W(Frobp)) is a model ofWFp whose fixed field isQp (which is also maximally
complete), by Proposition (IV.2.1), in models ofWFp, the pairK∣Fix(K) is separated. We
can now apply Theorem (III.2.8) to conclude. The fact that it is a pure valued field now
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IV. Some model theory of valued differential fields

follows by elimination of quantifiers (and the fact that the angular component maps we
chose are definable in Th(Qp)). ∎

IV.3. Definable closure in VDFEC

In this section, we investigate the definable and algebraic closure in VDFEC to show that,
sadly, it is not as simple as one might hope. In DCF0, the definable closure of a is exactly
is field generated by ∂ω(a). In VDFEC , we have to, at least, take in account the Henselian-
ization, but we show that the definable closure of a can be even larger than the Henselian-
ization of the field generated by ∂ω(a). The content of this section was already known to
Ehud Hrushovski and Thomas Scanlon but was not written anywhere. The definable clo-
sure inVDFEC will be amajor (as yet unsolved) issue in Section IV.5 when describing groups
in VDFEC .
Wewill be denoting by ⟨A⟩∂ the differential ring generated byA and ⟨A⟩−1,∂ the differential
field generated by A.

Fact IV.3.1:
LetM ⊧ VDFEC be saturated enough. For all C ⊆ M , there exists A ⊆ M , C ⊆ A, such that

dclLdiv
(⟨A⟩∂) = ⟨A⟩−1,∂

h
⊊ dclL∂,div

(A). In fact, there exists a ∈ dclL∂,div
(A) that is transcen-

dent over ⟨A⟩∂ . In particular, we also have aclLdiv
(⟨A⟩∂) ⊊ aclL∂,div

(A).

Proof . LetP (X) ∈ O(M)[X], a ∈ O(M) and ε ∈M(M). LetQa(∂ω(x)) = x−a+εP (∂ω(x)),
then Qa has a unique zero in M . Indeed val(Qa(a)) > 0, val(∂Qa

∂X0
(a)) = val(1) = 0 and

val(∂Qa

∂Xi
(a)) = val(ε)+val( ∂P∂Xi

(a)) > 0, henceσ-Henselianity applies. IfQa(x) = Qa(y) = 0,
then res(x) = res(a) = res(y) and thus val(x − y) > 0. Let η ∶= x − y, we have

Qa(y) = x + η − a + εP (x + η) = x + η − ε(∑
I

PI(a)ηI) = η + ε(∑
∣I ∣>0

PI(a)ηI).

But, if η ≠ 0, val(εPI(a)ηI) > ∣I ∣val(η) ⩾ val(η) and hence val(Qa(y)) = val(η) ≠ ∞, a
contradiction. I follows that differential equations that have infinitely many solutions in a
differentially closed field have only one in a model of VDFEC .
Let us now show that, in some cases, we do get new definable functions. We may assume
that C = dcl(K(C)). Let k be a differential field, ã ∈ k be differentially transcendental and
let us embed k[[ε]] with the usual valuation preserving derivation intoM such that k and
k(C) are independent and K(C)(ε) is a transcendental ramified extension of K(C). To
avoid any confusion, let us denote by a the image of ã by the embedding of k into k[[ε]]
and intoM . One can check that for all n ∈N, res(K(C)(ε, ∂n(a))) = k(C)(∂n(ã)).
Let us now try to solve x−a− ε∂(x) = 0 in k[[ε]]. Let x = ∑xiεi where xi ∈ k, the equation
can then be rewritten as:

∑xiε
i = aε0 +∑∂(xi)εi+1,

and hence x0 = a and xi+1 = ∂(xi) = ∂i+1(a). If x ∈ ⟨C,a, ε⟩∂
alg

then for some n ∈ N, we

must have x ∈ K(C)(∂n(a), ε)
alg
. Because ∂n+1(ã) is transcendental over k(C)(∂n(ã)),
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and any automorphism of σ ∶ k ∪ k(C) fixing k(C) can be lifted into an automorphism of
k[[ε]]∪C fixingC and sending∑xiεi ∈ k[[ε]] to∑σ(xi)εi, it follows that x has an infinite
orbit overK(C)(∂n(a), ε), a contradiction. ∎

Nevertheless, by quantifier elimination, the definable closure ofK-generated sets inΓ and
k is exactly what one could hope for. We will be working in the three sorted language.

Proposition IV.3.2:
LetM ⊧ VDFEC and A ⊆K(M), then

Γ(dcl(A)) = Γ(acl(A)) =Q⊗ val(⟨A⟩−1,∂) = val(⟨A⟩−1,∂
alg
),

k(dcl(A)) = res(⟨A⟩−1,∂) and k(acl(A)) = res(⟨A⟩−1,∂)
alg
= res(⟨A⟩−1,∂

alg
).

Proof . Let us first show that Γ(acl(A)) = Q ⊗ val(⟨A⟩−1,∂). By quantifier elimination in
the three sorted language, any formula with variables in Γ and parameters in A is of the
form φ(x,val(a)) where a ∈ ⟨A⟩∂ is a tuple. In particular, any γ ∈ Γ(M) algebraic over A
is algebraic over val(⟨A⟩∂) in Γ which is a pure divisible ordered abelian group. It follows

immediately that γ ∈ Q ⊗ val(⟨A⟩−1,∂). The equality Q ⊗ val(⟨A⟩−1,∂) = val(⟨A⟩−1,∂
alg
) is

well-known. Finally, asQ⊗ val(⟨A⟩−1,∂) is rigid over val(⟨A⟩−1,∂) ⊆ Γ(dcl(A)) the equality
Γ(dcl(A)) = Γ(acl(A)) also holds.
As for the results concerning k, they are proved similarly. Indeed, any formula with vari-
ables in k and parameters in A is of the form φ(x, res(a)) where a ∈ ⟨A⟩−1,∂ is a tuple. As
inDCF0 the definable closure is just the differential field generated by the parameters and
the algebraic closure is its field theoretic algebraic closure, the results follow. ∎

Concerning the definable closure and algebraic closure in the sortK, although the situation
is not ideal, we can nevertheless say something:

Corollary IV.3.3:

LetM ⊧ VDFEC and A ⊆K(M) thenK(acl(A)) is an immediate extension of ⟨A⟩−1,∂
alg
.

Proof .We have val(K(acl(A))) ⊆ Γ(acl(A)) = val(⟨A⟩−1,∂
alg
) where the second equality

comes from Proposition (IV.3.2). Similarly res(K(acl(A))) ⊆ k(acl(A)) = res(⟨A⟩−1,∂
alg
)

and henceK(acl(A)) is an immediate extension of ⟨A⟩−1,∂
alg
. ∎

Corollary IV.3.4:

LetM ⊧ VDFEC and A ⊆ K(M) then K(dcl(A)) is an immediate extension of ⟨A⟩−1,∂
h
and

hence of ⟨A⟩−1,∂ .

Proof . By Proposition (IV.3.2), we have that res(K(dcl(A))) ⊆ k(dcl(A)) = res(⟨A⟩−1,∂) and
val(K(dcl(A))) ⊆ Γ(dcl(A)) = Q ⊗ val(⟨A⟩−1,∂). Let L ∶= K(dcl(A)) and F ∶= ⟨A⟩−1,∂

h
.

Let c ∈ L. We already know that val(c) ∈Q⊗ val(F ). Let n be minimal such that nval(c) =
val(a) for some a ∈ F . Then res(ac−n) ∈ res(L) = res(F ) and we can find u ∈ F such that
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res(ac−n) = res(u). As Lmust be henselian (indeed L
h = dclLdiv

(L) = L), we can find v ∈ L
such that vn = ac−nu−1, i.e. (cv)n = au−1 ∈ F . Hence we may assume that cn itself is in F .
But derivations have a unique extension to algebraic extensions and, as F is henselian, the
valuation also has a unique extension to the algebraic closure. It follows that any algebraic
conjugate of c is also an L∂,div-conjugate of c. AsK(M) is algebraically closed, it contains
non trivial n-th roots of the unit and it follows that we must have n = 1. ∎

Remark IV.3.5:
It would be nice to know if there is an “algebraic” description of the definable closure, i.e.
an equivalent of the Henselianisation in the valued case.

In the field of constants, though, we can describe both the definable closure and the alge-
braic closure.

Proposition IV.3.6:

LetM ⊧ VDFEC andA ⊆ CK(M), thenK(dcl(A)) = Frac(A)
h
andK(acl(A)) = Frac(A)

alg
.

Proof . It follows from the fact that the pairK∣CK is separated (cf. Proposition (IV.2.1)) that
CK does not have any immediate extension in K. Hence dcl(A) ⊆ CK(M) and acl(A) ⊆
CK(M). The proposition now follows from the fact that CK is a pure model of ACVF. ∎

IV.4. Prolongations of the type space
We will be primarily working in the three sorted language for ACVF and VDFEC that will
be denoted, respectively, L andL∂ . If x ∈K or x ∈ k are elements, ∂ω(x)will be (∂n(x))n∈N
and if x ∈ Γ, ∂ω(x) will be (x)n∈N. If x is a tuple of variables, we denote by x∞ the tuple
(x(i))i∈N where each x(i) is sorted like x. From time to time, we will need to talk about
imaginary parameters and interpretable sets, I will then use the geometric languages LG
and LG∂ in which ACVF and VDFEC respectively eliminate imaginaries.
LetM ⊧ VDFEC be sufficiently saturated and A⩽M be a substructure.

Definition IV.4.1:
We define ∇ω ∶ SL∂

x (A)→ SLx∞(A) to be the map that sends a type p to the (complete) type

∇ω(p) ∶= {φ(x∞, a) ∶ φ is an L-formula and φ(∂ω(x), a) ∈ p}.

Proposition IV.4.2:
The function ∇ω is a homeomorphism onto its image (which is closed).

Proof . As SL∂
x (A) is compact and SLx∞(A) is Hausdorff, it suffices to show that ∇ω is con-

tinuous and injective. Let us first show continuity. Let U = ⟨φ(x∞, a)⟩ ⊆ SLx∞(A), then
∇−1
ω (U) = ⟨φ(∂ω(x), a)⟩ ⊆ S

L∂
x (A). As for ∇ω being injective, let p and q ∈ SL∂

x (A) and let
φ(x, a) be an L∂-formula in p∖ q. By quantifier elimination, we can assume that φ is of the
form θ(∂ω(x), a) for some L-formula θ. Then θ(x∞, a) ∈ ∇ω(p) ∖∇ω(q). ∎
In fact, we can describe exactly what the closed image is. For every differential ring R let
R{X1, . . . ,Xm} be the ring of differential polynomials in m variables — i.e. R[X(j)i ∶ j ∈
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N1 ⩽ i ⩽m]—and let ∂ also denote the derivation on this ring. WhenP ∈ R{X1, . . . ,Xm},
we will write P ⋆ ∈ R[X(j)i ∶ j ∈N and 1 ⩽ i ⩽m] for the underlying polynomial.

Notation IV.4.3:
Let x be a tuple of variables in L. We will denote by xK the subtuple of variables inK, xk
the subtuple of variables in k and xΓ the subtuple of variables in Γ.

Proposition IV.4.4:
Let Px be the following set of L(A)-formulas:

{val(∂(P )⋆(xK,∞)) ⩾ val(P ⋆(xK,∞)) ∶ P ∈K(A){xK}}
∪ {P ⋆(xk,∞) = 0⇒ ∂(P )⋆(xk,∞) = 0 ∶ P ∈ k(A){xk}}
∪ {x(i)j = res((PQ)⋆(xK,∞))⇒ x

(i+1)
j = res(∂(PQ)⋆(xK,∞)) ∶ i ∈N and xj ∈ xk}

∪ {x(i+1)j = x(i)j ∶ xj is a Γ-variable}

Let Px(A) ⊆ SLx∞(A) be the set of types over A containing Px. Then ∇ω(SL∂
x (A)) = Px(A).

Note that, in the three sorted language, res has two arguments that res(x, y) = res(x/y).
However, there is a slight abuse of notation in the above formulas especially in the expres-
sion res(∂(PQ)⋆(xK,∞)) which should read instead

res(Q⋆(xK,∞)∂(P )⋆(xK,∞) − P ⋆(xK,∞)∂(Q)⋆(xK,∞), (Q⋆(xK,∞))2).

Proof . As, for all P ∈K(A){X} and c ∈K(M) of the right length, ∂(P (c)) = ∂(P )(∂ω(c))
and similarly in k, it is quite obvious that∇ω(SL∂

x (A)) ⊆ Px(A). Let us now show that this
inclusion is an equality. Let p ∈ Px(A) and c ⊧ p. Then, {P ∈ K(A){X} ∶ P ⋆(cK) = 0}
is a differential ideal as for all such P , val(∂(P )⋆(cK)) ⩾ val(P ⋆(cK)) = ∞. Hence L =
K(A)(cK) can be endowed with a (unique) differential ring structure such that ∂(cj,i) =
cj+1,i.
For any P,Q ∈ K(A){X}, we have val(∂(P )⋆(cK)) ⩾ val(P ⋆(cK)) and val(∂(Q)⋆(cK)) ⩾
val(Q⋆(cK)), and hence

val(∂ (P
⋆(cK)

Q⋆(cK)
)) − val(P

⋆(cK)
Q⋆(cK)

) = val(∂(P )
⋆(cK)

P ⋆(cK)
− ∂(Q)

⋆(cK)
Q⋆(cK)

) ⩾ 0.

Similarly, there is a unique differential ring structure on l ∶= k(A)(ck) such that ∂(cj,i) =
cj+1,i and these two differential structure commute with res. Finally let Λ be the group
generated by Γ(A), val(L) and cΓ. Then C = L ∪ l ∪ Λ is a valued field with a valuation
preserving derivation— in the broader sense where res and valmay not be onto. AsVDFEC
is the model completion of such structures (cf. [Sca00, Theorem7.1]), we can find an em-
bedding f ∶ L→M such that f fixes A. Let q = tp(f(c0)/A), then ∇ω(q) = p. ∎
We will now look at how ∇ω and its inverse behave with respect to various properties of
types. Let us begin by two very easy results. One must beware though that however inno-
cent these question might seem to be, their converses actually present real challenges. A
converse to Lemma (IV.4.5) is proved in Proposition (IV.4.9) and required the development
of Section III.1 to be proved. I do not know if the converse of Lemma (IV.4.6) holds or not.
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Lemma IV.4.5:
Let p ∈ Px(M) be L(A)-definable then ∇−1

ω (p) is L∂(A)-definable.

Proof . Let φ(x; s) be an L∂-formula that we may assume is of the form ψ(∂ω(x), ∂ω(s))
where ψ(x∞; s∞) is anL-formula. By definability of p, there exists anL(A)-formula θ(s∞)
such that for all tuples m ∈ M ,M ⊧ θ(∂ω(m)) if and only if ψ(u, ∂ω(m)) ∈ p, if and only
if ψ(∂ω(x), ∂ω(m)) ∈ ∇−1

ω (p). Hence for all m ∈ M , φ(x;m) ∈ ∇−1
ω (p) is equivalent to

M ⊧ θ(∂ω(m)). ∎

Lemma IV.4.6:
Let p ∈ Px(M) be A-invariant then ∇−1

ω (p) is also A-invariant.

Proof . Let φ(∂ω(x), ∂ω(c)) ∈ ∇−1
ω (p) be any L∂(M)-formula, where ψ(x∞; s∞) is an L-

formula. For all σ ∈ AutL∂
(M/A) ⊆ AutL(M/A), we have φ(x∞;σ(∂ω(c))) ∈ p, i.e.

φ(∂ω(x), ∂ω(σ(c))) ∈ ∇−1
ω (p). ∎

Proposition IV.4.7:
Let p ∈ Pn(M) be stably dominated then ∇−1

ω (p) is also stably dominated.

Proof .We will need the following result:

Claim IV.4.8: Let D be LG(M)-definable. If D is stable and stably embedded in ACVF, then
it is also stable and stably embedded in VDFEC .

Proof . It follows from [HHM06, Lemma 2.6.2 andRemark 2.6.3], cf. Proposition (0.4.3), that
D ⊆ dclLG(E∪k) for somefiniteE ⊆D. Becausek also eliminates imaginaries, is stable and
stably embedded inVDFEC , it immediately follows thatD is stably embedded and stable in
VDFEC too. ⧫

Therefore, the stable part overM in VDFGEC , St
LG
∂

M , is an enrichment of the stable part over
M in ACVFG , StL

G

M . Now let c ⊧ ∇−1
ω (p) and B ⊆K be such that

St
LG
∂

M (dclLG∂ (Mc)) ⫝L
G
∂

M St
LG
∂

M (dclLG∂ (MB))

where ⫝L
G
∂

M denotes independence in St
LG
∂

M overM . In particular,

StL
G

M (dclLG(M∂ω(c))) ⫝
LG
∂

M StL
G

M (dclLG(M∂ω(B))).
AsM is a model of VDFEC , it follows that

StL
G

M (dclLG(M∂ω(c))) ⫝L
G

M StL
G

M (dclLG(M∂ω(B)))

where ⫝LGM denotes independence in StL
G

M overM . As ∂ω(c) ⊧ p and p is stably dominated,

tpLG
∂
(B/StL∂

M (dclLG∂ (Mc))) ⊢ tpLG(∂ω(B)/StLM(dclLG(M∂ω(c))))
⊢ tpL(M∂ω(B)/M∂ω(c))
⊢ tpL∂

(B/Mc).
Here the last implication comes from the fact that ∇ω is one to one on the space of types.
It now follows from Lemma (0.4.7) [4.7 prelim], that ∇−1

ω (p) is stably dominated. ∎
Let me now give some converses.
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Proposition IV.4.9:
Let p ∈ SL∂

x (M) be L∂(A)-definable, then ∇ω(p) is LG(dclLG
∂
(A))-definable.

Proof . Let φ(x∞; s) be an L-formula. Then exists some L∂(A)-formula θ(s) such that
for all tuple m ∈ M , φ(x∞;m) ∈ ∇ω(p) — i.e. φ(∂ω(x);m) ∈ p — if and only if M ⊧
θ(m). It follows that∇ω(p) ∈ SLx∞(M) is L∂(A)-definable. By Corollary (III.1.5), it is in fact
LG(dclLG

∂
(A))-definable. ∎

Lemma IV.4.10:
Let p ∈ SL∂

x (M) be finitely satisfiable in A, then ∇ω(p) is finitely satisfiable in A.

Proof . Let φ(x∞; s) be any L-formula and let m ∈ M be such that φ(x∞;m) ∈ ∇ω(p), i.e.
φ(∂ω(x),m) ∈ p. Then there exists a ∈ A such thatM ⊧ φ(∂ω(a),m), i.e. ∇ω(p) is finitely
satisfiable in A. ∎

Proposition IV.4.11:
AssumeM sufficiently saturated and homogeneous and let p ∈ SL∂

x (M) be L∂(M)-definable.
The following are equivalent:

(i) p is stably dominated;

(ii) p is generically stable;

(iii) p is orthogonal to Γ;

(iv) ∇ω(p) is stably dominated;

(v) ∇ω(p) is generically stable;

(vi) ∇ω(p) is orthogonal to Γ;
Proof . The equivalence of (iv), (v) and (vi) is well known inACVF (cf. Proposition (0.4.20)).
It also follows from Proposition (0.4.19), that (i)⇒ (ii)⇒ (iii) also holds in any NIP theory.
We proved in Proposition (IV.4.7) that (iv) implies (i). Let us now prove that (iii) implies
(iv). By Proposition (IV.4.9), ∇ω(p) is L(A)-definable for some A ⊆ M . Let C ⊧ VDFEC be
maximally complete, and containA and let c ⊧ p∣C . By Proposition (IV.4.9),∇ω(p) isL(C)-
definable. As p is orthogonal to Γ, we also have Γ(C) ⊆ Γ(dclL(Cc)) ⊆ Γ(dclL∂

(Cc)) =
Γ(C). By Theorem (0.4.17), because C is maximally complete, tp(∂ω(c)/CΓ(dclL(Cc)))
is stably dominated. But tp(∂ω(c)/CΓ(dclL(Cc))) = tp(∂ω(c)/C) = ∇ω(p)∣C and hence
∇ω(p) is also stably dominated. ∎

IV.5. Groups in VDFEC

The inspiration for this section is drawn from [Hrub, Section 3] and [KP02]. In [Hrub],
Hrushovski shows that most of the tools developed in [Hru90] for stable groups can be
generalized to an unstable setting as long as we have a definable generic around. In this
section we give an account of this work, adding the case of ⋆-definable groups (cf. Propo-
sition (IV.5.24)) that is missing from [Hrub] and generalizing the groups chunk theorem
somewhat so as to be able to talk about non connected groups more directly. We then use
those tools to give an abstract analog (in a non stable setting, using definable generics) of
Pillay’s result that groups definable inDCF0 canbe definably embedded in algebraic groups;
or of the similar result of [BD01] for the groups definable in separably closed fields (SCF)
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of finite imperfection degree. We then apply this abstract group construction in VDFEC .
The result one could hope for — in analogy to DCF0 — is the following:

Question IV.5.1: Is every group interpretable inVDFEC definably isomorphic to a subgroup
of a group interpretable in ACVF?

But we are far from answering it. We can only cope with groups with d-generics (see Defi-
nition (IV.5.8) below) andwe cannot copewith complications related to the—quite ugly—
definable closure in VDFEC . This issue with definable closure has already presented itself
in the case of ACFA (algebraically closed fields with a generic automorphism), but in that
case, the definable closure is still inside the algebraic closure of the generated difference
field and so (both in [CH99] and [KP02]), replacing the group chunk by a group configura-
tion (and using the supersimplicity of ACFA) a similar proof scheme still worked. In the
case of VDFEC , coping with the definable closure seems to require new methods.
Nevertheless, the abstract construction presented in this section can probably be used to
describe all definable groups with d-generics in other enriched valued fields where the de-
finable closure would be better understood.
We defined in Definition (III.6.6) the notion of (L,⋆)-definable set, let us now do the same
with functions.

Definition IV.5.2 (⋆-definable functions):
Let L be a language,M an L-structure and x = (xi)i∈I and y = (yj)j∈J be (potentially infinite)
tuples of variables. Let Si be the sort in which the variable xi lives, and similarly for Sj . A partial
function f ∶∏i∈I Si(M)→∏j∈J Sj(M) is said to be (L, x, y)-definable — or simply an (L,⋆)-
definable function, if we do not want to specify x or y—if for all j ∈ J there exists anL-definable
function fj ∶∏i∈I Si → Sj such that f =∏j∈J fj .

Although the definition above seems too restrictive, it is a classical result (cf. [Poi87, Sec-
tion 4.5] for the∞-def case) that considering functions whose graph is ⋆-definable does not
actually allow any new function:

Proposition IV.5.3:
LetM be a saturated enough L-structure. Any function whose graph is (L,⋆)-definable inM
is in fact the restriction to an (L,⋆)-definable set of an (L,⋆)-definable function.

Proof . Let us assume the graph of f is given by ⋂φ∈P φ(x, y). We may assume that P is
closed under finite intersections. As ⋂φ∈P φ(x, y) is the graph of a function we have:

⋀
φ∈P

φ(x, y) ∧ ⋀
φ∈P

φ(x, z)⇒⋀
j

yj = zj.

By compactness (and closure of P under intersection) for fixed j, there exists a formula
φj ∈ P such that φj(x, y) ∧ φj(x, z) ⇒ yj = zj , i.e. the formula θ(x, yj) ∶= ∃y≠j φj(x, y) is
the graph of an L-definable function fj . It is also clear that the domain is (L,⋆)-definable
as it is given by ⋀φ∈P ∃y φ(x, y). ∎
As one might guess, an (L,⋆)-definable group will be a group in the category of (L,⋆)-
definable sets: an (L,⋆)-definable set equipped with an (L,⋆)-definable group law.
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Example IV.5.4:
Let (Gα)α∈A be a projective system of L-definable groups, thenG ∶= lim←ÐGα = {g ∈∏αGα ∶
for all f ∶ Gα → Gβ in the projective system, f(gα) = gβ} is an (L,⋆)-definable set. More-
over, for all g, h ∈ G, (g ⋅ h)α = gα ⋅ hα and the group law is also (L,⋆)-definable.

If T is stable, it is shown in [Hru90] that any (L,⋆)-definable group is a prolimit of L-
definable groups as in the above Example (IV.5.4). This proof generalizes (cf. Proposi-
tion (IV.5.24)), in the unstable context, to groups with a d-generic (cf. Definition (IV.5.9)).
Let T be any L-theory that eliminates imaginaries and M ⊧ T be sufficiently saturated
and homogeneous. Let (G, ⋅) be an (L(M),⋆)-definable group. Note that there is a slight
abuse of notation here: what I really mean when I say (L(M),⋆)-definable is (L(A),⋆)-
definable for some small set of parameters A ⊆ M . Let ∆(x; s) be a (small) set of L(M)-
formulas where x is sorted like the points ofG—as forGwhat I really should say is a set of
L(A)-formulas for some smallA ⊆M . Note that contrary towhatwas done in the previous
chapter the formulas in ∆ can have fixed parameters, to, potentially, take in account the
fact thatG is defined with parameters.
For allφ(x; s) ∈∆, let jφ be the set of indices fromx that actually appear inφ andψφ(x, y, z)
be an L(M)-formula that defines the graph of (x, y) ↦ (x ⋅ y)jφ . We say that ∆ is closed
under (left) action of G if for all φ(x; s) ∈ ∆, tuplem ∈M and g ∈ G(M), there exists and
instance ψ(x) of∆ such that for all x ∈ G, ∃z ψφ(g, x, z) ∧ φ(z;m) ⇐⇒ ψ(x).

Lemma IV.5.5:
AssumeG is a definable group. Let∆(x; s) be a finite set ofL-formulas andA ⊆M be such that
G is L(A)-definable. Then there exists a finite setΘ(x; s, t) ⊇∆(x; s) of L(A)-formulas which
is closed under left action ofG.

Proof . The finite set Θ(x; s, t) ∶= ∆(x; s) ∪ {t ∈ G ∧ ∃z (ψφ(t, x, z) ∧ φ(z; s)) ∶ φ ∈ ∆} is
closed under left action ofG by associativity of the group law. ∎

Remark IV.5.6:
IfG is not defined over ∅ but one wantsΘ to contain L-formulas, it is possible at the cost
of making Θ infinite. Indeed, for all φ ∈ ∆, let us rewrite the formula ψφ(y, x, z) above as
ψφ(y, x, z;m) wherem ∈M and ψφ is an L-formula. Similarly , rewrite θφ as θφ(x;m). Let
∆G(x; s, t, u) ∶= {θφ(x;u)∧ θφ(t;u)∧ ∃z (ψφ(t, x, z;u)∧φ(z; s)),∆0 ∶=∆,∆n+1 ∶=∆n

G and
Θ ∶= ⋃n∈N∆n. ThenΘ is closed under left action ofG.

From now on, let∆(x; s) be a set of L-formulas closed under left action by G. At the cost
of adding new constants to L, this also covers the case where∆ is a set of L(A)-formulas.

Definition IV.5.7 (gp):
Let p ∈ S∆x (M) be a type consistent with G and g ∈ G(M). We define gp ∶= tp∆(g ⋅ a/M) for
any a ⊧ p such that a ∈ G.

Because ∆ is closed under left action of G, one can check that gp is well defined and the
map (g, p) ↦ gp defines an action of G on ∆-types consistent with G. For all φ ∈ ∆ and
m ∈ M , we have φ(x;m) ∈ gp if and only if φ(g ⋅ x;m) ∈ p where φ(g ⋅ x;m) is a (slightly
abusive) notation for ∃z ψφ(g, x, z) ∧ φ(z;m). In particular, if A ⊆ M is such that G is
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(L(A),⋆)-definable and p is L(A)-definable, then gp is L(Ag)-definable and we can take
dgpxφ(x; s) = dpxφ(g ⋅ x; s).
There are many definitions of generic types in the unstable context, among them one that
is related to forking (see [NP06; HP11]):
Recall that, whenever we consider A ⊆M , it is supposed to be small.

Definition IV.5.8 (f-generic):
LetA ⊆M . We say that p ∈ S∆x (M) consistent withG is an f -generic∆-type inG overA if for
all g ∈ G(M), gp does not fork over A.

Although f-genericity is the more usual notion of genericity, what we will be needing here
is a definable version (which appears in [Hrub]):

Definition IV.5.9 (d-generic):
Let A ⊆M and p ∈ S∆x (M) be consistent withG. We say that p is a d-generic type inG over A
if for all g ∈ G(M), gp is L(A)-definable.

When we do not want to specify the (small) set of parameters A, we will simply say that p
is a d-generic inG.

Proposition IV.5.10:
Assume T is NIP and A = acl(A). Let p ∈ S∆x (M). The following are equivalent:

(i) p is d-generic over A;

(ii) p is L(M)-definable and f -generic over A.

We define Aut(M/Lstp(A)) to be the group generated by Aut(M/N) for allN ≼M con-
taining A. It is the group of automorphisms fixing A that preserve Lascar strong type,
where a and c have the same Lascar strong type if there exists N ≼ M containing A such
that a ≡L(N) c. Note that if (xi)i<ω is an L(A)-indiscernible sequence, x0 and x1 have the
same Lascar strong type. For more on the matter, see [Sim, Chapter 5].

Proof .We will be needing the following easy result, which has nothing to do with NIP:

Claim IV.5.11: LetX be an L(M)-definable set.

X is L(A)-definable ⇐⇒ X is Aut(M/Lstp(A))-invariant

Proof . The left to right implication follows from Aut(M/Lstp(A)) ⊆ Aut(M/A). Let us
now assume thatX isAut(M/Lstp(A))-invariant and let (ei)i<ω be anL(A)-indiscernible
sequence such that e0 = ⌜X⌝. Then e0 and e1 have the same Lascar strong type and hence
there exists σ ∈ Aut(M/N) for some N , A ⊆ N ≼ M , such that σ(e0) = e1, but because
Aut(M/N) ⊆ Aut(M/Lstp(A)), it follows that e1 = σ(e0) = e0 and hence that e0 = ⌜X⌝ ∈
acl(A) = A. ⧫
Recall now that, in anNIP theory, a type p ∈ S∆x (M) does not fork overA if and only if it is
Aut(M/Lstp(A))-invariant (cf. [Sim, Proposition 5.21] which clearly works for ∆-types).
Let us now assume that p is d-generic overA. In particular, p = 1p isL(A)-definable and for
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all g ∈ G(M), gp isA-invariant and henceAut(M/Lstp(A))-invariant. On the other hand,
if p is L(M)-definable and f-generic over A, then for all g ∈ G(M), gp is L(M)-definable
and Aut(M/Lstp(A))-invariant. By Claim (IV.5.11), gp is in fact L(A)-definable. ∎

Proposition IV.5.12:
Let p ∈ S∆x (M) be a d-generic∆-type inG. Then for all φ ∈∆, the set {gp∣φ ∶ g ∈ G} is finite.

Proof . There exists some (small) A ⊆ M such that for all g ∈ G(M), gp is L(A)-definable
and hence for all φ(x; s) ∈ ∆, there exists an L(A)-formula ψg(s), depending on g, such
that M ⊧ ∀sdpφ(g ⋅ x; s) ⇐⇒ ψg(s). By compactness, there exist a finite number of
L(A)-formulas (ψi)0⩽i<k such that for all g ∈ G(M),

M ⊧ ⋁
0⩽i<k
(∀sdpφ(g ⋅ x; s) ⇐⇒ ψi(s)).

For all i, let qi be the φ-type defined by ψi. Then {gp∣φ ∶ g ∈ G(M)} ⊆ {qi ∶ 0 ⩽ i < k} which
is indeed finite. ∎

Definition IV.5.13 (Locally finite):
A set P ⊆ S∆x (M) is said to be locally finite if for all φ(x; s) ∈∆, {p∣φ ∶ p ∈ P} is finite.

We have just shown that for all p ∈ S∆(M) d-generic inG, {gp ∶ g ∈ G} is locally finite.
For the rest of this section, letA⩽Aut(M) be a group. ConsideringA-invariant sets where
A is not of the form Aut(M/A) for some A ⊆ M may seem like an unnecessary gener-
alization, but we will need it to prove the finer considerations about the parameters in
Theorem (IV.5.42). In the proof of that theorem there are two problems: construct a group
definable in some language L from a group definable in some enrichment L̃ and control
the parameters over which this new group is defined. But we only control the parameters
in L̃ and hence we show that everything we construct is invariant under the group of L̃-
automorphisms overA (which will beA in the proof). Thus, in the end, we obtain that the
group we constructed is definable in L over dcleqL̃ (A).
For simpler statements, one can take A = Aut(M/A) and replace any instance of (rela-
tively) L(M)-definable A-invariant sets by (relatively) L(A)-definable and any instance of
(L(M),⋆)-definable A-invariant by (L(A),⋆)-definable.

Definition IV.5.14 (relatively L-definable):
LetX be (L,⋆)-definable and Y ⊆X(M). We say that Y is relatively L-definable inX if there
exists an L-definable set Z such that Y =X(M) ∩Z(M).

Proposition IV.5.15:
Assume G is A-invariant and ∆ is finite. Let P ⊆ S∆x (M) be a locally finite set of ∆-types d-
generic in G which is A-invariant — i.e. for all p ∈ P and σ ∈ A, σ(p) ∈ P . Then StabG(P ) ∶=
{g ∈ G ∶ for all p ∈ P, gp ∈ P} is a relatively L(M)-definable A-invariant subgroup of G of
finite index.

It follows that if ∆ is infinite, StabG(P ) is an (L(M),⋆)-definable A-invariant subgroup
with bounded index.
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Proof . As noted earlier (g, p)↦ gp is a group action ofG on the∆-types consistent withG.
Hence for all such P , StabG(P ) is indeed a subgroup. It is defined by

⋀
φ∈∆
⋀
p∈P
⋁
q∈P

∀s (dqφ(x; s) ⇐⇒ dpφ(g ⋅ x; s)).

As P is locally finite, the above seemingly infinite formula is in fact an L(M)-formula and
as P andG are A-invariant, so is StabG(P ).
Pick any p ∈ P , StabG(p) ⩽ StabG(P ) and the index of StabG(p) in G is equal to ∣{gp ∶ g ∈
G}∣ which is finite by Proposition (IV.5.12). ∎

Remark IV.5.16:
If G is (L(A), x)-definable for some A ⊆ M and p ∈ S(M) is d-generic in G over acl(A),
then the set P ∶= {σ(p) ∶ σ ∈ Aut(M/A)} is an Aut(M/A)-invariant locally finite set of
types d-generic inG.

If we take∆ to be the set of all formulas and P to be a singleton, we recover what is usually
called the connected component ofG. We will not be using this result afterwards.

Proposition IV.5.17:
Let p ∈ S(M) be d-generic in G, then StabG(p) does not contain any proper (L(M),⋆)-
definable subgroup of bounded index inG.
In particular, for any A ⊆M such that G is (L(A),⋆)-definable and p ∈ S(M) is d-generic in
G overA, StabG(p) is the intersection of all relatively L(A)-definable subgroups of finite index
in G— equivalently the intersection of all (L(A),⋆)-definable subgroups of bounded index in
G. Moreover StabG(p) is normal inG and does not depend on the choice of p.

The following proof is taken almost word for word from [HP11, Proposition 5.6].

Proof . Let us begin with the following claim:

Claim IV.5.18: Let A ⊆ M be such that G is (L(A),⋆)-definable and p is d-generic in G over
A, then StabG(p) = {a−11 ⋅ a2 ∶ ai ∈ G and a1 ≡L(A) a2}.
Proof . Let a1 ≡L(A) a2. Then there exists σ ∈ Aut(M/A) such that σ(a1) = a2. Moreover,
as both p and a1p are Aut(M/A)-invariants andG is (L(A),⋆)-definable we have:

a1p = σ(a1p) = σ(a1)σ(p) = a2p.

It follows that a−11 ⋅a2p = p. Let now h ∈ StabG(p), a ⊧ p∣Ah and c = h ⋅ a. Then c ⊧ p∣Ah, in
particular a−1 ≡L(A) c−1 and h = c ⋅ a−1 = (c−1)−1 ⋅ a−1. ⧫
Thus, StabG(p) does not depend on p and is normal. Moreover, for any (a, b) ⊧ p⊗ p∣M ,
a−1 ⋅ b ∈ StabG(p), i.e. a

−1
p is consistent with StabG(p). Therefore, we may assume that p

itself is consistent with StabG(p). Moreover, if a ∈ G(M) is such that ap ∈ StabG(p) then
for all g ⊧ p∣M , a ⋅ g ⊧ ap and hence ap = a⋅gp = p and p is the only type in its orbit that is
consistent with StabG(p).
LetH ⩽StabG(p) be an (L(M),⋆)-definable subgroup of bounded index inG. Then there
is a coset of a ⋅H such that p(x) ⊢ x ∈ a ⋅H . Take any b ∈ StabG(p), then p = bp ⊢ x ∈ b ⋅a ⋅H .
It follows that b ⋅ a ⋅H = a ⋅H , i.e. b ∈ a ⋅H ⋅ a−1. It follows that StabG(p) = a ⋅H ⋅ a−1 =H .
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The proposition now follows from the fact that StabG(p) is the intersection of relatively
L(A)-definable subgroups of finite index by Proposition (IV.5.15). ∎

One can find the first version of the following proposition, in the stable context, in [Hru90,
Theorem2]. The proof given here follows [Hrub, Proposition 3.14] in a slightly different
context. Recall the notations of Definitions (III.6.6) and (IV.5.2)

Proposition IV.5.19:
Letx be a finite tuple of variables and (G, ⋅) anA-invariant (L(M), x)-definable group—hence
an∞-definable group. Assume there exists P ⊆ S(M) an A-invariant locally finite set of types
d-generic inG. Then there exists anL(M)-definableA-invariant groupH such thatG⩽H and
G is the intersection of L(M)-definable A-invariant subgroups ofH .

Proof . Replacing P by {gp ∶ g ∈ G(M) and p ∈ P}, we may assume that StabG(P ) = G. Let
(Xα)α∈A be L(M)-definable sets such that G = ⋂αXα,m be an L(M)-definable function
such that for all a, b ∈ G, a ⋅ b = m(a, b) and i an L(M)-definable function such that for
all a ∈ G, a−1 = i(a). We may assume that (Xα)α∈A is closed under finite intersections.
By compactness there exists α0 such that x, y and z ∈ Xα0 implies thatm(m(x, y), z) and
m(x,m(y, z)) are both defined and equal, thatm(x,1) = m(1, x) = x and thatm(i(x), x)
andm(x, i(x)) are also both defined and equal to 1. We may also assume that for all α ∈ A
Xα0 ⊆Xα.
For all α ∈ A, let Yα = {a ∈ Xα0 ∶ for all p ∈ P,m(a,Xα) ∈ p} which is L(M)-definable and
A-invariant.

Claim IV.5.20: G = ⋂α∈A Yα.

Proof . Let a ∈ G, then i(a) = a−1 ∈ G too. Fix some α ∈ A. By compactness, there exists
β such that m(X2

β) ⊆ Xα. Then we have i(a) ∈ Xβ and hence m(i(a),Xβ) ⊆ Xα. For all
x ∈ Xβ we havem(i(a), x) ∈ Xα and hencem(a,m(i(a), x)) ∈m(a,Xα) but as a, i(a) and
x ∈ Xα0 ,m(a,m(i(a), x)) = x and it follows that Xβ ⊆ m(a,Xα). As for all p ∈ P , Xβ ∈ p,
we also havem(a,Xα) ∈ p and hence a ∈ Yα.
Conversely, let a ∈ ⋂iα Yα and pick any p ∈ P . For all α ∈ A,m(a,Xα) ∈ p, i.e. ⋂im(a,Xα) ∈
p. Let b ⊧ p. It follows that there exists c ∈ ⋂αXα = G such that b = m(a, c). As a, b and
c ∈Xα0 , a =m(a,1) =m(a,m(c, i(c))) =m(m(a, c), i(c)) = b ⋅ c−1 ∈ G. ⧫

Note that if Xα ∩ Xβ = Xγ , then Yα ∩ Yβ = Yγ , i.e. (Yα)α∈A is also closed under finite
intersections. By compactness there exists α1 such that for all a and b ∈ Yα1 , m(a, b) and
i(a) ∈Xα0 . Let A1 ∶= {α ∈ A ∶ Yα ⊆ Yα1}. We also haveG = ⋂α∈A1

Yα.
Let Sα = {a ∈Xα0 ∶m(a,Yα) ⊆ Yα}.

Claim IV.5.21: For all α ∈ A1, (Sα,m) is a semi-group.

Proof . It suffices to prove that if a and b ∈ Sα, thenm(a, b) ∈ Sα. For all x ∈ Yα,m(a, x) ∈ Yα
and m(b, x) ∈ Yα, hence m(m(a, b), x) = m(a,m(b, x)) ∈ Yα. Furthermore, as a and b ∈
Yα ⊆ Yα1 ,m(a, b) ∈Xα0 . ⧫

Claim IV.5.22: For all α ∈ A1,G ⊆ Sα ⊆ Yα.
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Proof . Let a ∈ G, then, obviously a ∈ Xα0 . Let b ∈ Yα and p ∈ P , then a−1p ∈ P and hence
m(b,Xα) ∈ a

−1
p. It follows thatm(m(a, b),Xα) = m(a,m(b,Xα)) ∈ p, som(a, b) ∈ Yα and

a ∈ Sα. Let now a ∈ Sα, then a ∈Xα0 and as 1 ∈ Yα, a =m(a,1) ∈ Yα. ⧫
Let Gα ∶= {a ∈ Sα ∶ i(a) ∈ Sα}. Then for all α ∈ A1, Gα is a group and G ⊆ Gα ⊆ Sα ⊆ Yα.
Therefore we also haveG = ⋂α∈A1

Gα. ∎

Remark IV.5.23:
There is a classic counter-example to Proposition (IV.5.19)when the group does not have a
d-generic. LetM be anℵ0-saturated real closed field. The group I of infinitesimal elements
{x ∈ M ∶ for alln ∈ N, −n < x < n} is an ∞-definable subgroup of the additive group
Ga(M) but there is no proper definable subgroup ofGa containing I .

Proposition IV.5.24:
Let (G, ⋅) be an (L(M),⋆)-definable A-invariant group. Assume there exists P ⊆ S(M) an
A-invariant locally finite set of types d-generic in G. Then there exists a projective system of
L(M)-definable A-invariant groups (Hα)α∈A and an (L(M),⋆)-definable A-invariant group
isomorphism f ∶ G→H ∶= lim←ÐHα.

This proof is adapted from the proof of [Hru90, Proposition 3.4] in the stable context. Re-
call that if p and q ∈ S(M) are two Aut(M/C)-invariant types for some C ⊆ M , for all
D ⊆M we define p⊗ q∣CD to be the type of tuples (a, b) such that a ⊧ p∣CD and b ⊧ p∣CDa.
Note that if p and q are L(C)-definable then p⊗ q is also L(C)-definable and we can take
dp⊗q(x, y)φ(x, y, s) = dpx (dqy φ(x, y, s)).
Proof . As in the previous proof, we may assume that StabG(P ) = G. Let x = (xi)i∈I be a
tuple of variables sorted as G and J ∶= {j ⊆ I ∶ ∣j∣ < ∞}. For all j ∈ J let c1Ejc2 hold if for
all p1 and p2 ∈ P ,

p1 ⊗ p2(x, y) ⊢ (x ⋅ c1 ⋅ y)j = (x ⋅ c2 ⋅ y)j ∧ (y ⋅ c−11 ⋅ x)j = (y ⋅ c−12 ⋅ x)j

where for any J-tuple a, aj is the tuple of elements from cwith indices in j. Letφ(y; s, t, x)
be theL(M)-formula⋀i∈j(x ⋅s ⋅y)i = (x ⋅t ⋅y)i∧(x ⋅s−1 ⋅y)i = (x ⋅t−1 ⋅y)i. AsP is locally finite,
{dpφ ∶ p ∈ P} is finite — up to equivalence. Let (ψi(x; s, t))0⩽i<k be the L(M)-formulas in
this set. For the same reason {dpψi ∶ p ∈ P and 0 ⩽ i < k} = {θj(s, t) ∶ 0 ⩽ j < l}. It is
now easy to see that for all s and t ∈ G, sEjt is defined by ⋀0⩽j<l θj(s, t), i.e. Ej is L(M)-
definable. As P andG are A-invariant, it is quite easy to see that Ej is also A-invariant.

Claim IV.5.25: For all c1, c2 ∈ G, if c1Ejc2 then 1Ej(c1 ⋅ c−12 ) and 1Ej(c−11 ⋅ c2).
Proof . Let p1 and p2 ∈ P and (a, b) ⊧ p1 ⊗ p2∣Cc1c2 . Then c2 ⋅ b ⊧

c2p2∣Cc1c2a and c
−1
2 ⋅ b ⊧

c−12 ⋅g2p∣
Cc1c2a

. Hence (a ⋅ c1 ⋅ (c−12 ⋅ b))j = (a ⋅ c2 ⋅ (c−12 ⋅ b))j = (a ⋅ 1 ⋅ b)j and (a ⋅ c−11 ⋅ (c2 ⋅ b))j =
(a ⋅ c−12 ⋅ (c2 ⋅ b))j = (a ⋅ 1 ⋅ b)j . As (c1 ⋅ c−12 )−1 = c2 ⋅ c−11 and (c−11 ⋅ c2)−1 = c−12 ⋅ c1 the symmetric
argument allows us to conclude. ⧫
It follows immediately that the Ej-class of 1 is a normal subgroup Gj of G and that the
Ej-classes are the cosets of Gj . Let Hj be the∞-definable A-invariant set G/Ej = G/Gj

and πj ∶ G → Hj be the canonical projection — which is an A-invariant definable map.
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The graph of the group law onHj is the image under πj of the graph ofG’s group law. It is
therefore∞-definableA-invariant and hence, by Proposition (IV.5.3) it is in fact a definable
function. Moreover if j1 ⊆ j2, Gj2 ⊆ Gj1 and hence there is a canonical morphism πj1,j2 ∶
Hj2 → Hj1 which is definable and A-invariant for the same reason as the group laws. Let
H ∶= lim←ÐHj .

Claim IV.5.26: For all c1 and c2 ∈ G, if πj(c1) = πj(c2) for all j ∈ J , then c1 = c2.
Proof . Pick any p ∈ P and let (a, b) ⊧ p⊗2∣Cc1c2 . For all j ∈ J , (a ⋅ c1 ⋅ b)j = (a ⋅ c2 ⋅ b)j —
a ⋅ c1 ⋅ b = a ⋅ c2 ⋅ b— and hence c1 = c2. ⧫

Claim IV.5.27: For all a ∈H , there exists c ∈ G such that for all j ∈ J , πj(c) = aj .
Proof . For all (jl)0⩽l<k ∈ J , let j ∶= ⋃l jl ∈ J . Then there exists c ∈ G such that πj(c) = aj . It
follows that for all l < k, πjl(c) = πjl,j(πj(c)) = ajl . We now conclude by compactness. ⧫
It follows that (πj)j∈J is an isomorphism between G andH . AsH is only a prolimit of∞-
definable groups, we are not quite done yet. It is obvious that (πj)⋆P ∶= {(πj)⋆p ∶ p ∈ P}
is anA-invariant locally finite set of types d-generics inHj and by Proposition (IV.5.19), for
all j ∈ J ,Hj = ⋂Lj

Hj,l for some A-invariant L(M)-definable subgroupsHj,l of a common
A-invariant L(M)-definable group Kj . As usual we may assume that the Hj,l are closed
under intersection — for fixed j — and we order Lj by l1 ⊆j l2 if Hj,l2 ⊆ Hj,l1 . Let L ∶=
{(j, l) ∶ j ∈ Lj}. For all j ∈ J and l1 ⩽j l2 ∈ Lj , let ρ(j,l1),(j,l2) be the inclusion morphism
Hj,l2 → Hj,l1 and for all j1 ⊂ j2 ∈ J , let ρ(j1,l1),(j2,l2) be πj1,j2 ∣Hj2,l2

whenever πj1,j2(Hj2,l2) ⊆
Hj1,l1 . By compactness, for all l1 ∈ Lj1 , there exists l2 ∈ Lj2 such that πj1,j2(Hj2,l2) ⊆ Hj1,l1

and it follows that there is an (L(M),⋆)-definableA-invariant isomorphism fromH onto
lim←ÐHj,l. ∎

Let us now consider group chunks, a tool central to the construction of groups in model
theory. The initial idea is due to Weil [Wei55] in the setting of algebraic groups. It was
then transposed to a more general topological setting in [Dri90] and to the stable setting
in [Hru90]. The notion of group chunk on a ⋆-type appeared when trying to prove the
aforementioned result that groups definable in DCF0 are subgroups of algebraic groups
(see for example [Pil97]).
Recall that if f is anL(M)-definable function and p ∈ S(M), we define f⋆p to be theL-type
overM of any f(a) where a ⊧ p.
The following definition is a generalization of the standard notion: if one takes P = {p},
one gets a definition equivalent to the one given in [Hrub, p. 3.10]. Note that in the def-
inition below there is an explicit reference to both the left inverse and the right inverse,
which does not appear as explicitly in [Hru90, Theorem 1].

Definition IV.5.28 (⋆-definable group chunk):
Let x = (xi)i∈I be a tuple of variables and P ⊆ SLx (M) be a locally finite set of L(M)-definable
types. An (L, x)-definable group chunk over P is a tuple of (L(M), x2, x)-definable functions
(F,G,H) such that for all p1, p2 and p3 ∈ P :

(i) For all a ⊧ p1∣M , (Fa)⋆p2 ∈ P where Fa(x) ∶= F (a, x);
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(ii) For all a ⊧ p1∣M , there exists p ∈ P such that (Fa)⋆p = p2;

(iii) p1 ⊗ p2 ⊢ G(x,F (x, y)) = y ∧H(F (x, y), y) = x;

(iv) p1 ⊗ p2 ⊗ p3(x, y, z) ⊢ F (x,F (y, z)) = F (F (x, y), z).

Example IV.5.29:
Let G be an (L(M),⋆)-definable group with a d-generic p, then the multiplication of G
induces a natural (L(M),⋆)-definable group chunk over {gp ∶ g ∈ G}.

Let us now show the converse: any ⋆-definable group chunk is isomorphic to the group
chunk of a ⋆-definable group. The following propositions are improvements to [Hrub,
Paragraph 3.11]. The first improvement is that we consider ⋆-definable group chunks and
not just definable group chunks (but that changes nothing to the proof) the other change
is that we consider a group chunk over a locally finite set of types and not a singleton; that
does not change the essence of the proof either but it does make it trickier.

Proposition IV.5.30:
Let P ⊆ SLx (M) be a locally finite, A-invariant set of L(M)-definable types and (F,G,H)
be an A-invariant (L(M), x)-definable group chunk over P . Then there is some A-invariant
(L(M),⋆)-definable one to one function f and some A-invariant (L(M),⋆)-definable group
(G, ⋅) such that f⋆P ∶= {f⋆p ∶ p ∈ P} is an A-invariant locally finite set of types d-generic in
G = StabG(f⋆P ) and for all p1 and p2 ∈ P , p1 ⊗ p2(x, y) ⊢ f(G(x, y)) = f(x)−1 ⋅ f(y).

Before getting into this technical proof, let me just say that the idea is the same as always:
the group we construct is the group generated by the germs ga of multiplication by real-
izations of types in P and we show that this group consists of the elements of the form
ga ⋅ g−1b .

Proof . Let P1 ∶= {q ∈ SLx (M) ∶ for all L-formulas φ(x; s), q∣φ ∈ {p∣φ ∶ p ∈ P}}. Then P1 is
also a locally finite A-invariant set of L(M)-definable types. Moreover, for all q1, q2 and
q3 ∈ P1, a ⊧ q1∣M , (Fa)⋆q2 = q3 if and only if for all L-formulas φ,

M ⊧ dq1x∀s (dq2y φ(F (a, y); s) ⇐⇒ dq3z φ(z; s)).

But by definition ofP1, there exists p1, p2 and p3 such that this formula is equivalent toM ⊧
dp1x∀s (dp2y φ(F (x, y); s) ⇐⇒ dp3z φ(z; s)). It follows that IV.5.28.(i) and IV.5.28.(ii) also
hold for P1. Similarly IV.5.28.(iii) and IV.5.28.(iv) also hold for P1. In particular, we may
assume that P1 = P .

Claim IV.5.31: For all p1, p2 ∈ P and a ⊧ p1∣M , (Ga)⋆p2 ∈ P whereGa(x) ∶= G(a, x).

Proof . By IV.5.28.(ii), for all a ⊧ p1∣M , there exists p3 ∈ P such that (Fa)⋆p3 = p2. Let C ⊆M
be such that all types in P are defined over C and G is (L(C),⋆)-definable, a ⊧ p1∣C and
b ⊧ p3∣Ca, then c ∶= F (a, b) ⊧ p2∣acl(A)Ca and by IV.5.28.(iii), G(a, c) = G(a,F (a, b)) = b ⊧
p3∣Ca. ⧫

Claim IV.5.32: For all p1 and p2 ∈ P , p1 ⊗ p2(x, y) ⊢ F (x,G(x, y)) = y.
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Proof . Let a ⊧ p1∣M . By IV.5.28.(ii), there exists p3 ∈ P such that (Fa)⋆p3 = p2. Let b ⊧ p3∣Ma,
then c ∶= F (a, b) ⊧ p2∣Ma and F (a,G(a, c)) = F (a,G(a,F (a, b))) = F (a, b) = c. ⧫

The goal now is to find an (L(M),⋆)-definable set S that contains all realizations of all
p ∈ P but such that it is not too big so that all its points still have similar properties with
respect to F as the realizations of the types in P .
For all L-formula φ, let θφ(x) ∶= ⋀p∈P ⋁q∈P ∀s (dqy φ(y; s) ⇐⇒ dpy φ(F (x, y); s)). As P is
locally finite the disjunction and conjunction are finite, and this is an L(M)-formula. Be-
cause P is A-invariant, θφ is also A-invariant. Let χφ(x) ∶= ⋀p∈P ⋁q∈P ∀s (dqy φ(y; s) ⇐⇒
dpy φ(G(x, y); s)). Similarly, there areA-invariant L(M)-formulas α(x) and ζ(x) equiva-
lent respectively to

⋀
p∈P
⋀
q∈P

dqy dpz F (x,F (y, z)) = F (F (x, y), z)

and to
⋀
p∈P

dpyG(x,F (x, y)) = y = F (x,G(x, y)) ∧H(F (x, y), y) = x.

Let
S(x) ∶= {α(x), ζ(x)} ∪ {θφ(x), χφ(x) ∶ φ an L-formula}.

Claim IV.5.33: For all p ∈ P , S ⊆ p.

Proof . Let a ⊧ p∣M and q ∈ P . For all L-formulas φ and all m ∈ M , d(Fa)⋆qy φ(y;m) ⇐⇒
dqy φ(F (a, y);m) and d(Ga)⋆qy φ(y;m) ⇐⇒ dqy φ(G(a, y);m). Moreover, by IV.5.28.(i)
andClaim (IV.5.31), we have (Fa)⋆q and (Ga)⋆q ∈ P . Thus, we have proved thatM ⊧ θφ(a)∧
χφ(a).
For all q1 and q2 ∈ P , by IV.5.28.(iv), q1 ⊗ q2(y, z) ⊢ F (a,F (y, z)) = F (F (a, y), z) we have
M ⊧ dq1y dq2z F (a,F (y, z)) = F (F (a, y), z). The rest of the proof follows by IV.5.28.(iii),
Claim (IV.5.32) and similar considerations. ⧫

Claim IV.5.34: For all a ⊧ S and p ∈ P , (Fa)⋆p and (Ga)⋆p ∈ P .

Proof . Let φ be an L-formula, as M ⊧ θφ(a) ∧ χφ(a), there exists q1 and q2 ∈ P such
that dq1y φ(y; s) ⇐⇒ dpy φ(F (a, y); s) — i.e. (Fa)⋆p∣φ = q1∣φ — and dq2y φ(y; s) ⇐⇒
dpy φ(G(a, y); s)— (Ga)⋆p∣φ = q2∣φ. It follows that (Fa)⋆p and (Ga)⋆p ∈ P1 = P . ⧫

Claim IV.5.35: For all types p1 and p2 ∈ P , a ⊧ S and (b, c) ⊧ p1 ⊗ p2∣Ma, G(a,F (b, c)) =
F (G(a, b), c).

Proof . Let d ∶= G(a, b), then F (a, d) = F (a,G(a, b)) = b and d ⊧ p3∣Ma and F (d, c) ⊧ p4∣Mab

for some p3 and p4 ∈ P and c ⊧ p2∣Mad. Moreover, G(a,F (b, c)) = G(a,F (F (a, d), c)) =
G(a,F (a,F (d, c))) = F (d, c) = F (G(a, b), c). ⧫

Claim IV.5.36: For all a, b, c and d ⊧ S, there exists e and l ⊧ S such that for all p ∈ P ,

p(x) ⊢ F (a,G(b,F (c,G(d, x)))) = F (e,G(l, x)).
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Proof . Pick any p1 ∈ P and let e1 ⊧ p1∣Mabcd. For all p ∈ P , p(x) ⊢ G(d,F (e1, x)) =
F (G(d, e1), x) and e2 ∶= G(d, e1) ⊧ p2∣Mabcd for some p2 ∈ P . We also have p3, p4 and p5 ∈ P
such that e3 ∶= F (c, e2) ⊧ p3∣Mabcd, e4 ∶= G(b, e3) ⊧ p4∣Mabcd and e5 ∶= F (a, e4) ⊧ p5∣Mabcd.
Moreover, p(x) ⊢ F (c,F (e2, x)) = F (F (c, e2), x), p(x) ⊢ G(b,F (e3, x)) = F (G(b, e3), x)
and p(x) ⊢ F (a,F (e4, x)) = F (F (a, e4), x). It follows that for all p ∈ P and x ⊧ p∣Mabcde1

,
asG(e1, x) ⊧ q∣Mabcde1

for some q ∈ P ,

F (a,G(b,F (c,G(d, x)))) = F (a,G(b,F (c,G(d,F (e1,G(e1, x))))))
= F (F (a,G(b,F (c,G(d, e1)))),G(e1, x))
= F (e5,G(e1, x))

and by Claim (IV.5.33), we do have e1 and e5 ∈ S. ⧫

For a and b, let Ra,b(x) = F (a,G(b, x)). For all i ∈ I , the i-th component of Ra,b (de-
noted Ra,b,i) is an A-invariant L(M)-definable function. Let (a, b)Ei(c, d) if and only if
⋀p dpxRa,b(x) = Rc,d(x). As P is locally finite, Ei is L(M)-definable and it is clearly A-
invariant. Let hi(a, b) be an A-invariant L(M)-definable function such that hi(a, b) =
hi(c, d) if and only (a, b)Ei(c, d). Then h(a, b) ∶= (hi(a, b))i∈I is anA-invariant (L(M),⋆)-
definable map. Let G ∶= h(S × S) andm(h(a, b), h(c, d)) ∶= h(e, l) for some e and l are as
in Claim (IV.5.36). Then m is well defined. Indeed, for all i ∈ {1,2}, let ai, bi, ci, di, ei and
li ⊧ S be such that h(a1, b1) = h(a2, b2) and h(c1, d1) = h(c2, d2) and for all p ∈ P ,

p(x) ⊢ F (ai,G(bi, F (ci,G(di, x)))) = F (ei,G(li, x)).

Let x ⊧ p∣M(aibicidieili)i∈{1,2} for some p ∈ P , then F (c1,G(d1, x)) ⊧ q∣Ma1b1
, for some q ∈ P .

Hence

F (e1,G(l1, x)) = F (a1,G(b1, F (c1,G(d1, x))))
= F (a2,G(b2, F (c1,G(d1, x)))) as h(a1, b1) = h(a2, b2)
= F (a2,G(b2, F (c2,G(d2, x)))) as h(c1, d1) = h(c2, d2)
= F (e2,G(l2, x)),

i.e. h(e1, l1) = h(e2, l2). Moreover, as G and the graph of m are the image under an A-
invariant (L(M),⋆)-definable map of an A-invariant (L(M),⋆)-definable set, they are
both A-invariant (L(M),⋆)-definable.

Claim IV.5.37: (G,m) is a group.
Proof . The function m is obviously associative, as germ composition is. Let us show that
for all a ∈ S, h(a, a) is the unit and for all b ∈ S, h(a, b) is the inverse of h(b, a). Let c ∈ S,
p ∈ P and x ⊧ p∣Mabc, F (b,G(c, x)) ⊧ q1∣Mabc for some q1 ∈ P and

F (a,G(a,F (b,G(c, x)))) = F (b,G(c, x)) = F (b,G(c,F (a,G(a, x))))

and asG(a, x) ⊧ q2∣Mab for some q2 ∈ P ,

F (a,G(b,F (b,G(a, x)))) = F (a,G(a, x)).
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This concludes the proof of the claim. ⧫
Let a ∈ S, q ∈ P , b ⊧ q∣Ma and c ∶= F (a, b), then b and c ∈ S and for all p ∈ P and x ⊧ p∣Mab,
F (c,G(b, x)) = F (F (a, b),G(b, x)) = F (a,F (b,G(b, x))) = F (a, x). Let f(a) = h(b, c)
where b and c are as above. Then f is well defined for the same reasons m was and it is
A-invariant (L(M),⋆)-definable. Let a and b ∈ S be such that f(a) = f(b), then for any
p ∈ P and x ⊧ p∣Mab, a =H(F (a, x), x) =H(F (b, x), x) = b, i.e. f is one to one.

Claim IV.5.38: For all p ∈ P and a, b ∈ S, there exists q ∈ P such that h(a,b)(f⋆p) = f⋆q.
Proof . Let q ∶= (Fa)⋆(Gb)⋆p ∈ P . For all C ⊆ M such that all the types in P are L(C)-
definable and G and f are (L(C),⋆)-definable and all c ⊧ p∣Cab, F (a,G(b,F (c, x))) =
F (a,F (G(b, c), x)) = F (F (a,G(b, c)), x) = F (e, x) where e ∶= F (a,G(b, c)) ⊧ q∣Cab. It
follows thatm(h(a, b), f(c)) = f(e) ⊧ f⋆q∣Cab. ⧫
As f⋆q is L(M)-definable for all q ∈ P , we have just proved that for all p ∈ P , f⋆p is d-
generic in G and that G = StabG(f⋆P ). Finally, let p1, p2 ∈ P and (a, b) ⊧ p1 ⊗ p2∣M . For
all p ∈ P and x ⊧ p∣Mab, F (b, x) = F (a,G(a,F (b, x))) = F (a,F (G(a, b)), x), i.e. f(b) =
m(f(a), f(G(a, b))). ∎

Remark IV.5.39:
The conclusion that for all p1 and p2 ∈ P , p1 ⊗ p2(x, y) ⊢ f(G(x, y)) = f(x)−1 ⋅ f(y)might
be a little surprising, but let us show that it implies what one would think to be the more
reasonable conclusion: for all p1 and p2 ∈ P , p1⊗p2(x, y) ⊢ f(F (x, y)) = f(x)⋅f(y). Indeed,
let a ⊧ p1∣M and p3 ∈ P be such that (Ga)⋆p3 = p2. Let b ⊧ p3∣Ma and c ∶= G(a, b) ⊧ p2∣Ma,
then F (a, c) = F (a,G(a, b)) = b and f0(c) = f0(G(a, b)) = f0(a)−1 ⋅ f0(b) = f0(a)−1 ⋅
f0(F (a, c)).

In fact, there is an equivalence of categories between groups with d-generics and group
chunks.

Proposition IV.5.40:
Let (G, ⋅) and (H, ⋅) be two A-invariant (L(M),⋆)-definable groups, P ⊆ SLx (M) be an A-
invariant locally finite set of types d-generic inG and f0 be anA-invariant (L(M),⋆)-definable
function. If for all p1, (f0)⋆p1(y) ⊢ y ∈ H and for all p2 ∈ P , p1 ⊗ p2(x, y) ⊢ f0(x−1 ⋅ y) =
f(x)−1 ⋅ f(y), then there exists a unique A-invariant (L(M),⋆)-definable group morphism
f ∶ StabG(P )→H such that for all p ∈ P , p(x) ⊢ f(x) = f0(x).
Moreover, ifG andH are bothL(M)-definable, f can be extended to someA-invariantL(M)-
definable subgroup ofGwith finite index—of the formStabG(P ∣∆) for some finite set ofL(M)-
formulas∆, where P ∣∆ ∶= {p∣∆ ∶ p ∈ P}.
Finally, if f0 is one to one, so is f .

Proof . Let g ∈ StabG(P ) and p1 ∈ P . Then p2 ∶= gp1 ∈ P and g = (g ⋅a) ⋅a−1 where g ⋅a ⊧ p2∣M
and a ⊧ p1. Therefore, we must have f(g) = f(g ⋅ a) ⋅ f(a−1) = f0(g ⋅ a) ⋅ f0(a)−1. We have
just proved uniqueness, but let us now prove that this indeed defines a group morphism.

Claim IV.5.41: For i ∈ {1,2,3,4}, let pi ∈ P and ai ⊧ pi∣M such that a1 ⋅ a−12 = a3 ⋅ a−14 , then
f0(a1) ⋅ f0(a2)−1 = f0(a3) ⋅ f0(a4)−1.
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Proof . Pick any p ∈ P and let e ⊧ p∣M(ai)0<i⩽4 . By Remark (IV.5.39) and the fact that a2 ⋅ e ⊧
a2p∣Ma1a2

and a2p ∈ P , f0(a1 ⋅a−12 ⋅e) = f0(a1) ⋅f0(a−12 ⋅e) = f0(a1) ⋅f0(a2)−1 ⋅f0(e). Similarly,
f0(a1 ⋅ a−12 ⋅ e) = f0(a3 ⋅ a−14 ⋅ e) = f0(a3) ⋅ f0(a4)−1 ⋅ f0(e). ⧫
It follows that f defined as above is well defined. Note that for all a ∈ StabG(p), f(a)
is defined by dpxf0(a ⋅ x) = f(a) ⋅ f0(x) for any p ∈ P and hence f is A-invariant and
(L(M),⋆)-definable. Moreover, for all a1 and a2 ∈ StabG(P ), p ∈ P and c ⊧ p∣Ma1a2

,
a1 ⋅ c ⊧ a1p∣Ma1a2

, a1p ∈ P and f0(a1 ⋅ a2 ⋅ c) = f(a1) ⋅ f0(a2 ⋅ c) = f(a1) ⋅ f(a2) ⋅ f0(c)— i.e.
f(a1 ⋅ a2) = f(a1) ⋅ f(a2)— and if q ∈ P and (a, c) ⊧ q ⊗ p, then f0(a ⋅ c) = f0(a) ⋅ f0(c)—
i.e. f(a) = f0(a).
If f0 is one to one and a, b ∈ StabG(P ) are such that f(a) = f(b), then for any p ∈ P ,
p(x) ⊢ f0(a ⋅x) = f(a) ⋅ f0(x) = f(b) ⋅ f0(x) = f0(b ⋅x). As f0 is one to one, for all c ⊧ p∣Mab,
a ⋅ c = b ⋅ c and hence a = b.
Now assume that G and H are L(M)-definable and let A ⊆ M be a set of codes for these
groups (and their multiplicative law). Let φ(x) = ⋀p∈P dpy (f0(x ⋅ y) = f0(x) ⋅ f0(y) ∧
f0(x−1 ⋅ y) = f0(x)−1 ⋅ f0(y)) which is indeed an L(M)-formula as P is locally finite. Let
us rewrite φ as φ(x;u) where φ is now an L-formula. Similarly let θ(x; s, t, u) be an L-
formula of which f0(s ⋅ x) = t ⋅ f0(x) is an instance, ξ(x;u) be an L-formula of which
x ∈ G is an instance and ζ(x;u) be an L-formula of which f0(x) ∈ H is an instance.
Let ∆(x; s, t, u) ∶= {φ(x;u), θ(x; s, t, u), ξ(x;u), ζ(x;u) and Θ(x; s, t, u, v) be a finite set
of L(A)-formulas closed under left action of G as in Lemma (IV.5.5). Note that because G
andH are A-invariant, A is fixed point-wise by A-invariant and hence so isΘ.
In the proof, we can replace P by P ∣Θ which is still A-invariant. It follows that we can
replace StabG(P ) by StabG(P ∣Θ)—which, by Proposition (IV.5.15) is A-invariant, L(M)-
definable and has finite index inG. ∎
Let L ⊆ L̃ be two languages, R be the set of L-sorts, T be an L-theory which is NIP and
eliminates imaginaries, T̃ ⊇ T be an L̃-theory, Ñ ⊧ T̃ be saturated and homogeneous
enough andN ∶= Ñ ∣L.

Theorem IV.5.42:

Assume there exists M̃ ⊧ T̃ with M ∣L uniformly stably embedded in every elementary exten-
sion. Let Ã ⊆ Ñ be such thatR(dcleqL̃ (Ã)) =R(Ã), (G, ⋅) be an L̃(Ã)-definable group with
a d-generic type p over acleqL̃ (Ã). Assume that there exists an (L̃(Ã),⋆)-definable one to one
function f and (L(R(Ã)),⋆)-definable functionsm and i such that for all g1 and g2 ∈ G,
f(g1 ⋅ g2) = m(f(g1), f(g2)) and f(g−11 ) = i(f(g1)). Then there exists an L(R(Ã))-
definable groupH and an L̃(Ã)-definable one to one group morphism h ∶ G→H .

Proof . Let A ∶= R(Ã), A = AutL̃(M/Ã), P ∶= {σ(gp) ∶ g ∈ G(M) and σ ∈ A} = {g(σ(p)) ∶
g ∈ G(M) and σ ∈ A} and Q ∶= {(f⋆p)∣L ∶ p ∈ P}. Then StabG(P ) = G and Q ⊆ SL(N)
is an A-invariant locally finite set of L̃(Ñ)-definable L-types. By Corollary (III.1.5), each
q ∈ Q0 is in fact L(N)-definable. Letm1(x, y) ∶=m(i(x), y) andm2(x, y) ∶=m(x, i(y)).

Claim IV.5.43: The tuple (m,m1,m2) is anA-invariant (L(M),⋆)-definable group chunk over
Q.
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Proof . Let q1 and q2 ∈ Q. There exists p1 and p2 ∈ P such that qi = (f⋆pi)∣L, for i ∈ {1,2}.
Let a ⊧ p1∣acleq

L̃
(Ã), C̃ ⊆ Ñ and c ⊧ p2∣acleq

L̃
(Ã)C̃a. Then m(f(a), f(c)) = f(a ⋅ c) and hence

(mf(a))⋆f⋆p2 = f⋆ap. It follows that (mf(a))⋆q2 = (mf(a))⋆((f⋆p2)∣L) = (f⋆ap2)∣L ∈ Q. Let
also q3 ∶= (f⋆a

−1
p2)∣L ∈ Q. For the same reason as above (mf(a))⋆q3 = q2. Thus IV.5.28.(i)

and IV.5.28.(ii) hold.
For all x, y and z ∈ G,

m(f(x),m(f(y), f(z))) = f(x ⋅ y ⋅ z) =m(m(f(x), f(y)), f(z)),

m1(f(x),m(f(x), f(y))) = m(i(f(x)),m(f(x), f(y)))
= m(f(x−1), f(x ⋅ y))
= f(x−1 ⋅ x ⋅ y)
= f(y)

and, similarly,m2(m(f(x), f(y)), f(y)) = f(x). It follows that IV.5.28.(iii) and IV.5.28.(iv)
also hold. ⧫
By Proposition (IV.5.30), there exists an A-invariant (L(N),⋆)-definable group (L, ⋅) and
an A-invariant (L(N),⋆)-definable one to one function l such that l⋆Q is an A-invariant
locally finite set of d-generics of L and for all q1 and q2 ∈ Q, q1 ⊗ q2(x, y) ⊢ l(G(x, y)) =
l(m(i(x), y)) = l(x)−1 ⋅ l(y). By Proposition (IV.5.24), there exists a projective system of
A-invariant L(N)-definable groups (Hβ, ⋅)β∈B and an A-invariant (L,⋆)-definable groups
isomorphism j between L and lim←ÐHβ . For all β ∈ B, let πβ ∶ lim←ÐHβ → Hβ be the canonical
projection and hβ = πβ ○ j ○ l ○ f . Then hβ is L̃(Ã)-definable and for all p1 and p2 ∈ P ,
p1 ⊗ p2(x, y) ⊢ hβ(x−1 ⋅ y) = hβ(x)−1 ⋅ hβ(y).
Moreover, lim←Ðhβ is a one to one function and by compactness there exists B0 ⊆ B finite
such that h0 ∶= lim←Ðβ∈B0

hβ is already one to one. Let H ∶= lim←Ðβ∈B0
Hβ . Because B0 is finite,

H is A-invariant L(N)-definable and hence we have ⌜H⌝L ∈ R(dcleqL̃ (Ã)) = dclL(A), i.e.
H is L(A)-definable. Similarly, h0 is L̃(Ã)-definable and we still have for all p1 and p2 ∈ P ,
p1 ⊗ p2(x, y) ⊢ h0(x−1 ⋅ y) = h0(x)−1 ⋅ h0(y). By Proposition (IV.5.40), there exists an L̃(Ã)-
definable one to one group morphismG = StabG(P )→H . ∎
As a first corollary, let me reprove a well known result about groups definable in DCF0.
Recall that Lrg is the language of rings and Lrg,∂ ∶= Lrg ∪ {∂} is the language of differential
rings.

Corollary IV.5.44:
Let K ⊧ DCF0, k ⩽K a differential field and G an Lrg,∂(k)-definable group, then G embeds
Lrg,∂(k)-definably into an Lrg(k)-definable group.

Proof . Note that for all C ⊆ K ⊧ DCF0, dclLrg,∂
(C) = dclLrg(∂ω(C)). In particular, we

have that dclLrg,∂
(k) = k and the multiplication and inverse in G are of the right form to

apply Theorem (IV.5.42). As DCF0 and ACF0 are stable, G has a d-generic over aclLrg,∂
(k)

— the generic type in the connected component of the unit and any model of ACF0 is
uniformly stably embedded in any elementary extension. Applying Theorem (IV.5.42), we
find an Lrg,∂(k)-definable embedding ofG into an Lrg(k)-definable groupH . ∎
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Remark IV.5.45:
1. It follows from [Art70, Théorème 3.7.(iii) and corollaire 3.13.(i)] that every Lrg(k)-

definable group chunk is Lrg(k)-definably isomorphic to the group chunk of an al-
gebraic group over k. In particular the group G in Corollary (IV.5.44) is Lrg,∂(k)-
definably embedded in an algebraic group over k.

It is very possible that there is amodel theoretic equivalent of the proof that any con-
structible group is an algebraic group over the same parameters in the non connected
case using a group chunk over all the generic types of the group and not just the one
in the connected component (as is the case in [Poi87, Section 4.5]).

2. The usual proof of this result proceeds first by the connected case (which only needs
group chunks over a singleton) and then introduces new parameters in some model
of DCF0 containing k to embed the whole group in an algebraic group (cf. [BD01;
Poi87] for similar proofs in different settings). So it might be possible that control of
the parameters over any differential field in the non connected case is new.

Finally, let me give a first very partial answer to Question (IV.5.1). Note that there are three
serious restrictions in this result compared to the result in DCF0 (see Corollary (IV.5.44)):
we have to assume there is a d-generic in G, we have to assume the group law is reason-
able and we do not consider all interpretable groups. Let M ⊧ VDFGEC be saturated and
homogeneous enough and A = dclLG

∂
(K(A)) ⊆M .

Corollary IV.5.46:
Let (G, ⋅) be an LG∂(A)-definable group, with a d-generic, inside the sortsK, k and Γ. If for all
g and h ∈ G(M), ∂ω(g ⋅ h) ∈ dclLG(A,∂ω(g), ∂ω(h)) and ∂ω(g−1) ∈ dclLG(A,∂ω(g)), then
there exists an LG(A)-definable group H , with d-generic, and an LG(A)-definable embedding
G→H .

Proof . For all g, h ∈ G(M) and n ∈ N, there exists, by hypothesis an LG(A)-definable
function mn such that ∂n(g ⋅ h) = mn(∂ω(g), ∂ω(h)). By compactness, there are finitely
many LG(A)-definable functions mn,i such that for all g, h ∈ G(M), there exists an i
such that ∂n(g ⋅ m) = mn,i(∂ω(g), ∂ω(h)). By quantifier elimination in the three sorted
language, the set “∂n(x, y) = mn,i(∂ω(g), ∂ω(h))” is equivalent to θn,i(x, y) for some LG-
formula θ. Hencewe can glue the differentmn,i to obtain anLG(A)-definable functionmn.
Then the ((LG(A)),⋆)-definable functionm = ∏i∈Nmn,i is such that for all g, h ∈ G(M),
∂ω(g ⋅ h) = m(∂ω(g), ∂ω(h)). Similarly, we find an ((LG(A)),⋆)-definable function i such
that for all g ∈ G(M), ∂ω(g−1) = i(∂ω(g)). We now apply Theorem (IV.5.42). ∎
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