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45 rue d’Ulm, 75005 Paris, France (silvain.rideau@ens.fr)

Abstract We prove field quantifier elimination for valued fields endowed with both an analytic structure
that is σ -Henselian and an automorphism that is σ -Henselian. From this result we can deduce various
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Introduction

Since the work of Ax, Kochen and Eršov on valued fields (see, for example, [2]) and

their proof that the theory of a Henselian valued field is essentially controlled (in

equicharacteristic zero) by the theory of the residue field and the value group, model

theory of Henselian valued fields has been very active and productive. Among later

developments one may note Macintyre’s result in [26] of elimination of quantifiers

for p-adic fields and the proof by Pas of valued fields quantifier elimination for

equicharacteristic zero Henselian fields with angular components in [28], which implies the

Ax–Kochen–Eršov principle. Another notable result is the one by Basarab and Kuhlmann

(see [5, 6, 22]) of valued field quantifier elimination for Henselian valued fields with

amc-congruences (additive multiplicative congruences), a language that does not make

the class of definable sets grow (whereas angular components might). Another result in

the Ax–Kochen–Eršov spirit is the proof by Delon in [13] (extended by Bélair in [7]) that

Henselian valued fields do not have the independence property if and only if their residue

field does not have it (their value group never has the independence property by [18]).
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But model theorists have not limited themselves to giving an increasingly refined

description of the model theory of Henselian valued fields. There have also been

attempts at extending those results to valued fields with more structure. The two most

notable enrichments that have been studied are, on the one hand, analytic structures

as initiated by [14] and studied thereafter by a great number of people (among many

others [9, 11, 15, 16, 24, 25]) and, on the other hand, D-structures (a generalization of both

difference and differential structures), first for derivations and certain isometries in [31]

but also for greater classes of isometries in [4, 8, 32], and then for automorphisms that

might not be isometries [3, 17, 19, 20, 27]. The model theory of valued differential fields

is also quite central to the model-theoretic study of transseries (see, for example, [1]),
but the techniques and results in this last field seem quite orthogonal to those in other

references given above and to our work here.

The goal of the present paper is to study valued fields with both an analytic structure

and an automorphism. The main result of this paper is Theorem A, which states

that σ -Henselian (cf. Definition 4.10) valued fields with analytic structure and any

automorphism σ eliminate field quantifiers resplendently in the leading term language
(cf. Definition 1.1). We then deduce various Ax–Kochen–Eršov type results for analytic

difference valued fields (with respect to both the theory and the independence property).

We also try to give a systematic and comprehensive approach to quantifier elimination

in (enriched) valued fields through some more abstract considerations (mainly found in

the Appendix).

In [33], Scanlon already attempted to study analytic difference valued fields in the case

of an isometry, but the definition of σ -Henselianity given there is too weak to actually

work, although some incorrect computations hide this fact. The axiomatization and all

the proofs had to be redone entirely but, as stated earlier, this paper does not only

contain a corrected version of the results in [33], it also generalizes these results from the

isometric case to the case of any valued field automorphism.

Some ideas from [33] could be salvaged though, among them the fact that Weierstrass
preparation (see Definition 3.22) allows us to be close enough to the polynomial case to

adapt the proofs from the purely valued difference setting. Nevertheless this adaptation

is not as straightforward as one would hope, essentially because Weierstrass preparation

only holds in one variable, but one variable in the difference world actually gives rise to

many variables in the non-difference world. The main ingredient to overcome this obstacle

is a careful study of differentiability of terms in many variables (see Definition 4.4) that

allows us to give a new definition of σ -Henselianity in 4.10. These techniques can probably

be used to prove results in greater generality: for example, valued fields with both analytic

structure and D-structure.

Our interest in the model theory of valued fields with both analytic structure and

difference structure is not simply a wish to see Ax–Kochen–Eršov type results extended

to more and more complicated structures and in particular to the combination of

two structures where things are known to work well. It is also motivated by possible

applications to diophantine and number-theoretic problems. In particular, it is the right

model-theoretic setting in which to understand Buium’s p-differential geometry. More

precisely, any p-differential function over W(Fp
alg
) is definable in W(Fp

alg
) equipped

448 S. Rideau

https://doi.org/10.1017/S1474748015000183 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000183


with the lifting of the Frobenius and symbols for all p-adic analytic functions
∑

aI x I ,

where val(aI )→∞ as |I | → ∞. See [33, § 4] for an example of how a good model-theoretic

understanding of this structure can help to show uniformity of certain diophantine results.

The organization of this text is as follows. Section 1 is a description of valued field

languages, with either angular components or RV-structure. In § 2, we show that it is

possible to transfer elimination of quantifier results from equicharacteristic zero to mixed

characteristic (using the theoretical framework of Appendix B). Sections 3 and 4 describe

the class of analytic difference valued fields we will be studying. Section 5 is concerned

with purely analytical matters: it describes the link between analytic 1-types and the

underlying algebraic 1-type. In § 6 we prove the main result of this paper, Theorem A,
a field quantifier elimination result for σ -Henselian analytic difference valued fields. We

also prove an Ax–Kochen–Eršov principle for these fields. Finally, § 7 shows how this

quantifier elimination result also allows us to give conditions on the residue field and

the value group for such fields to have (or not have) the independence property. The

appendix contains an account of the more abstract model theory at work in the rest of

the paper to help smooth out the arguments. Appendix B, in particular, sets up a general
setting for transfer of elimination of quantifier results.

1. Languages of valued fields

We will be considering valued fields of characteristic zero. They will mainly be considered

in two kinds of language: on the one hand, the language with leading terms, also known in

the work of Basarab and Kuhlmann (cf. [5, 6, 22]) as amc-congruences and in later work

as RV-sorts (see, for example, [21]), and on the other hand the language with angular

components, also known as the Denef–Pas language.

Definition 1.1 (LRV, the leading term language). The language LRV has the following

sorts: a sort K and a family of sorts (RVn)n∈N>0 . On the sort K, the language consists

of the ring language. The language also contains functions rvn : K→ RVn for all n ∈ N>0
and rvm,n : RVn → RVm for all m|n.

Any valued field can be considered as an LRV-structure by interpreting K as the field

and RVn as (K?/1+ nM)∪ {0}, where M is the maximal ideal of the valuation ring O.

We will write RV?n for (K?/1+ nM) = RVn r {0}. Then rvn is interpreted as the canonical
surjection K?

→ RV?n , and it sends 0 to 0; rvn,m is interpreted likewise. Note that the

sorts RVn have a rich structure given by the following commutative diagram (where

Rn := O/nM, 0 denotes the value group and all the lines are exact):

1 // O? //

resn

��resm

��

K?

rvn

��

val
%%

rvm

��

0 // 0

1 // R?
n

//

resm,n��

RV?n
valn

99

rvm,n��
1 // R?

m
// RV?m

valm

PP
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We will denote the LRV-theory of characteristic zero valued fields by Tvf. If we need

to specify the residual characteristic, we will write Tvf,0,0 or Tvf,0,p. We will be denoting⋃
n RVn by RV. These sorts are closed in LRV (see Definition A.7). In order to eliminate

K-quantifiers, we will have to add some structure on the RV sorts.

Definition 1.2. The language LRV+ is the enrichment of LRV with, on each RVn , the

language of (multiplicative) groups {1n, ·n}, a symbol 0n and a binary predicate |n , and

functions +m,n : RV2
n → RVm for all m|n.

The multiplicative structure on RVn is interpreted as its multiplicative (semi-)group

structure, i.e., the group structure of RV?n , and 0n ·n x = x ·n 0n = 0n . The relation

x |n y is interpreted as valn(x) 6 valn(y). For all x, y ∈ K such that val(x + y) 6
min{val(x), val(y)}+ val(n)− val(m), rvn(x)+m,n rvn(y) is interpreted as rvm(x + y) and

0n otherwise. This is well defined.

We will denote by THen the theory of characteristic zero Henselian valued fields in LRV+ .

Remark 1.3.

1. If K has equicharacteristic zero, then, for all m|n, rvm,n is an isomorphism. Hence, if

we are working in equicharacteristic zero, we will only need to consider RV1. In that

case we also have that R1 = R?
1 ∪ {0} ⊆ RV?1 ∪ {0} = RV1. The additive structure is

also simpler: we only need to consider the +1,1 function on RV1. It extends the

additive structure of R1 and makes every fiber of val1 into an R1-vector space of

dimension 1 (if we consider 01 to be the zero of every fiber).

2. If K has mixed characteristic p, then, whenever m|n and val(n) = val(m) (i.e., when

p does not divide n/m), rvm,n is an isomorphism. In particular, for all n ∈ N>0,

rvn,pval(n) is an isomorphism (where we identify val(p) and 1).

3. One could wonder then why consider all the RVn when the only relevant ones are

the RVpn in mixed characteristic p and RV1 in equicharacteristic zero. The main

reason is that we want enough uniformity to be able to talk of Tvf without specifying

the residual characteristic or adding a constant for the characteristic exponent (in

particular if one wishes to consider ultraproducts of valued fields with growing

residual characteristic, although we will not do so here).

The use of this language is mainly motivated by the following result that originates in [5,

6], although the phrasing in terms of resplendence first appears in [30]. By resplendent

quantifier elimination relative to RV, we mean that quantifiers on the sorts other than

those in RV can be eliminated (namely the field quantifiers here) and that this result is

true for any enrichment on the RV-sorts (see Appendix A for precise definitions).

Theorem 1.4.
The theory THen eliminates K-quantifiers resplendently relatively to RV.

Later, we will add analytic and difference structures; hence we will consider an

enrichment of LRV by new terms on K and predicates and terms on RV (although none

on both K and RV; this is what we call in Appendix A an RV-enrichment of a K-term
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enrichment of LRV). Let L be such a language, and let 6RV denote the new sorts coming

from the RV-enrichment.

Remark 1.5. Any quantifier free L-formula ϕ(x, y), where x are K-variables and y are

RV-variables, is equivalent modulo Tvf to a formula of the form ψ(rvn(u(x)), y), where

ψ is a quantifier free L|RV∪6RV-formula and u are L|K-terms. Indeed the only predicate

involving K is the equality, and t (x) = s(x) is equivalent to rv1(t (x)− s(x)) = 0. The

statement follows immediately.

Here is an easy corollary that will be very helpful later on to uniformize certain results.

Corollary 1.6. Let T be an L-theory that eliminates K-quantifiers, M |H T , C 6M (i.e.,

C is a substructure of M), and x, y ∈ K(M) be such that, for all L|K(C)-terms u, and

all n ∈ N>0, rvn(u(x)) = rvn(u(y)). Then x and y have the same L(C)-type.

Proof. Let f : M → M be the identity on RV∪6RV(M) and send u(x) to u(y) for all

L|K(C)-terms u. By Remark 1.5, f is a partial LRV−Mor-isomorphism. But K-quantifiers

elimination implies that f is in fact elementary. �

The other kind of valued field language, the one with angular components, essentially

boils down to giving oneself a section of the short sequences defining the RVn . That

statement is made explicit in 1.8.

Definition 1.7 (Lac, the angular component language). The language Lac has the following

sorts: K, 0∞, and (Rn)n∈N>0 . The sorts K and Rn come with the ring language, and

the sort 0∞ comes with the language of ordered (additive) groups and a constant ∞.

The language also contains a function val : K→ 0∞, for all n, functions acn : K→ Rn ,

resn : K→ Rn , valR,n : Rn → 0∞, sR,n : 0
∞
→ Rn , and, for all m|n, functions resm,n :

Rn → Rm and tR,m,n : Rn → Rm .

As one might guess, the Rn are interpreted as the residue rings O/nM. As with RV,

we will write R :=
⋃

n Rn . The resn and resm,n denote the canonical surjections O→ Rn
and Rn → Rm , extended by zero outside their domains. The function acn denotes an

angular component, i.e., a multiplicative homomorphism K?
→ R?

n which extends the

canonical surjection on O? and sends 0 to 0n . Moreover, the system of the acn should

be consistent; i.e., resm,n ◦ acn = acm . The function valR,n is interpreted as the function
induced by val on Rn r {0} and sending 0n to ∞. The function sR,n is defined by

sR,n(val(x)) = resn(x)acn(x)−1 and sR,n(∞) = 0n . Finally, the function tR,m,n is defined

by tR,m,n(resn(x)) = acm(x) when val(x) 6 val(n)− val(m) and 0m otherwise (this is well

defined).
It should be noted that any valued field that is sufficiently saturated can be endowed

with angular components (cf. [29, Corollary 1.6]).

The following pages, up to Definition 1.10, contain a (very technical) account of how

to deduce quantifier elimination results in the angular component language from results

in the leading term language. Although they are essential to prove Ax–Kochen–Eršov

type results, angular components only appear again in §§ 6.3 and 7, and a reader mostly

interested in the broader picture can safely skip those pages.
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Let LRVs
be the enrichment of LRV+ obtained by adding a sort 0∞, equipped with

the language of ordered (additive) groups, a family of sorts Rn , equipped with the

ring language, symbols valn : RVn → 0∞ for the functions induced by the valuation,

symbols in : Rn → RVn for the injection of R?
n → RVn extended by 0 outside R?

n , symbols

resRV,n : RVn → Rn for the map sending a(1+ nM) to a+ nM, sn : 0
∞
→ RVn for a

coherent system of sections of valn compatible with the rvm,n , and symbols tn : RVn → Rn
interpreted as tn(x) = i−1

n (x sn(valn(x))−1). Let Ts
vf be the LRVs

-theory of characteristic

zero valued fields and Tac
vf the Lac-theory of characteristic zero valued fields.

Let Ls,e be an RV-enrichment (with potentially new sorts 6RV) of a K-enrichment
(with potentially new sorts 6K) of LRVs

, and let T e be an Ls,e-theory extending LRVs
.

We define Lac,e to be the language containing the following:

(i) Lac
∪ Ls,e

∣∣
K∪6K

;

(ii) the new sorts 6RV;

(iii) for each new function symbol f :
∏

Si → RVn , two functions symbols fR :
∏

Ti →

Rn and f0 :
∏

Ti → 0∞, where Ti = Rm ×0∞ whenever Si = RVm and Ti = Si
otherwise;

(iv) for each new function symbol f :
∏

Si → S, where S 6= RVn , the same symbol f
but with domain

∏
Ti as above;

(v) for each new predicate R ⊆
∏

Si , the same symbol R but as a predicate in
∏

Ti for

Ti as above.

We also define Tac,e to be the theory containing the following:

(i) Tac
vf ;

(ii) for all new function symbol f , whenever f or fR and f0 (depending on the

case) is applied to an argument (corresponding to an RVn-variable of f ) outside of

R?
n ×0 ∪ {0,∞}, then f has the same value as if f were applied to (0,∞) instead;

(iii) for each new symbol f with image RVn , Im( fR, f0) ⊆ R?
n ×0 ∪ (0,∞);

(iv) for each new predicate R, R applied to an argument outside of R?
n ×0 ∪ {0,∞} is

equivalent to R applied to (0,∞) instead;

(v) the theory T e translated in Lac,e as explained in the following proposition.

In the following proposition, Str(T ) denotes the category of substructures of models

of T , i.e., models of T∀. See Appendix B for precise definitions.

Proposition 1.8. There exist functors F : Str(Tac,e)→ Str(T e) and G : Str(T e)→

Str(Tac,e) that respect models, cardinality, and elementary submodels. These functors

induce an equivalence of categories between Str(Tac,e) and Str(T e). Moreover, G sends

R∪0∞ to RV∪R∪0∞.
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Proof. Let C be an Lac,e-substructure (inside some M |H Tac,e). We define F(C) to have

the same underlying sets for all sorts common to Lac,e and Ls,e and RVn(F(C)) =
(R?

n(C)× (0
∞(C)r {∞}))∪ {(0n,∞)}. All the structure on the sorts common to Ls,e

and Lac,e is inherited from C . We define rvn(x) = (acn(x), val(x)) and rvm,n(x, γ ) =
(resm,n(x), γ ). The (semi-)group structure on RVn is the product (semi-)group structure;

0n is interpreted as (0n,∞). We set (x, γ )|n(y, δ) to hold if and only if γ 6 δ,
and we define (x, γ )+m,n (y, δ) as (resm,n(x), γ ) if γ < δ, (resm,n(y), δ) if δ < γ , and

(tR,m,n(x + y), γ + valR,n(x + y)) if δ = γ . The functions valn are interpreted as the right

projections and the functions tn as the left projections. Finally, define in(x) = (x, 0) on

R?
n and in(x) = (0,∞) otherwise, resRV,n(x, γ ) = x sR,n(γ ), sn(γ ) = (1, γ ) if γ 6= ∞, and

sn(∞) = (0,∞). For each function f :
∏

Si → RVn for some n, define u :
∏

Si →
∏

Ti
to be such that ui (x) = xi if Si 6= RVm and ui (x) = (tm(xi ), valm(xi )) if Si = RVm . Then

f F(C)(x) = ( f C
R (u(x)), f C

0 (u(x))). If f :
∏

Si → S, where S 6= RVn for any n, then define

f F(C)(x) = f C (u(x)), and finally F(C) |H R(x) if and only if C |H R(u(x)).
If f : C1 → C2 is an Lac,e-isomorphism, we define F( f ) to be f on all sorts common

to Lac,e and Ls,e and F( f )(x, γ ) = ( f (x), f (γ )). It is easy to check that F( f ) is an

Ls,e-isomorphism.

Let D be an Ls,e-structure (inside some N |H T e), and define G(D) to be the restriction

of D to all Lac,e-sorts enriched with val = valn ◦ rv1, resn = resRV,n ◦rvn , acn = tn ◦rvn .

Moreover, for any function f :
∏

Si → RVn for some n, let v :
∏

Ti →
∏

Si be such that

vi (x) = xi if Si 6= RVm for any m and vi (x) = im(yi ) sm(γi ), where xi = (yi , γi ), if Si = RVm .
Then define f G(D)

R (x) = tn( f D(v(x))) and f G(D)
0 (x) = valn( f D(v(x))). If f :

∏
Si → S,

where S 6= RVn for any n, then f G(D)(x) = f D(v(x)), and finally G(D) |H R(x) if and

only if D |H R(v(x)). If f : D1 → D2 is an Ls,e-isomorphism, it is easy to show that the

restriction of f to the Lac,e-sorts is an Lac,e-isomorphism.

Now, one can check that, for any Ls,e-formula ϕ(x), there exists an Lac,e-formula ϕac,e(y)
such that, for any C ∈ Str(Tac,e) and c ∈ C , C |H ϕ(c) if and only if F(C) |H ϕac,e(u(c)),
where u is as above (for the sorts corresponding to x). Similarly, to any Lac,e-formula

ψ(x) we can associate an Ls,e-formula ψ s,e(x) such that, for any D ∈ Str(T ) and d ∈ D,

D |H ψ(d) if and only if G(D) |H ψ s,e(d). One can also check that, for all Ls,e-formula

ϕ, T |H (ϕac,e)s,e(u(x)) ⇐⇒ ϕ(x) and, for all Lac,e-formula ψ , Tac,e
|H (ψ s,e)ac,e

⇐⇒ ψ .

The rest of the proposition follows. �

Remark 1.9.

1. The functions tR,m,n are actually not needed, if we Morleyize on R∪0∞, as they

are definable using only quantification in the Rn .

2. As with the leading terms structure, in equicharacteristic zero, the angular

component structure is a lot simpler. We only need val and ac1 (and none of the

valn , sR,n , or tR,m,n).

3. In mixed characteristic with finite ramification (i.e., 0 has a smallest positive

element 1 and val(p) = k · 1 for some k ∈ N>0) the structure is also simpler.

The functions valR,n , sR,n , and tR,m,n can be redefined (without K-quantifiers)
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knowing only sR,n(1). Let Lac,fr be the language (Lac r {valR,n, sR,n, tR,m,n : m, n ∈
N>0})∪ {cn}, where cn will be interpreted as sR,n(1), i.e., as resn(x)acn(x)−1 for x
with minimal positive valuation. This is the language in which finitely ramified

mixed characteristic fields with angular components are usually considered, and in

which they eliminate field quantifiers.

To finish this section let us define balls and Swiss cheeses.

Definition 1.10 (Balls and Swiss cheeses). Let (K , v) be a valued field, γ ∈ val(K ), and

a ∈ K . Write B̊γ (a) := {x ∈ K(M) : val(x − a) > γ } for the open ball of center a and

radius γ , and Bγ (a) := {x ∈ K(M) : val(x − a) > γ } for the closed ball of center a and

radius γ .

A Swiss cheese is a set of the form br (
⋃

i=1,...,n bi ), where b and the bi are open or

closed balls.

We allow closed balls to have radius ∞ (i.e., singletons are balls), and we allow open

balls to have radius −∞ (i.e., K itself is an open ball).

Definition 1.11 (Ldiv). The language Ldiv has a unique sort K equipped with the ring

language and a binary predicate |.

In a valued field (K , val), the predicate x |y will denote val(x) 6 val(y). If C ⊆ K , we

will denote by SC(C) the set of all quantifier free Ldiv(C)-definable sets in one variable.

Note that all those sets are finite unions of Swiss cheeses.

Note that, later on, our valued fields may be endowed with more than one valuation.

In that case, we will write B̊O
γ (a) or SCO(C) to specify that we are considering the

valuation associated to O. For a tuple a ∈ K, we will extend the notation for balls by

writing B̊γ (a) := {b : val(b− a) > γ } and Bγ (a) := {b : val(b− a) > γ }, where val(a) :=
mini {val(ai )}.

2. Coarsening

The goal of this section is to provide the necessary tools for the reduction to the

equicharacteristic zero case. This is a classical method, which underlies most existing

proofs of K -quantifier elimination for enriched mixed characteristic Henselian fields. We

present it here on its own, as a general transfer principle which we will then be able to

invoke directly, in order, hopefully, to make the proofs clearer.

Definition 2.1 (Coarsening valuations). Let (K , val) be a valued field, 1 ⊆ 0(K ) a

convex subgroup, and π : 0(K )→ 0(K )/1 the canonical projection. Let val1 := π ◦ val,
extended to 0 by val1(0) = ∞.

Remark 2.2. The valuation val1 is a valuation coarser than val. Its valuation ring is O1
:=

{x ∈ K : ∃δ ∈ 1, δ < val(x)} ⊇ O(K ), and its maximal ideal is M1
:= {x ∈ K : val(x) >

1} ⊆M(K ). Its residue field R1
1 is in fact a valued field for the valuation ṽal1 defined

by ṽal1(x +M1) := val(x) for all x ∈ O1rM1 and ṽal1(M1) = ∞. Then ṽal1(R1
1 ) =

1∞ = 1∪ {∞}. The valuation ring of R1
1 is Õ1

:= O/M1, its maximal ideal is M/M1,
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and its residue field is R1. Moreover, if rv1n : K → K ?/(1+ nM1)∪ {0} =: RV1n is the

canonical projection, rvn factorizes through rv1n ; i.e., there is a function πn : RV1n → RVn
such that rvn = πn ◦ rv1n .

O? � � //

��
res1

��

(O1)?
� � //

res11
��

K?

rv11
��

(Õ1
)?
� � //

r̃es11
��

(R1
1 )
? �
� //

ṽal1

��

(RV11 )
?

R?
1 1

K

rvn

��
rv1n

		

val

''

val1

��

RVn valn // 0∞

π
��

RV1n
valn1

//

πn

CC

(0/1)∞

Before we go on, let us explain the link between open balls for the coarsened valuations
and open balls for the original valuation.

Proposition 2.3. Let (K , val) be a valued field and 1 a convex subgroup of its valuation

group. Let S be an O-Swiss cheese, b an O1-ball, and c, d ∈ K such that b = B̊O1

val1(d)(c).

If b ⊆ S, there exists d ′ ∈ K such that val1(d ′) = val1(d) and b ⊆ B̊O
val(d ′)(c) ⊆ S.

Proof. Let (gα) be a cofinal (ordinal indexed) sequence in 1. We have b =
⋂
α B̊

O
val(dgα)(c).

Indeed, val1(dgα) = val1(d), and hence b = B̊O1

val1(dgα)(c) ⊆ B̊O
val(dgα)(c). Conversely, if x ∈⋂

α B̊
O
val(dgα)(c), then val((x − c)/d) > val(gα) for all α; hence (x − c)/d ∈M1.

Let b′ be any O-ball. Then b =
⋂
α B̊

O
val(dgα)(c) ⊆ b′ if and only if there exists α0 such

that B̊O
val(dgα0 )

(c) ⊆ b′, and b∩ b′ =
⋂
α B̊

O
val(dgα)(c)∩ b′ = ∅ if and only if there exists α0

such that B̊O
val(dgα0 )

(c)∩ b′ = ∅. These statements still hold for Boolean combinations of

balls; hence there is some α0 such that B̊O
val(dgα0 )

(c) ⊆ S. �

When (K , val) is a mixed characteristic valued field, we are interested in the coarsened

valuation associated to 1p, the convex group generated by val(p). The main reason

is that (K , val1p ) has equicharacteristic zero. We will write val∞ := val1p , R∞ :=

R
1p
1 , O∞ := O1p = O p−1 , and M∞ :=M1p =

⋂
n∈N pnM. As the coarsened field has

equicharacteristic zero, all RV1p
n are the same, and we will write RV∞ := K ?/(1+M∞)∪

{0} = RV1p
1 .

Remark 2.4. We can (and we will) identify RV∞ (canonically) with a subgroup of lim
←−

RVn ,

and the canonical projection K → RV∞ then coincides with lim
←−

rvn : K → lim
←−

RVn ; in

particular, RV∞ = (lim
←−

rvn)(K ). Similarly, Õ1p can be identified with a subring of lim
←−

Rn

and R∞ = Frac(Õ1p
) ⊆ Frac(lim

←−
Rn) = (lim

←−
Rn)[rv∞(p)−1

]. The inclusions are equalities

if K is ℵ1-saturated. In particular, lim
←−

rvn is surjective.
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K
rvm

{{
rvn
��

lim
←−

rvn

$$

rv∞ // RV∞� _

��
RVm rvm,n

// RVn lim
←−

RVnπn
oo

πm

ee

Hence (K , val∞) is prodefinable (i.e., a prolimit of definable sets) in (K , val) with its

LRV-structure.

Let L be an RV-enrichment of a K-enrichment of LRV with new sorts 6K and 6RV
respectively. Somewhat abusing notation, when writing K we will mean K∪6K, and when

writing RV we will mean
⋃

n RVn ∪6RV (and rely on the context for it to make sense).

Let T ⊇ Tvf,0,p be an L-theory. Let LRV∞ be a copy of LRV (as LRV∞ will only be used

in equicharacteristic zero, we will only need its RV1, which we will denote RV∞ to avoid

confusion with the original RV1). Let L∞ be LRV∞ ∪L|K∪6K ∪ L|RV∪6RV ∪ {πn : n ∈ N>0},
where πn is a function symbol RV∞→ RVn . Let T∞ be the theory containing the following:

• T∞vf,0,0, i.e., the theory of equicharacteristic zero valued fields in LRV∞ ;

• the translation of T into L∞ by replacing rvn by πn ◦ rv∞.

Recall that Str(T ) is the category of substructures of models of T , and whenever
F : Str(T1)→ Str(T2) is a functor and κ a cardinal, we denote by StrF,κ(T2) the full

subcategory of Str(T2) of structures that embed into some F(M) for M |H T1 κ-saturated.

See Appendix B for precise definitions.

The main goal of the following proposition is to show that quantifier elimination results

in equicharacteristic zero can be transferred to mixed characteristic using the results from

Appendix B.

Proposition 2.5 (Reduction to equicharacteristic zero). We can define functors C∞ :

Str(T )→ Str(T∞) and UC∞ : Str(T∞)→ Str(T ) which respect cardinality up to ℵ0 and

induce an equivalence of categories between Str(T ) and StrC∞,ℵ1(T
∞). Moreover, C∞

respects ℵ1-saturated models, and UC∞ respects models and elementary submodels and

sends RV to RV∪RV∞ (which are closed).

Proof. Let C 6M |H T be L-structures. Then C∞(C) has underlying sets K(C∞(C)) =
K (C), RV∞(C∞(C)) = lim

←−
RVn(C), and RV(C∞(C)) = RV(C), keeping the same structure

on K and RV, defining rv∞ to be lim
←−

rvn and πn to be the canonical projection RV∞→
RVn . Now, if f : C1 → C2 is an L-embedding, let us write f∞ := lim

←−
f |RVn . By definition,

we have πn ◦ f∞ = f |RVn ◦πn , and, by immediate diagrammatic considerations, rv∞ ◦
f |K = f∞ ◦ rv∞ and f∞ is injective. Then, let C∞( f ) be f |K ∪ f∞ ∪ f |RV. As f is an

L-embedding, f |K respects the structure on K, f |RV respects the structure on RV, and,

as we have already seen, C∞( f ) respects rv∞ and πn . Hence C∞( f ) is an L∞-embedding.

If M |H T is ℵ1-saturated, it follows from Remark 2.4 that C∞(M) |H T∞. Beware

though that C∞(M) is never ℵ0-saturated because, if it were, we would find x 6=
y ∈ RV∞(M1) such that, for all n ∈ N>0, πn(x) = πn(y), contradicting the fact that

RV∞(M1) = lim
←−

RVn(M1). Let C be a substructure of M and let f : C → M be the
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injection. Then C∞( f ) is an embedding of C∞(C) into C∞(M), and C∞ is indeed a

functor to Str(T ).
The functor UC∞ is defined as the restriction functor that restricts L∞-structures

to the sorts K and RV. It is clear that, if C is an L-structure in some model of T ,

then UC∞ ◦C∞(C) is trivially isomorphic to C . Now if D is in Str(T∞) there will be

three leading term structures (and hence valuations) on D: the one associated with

the LRV∞-structure of C (which is definable), whose valuation ring is O, the one given

by rvn = πn ◦ rv∞ (which is definable), whose valuation ring is O∞, and the one given

by lim
←−

rvn (which is only prodefinable), whose valuation ring is O p−1 . In general, we

have O ⊂ O p−1 ⊂ O∞, but if D = C∞(C) (or D embeds in some C∞(C)), O p−1 = O∞
and lim
←−

rvn(D) = rv∞(D). Hence, if C embeds in some C∞(M) then C∞ ◦UC∞(C) is

(naturally) isomorphic to C .

Functoriality of all the previous constructions is a tedious but easy verification. �

3. Analytic structure

In [9], Cluckers and Lipshitz study valued fields with analytic structure. Let us recall some

of their results. From now on, A will be a Noetherian ring separated and complete for its

I -adic topology for some ideal I . Let A〈X〉 be the ring of power series with coefficients in

A whose coefficients I -adically converge to 0. Let us also define Am,n := A〈X〉[[Y ]], where

|X | = m, |Y | = n, and A :=
⋃

m,n Am,n . Note that A is a separated Weierstrass system

over (A, I ) as defined in [9, Example 4.4.(1)]. The main example to keep in mind here will

be W[Fp
alg
]〈X〉[[Y ]], which is a separated Weierstrass system over (W[Fp

alg
], pW[Fp

alg
]).

Definition 3.1 (Q). We will extensively use a quotient symbol Q : K2
→ K that is

interpreted as Q(x, y) = x/y, when y 6= 0 and Q(x, 0) = 0.

Definition 3.2 (R). Let R be a valuation ring of K included in O, and let N be its

maximal ideal and valR its valuation. We have M ⊆ N ⊆ R ⊆ O. Also, note that 1+
nM ⊆ 1+ nN ⊆ R?, and hence the valuation valR corresponding to R factors through
rvn ; i.e., there is some function fn such that valR = fn ◦ rvn . We will also be using a new

predicate x |R1 y on RV1 interpreted by f1(x) 6 f1(y).

Note that O is the coarsening of R associated to the convex subgroup O?/R? of K?/R?.

Note also that R is then definable by the (quantifier free) formula, rv1(1)|R1 rv1(x). In fact

the whole leading term structure associated to R is interpretable in LRV
∪ {|

R
1 }.

Definition 3.3 (Fields with separated analytic A-structure). Let LA be the language LRV+

enriched with a symbol for each element in A (we will identify the elements in A and the
corresponding symbols). For each E ∈ A?

m,n let also Ek : RVm+n
k → RVk be a new symbol,

and LA,Q := LA ∪ {|
R
1 ,Q} ∪ {Ek : E ∈ A?

m,n,m, n, k ∈ N}. The theory TA of fields with

separated analytic A-structure consists of the following:

(i) Tvf;

(ii) Q is interpreted as in Definition 3.1;
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(iii) |R1 comes from a valuation subring R ⊆ O with fraction field K;

(iv) each symbol f ∈ Am,n is interpreted as a function Rm
×Nn

→ R (the symbols will

be interpreted as 0 outside Rm
×Nn);

(v) the interpretations im,n : Am,n → RRm
×Nn

are morphisms of the inductive system

of rings
⋃

m,n Am,n to
⋃

m,n RRm
×Nn

, where the inclusions are the obvious ones;

(vi) i0,0(I ) ⊆ N;

(vii) im,n(X i ) is the ith coordinate function and im,n(Y j ) is the (m+ j)th coordinate

function;

(viii) for every E ∈ A?
m,n , Ek is interpreted as the function induced by E on RVk when it

is well defined (we will see shortly, in Corollary 3.9, that it is, in fact, always well

defined).

To specify the characteristic we will write TA,0,0 or TA,0,p.

Remark 3.4.

• These axioms imply a certain number of properties that it seems reasonable to require.

First, (iv) implies that every constant in A = A0,0 is interpreted in R. By (v) and

(vii), polynomials in A are interpreted as polynomials. And (v) implies that any ring
equality between functions in Am,n for some m and n is also true in models of TA.

Using Weierstrass division (see Proposition 3.12) one can also show that compositional

identities in A are also true in models of TA.

•We allow the analytic structure to be over a smaller valuation ring in order to be able

to coarsen the valuation while staying in our setting of analytic structures.

From now on, we will write 〈C〉 := 〈C〉LA,Q and C〈c〉 := C〈c〉LA,Q for the

LA,Q-structures generated by C and Cc (cf. Definition A.12).

We could be working in a larger context here. What we really need in the proof is

not that A is a separated Weierstrass system, as in [9], but the consequences of this

fact, namely: Henselianity, (uniform) Weierstrass preparation, differentiability of the new

function symbols, and extension of the analytic structure to algebraic extensions. One

could give an axiomatic treatment along those lines, but, to simplify the exposition, we

restrict to a more concrete case.

Also note that if A is not countable we may now be working in an uncountable language

Let us now describe all the nice properties of models of TA.

Proposition 3.5. Let M |H TA; then M is Henselian.

Proof. If O = R, this is proved exactly as in [23, Lemma 3.3]. The case when R 6= O
follows, as coarsening preserves Henselianity. �

Remark 3.6. As TA implies THen, by resplendent elimination of quantifiers in THen
(cf. Theorem 1.4), as LA,Qr (A∪ {Q}) is an RV-enrichment of LRV+ , any LA,Qr (A∪
{Q})-formula is equivalent modulo TA to a K-quantifier free formula.
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Let us now show that functions from A have nice differential properties.

Definition 3.7. Let K be a valued field and f : K n
→ K . We say that f is differentiable

at a ∈ K n if there exist d ∈ K n and ξ and γ ∈ val(K?) such that, for all ε ∈ B̊ξ (a),

val( f (a+ ε)− f (a)− d · ε) > 2val(ε)+ γ.

There is a unique such d = (di ), and we will denote it d fa . The di are usually called

the derivatives of f at a. We will denote them ∂ f/∂xi (a).

Proposition 3.8. Let M |H TA and f ∈ Am,n for some m and n. Then, for all i < m+ n,

there is gi ∈ Am,n such that, for all a ∈ K m+n, f is differentiable at a and ∂ f/∂xi (a) =
gi (a).

Proof. If a 6∈ Rm
×Nn then f is equal to 0 on B̊0(a), and the statement is trivial. If not,

as f ∈ A〈X〉[[Y ]], it has a (formal) Taylor development:

f (X0+ X, Y0+ Y ) = f (X0, Y0)+
∑

i

gi (X0, Y0)X i +
∑

j

gm+ j (X0, Y0)Y j + h(X0, Y0, X, Y ),

where h is a sum of terms each divisible by some quadratic monomial in X and Y .

As the interpretation morphisms are ring morphisms, this immediately implies that the

interpretation of f is differentiable in K(M) at a, and that the derivatives are given by

the gi . �

Corollary 3.9. Let M |H TA, E(x) ∈ Am,n, and S ⊆ K(M)m+n. If, for all x ∈ S,

val(E(x)) = 0, then, for all x ∈ S, rvn(E(x)) only depends on resn(x).

In particular, if E ∈ A?
m,n , then, for all x ∈ Rm

×Nn , valR(E(x)) = 0, and hence

val(E(x)) = 0, and thus rvn(E(x)) is a function of resn(x) which is a function of rvn(x).
Outside of Rm

×Nn , rvn(E(x)) is constant equal to 0, and hence it is also a function of

rvn(x). Hence, as announced earlier, E does induce a well-defined function on RVk for

any k.

Proof (Corollary 3.9). Any element with the same resn residue as x is of the form

x + nm for some m ∈M. By Proposition 3.8, E(x + nm) = E(x)+G(x) · (nm)+ H(x, nm),
where G(x) ∈ R ⊆ O and val(H(x, nm)) > 2val(nm) > val(n); hence resn(E(x + nm)) =
resn(E(x)). As, for all z ∈ S, val(E(z)) = 0, rvn(E(z)) = resn(E(z)), and we have the

expected result. �

Let us now (re)prove a well-known result from papers by Cluckers, Lipshitz, and

Robinson. There are two main reasons for which to reprove this result. The first reason

is that, although the proof given here is very close to the classical Denef–van den Dries

proof as explained in [25, Theorem 4.2], the proof there only shows quantifier elimination

for algebraically closed fields with analytic structures over (Z, 0). The second reason is

to make sure that O 6= R does not interfere.

Theorem 3.10.
TA eliminates K-quantifiers resplendently.
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The proof of this theorem will need many definitions and properties that will only be

used here and that will be introduced now.

For all m, n ∈ N, we define Jm,n to be the ideal {
∑
µ,ν aµ,νX

µ
Y
ν
∈ Am,n : aµ,ν ∈ I } of

Am,n . Most of the time we will only write J and rely on context for the indices. We will

also write X 6=n for the tuple X without its nth component.

Note that, in the definition below and in most of this proof, elements of A will be

considered as formal series (and not as their interpretation in some LA,Q-structure), and

hence infinite sums as the one below do make sense.

Definition 3.11 (Regularity). Let f ∈ Am0,n0 , m < m0, n < n0. We say that

(i) f =
∑

i ai (X 6=m, Y )X i
m is regular in Xm of degree d if f is congruent to a monic

polynomial in Xm of degree d modulo J + (Y );

(ii) f =
∑

i ai (X , Y 6=n)Y i
n is regular in Yn of degree d if f is congruent to Y d

n modulo

J + (Y 6=n)+ (Y d+1
n ).

If we do not want to specify the degree, we will just say that f is regular in Xm
(respectively, Yn).

Proposition 3.12 (Weierstrass division and preparation). Let f, g ∈ Am0,n0 , and suppose

that f is regular in Xm (respectively, in Yn) of degree d. Then there exist unique q ∈ Am,n
and r ∈ A〈X 6=m〉[[Y ]][Xm] (respectively, r ∈ A〈X〉[[Y 6=n]][Yn]) of degree strictly lower than
d such that g = q f + r .

Moreover, there exist unique P ∈ A〈X 6=m〉[[Y ]][Xm] (respectively, P ∈ A〈X〉[[Y 6=n]][Yn])

regular in Xm (respectively, in Yn) of degree at most d and u ∈ A?
m,n such that f = u P.

Proof. See [25, Corollary 3.3]. �

We will be ordering multi-indices µ of the same length by lexicographic order, and we

write |µ| =
∑

i µi .

Definition 3.13 (Preregularity). Let f =
∑
µ,ν fµ,ν(X2, Y 2)X

µ

1 Y
ν

1 ∈ Am1+m2,n1+n2 . We say

that f is preregular in (X1, Y 1) of degree (µ0, ν0, d) when

(i) fµ0,ν0 = 1;

(ii) for all µ and ν such that |µ| + |ν| > d, fµ,ν ∈ J + (Y 2);

(iii) for all ν < ν0 and for all µ, fµ,ν ∈ J + (Y 2);

(iv) for all µ > µ0, fµ,ν0 ∈ J + (Y 2).

Remark 3.14. Note that, if f =
∑
ν fν(X)Y

ν
is preregular in (X , Y ) of degree (µ0, ν0, d),

then fν0 is preregular in X of degree (µ0, 0, d).

Let Td(X) := (X0+ Xdm−1

m−1 , . . . , X i + Xdm−1−i

m−1 , . . . , Xm−2+ Xd
m−1, Xm−1), where m = |X |.

We call Td a Weierstrass change of variables. Note that Weierstrass changes of variables

are bijective.
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Proposition 3.15. Let f =
∑
µ,ν fµ,ν(X2, Y 2)X

µ

1 Y
ν

1 ∈ Am1+m2,n1+n2 . Then,

(i) if f is preregular in (X1, Y 1) of degree (µ0, 0, d), then f (Td(X1), X2, Y ) is regular

in X1,m1−1;

(ii) if f is preregular in (X1, Y 1) of degree (0, ν0, d), then f (X , Td(Y 1), Y 2) is regular

in Y1,n1−1.

Proof. Let m = m1− 1 and n = n1− 1. First assume that f is preregular in (X1, Y 1) of

degree (µ0, 0, d). Then

f ≡
∑

µ<µ0,|µ|<d

fµ,0 X
µ

1 mod J + (Y2)+ (Y1).

Furthermore, Td(X1)
µ
= (

∏m−1
i=0 (X1,i + Xdm−i

1,m )µi )Xµm
1,m is a sum of monomials whose

highest degree monomial only contains the variable X1,m and has degree
∑m

i=0 dm−iµi . It
now suffices to show that this degree is maximal when µ = µ0, but that is exactly what

is shown in the following claim.

Claim 3.16. Let µ and ν be two multi-indices such that µ < ν and |µ| < d. Then

m∑
i=0

dm−iµi <

m∑
i=0

dm−iνi .

Proof. Let i0 be minimal such that µi < νi . Then, for all j < i0, µ j = ν j . Moreover,

m∑
i=i0+1

dm−iµi 6
m∑

i=i0+1

dm−i (d − 1)

= dm−i0 − 1

< dm−i0 ,

and hence

m∑
i=0

dm−iµi <

i0−1∑
i=0

dm−iµi + dm−i0µi0 + dm−i0

6
i0−1∑
i=0

dm−iµi + dm−i0νi0

6
m∑

i=0

dm−iνi ,

and we have proved our claim. �

Let us now suppose that f is preregular in (X1, Y 1) of degree (0, ν0, d). Then

f ≡ Y
ν0
1 +

∑
ν>ν0,µ

fµ,νX
µ

1 Y
ν

1 mod J + (Y2).
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Now,

Td(Y 1)
ν
=

(n−1∏
i=0

(Y1,i + Y dn−i

1,n )νi

)
Y νn

1,n ≡ Y
∑n

i=0 dn−i νi
1,n mod J + (Y2)+ (Y1 6=n),

and we conclude again by Claim 3.16. �

Proposition 3.17 (Bound on the degree of preregularity). Let

f =
∑
µ,ν

fµ,ν(X2, Y 2)X
µ

1 Y
ν

1 ∈ Am1+m2,n1+n2 .

There exists d such that, for any (µ, ν) with |µ| + |ν| < d, there exist gµ,ν ∈ Am1+m3,n1+n3

preregular in (X1, Y 1) of degree (µ, ν, d), and LA,Q
∣∣
K-terms uµ,ν and sµ,ν such that,

for all M |H TA and every a ∈ R(M) and b ∈ N(M), if f (X1, a, Y 1, b) is not the zero

function, then there exists (µ0, ν0) with |µ0| + |ν0| 6 d and

f (X1, a, Y 1, b) = fµ0,ν0(a, b)gµ0,ν0(X1, uµ0,ν0(a, b), Y 1, sµ0,ν0(a, b)).

Proof. This follows from the strong Noetherian property [9, Theorem 4.2.15 and

Remark 4.2.16] as in [25, Corollary 3.8]. �

As R and N are not sorts in LA,Q, there is no way in this language to have a variable

that ranges uniquely over one or the other. Hence we introduce the notion of a well-formed

formula that essentially simulates that sorted behavior.
A K-quantifier free LA-formula ϕ(X , Y , Z , R) will be said to be well formed if X ,

Y , and Z are K-variables and R are RV-variables, symbols of functions from A are

never applied to anything but variables, and ϕ(X , Y , Z , R) implies that
∧

i valR(X i ) > 0,∧
i valR(Zi ) > 0, and

∧
i valR(Yi ) > 0. The (X , Y )-rank of ϕ is the tuple (|X |, |Y |). We

order ranks lexicographically.

Lemma 3.18. Let ϕ(X , Y , Z , R) be a well-formed K-quantifier free LA-formula. Then

there exist a finite set of well-formed K-quantifier free LA-formulas ϕi (X i , Y i , Z i , R) of

(X i , Y i )-rank strictly smaller than the (X , Y )-rank of ϕ, and LA,Q
∣∣
K-terms ui (Z) such

that

TA |H ∀Z∀R

(
∃X∃Yϕ ⇐⇒

∨
i

∃X i∃Y iϕi (X i , Y i , ui (Z), R)

)
.

Proof. Let us define m := |X | and n := |Y |. As polynomials with variables in R are in
fact elements of A, and A is closed under composition (for the R-variables), we may

assumes that any LA|K-term appearing in ϕ is an element of A. Let fi (X , Y , Z) be

the LA|K-terms appearing in ϕ. Splitting ϕ into different cases, we may assume that

whenever a variable S appears as an N-variable of an fi then ϕ implies that valR(S) > 0
(in the part of the disjunction where valR(S) 6 0, we replace this fi by zero).

If an X i appears as an N-variable in an fi , then ϕ implies that valR(X i ) > 0, and hence

we can safely rename this X i as Yn , and we obtain an equivalent formula of lower rank.
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If Yi appears as an R-variable in an fi , we can change this fi so that Yi appears as an

N-variable. Thus we may assume that the X i only appear as R-variables and the Yi as

N-variables. Similarly adding new Z j variables, we may assume that each Z j appears

only once (and in the end we can put the old variables back in), and that ϕ implies that

valR(Z j ) > 0 if it is an N-variable.

Applying Proposition 3.17 to each of the fi (X , Y , Z) =
∑
µ,ν fµ,ν(Z)X

ν
Y
µ

, we find

d, gi,µ,ν , and ui,µ,ν(Z) such that gi,µ,ν is preregular in (X , Y ) of degree (µ, ν, d) and,

for every M |H TA and a ∈ M , if fi (X , Y , a) is not the zero function, then there exists

(µ, ν) such that |µ| + |ν| < d and fi (X , Y , a) = fi,µ,ν(a)gi,µ,ν(X , Y , ui,µ,ν(a)). Splitting

the formula into the different cases, we may assume that, for each i , there are µi and νi
such that fi (X , Y , a) = fi,µi ,νi (a)gi,µi ,νi (X , Y , ui (a)) (in the case where no such µi and
νi exist, we can replace fi by 0). Let us now introduce a new variable T j to replace

any argument of a gi,µ,ν that is not in X or Y ; and, for each of these new T j , we add

to the formula valR(T j ) > 0 if T j is an R-argument of gi,ν,µ or valR(T j ) > 0 if it is an

N-argument. Let us write gi,µi ,νi =
∑
ν gi,νY

ν
. Note that gi,νi is preregular in X of degree

(µi , 0, d). We can split the formula some more (and still call it ϕ) so that, for each i , one

of the two conditions valR(gi,νi ) > 0 or valR(gi,νi ) = 0 holds.
If a condition valR(gi,νi ) > 0 occurs, let us add valR(Yn) > 0∧ gi,νi − Yn = 0 to the

formula. By Proposition 3.15, after a Weierstrass change of variable on the X , we may

assume that gi,νi − Yn is regular in Xm−1. By Weierstrass division, we can replace every f j
by a term polynomial in Xm−1, and by Weierstrass preparation we can replace the equality

gi,νi − Yn = 0 by the equality of a term polynomial in Xm−1 to 0. In the resulting formula,

no f ∈ A is ever applied to a term containing Xm−1, and we can apply Remark 3.6 to

the formula where every f ∈ A is replaced by a new variable S f to obtain a K-quantifier

free formula ψ(X 6=m−1, Y , Z , T , S, R) such that

TA |H ∃Xm−1ϕ ⇐⇒ ψ(X 6=m−1, Y , Z , u(Z), f (X 6=m−1, Y , Z), R)

and ψ(X 6=m−1, Y , Z , T , f (X 6=m−1, Y , Z), R) is well-formed of (X , Y )-rank (m− 1, n+ 1).
If for all i we have valR(gi,νi ) = 0, we add valR(Xm) > 0∧ Xm

∏
i gi,νi − 1 = 0 to the

formula. As every gi,νi is preregular in X of degree (µi , 0, d), g = Xm
∏

i gi,νi − 1 is

preregular in X of degree (µ, 0, d ′) for some µ and d ′. After a Weierstrass change of

variables in X , we may assume that g and each gi,νi are in fact regular in Xm . Hence

by Weierstrass preparation we may replace g in g = 0 by a term polynomial in Xm .

Furthermore, by Remark 1.5 the fi appear as rvni ( fi ) for some ni in the formula.

Replacing fi by fµi ,νi gi,µi ,νi , we only have to show that rvni (gi,µi ,νi ) can be replaced by

a term polynomial in Yn−1 (and Xm). Let hi = X M (
∏

j 6=i g j,ν j )gi,νi ,µi =
∑
ν hi,νY ν . Then

hi,νi = X M
∏

i gi,νi = 1, and, if ν < νi , hi,ν = X M (
∏

j 6=i g j,ν j )gi,ν ≡ 0 mod J + (Z j : Z j is

an N-argument). Hence hi is preregular in (X , Y ) of degree (0, νi , d). After a Weierstrass

change of variables of the Y , we may assume that hi is in fact regular in Yn−1.

Note that rvni (gi,νi ,µi ) = rvni (Xm)
−1∏

j 6=i rvni (gi,νi )
−1rvni (hi ). By Weierstrass prepara-

tion we can replace hi by the product of a unit and pi a polynomial in Yn−1. As we

have included the trace of units on the RVn in our language, the unit is taken care of,

and, by Weierstrass division by g, we can replace each coefficients in the pi and each of

the gi,νi by a term polynomial in Xm . Note that, because we allow quantification on RV,
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although the language does not contain the inverse on RV, the inverses can be taken care

of by quantifying over RV. Hence we obtain a formula where Xm and Yn−1 only occur

polynomially, and we can proceed as in the previous case to eliminate them. �

Corollary 3.19. Let ϕ(X , Y , Z , R) be a well-formed K-quantifier free LA-formula. Then

there exists an LA,Q-formula ψ(Z , R) such that TA |H ∃X∃Yϕ ⇐⇒ ψ.

Proof. This follows from Lemma 3.18 and an immediate induction. �

Proof (Theorem 3.10). Resplendence comes for free (see Proposition A.9). Hence, it

suffices to show that, if ϕ(X, Z) is a quantifier free LA,Q-formula, then there exists a

quantifier free LA,Q-formula ψ(Z) such that TA |H ∃Xϕ ⇐⇒ ψ . First, splitting the

formula ϕ, we can assume that, for any of its variables S, ϕ implies either valR(S) > 0
or valR(S) < 0; in the second case, replacing S by S−1, we also have valR(S) > 0. We

also add one variable X i (respectively, Yi ) per R-argument (respectively, N-argument)

of any f ∈ A applied to some non-variable term u, and we add the corresponding

equality X i = u (respectively, Yi = u) and the corresponding inequalities valR(X i ) > 0
(respectively, valR(Yi ) > 0) and quantify existentially over this variable. Splitting the

formula further (whether denominators in occurrences of Q are zero or not) we can

transform ϕ such that it contains no Q. Now ∃Xϕ is equivalent to a disjunction of
formulas ∃X∃Yψ , where ψ is well formed, and we conclude by applying Corollary 3.19.

This concludes the proof of Theorem 3.10. �

Recall that we denote by SCR(C) the set of all quantifier free Ldiv(C)-definable sets.

Definition 3.20 (Strong unit). Let M |H TA, C = K(〈C〉), and S ∈ SCR(C). We say that an

LA,Q
∣∣
K(C)-term E : K→ K is a strong unit on S if, for any open O-ball b := B̊O

val(d)(c) ⊆
S, there exist a, e ∈ C〈cd〉, and F(t, z) ∈ A such that e 6= 0, and, for all x ∈ b,

val(F((x − c)/d, a)) = 0

and

E(x) = eF((x − c)/d, a).

Note that if M is taken saturated saturated (i.e., at least (|A| + |C |)+-saturated)

and if E is a strong unit on S, then, by compactness, there exist a tuple a(y, z) of

LA,Q
∣∣
K(C)-terms, a finite number of LA,Q

∣∣
K(C)-terms ei (y, z), and Fi [t, u] ∈ A such

that, for all balls b = B̊val(d)(c) ⊆ S, there is an i such that, for all x ∈ b,

E(x) = ei (c, d)Fi ((x − c)/d, a(c, d))

and

Fi ((x − c)/d, a(c, d)) ∈ O?.

Hence, if E is a strong unit on S, there is an LA,Q(C)-formula that witnesses it. If E and

S are defined using some parameters y and, for all y in some definable set Y , E = Ey is

a strong unit on S = Sy , then we can choose this formula uniformly in y.
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We will say that E is an R-strong unit on S if it verifies all the requirements of a

strong unit, where all references to O are replaced by references to R (and references to

R remain the same).

Proposition 3.21. If E is an R-strong unit on S, then it is also a strong unit on S.

Proof. If b ⊆ S is an O-ball, then by Proposition 2.3 there exist d and c such that

b = B̊O
val(d)(c) ⊆ B̊R

valR(d)(c) ⊆ S. But E being a strong unit on S for R, it has the expected

form on B̊R
valR(d)(c), and hence also on B̊O

val(d)(c). �

Definition 3.22 (Weierstrass preparation for terms). Let M be an LA,Q-structure, C =
K(〈C〉) ⊆ M , t : K→ K an LA,Q

∣∣
K(C)-term, and S ∈ SCR(C). We say that t has a

Weierstrass preparation on S if there exist an LA,Q
∣∣
K(C)-term E that is a strong unit on

S and a rational function R ∈ C(X) with no poles in S(K(M)
alg
) such that, for all x ∈ S,

t (x) = E(x)R(x).
The structure M has a Weierstrass preparation if for any C = K(〈C〉) and

LA,Q
∣∣
K(C)-terms t and u : R→ K we have the following:

(i) there exists a finite number of Si ∈ SCR(C) that cover R such that t has a

Weierstrass preparation on each of the Si ;

(ii) if t and u have a Weierstrass preparation on some open ball b, and, for all x ∈ b,

val(t (x)) > val(u(x)), then t + u also has a Weierstrass preparation on b.

Remark 3.23.

1. An immediate consequence of Weierstrass preparation is that all LA,Q
∣∣
K(M)-terms

in one variable have only finitely many isolated zeros. Indeed a zero of t is the zero

of one of the Ri appearing in its Weierstrass preparation. That zero is isolated if Ri
is non-zero or the corresponding Si is discrete, i.e., is a finite set. In particular, let

m be the parameters of t . Then any isolated zero of t is in the algebraic closure (in

ACVF) of K(〈m〉). As the algebraic closure in ACVF coincides with the field-theoretic

algebraic closure, any isolated zero of t is in fact also the zero of a polynomial (with

coefficients in K(〈m〉)).

2. As for strong units, for each choice of term ty (with parameters y), there is an

LA,Q(y)-formula that states that (i) holds for ty in M , and we can choose this

formula to be uniform in y. For each choice of terms t , u, and formula defining S,

there also is a (uniform) formula saying that (ii) holds for t , u, and b in M .

Proposition 3.24. Any M |H TA has a Weierstrass preparation.

Proof. If R = O, then the proposition is shown in [9, Theorem 5.5.3] and (ii) (called from

now on invariance under addition) is clear from the proof given there. The one difference

in the Weierstrass preparation is that, in [9], there is a finite set of points algebraic over
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the parameters where the behavior of the term is unknown. But this finite set can be

replaced by discrete Si , and as these exceptional points are common zeros of terms u
and v such that Q(u, v) is a subterm of t , it suffices to replace Q(u, v) by 0 and apply

the theorem to the new term to obtain the Weierstrass preparation also on the discrete

Si . The fact that the strong units in [9] have the proper form on open balls follows, for

example, from the proof of [9, Lemma 6.3.12].

If R 6= O, the proposition follows from the O = R case and Proposition 3.21. �

Remark 3.25.

1. Let ty be an LA,Q
∣∣
K-term with parameters y. As shown in Remark 3.23.2, there is

an LA,Q-formula θ that states that Weierstrass preparation holds for ty in models

of T . More explicitly, there are finitely many choices of Sk
i , Ek

i , and Rk
i (with

parameters u(y), where u are LA,Q
∣∣
K-terms) such that for each y there is a k such

that the Sk
i , Ek

i , and Rk
i work for ty . As TA eliminates K-quantifiers, for each k

there is a K-quantifier free LA,Q formula θk(y) that is true when the kth choice

works for t (and not the ones before). Hence, taking Si,k to be Sk
i ∧ θk , we could

suppose that Weierstrass preparation for terms is uniform, but we will not be using

that fact.

2. Conversely, the proof of Proposition 5.3 can be adapted to show that uniform

Weierstrass preparation for terms implies K-quantifier elimination. This is exactly

the proof of quantifier elimination given in [9], although its authors did not see at the

time that they were relying on a more uniform version of Weierstrass preparation

for terms than what they had actually shown. Hence it would be interesting to

know if one could prove uniform Weierstrass preparation for terms without using

K-quantifier elimination to recover their proof (see [10] for more on this subject).

Proposition 3.26. Let M |H TA. Then the LA,Q-structure of M can be extended (uniquely)

to any algebraic extension of K(M), so that it remains a model of TA. Moreover, if C 6M
and a ∈ K(M) is algebraic over K(C), then K(C〈a〉) = K(C)[a].

Proof. The case when R = O is proved in [11, Theorem 2.18]. The same proof applies

when R 6= O. �

To conclude this section, let us show that under certain circumstances analytic terms

have a linear behavior.

Proposition 3.27. Let M |H TA, and suppose that K(M) is algebraically closed. Let t :
K→ K be an LA,Q(M)-term and b be an open ball in M with radius ξ 6= ∞. Suppose

that t has a Weierstrass preparation on b (and hence t is differentiable at any a ∈ b) and

rv(dtx ) is constant on b. Also assume that val(t (x)) is constant on b or t (x) is polynomial.

Then, for all a, e ∈ b, rv(t (a)− t (e)) = rv(dta) · rv(a− e).
Moreover, if v(t (x)) is constant on b, then val(t (a)) 6 val(dta)+ ξ .

Proof. If val(t (x)) is constant on b, then val(t (x))− val(t (a)) > 0, and, by invariance

under addition, t (x)− t (a) has a Weierstrass preparation on b. If t (x) is polynomial this is
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also clear. Hence there are Fa ∈ A (with other parameters in K(M)), Pa , Qa ∈ K(M)[X ],
such that, for all x ∈ b,

t (x)− t (a) = Fa

(
x − a

g

)
Pa(x)
Qa(x)

,

where val(Fa(y)) = 0 for all y ∈M and val(g) = ξ . If t is constant on b, i.e., Pa = 0,

then the proposition follows easily. If not, Pa has only finitely many zeros. Let ai be the

zeros of Pa in K(M) (recall that M is assumed algebraically closed), and let mi be the

multiplicity of ai . Let c j be the zeros of Qa and n j be their multiplicities. Note that

every zero of Qa(x) is outside b; hence, for all j , val(c j − a) 6 ξ . For all e ∈ b, note that

t (x)− t (a) is also differentiable at e with differential dte, and hence, if e is distinct from

all ai , then

rv
(

dta
t (e)− t (a)

)
= rv

(
dte

t (e)− t (a)

)

= rv

∂
(

Fa

(
x−a

g

))
/∂xx (e)

Fa

(
e−a

g

) +
d(Pa)e

Pa(e)
+

d(Qa)e

Qa(e)


= rv

 d(Fa) e−a
g

gFa

(
e−a

g

) +∑
i

mi

e− ai
+

∑
j

n j

e− c j

 .
For any y ∈M, val(d(Fa)y) > 0 = val(Fa(y)); hence val(d(Fa)y/(gFa(y))) > −val(g) >
−val(e− a). We also have that, for all j , val(1/(e− c j )) = −val(e− c j ) > −val(e− a).
Finally, suppose that there is a unique ai0 such that val(e− ai0) is maximal. Then, for all

i 6= i0, val(1/(e− ai )) > val(1/(e− ai0)), and hence rv(mi0)rv(e− ai0)
−1
= rv(dta)rv(t (e)−

t (a))−1; i.e., rv(t (e)− t (a)) = rv(dtam−1
i0
(e− ai1)).

As t (e) 6= t (a), this immediately implies that dta 6= 0. Let us now show that if ai ∈ b
it cannot be a multiple zero. If it were,

dtai = d(Fa((x − a)/c)/Qa(x))ai
Pa(ai )+ P ′a(ai )Fa((ai − a)/c)/Qa(ai ) = 0,

which is absurd. Hence, for all ai ∈ b, mi = 1, and if we could show that there is a unique

ai ∈ b (namely a itself) we would be done.

Suppose there is more that one ai in b, and let γ := min{val(ai − a j ) : ai , a j ∈ b∧ i 6=
j}. We may assume that val(a0− a1) = γ . Let us also assume that the ai have been

numbered so that there exists i0 such that, for all i 6 i0, val(ai − a0) = γ , and, for all
i > i0, val(ai − a0) < γ . In particular, for all i 6= j 6 i0, val(ai − a j ) = γ . For each i 6 i0,

let ei be such that val(ei − ai ) > γ . Then we can apply the previous computation to ei ,

and we get that rv(t (ei )− t (a)) = rv(dta)rv(ei − ai ). But

rv(t (ei )− t (a)) = rv
(

Fa

(
ei − xα0+1

g

))
rv(p)

∏
k

(rv(ei − ak))
mk rv(q)−1

∏
j

(rv(ei − c j ))
−n j ,

where p and q are the dominant coefficients of, respectively, Pa and Qa , and hence

rv(dta) = rv
(

Fa

(
ei − xα0+1

g

))
rv(p)

∏
k 6=i

(rv(ei − ak))
mk rv(q)−1

∏
j

(rv(ei − c j ))
−n j .
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As rv(Fa((ei − xα0+1)/g)), rv(ei − ak) for all k > i0 and rv(ei − c j ) do not depend on i ,
and, for all k 6 i0, k 6= i , rv(ei − ak) = rv(ai − ak), we obtain that, for all i, j 6 i0,∏

i 6=k6i0

rv(ai − ak) =
∏

j 6=k6i0

rv(a j − ak).

Replacing ai by (ai − a0)/g, where val(g) = γ , we obtain the same equalities, but we

may assume that, for all i 6 i0, ai ∈ O, and for all i 6= j , ai − a j ∈ O?. The equations can

now be rewritten as
∏

i 6=k res(ai − ak) =
∏

i 6=k(res(ai )− res(ak)) = c for some c ∈ R(M).
Let P =

∏
k(X − res(ak)). Then our equations state that P ′(res(ai ))− c = 0 for all i 6 i0.

But P ′− c is a degree i0 polynomial, and it cannot have i0+ 1 roots.
Finally, if val(t (x)) is constant on b, then, for all a and e ∈ b, val(t (a)) 6

val(t (a)− t (e)) = val(dta)+ val(a− e). As this holds for any e, we must have val(t (a)) 6
val(dta)+ ζ . �

Remark 3.28. The conclusion of Proposition 3.27 seems very close to the Jacobian

property (see, for example, [9, Definition 6.3.5]). In fact, this lemma is very similar (both

in its hypothesis and its conclusion) to [9, Lemma 6.3.9].

4. σ -Henselian fields

Definition 4.1 (Analytic field with an automorphism). Let us suppose that each Am,n
is given with an automorphism of the inductive system t 7→ tσ : Am,n → Am,n . An

analytic field M with an automorphism is a model of TA with a distinguished LRV
∪

{|
R
1 }-automorphism σ such that, for symbols t ∈ Am,n and x ∈ K(M)m+n , σ(t (x)) =

tσ (σ (x)).

Let LA,Q,σ := LA,Q ∪ {σ } ∪ {σn : n ∈ N}. An analytic field M with an automorphism τ

can be made into an LA,Q,σ -structure by interpreting σ as τ |K and σn as τ |RVn . Note that

σ also induces a ring automorphism on every Rn and an ordered group automorphism σ0

on 0. We will write TA,σ for the LA,Q,σ -theory of analytic fields with an automorphism.

We will most often write σ instead of σn as there should not be any confusion.

If K is a field with an automorphism σ (also referred to as a difference field in this text),

we will write Fix(K ) := {x ∈ K : σ(x) = x} for its fixed field. For all x ∈ K , we will write

σ(x) for the tuple x, σ (x), . . . , σ n(x), where the n should be explicit from the context.

Remark 4.2. In fact σ induces an action on all LA,Q
∣∣
K-terms, and we have TA,σ |H

σ(t (x)) = tσ (σ (x)). It follows immediately that for any LA,Q,σ
∣∣
K-term t there is an

LA,Q
∣∣
K-term u such that TA,σ |H t (x) = u(σ (x)).

Definition 4.3 (Linearly closed difference field). A difference field (K , σ ) is linearly closed

if every equation of the form
∑n

i=0 aiσ
i (x) = b, where an 6= 0, has a solution.

Definition 4.4 (Linear approximation). Let K be a valued field with an automorphism σ ,

f : K n
→ K n a (partial) function, and d ∈ K n .
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(i) Let b be a tuple of open balls in M . We say that d linearly approximates f on b if

for all a and c ∈ b we have

val( f (c)− f (a)− d · (c− a)) > min
i
{val(di )+ val(ci − ai )}.

(ii) Let b be an open ball of M . We say that d linearly approximates f at prolongations

on b if for all a, c ∈ b we have

val( f (σ (c))− f (σ (a))− d · σ(c− a)) > min
i
{val(di )+ val(σ i (c− a))}.

Remark 4.5.

1. Let M |H TA,σ . Suppose that σ is an isometry; i.e., σ0 = id. Let t be an

LA|K(O(M))-term and a ∈ O(M). We can show that dta linearly approximates

t on B̊γ (a), where γ = mini {val(∂ f/∂xi (a))}.

2. We allow a slight abuse of notation by saying that terms constant on a ball

are linearly approximated (at prolongations) by the zero tuple, even though the

required inequality does not hold as ∞ 6>∞.

Let us first prove that it suffices to show linear approximation variable by variable to

obtain linear approximation for the whole function. We will write (a 6=i , xi ) for the tuple
a where the ith component is replaced by xi (with a slight abuse of notation as the xi
does not appear in the right place) and a6i for the tuple a where the jth components

for j > i are replaced by zeros.

Proposition 4.6. Let (K , val) be a valued field, f : K n
→ K , d ∈ K n, and b a tuple of balls.

If, for all a ∈ b and j < n, d j linearly approximates f (a 6= j , x j ) on b j , then d linearly

approximates f on b.

Proof. Let a and e ∈ b, and ε = e− a. Then, we have

val( f (a+ ε)− f (a)− d · ε) = val

∑
j

f (a+ ε6 j )− f (a+ ε6 j−1)− d jε j


> min

j
{ f (a+ ε6 j )− f (a+ ε6 j−1)− d jε j }

> min
j
{val(d j )+ val(ε j )}.

And that concludes the proof. �

Although linear approximation (at prolongations) looks like differentiability, one must

be aware that linear approximations are not uniquely determined, because, among other

reasons, we are only looking at tuples that are prolongations but also because the error

term is only linear. But when σ is an isometry, we can recover some uniqueness, and give

an alternative definition (perhaps of a more geometric flavor) of linear approximation at

prolongations.

Definition 4.7 (R1,γ ). Let (K , val) be a valued field, and let γ ∈ val(K?). We define R1,γ :=

Bγ (0)/B̊γ (0) and let res1,γ denote the canonical projection Bγ (0)→ R1,γ . Note that R1,γ
can be identified (canonically) with val1−1(γ )∪ {0} ⊆ RV1.
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Proposition 4.8. Let (K , val) be a valued field with an isometry σ and a linearly closed

residue field. Let f : K n
→ K , d be a linear approximation of f at prolongations on

some open ball b with radius ξ , e ∈ K n, δ := val(d), and η := val(e). The following are

equivalent.

(i) e is a linear approximation of f at prolongations on b;

(ii) val(d − e) > min{δ, η};

(iii) η = δ and res1,δ(d) = res1,δ(e).

Proof. (i)⇒(ii) Suppose that d 6= e. Let ε be such that val(ε) > ξ , and let g ∈ K be such

that val(g) = val(d − e). Then P(σ (x)) :=
∑

i (di − ei )σ
i (ε)g−1ε−1σ i (x) is a linear

difference polynomial with a non-zero residue. As K is residually linearly closed,

the residue of P cannot always be zero, and hence there exists c ∈ O? such that

val(P(σ (c))) = 0; i.e., val((d − e) · σ(εc)) = val(g)+ val(ε). But then, for all a ∈ b,

val(g)+ val(ε) = val((d − e) · σ(εc))

= val( f (σ (a+ εc))− f (σ (a))− e · σ(εb))

− f (σ (a+ εc))+ f (σ (a))+ d · σ(εb)

> val(ε)+min{δ, η};

i.e., val(d − e) > min{δ, η}.

(ii)⇒(iii) First, suppose that δ < η. Then, if val(di ) is minimal, val(di ) = δ < η 6
val(ei ), and hence val(di − ei ) = val(di ) = δ = min{δ, η}, contradicting our previous

inequality. Hence we must have, by symmetry, δ = η. Now inequality (ii) can be

rewritten val(d − e) > δ, which exactly means that res1,δ(d) = res1,δ(e).

(iii)⇒(i) For all ε such that val(ε) > ξ , as val(d − e) > δ, we have

val( f (σ (a+ ε))− f (σ (a))− e · σ(ε))

= val( f (σ (a+ ε))− f (σ (a))− d · σ(ε)+ (d − e) · σ(ε))

> δ+ val(ε)

= η+ val(ε).

This concludes the proof. �

Remark 4.9.

1. In the isometry case, linear approximations describe the trace of a given function

on RV1. More precisely, a function f is linearly approximated at prolongations on

some open ball b with radius ξ if and only if there exist δ ∈ val(K ) and d ∈ R1,δ(K )
such that, for all γ > ξ and a ∈ b, the function res1,γ (ε) 7→ res1,γ+δ( f (σ (a+ ε))−
f (σ (a))) : R1,γ → R1,γ+δ is well defined and coincides with the function x 7→ d ·
σ(x) (where the sum is given by +1,1).

2. If we are working in a valued field with a linearly closed residue field, it follows

from Proposition 4.8 that δ and d from 4.9.1 are actually uniquely defined.
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Definition 4.10 (σ -Henselianity). Let M |H TA,σ , t be an LA,Q
∣∣
K(M)-term, d ∈ K(M),

a ∈ K(M), and ξ ∈ 0(M). We say that (t, a, d, ξ) is in σ -Hensel configuration if d linearly

approximates t at prolongations on B̊ξ (a) and

val(t (σ (a))) > min
i
{val(di )+ σ

i (ξ)}.

We say that M is σ -Henselian if, for all (t, a, d, ξ) in σ -Hensel configuration, there

exists c ∈ K(M) such that t (σ (c)) = 0 and val(c− a) > maxi {val(σ−i (t (σ (a))d−1
i ))}.

Remark 4.11. By Remark 4.5.1, when σ is an isometry, this form of the σ -Hensel lemma

is equivalent to classical forms for difference polynomials (i.e., without any analytic
structure) as stated in [4, 31, 32], for example. In particular, it implies Hensel’s lemma

(for polynomials).

Definition 4.12 (Pseudo-convergence). Let M |H TA,σ .

(i) A sequence (xα)α∈β of (distinct) points in K(M) indexed by an ordinal is said to be

pseudo-convergent if, for all α, γ , δ ∈ β such that α < γ < δ, we have val(xα − xδ) <
val(xγ − xδ).

(ii) We say that a ∈ K(M) is a pseudo-limit of the pseudo-convergent sequence (xα)
(and we write xα↝ a) if, for all α < γ < β, val(xα − a) < val(xγ − a).

(iii) A pseudo-convergent sequence of elements of C ⊆ K(M) is said to be maximal (over

C) if it has no pseudo-limit in C .

(iv) We say that a sequence (xα) of tuples pseudo-solves an LA,Q
∣∣
K(M)-term t if t = 0

or for α � 0 (i.e., for α in a final segment) t (xα)↝ 0.

(v) We say that a sequence (xα) σ -pseudo-solves an LA,Q
∣∣
K(M)-term t if (σ (xα))

pseudo-solves t .

(vi) We say that M is maximally complete if any pseudo-convergent sequence in M
(indexed by a limit ordinal) has a pseudo-limit in M .

(vii) We say M is σ -algebraically maximally complete if any pseudo-sequence (xα) from

M (indexed by a limit ordinal) σ -pseudo-solving an LA,Q
∣∣
K(M)-term t 6= 0 has a

pseudo-limit in M .

Remark 4.13.

1. Let (xα) be a pseudo-convergent sequence. Then, for all α0 < α1, val(xα0 − xα1) =

val(xα0 − xα0+1) =: γα0 . The γα form a strictly increasing sequence. If xα↝ a, then

val(a− xα0) = γα0 , and if b is such that, for all α, val(b− a) > γα, then we also have

xα↝ b.

2. As, in any valued field, balls with a non-infinite radius always have more than one

point, if (xα) is a maximal pseudo-convergent sequence over K then either γα is

cofinal in val(K?) and (xα) is indexed by the successor of a limit ordinal, or (xα) is

indexed by a limit ordinal.
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Proposition 4.14. If M is σ -algebraically maximally complete and R1(M) is linearly closed

then M is σ -Henselian.

Proof. First we present an easy claim.

Claim 4.15. Let (t, a, d, ξ) be in σ -Hensel configuration. Then

max
i
{val(σ−i (t (σ (a))d−1

i ))} > ξ.

Proof. As (t, a, d, ξ) is in σ -Hensel configuration, there exists i0 such that val(t (σ (a))) >
val(di0)+ σ

i0(ξ), and hence val(σ−i0(t (σ (a))d−1
i0
)) = σ−i0(val(t (σ (a)))− val(di0)) > ξ . �

And now, we present two lemmas about finding better approximations to zeros of

terms.

Lemma 4.16. Let (t, a, d, ξ) be in σ -Hensel configuration such that t (σ (a)) 6= 0.

Then there exists c such that val(c− a) = maxi {val(σ−i (t (σ (a))d−1
i ))}, val(t (σ (c))) >

val(t (σ (a))), and (t, c, d, ξ) is also in σ -Hensel configuration.

Proof. Choose any ε ∈ K(M) with val(ε) = maxi {val(σ−i (t (σ (a))d−1
i ))}. By Claim 4.15,

val(ε) > ξ . For all x ∈ O, let R(a, ε, x) := t (σ (a)+ σ(εx))− t (σ (a))− d · σ(εx) and

u(x) :=
t (σ (a)+ σ(εx))

t (σ (a))
= 1+

∑
i

diσ
i (ε)

t (σ (a))
σ i (x)+

R(a, ε, x)
t (σ (a))

.

For all i ,

val
(

diσ
i (ε)

t (σ (a))

)
> val(di )+ val(t (a))− val(di )− val(t (a)) = 0,

and for any i0 such that val(ε) = val(σ−i0(t (σ (a))d−1
i0
)) it is an equality. As d linearly

approximates t at prolongations on B̊ξ (a), we also have

val(R(a, ε, x)) > min
i
{val(σ i (ε))+ val(di )} > val(t (σ (a))),

and res1(u(x)) = 0 is a non-trivial linear equation in the residue field. As R1(M) is linearly

closed, this equation has a solution res1(e). Note that we must have res1(e) 6= 0.

Let c = a+ εe. It is clear that val(c− a) = val(ε) = maxi {val(σ−i (t (σ (a))d−1
i ))} > ξ and

that val(t (σ (c))) = val(t (σ (a))u(e)) > val(t (σ (a))) > mini {val(di )+ σi (ξ)}. �

Lemma 4.17. Let (xα) be a pseudo-convergent sequence (indexed by a limit ordinal).

Assume that, for all α, (t, xα, d, ξ) is in σ -Hensel configuration, val(xα+1− xα) >
maxi {val(σ−i (t (σ (xα))d−1

i ))}, and t (σ (xα))↝ 0. If c is such that xα↝ c, then (t, c, d, ξ) is

in σ -Hensel configuration, and, for all α, val(t (σ (c))) > val(t (σ (xα))).

Proof. First of all, as (t, x0, d, ξ) is in σ -Hensel configuration, d continuously linearly

approximates t at prolongations on B̊ξ (x0). By Claim 4.15, val(c− x0) = val(x1− x0) > ξ .

Moreover, let R(x, c) := t (σ (c))− t (σ (x))− d · σ(c− x). Then, for all α,

val(t (σ (c))) = val(t (σ (xα))+ d(σ (xα)) · σ(c− xα)+ R(xα, c))

> min
i
{val(t (σ (xα))), val(di )+ val(σ i (c− xα))}

> val(t (σ (xα))).
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Finally, as val(t (σ (c))) > val(t (σ (x0))) > mini {val(di )+ σ
i (ξ)}, (t, c, d, ξ) is also in

σ -Hensel configuration. �

Let (t, a, d, ξ) be in σ -Hensel configuration. If t = 0, we are done; if not, let (xα)α∈β
be a maximal sequence (with respect to the length) such that x0 = a and, for all α,

(t, xα, d, ξ) is in σ -Hensel configuration, val(xα+1− xα) > maxi {val(σ−i (t (σ (xα))d−1
i ))},

and t (σ (xα))↝ 0. If α is a limit ordinal, as M is σ -algebraically maximally complete, and

t 6= 0, (xα) has a pseudo-limit xβ . By Lemma 4.17, the sequence (xα)α∈β+1 still meets the

same requirements, contradicting the maximality of (xα)α∈β . It follows that β = γ + 1.

If t (σ (xγ )) 6= 0, then applying Lemma 4.16 to (t, xγ ), we obtain an element xβ such

that (xα)α∈β+1 still meets the same requirements, a contradiction of the maximality of

(xα)α∈β once again. Hence we must have that t (σ (xγ )) = 0 and c = xγ is a solution to

the σ -Hensel configuration (t, a, d, ξ). �

Definition 4.18 (TA,σ−Hen). Let TA,σ−Hen be the LA,Q,σ -theory of analytic fields with an

automorphism that are σ -Henselian and have a non-trivial valuation group. To specify

the characteristic we will write TA,σ−Hen,0,0 or TA,σ−Hen,0,p.

Proposition 4.19. Let A :=
⋃

X ,Y W[Fp
alg
]〈X〉[[Y ]], and let Wp be the LA,Q,σ -structure

with base set W(Fp
alg
), the obvious valued field structure and analytic structure, and

interpreting σ as the lifting to W(Fp
alg
) of the Frobenius automorphism on Fp

alg
. Then

Wp |H TA,σ−Hen,0,p.

Proof. It is clear that Wp |H TA. As W(Fp
alg
) is complete with a discrete valuation, it is

maximally complete. It follows from Proposition 4.14 that it is σ -Henselian. �

In the definition of TA,σ−Hen, we have not required the residue field to be linearly

closed, since it comes for free.

Proposition 4.20. Let M |H TA,σ−Hen, then K(M) is linearly closed.

Proof. Let c ∈ K(M), and let P(x) =
∑

i ai xi be a non-zero linear polynomial. Let

ε ∈ K(M) be such that val(ε) < val(c)− val(a0). Then P(σ (εx)) =
∑

aiσ
i (ε)σ i (x) and

mini {val(aiσ
i (ε))} 6 val(a0)+ val(ε) < val(c). Thus, we may assume that mini {val(ai )} <

val(c) = val(P(σ (0))− c). But, as P is linear, a linearly approximates P at prolongations

on M, and (P − c, 0, a, 0) is in σ -Hensel configuration. As M is σ -Henselian, there exists

e ∈ K(M) such that P(σ (e)) = c. �

To conclude this section, let us show that TA,σ−Hen behaves well with respect to

coarsening. The following results will mainly be used in § 6.3 to transfer quantifier results

from equicharacteristic zero to mixed characteristic.

Let L be an RV-enrichment of LA,Q,σ , and let T be an L-theory containing TA,σ−Hen,0,p
Morleyized on RV (cf. Definition A.3). By § 2 we can find an RV∞-enrichment L∞ of LRV∞

(the ∞ in LRV∞ is there to recall that the leading term structure is given by RV∞ and

not the RVn , although, to add to the general confusion, the RVn are indeed present in
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the enrichment) an L∞-theory T∞1 ⊇ T∞vf,0,0 and two functors C∞1 : Str(T )→ Str(T∞1 ) and

UC∞1 : Str(T∞1 )→ Str(T ). For any C in Str(T ) we enrich C∞1 (C) by defining

• ·∞ and 1∞ to be the multiplicative group structure of RV∞;

• 0∞ to be (0n)n∈N>0 ;

• x |∞y to hold if, for some n, π1(x)|1rv1(p−n)π1(y) holds;

• x +∞,∞ y to be (πmn(x)+mn,m πmn(y))m∈N>0 if there exists n ∈ N>0 such that πn(x)+n,1
πn(y) 6= 01 and 0∞ otherwise;

• x |R∞y to hold if π1(x)|R1 π1(y) holds;

• E∞(x) to be (Ek(x))k∈N>0 for all E in some A?
m,n ;

• σ∞ to be (σn(x))n∈N>0 ;

and we obtain a new functor C∞2 : Str(T )→ Str(T∞2 ), where T∞2 := T∞1 ∪T∞A,σ,0,0. One

can check that we still have an equivalence of categories induced by C∞2 and UC∞1 ,

and that C∞2 also respect cardinality up to ℵ0 and respects ℵ1-saturated models.

Finally, by Corollary B.4, as T is Morleyized on RV, we obtain functors C∞3 : Str(T )→
Str(T (RV∞ ∪RV)−Mor

2 ) and UC∞3 : Str(T (RV∞ ∪RV)−Mor
2 )→ Str(T ). Note that, in this case,

because we only enrich by predicates, the full subcategory F of Str(T ) is not actually

needed.

Let us now show that, for all M |H T , C∞3 (M) |H T∞A,σ−Hen,0,0.

Proposition 4.21. Let M |H T and t : Kn
→ K be an LA,Q

∣∣
K(M)-term, d ∈ K(M), and b

an open O∞-ball. If, in C∞3 (M), d linearly approximates t at prolongations on b, then,

for any open O-ball b′ ⊆ b, d also linearly approximates t at prolongations on b′ in M.

Proof. For all a and e ∈ b′ ⊆ b, we have

val∞(t (σ (a))− t (σ (e))− d · σ(a− e)) > min
i
{val∞(di )+ val∞(σ i (a− e))}.

Let i0 be such that val∞(di0)+ val∞(σ i0(a− e)) is minimal. Then we have val(t (σ (a))−
t (σ (e))− d · σ(a− e)) > val(di0)+ val(σ i0(a− e)) > mini {val(di )+ val(σ i (a− e))}. �

Proposition 4.22. Let M |H T . Then C∞3 (M) is σ -Henselian (for the valuation val∞).

Proof. Let (t, a, d, ξ) be in σ -Hensel configuration in C∞3 (M). Let i0 be such that

val∞(di0)+ σ
i0(ξ) is minimal. As (t, a, d, ξ) is in σ -Hensel configuration, val(t (σ (a))) >

val∞(di0)+ σ
i0(ξ). Let r = σ−i0(t (σ (a))d−1

i0
p−1). Then

val(t (σ (a))) > val(di0)+ val(σ i0(r)) > min
i
{val(di )+ val(σ i (r))}.

Moreover,

val∞(σ i0(r)) = val∞(t (a))− val∞(di0) > σ i0(ξ);

i.e., val∞(r) > ξ . It follows that B̊O
val(r)(a) ⊆ B̊O∞

ξ (a), and hence, by Proposition 4.21, d

linearly approximates t at prolongations on B̊O
val(r)(a), and (t, a, d, val(r)) is in σ -Hensel

configuration.
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By σ -Henselianity of M , we can find c ∈ K(M) such that t (σ (c)) = 0 and val(c− a)
> maxi {val(σ−i (t (σ (a))d−1

i ))}. But then we have that, for all i , val∞(c− a) >
val∞(σ−i (t (σ (a))d−1

i )). �

It follows from those two propositions that we can further enrich T (RV∞ ∪RV)−Mor
2 so

that it is an RV-enrichment of T∞A,σ−Hen,0,0. Hence we have proved the following.

Proposition 4.23. Let L be an RV-enrichment of LA,Q,σ and T be an L-theory containing

TA,σ−Hen,0,p Morleyized on RV. There exist an RV∞-enrichment L∞ of L∞A,Q,σ (with new

sorts RV =
⋃

n RVn) and an L∞-theory T∞ ⊇ T∞A,σ−Hen,0,0 Morleyized on RV∞ ∪RV, and

functors C∞ : Str(T )→ Str(T∞) and UC∞ : Str(T∞)→ Str(T ) that respect cardinality up

to ℵ0 and induce an equivalence of categories between Str(T ) and StrC∞,(|L |ℵ1 )+(T
∞) and

such that UC∞ respects models and elementary submodels and sends RV∞ ∪RV to RV
and C∞ respects (|A|ℵ1)+-saturated models.

Similarly, we can prove the existence of these functors in the analytic setting and in

the algebraic setting, and these functors are actually induced by those in the analytic

difference case.

Proposition 4.24. Let Lan be any RV-extension of LA,Q contained in L, and let Lalg be

any RV-extension of LRV+ contained in Lan. Let Tan := T |Lan and Talg := T |Lalg . Assume

that both Tan and Talg are Morleyized on RV.

(i) There exist an RV∞-enrichment L∞an of L∞A,Q and an L∞an -theory T∞an ⊇ T∞A,0,0
Morleyized on RV∞ ∪RV, and functors C∞an : Str(Tan)→ Str(T∞an ) and UC∞an :

Str(Tan)→ Str(Tan) with the same properties as in Proposition 4.23.

Moreover, C∞an( · |Lan) = C∞(·)
∣∣
L∞an

, and similarly for UC∞an .

(ii) There exist an RV∞-enrichment L∞alg of LRV∞ + and an L∞alg-theory T∞alg ⊇ T∞Hen,0,0
Morleyized on RV∞ ∪RV, and functors C∞alg : Str(Talg)→ Str(T∞alg) and UC∞alg :

Str(T∞alg)→ Str(Talg) with the same properties as in Proposition 4.23.

Moreover, C∞alg( · |Lalg) = C∞an( · |Lan)
∣∣
L∞alg
= C∞(·)

∣∣
L∞alg

, and similarly for UC∞alg.

5. Reduction to the algebraic case

In this section, let Lan be an RV-enrichment of LA,Q, and let Tan be an Lan-theory

containing TA, Morleyized on RV. We define Lalg := Lan r(A∪ {Q}) (it is an

RV-enrichment of LRV+) and Talg = Tan|Lalg . As previously, if there are new sorts 6RV,

we write RV for RV∪6RV.

Remark 5.1. Let M1 and M2 |H Tan, Ci ⊆ Mi , and let f : C1 → C2 be an Lan-isomorphism.

Obviously, f extends uniquely to 〈C1〉. As Lan contains Q, K(〈C1〉) is a field. Hence any

partial Lan-isomorphism with domain C has a unique extension to Frac(K(C)).

Although it is well known, the algebraic case (i.e., in Lalg) is a bit more complicated

because we do not have Q in Lalg.
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Proposition 5.2. Let M1 and M2 |H Talg be two Lalg-structures, Ci ⊆ Mi , and let f : C1 →

C2 be an LRV+-isomorphism. Assume that rv(Frac(K(C1))) ⊆ RV(C1). Then f has a

unique extension to Frac(K(C1)).

Proof. Let f ′
∣∣
K be the unique extension of f |K to Frac(K(C1)). It is a ring morphism. By

Lemma A.13, it suffices to show that f ′
∣∣
K ∪ f |RV respects the rvn . As rv(Frac(K(C1))) ⊆

RV(C1), f |RV commutes with the inverse on any rvn , and hence

rvn( f ′(a/b)) = rvn( f (a) f (b)−1) = f (rvn(a)) f (rvn(b)−1) = f (rvn(a/b)).

This concludes the proof. �

In the following proposition we will be working in equicharacteristic zero; hence, to

avoid needlessly cluttered notation, we will write R, res, RV, and rv for R1, res1, RV1,

and rv1.

Proposition 5.3 (Reduction to the algebraic case). Suppose that Tan ⊇ TA,0,0. Let M1
and M2 |H Tan, f : M1 → M2 be a partial Lan-isomorphism with domain C16M1, and

a1 ∈ M1. If f can be extended to an Lalg-isomorphism f ′ whose domain contains a1, then

f can be extended to an Lan-isomorphism sending a1 to f ′(a1).

Proof. First, because Talg
∣∣
RV = Tan|RV, Talg is also Morleyized on RV. By Lemma A.11,

we can extend f ′ on RV, and we may assume that RV(C1〈a1〉) ⊆ RV(C1). Moreover, as

f ′ respects |R1 , f ′ respects R, and by Remark 5.1 and Proposition 5.2, replacing, if need

be, a1 by its inverse, we can assume that a1 ∈ R.

Let a2 = f ′(a1), and let us define f ′′ on K(〈C1〉a1) by f ′′(t (a1)) = t f (a2), where

t f is the term obtained by applying f to the parameters of t . This morphism f ′′

clearly coinciding with f ′ on K(C1)[a1], and it is well defined. Indeed, it suffices to

check that, if t (a1) = 0, then t f (a2) = 0. But, by Weierstrass preparation, there exist

S ∈ SCR(C1), an LA,Q
∣∣
K(C1) term E (a strong unit on S), and P, Q ∈ K(C1)[X ]

such that Q does not have any zero in S(K(C1)
alg
), a1 ∈ S, and, for all x ∈ S, t (x) =

E(x)P(x)/Q(x). As t (a1) = 0 and E(x) 6= 0, we must have P(a1) = 0. As f ′ is a partial

Lalg-isomorphism, we have a2 ∈ S f and P f (a2) = 0. As f is an Lan-isomorphism, by

Theorem 3.10 it is in fact an elementary partial Lan-isomorphism, and we also have

that, for all x ∈ S f , t f (x) = E f (x)P f (x)/Q f (x), and E f is a strong unit on S f . Hence,
t f (a2) = E f (a2)P f (a2)/Q f (a2) = 0.

Let us show that f ′′ ∪ f |RV is an LA,Q-isomorphism. By Lemma A.13, it suffices

to show that, for all LA,Q
∣∣
K(C1)-terms t , rv(t f (a2)) = f (rv(t (a1))). By Remark 1.5,

S is defined by a formula of the form θ(rv(R(x))), where θ is an Lalg
∣∣
RV-formula and

the Ri are polynomials in K(C1)[X ]. By [12, proof of Theorem 7.5], there exists an

Lalg(C1)-definable function g : K →
∏

i RVni such that every fiber is an open O-ball

and, for any polynomial T equal to P, Q, or one of the Ri , rv(T (x)) is constant on

any fiber of g. It follows immediately that every fiber of g is either in S or in its

complement. Let α = g(a1) and β = rv(t (a1)). As E is a strong unit, on g−1(α) = B̊val(d)(c)
it is of the form eF((x − c)/d) with val(F((x − c)/d)) = 0. As res((x − c)/d) = 0 on

all of g−1(α), by Corollary 3.9, rv(E(x)) is constant on g−1(α), and hence rv(t (x)) is
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constant on g−1(α). As f is a partial elementary Lan-isomorphism and α and β ∈ RV(C1),

the LA,Q(C1)-formula ∀x, g(x) = α ⇒ rv(t (x)) = β is preserved by f . And as f ′ is

a partial elementary Lalg-isomorphism (by Theorem 1.4) and g is Lalg(C1)-definable,

g f (a2) = f (α), and we have that rv(t f (a2)) = f (β) = f (rv(t (a1))). �

Corollary 5.4. The previous proposition holds without any assumption on residue

characteristic.

Proof. Recall Proposition 4.24 and assume that M1 and M2 have mixed characteristic,

and that f and f ′ are as in Proposition 5.3.

Then C∞alg( f ′) is an extension of C∞an( f ) whose domain contains a1. Applying

Proposition 5.3, we obtain f ′′, an L∞an -isomorphism extending C∞an( f ), whose domain

contains a1, and we conclude by applying UC∞an . �

Corollary 5.5. Let ϕ(x, y, r) be any Lan-formula where x and y are K-variables and r
are RV∪6RV-variables. Then there exist a K-quantifier free Lalg-formula ψ(x, z, r) and

Lan|K-terms u(y) such that Tan |H ϕ(x, y, r) ⇐⇒ ψ(x, u(y), r).

Proof. This follows from the previous corollary by a (classic) compactness argument. For

the sake of completeness (and also because the uniformization part of that argument may

be less usual), let us state it. Consider the set of formulas

Tan ∪ {ϕ(x1, y, r),¬ϕ(x2, y, r)}∪
{ψ(x1, u(y), r) ⇐⇒ ψ(x2, u(y), r) : ψ is an Lalg -formula and u are LA,Q

∣∣
K-terms}.

By Corollary 5.4, this set of formulas cannot be consistent. Hence there is a finite set

of Lalg-formulas (ψi )06i<n (which we can take K-quantifier free by Theorem 1.4) and

LA,Q
∣∣
K-terms ui such that

Tan |H ∀ yx1x2

(∧
i

ψi (x1, ui (y), r) ⇐⇒ ψi (x2, ui (y), r)

)
⇒(ϕ(x1, y, r) ⇐⇒ ϕ(x2, y, r)).

For all ε ∈ 2n , let θε :=
∧
ψi (x, ui (y), r)ε(i), where ψ1

= ψ and ψ0
= ¬ψ . For fixed y

and r , the θε(x, y, r) form a partition of K compatible with ϕ(x, y, r). For all η ∈ 22n
, let

χη(y, r) be a K-quantifier free Lan-formula equivalent to
∧
ε(∃x θε(x, y, r)∧ϕ(x, y, r))η(ε).

Note that for any choice of y and r there is exactly one η such that χη(y, r) holds. It is

now quite easy to show that ϕ(x, y, r) ⇐⇒
∨
η(χη(y, r)∧

∨
ε∈η θε(x, y, r)). �

Remark 5.6.

1. This corollary is a stronger version of [16, Theorem B]. Not only is it resplendent

but it also has better control of the parameters (essentially due to a better control

of the parameters in Weierstrass preparation in [9]). In particular, it is uniform.

2. Let Lac
A,Q be Lac enriched with symbols for all the functions from A, a symbol

Q : K2
→ K , for all units E ∈ A a symbol Ek : Rk → Rk , and a symbol |R ⊆ (0∞)2.

Then, any Lac
A,Q-formula (or even formulas in an R∪0-enrichment of Lac

A,Q) can
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be translated into an RV-enrichment of LA,Q (see Proposition 1.8), and hence

Corollary 5.5 also holds (resplendently) for the Lac
A,Q-theory Tac

A,Hen of Henselian

valued fields with separated A-structure and angular components. Note that some

of the symbols we should have added have disappeared, like the trace of Ek on

0∞ which is constant equal to 0. Similarly the Ek and |R1 are missing one of their

arguments (the 0∞-argument in the case of Ek and the Rn-argument for |R) but

they depend trivially on it.

6. K-quantifier elimination in TA,σ−Hen

Up to § 6.3, we will be working solely in equicharacteristic zero; hence, we will once again

write RV and rv for RV1 and rv1. We will also be considering that variables are indexed

by N, and we will sometimes identify a variable and its index. But hopefully no confusion

should arise.

Let M |H TA and C 6M .

Definition 6.1 (Order-degree). We say that an LA,Q
∣∣
K(C)-term t =

∑d
i=0 ti (x 6=m)x i

m is

polynomial of order (at most) d in xm . If t is not of this form, we take the convention

that t has infinite degree in xm . Let T (C) be the set of tuples (t, I,m, d), where I is a finite

set of variables, m ∈ I , d ∈ N∪{∞}, and t 6= 0 is an LA,Q
∣∣
K(C)-term whose variables are

contained in I and which is either polynomial in xm of degree at most d or not polynomial
in xm (and d = ∞). Let T0(C) = T (C)∪ {0}.

We (partially) order T (C) by saying that (u, J, n, e) has (strictly) lower order-degree

than (t, I,m, d) if one of the following holds:

(i) max(J ) < max(I );

(ii) max(J ) = max(I ) and J ⊂ I ; i.e., J is strictly included in I ;

(iii) J = I and n > m;

(iv) J = I and n = m and e < d.

We extend this order to T0(C) by making the zero term greater than any element of

T (C).

Remark 6.2.

1. This is a well-founded (partial) order.

2. In condition (iii), the order is the inverse of what one would expect, but that is

because we want minimal terms to be polynomial in the last variable.

3. We will also write J < I to mean that condition (i) or condition (ii) holds.

When a is indexed by some set I ⊆ N and n ∈ I , we will denote by a 6=n the tuple a
missing its nth component and use (a 6=n, xn) for the tuple a where the nth component

is replaced by xn . We define σ 6=n(a) and (σ 6=n(a), xn) similarly, and let σ6n(a) :=
(a, σ (a), . . . , σ n(a)). Finally, we will write 〈C〉σ := 〈C〉LA,Q,σ

and C〈c〉σ := C〈c〉LA,Q,σ

(cf. Definition A.12).
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6.1. Residual and ramified extensions

Definition 6.3 (Regularity). Let t (x) =
∑

i ti (x 6=m)x i
m be an LA,Q(M) term, and let a ∈

K(M). We say that t is regular at a in xm if

val(t (a)) = min
i
{val(ti (a 6=m))+ ival(am)}.

By convention the zero term is never regular.

First, we state a proposition which has nothing to do with automorphisms.

Proposition 6.4. Let α ∈ rv(R(M)), a ∈ rv−1(α), and (t, I,m, d) ∈ T0(C) be of minimal

order-degree such that t (x) is polynomial in xm and t is not regular at a. Then, for

all (u, J, n, e) < (t, I,m, d), rv(u(x)) is constant on rv−1(α). Moreover, for all a 6=n ∈

rv−1(α 6=n), u(a 6=n, xn) has a Weierstrass preparation on rv−1(αn).

Proof. First, we may assume that K(M)
alg
= K(M) (see Proposition 3.26). We work

by induction on J for the order defined in Remark 6.2.3. The proposition is trivial for

constant terms. Now, assume that the proposition is true for any (v, K , p, f ) with K < J .

Let us first assume that u is polynomial in xn . Then, u =
∑

i ui (x 6=n)x i
n must be

regular at a, and hence val(u(a)) = mini {val(ui (a 6=n))+ ival(an)}, and hence rv(u(a)) =∑
i rv(ui (a 6=n))α

i
n 6= 0. For any e ∈ rv−1(α) and i , rv(ui (e 6=n))rv(en)

i
= rv(ui (a 6=n))α

i
n .

Moreover, if
∑

i rv(ci ) 6= 0, then rv(
∑

i ci ) =
∑

i rv(ci ); hence we must also have rv(u(e)) =∑
i rv(ui (a 6=n))α

i
n 6= 0. As u is polynomial in xn , it has a Weierstrass preparation. Hence,

for polynomial u, the proposition is proved.

Suppose now that u is of infinite degree in xn , and hence that all terms (v, J, n, e) with
e 6= ∞ have been taken care of in the previous paragraph. By Weierstrass preparation,

there exists S ∈ SCR(C〈a 6=n〉) such that u(a 6=n, xn) has a Weierstrass preparation on S

and an ∈ S. But then either rv−1(αn) ⊆ S or rv−1(αn) contains a K(C〈a 6=n〉)
alg

-ball and

hence a point c ∈ K(C〈a 6=n〉)
alg

. Let P =
∑

pi (a 6=n)X i
∈ K(C〈a 6=n〉)[X ] be its minimal

polynomial. Then, for all e ∈ rv−1(αn), rv(P(e)) = 0 (i.e., P(e) = 0), but that is absurd.

Hence t has a Weierstrass preparation on rv−1(αn) and there exist F(x, z) ∈ A, c ∈
K(C〈a〉), and P and Q ∈ K(C〈a 6=n〉)[X ] such that, for all xn ∈ rv−1(αn),

u(a 6=n, xn) = F
(

xn − an

an
, c
)

P(xn)

Q(xn)

and val(F((xn − an)/an, c)) = 0. But rv(P(xn)) and rv(Q(xn)) do not depend on xn , and

rv(F((xn − an)/an, c)) only depends on res((xn − an)/an) = 0 (see Corollary 3.9). Hence

β := rv(u(a 6=n, xn)) does not depend on xn ∈ rv−1(αn). The LA,Q-formula

∀xn rv(xn) = αn ⇒ rv(u(a 6=n, xn)) = β

is in the LA,Q-type of a 6=n over Cαnβ. By induction (and Corollary 1.6), all tuples

a 6=n ∈ rv−1(α 6=n) have the same LA,Q(Cαβ)-type, and rv(u(a)) = β for all a ∈ rv−1(α). �

Let us now prove the first embedding theorem we will need to eliminate quantifiers.

Let M1 and M2 be models of TA,σ−Hen, Ci 6Mi , and let f : C1 → C2 be an

LRV−Mor
A,Q,σ -isomorphism.
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Proposition 6.5. Let α ∈ rv(R(M1))∩RV(C1), a ∈ rv−1(α) and (t, I,m, d) ∈ T0(C) be

polynomial in xm for some m ∈ N. Assume that (t, I,m, d) is of minimal order-degree

such that t is not regular at σ(a). Then

(i) there exist a1 ∈ R(M1) and a2 ∈ R(M2) such that t (σ (a1)) = 0 = t f (σ (a2)),

rv(a1) = α, and rv(a2) = f (α);

(ii) for any such ai , f can be extended to an LRV−Mor
A,Q,σ -isomorphism sending a1 to a2.

Proof. Let t =
∑d

i=0 ti (x 6=m)x i
m . By minimality of t , we cannot have td(σ 6=m(a)) = 0.

Dividing by td , we may assume that td = 1.

Claim 6.6. There exists c ∈ K(M) that linearly approximates t on rv−1(α) at prolongations

and such that

min
j
{val(c j )+ val(σ j (a))} = min

i
{val(ti (σ (a)))+ ival(σm(a))}.

Proof. Let Ni = Mi
alg

(see Proposition 3.26). Let se :=
∑

i<e ti x i
m and s := sd . For all i

and j 6= m, by Proposition 6.4 applied in N1, ti (σ 6= j (a), x j ) has a Weierstrass preparation

on the ball b j := rv−1(α j ) and constant valuation. By Proposition 6.4, for all e 6 d,

se also has constant valuation on rv−1(σ (α)). By invariance under addition (and an

induction on e) we can show that s(σ 6= j (a), x j ) also has a Weierstrass preparation on

b j . Moreover, ∂s/∂x j (x) is also given by an LA,Q(C1)-term of degree d − 1 in xm ; hence

rv(∂s/∂x j (σ 6= j (a), x j )) is constant on b j (equal to some rv(c j ), where c j ∈ K(M1)). By

Proposition 3.27, for all y j and z j ∈ b j ,

rv(t (σ 6= j (a), y j )− t (σ 6= j (a), z j )) = rv(s(σ 6= j (a), y j )− s(σ 6= j (a), z j )) = rv(c j )rv(y− z).

This last statement is in the LA,Q-type of σ 6= j (a) over C1rv(c j ). By Proposition 6.4 and
Corollary 1.6, any e 6= j ∈ rv−1(σ 6= j (α)) has the same LA,Q(C1rv(c j ))-type, and hence the

same c j works for any e ∈ rv−1(σ (α)).

By minimality of t , s is regular at σ(a) and val(s(σ (a))) = mini<d{val(ti (σ 6= j (a)))+
ival(σm(a))}. Because val(s(σ 6= j (a), x j )) is constant on b j , by the last statement of

Proposition 3.27 and because rad(b j ) = rv(σ j (a)), we obtain that

val(c j )+ val(σ j (a)) > val(s(σ (a))) > min
i
{val(ti (σ (a)))+ ival(σm(a))}.

When j = m, as t is polynomial in xm and ∂t/∂xm(x) is of degree d − 1 in xm , by
Proposition 3.27, we can also find cm ∈ K(M1) that linearly approximates t (e 6=m, xm) on

rv−1(σm(α)) for any e ∈ rv−1(σ (α)). And

val(cm)+ val(σm(a)) = val(∂t/∂xm(x))+ val(σm(a)) = min
i
{val(ti (σ (a)))+ ival(σm(a))}.

It now follows from Proposition 4.6 that c linearly approximates t on rv−1(α) at

prolongations. �

If t 6= 0, as t is not regular at σ(a), val(t (σ (a))) > mini {val(ti (σ (a)))+ ival(σm(a))} =
val(cm)+ val(σm(a)) = min j {val(c j )+ val(σ j (a))}, and (t, a, c, val(α)) is in σ -Hensel
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configuration. Hence there exists a1 ∈ M1 such that t (a1) = 0 and val(a1− a) >
maxi {σ

−i (t (σ (a)c−1
i ))}. In particular,

val(σm(a1− a)) > val(t (σ (a)))− val(cm)

> min
i
{val(ti (σ (a)))+ ival(σm(a))}− val(cm)

= val(σm(a)),

and thus rv(a1) = rv(a).
If xm is not the highest variable appearing in t (which we call xn) then, applying

Proposition 6.4 to (t, I, n,∞) < (t, I,m, d), we get that rv(t (x)) is constant equal to 0 on

all of rv−1(σ (α)). As t (σ 6=m(a), xm) is polynomial and has infinitely many zeros, we must

have ti (σ (a)) = 0 for all i , but that contradicts the non-regularity of t in xm at σ(a).
Thus xm must be the highest variable appearing in t . For the same reasons, we cannot

have rv(cm) = 0.

Note that we have also proved that, for all e ∈ rv−1(σ (α)), t is minimal such that it is
not regular in e; hence the LA,Q-type of σ(α) says so, and hence, as TA eliminates field

quantifiers, t f has the same minimality property (relatively to f (α)), and we find a2 in

the exact same way. If t = 0 then any a1 and a2 ∈ rv−1(α) will work.

Let us now show that f can be extended to send a1 to a2. For all n < m, any term

u(x6n) ∈ T0(C) has order-degree strictly smaller than (t, I,m, d), and hence β := rv(u(e))
does not depend on the choice of e ∈ rv−1(σ (α)). The formula ‘∀x rv(x) = σ(α)⇒
rv(u(x)) = β’ is an LA,Q(C1)-formula respected by f , and thus f (β) = f (rv(u(σ (a1)))) =

u(σ (a2)). It follows immediately that the function fn sending u(σ (a1)) to u(σ (a2)) is well

defined. It is obviously an LA,Q
∣∣
K-morphism, and, as it respects rv, by Lemma A.13, it

is an LA,Q-morphism.

Let us now assume that t 6= 0.

Claim 6.7. Let P := t (σ 6=m(a1), xm) ∈ K(C1,m−1)[X ]. For all n > m, σ n(a1) is the only

zero of Pσ
n−m

whose leading term is σ n(α).

Proof. Because σ is an automorphism of valued fields, it suffices to prove the case when

n = m. Let e ∈ rv−1(σm(α))r {σm(a1)}. Then rv(P(e)) = rv(P(e)− P(a)) = rv(cm)rv(e−
σm(a1)) 6= 0. �

The same claim is true of σm(a2) with respect to f (Pσ
n−m
) and f (σ n(α)). Therefore, it

suffices to extend fm−1 to the LA,Q-definable closure of C1,m−1, which we can certainly do

as fm−1 is an LA,Q-elementary isomorphism (by resplendent field quantifier elimination

in TA).

Thus we have obtained an LA,Q-isomorphism between C1〈σ(a1)〉 and C2〈σ(a2)〉. By

Remark 4.2, it is an LA,Q,σ -isomorphism. This morphism is also an LRV−Mor
A,Q,σ -isomorphism

by Lemma A.13. �

Corollary 6.8. Let α ∈ RV(C1). Then there exists a1 ∈ M1 such that rv(a1) = α and f
extends to an isomorphism on C1〈a1〉σ .
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Proof. If α ∈ res(R(M1)), then Proposition 6.5 applies. If not, apply Proposition 6.5 to

α−1, and conclude by extending the isomorphism to the analytic field generated by its

domain by Remark 5.1. �

6.2. Immediate extensions

Let M |H TA be sufficiently saturated, and let C 6M .

Definition 6.9 (pseudo-convergent ?-sequences). Let (xα) be a sequence of tuples of the

same length. We say that it is a pseudo-convergent sequence if, for all i , (x i,α) is

pseudo-convergent. Moreover, we will say that a is a pseudo-limit of (xα) if, for all i ,
x i,α↝ ai .

Definition 6.10 (Equivalent pseudo-convergent sequences). We will say that two

pseudo-convergent sequences are equivalent if they have the same pseudo-limits.

Lemma 6.11. Let xα be a pseudo-convergent sequence, a a pseudo-limit of this sequence,
and yα a sequence such that, for all i , val(ai − yi,α) = val(ai − xi,α). Then (yα) is also a

pseudo-convergent sequence, equivalent to (xα).

Proof. We may assume that |xα| = 1. Note that, for all β > α, val(yβ − yα) = val(yβ −
a+ a− yα) = val(a− xα) = val(xβ − xα), as val(a− xβ) > val(a− xα). Hence (yα) is also

pseudo-convergent. Moreover, if b is any pseudo-limit of (xα), then val(b− yα) =
val(b− xα+1+ xα+1− a+ a− yα) = val(a− yα) = val(a− xα) = val(b− xα) and yα↝ b.

The symmetric argument shows that if yα↝ b then xα↝ b. �

Definition 6.12 (Rich enough families). We say that a family F of equivalent

pseudo-convergent sequences of C is rich enough if, for any linear polynomial P(X) =∑
i πi X i ∈ rv(K(C))[X ], there exists (xα) ∈ F such that, for all pseudo-limit a and all α,

P(rv(a− xα)) 6= 0; i.e., if rv(pi ) = πi then val(
∑

i pi (ai − xi,α)) = mini {val(pi )+ val(ai −

xi,α)}.

We will say that a term u =
∑d

i=0 ui (x 6=m)σ
m(x)i is monic if ud = 1. As in § 6.1, let us

begin with a proposition that does not seem to have anything to do with automorphisms.

Proposition 6.13. Let F be a rich enough family of equivalent pseudo-convergent sequences

of C that are eventually in R and let (t, I,m, d) ∈ T0(C) does seem a better idea.

Suppose that (t, I,m, d) has minimal order-degree such that t is a monic polynomial

in xm , and that there exists a pseudo-convergent sequence (xα) ∈ F that pseudo-solves

t. Then, for all (u, J, n, e) < (t, I,m, d), there exists α0 such that rv(u(x)) is constant

on b0 := B̊γ 0(xα0+1), where γ 0 := val(xα0+1− xα0) (it follows immediately that rv(u(x)) ∈
rv(K(C))), and, for any a ∈ b0, u(a 6=n, xn) has a Weierstrass preparation on bn,0.

Proof. We may assume that K(M)
alg
= K(M). The proof proceeds by induction on J .

Suppose that Proposition 6.13 holds for any term (v, K , p, f ) such that K < J . Let us

prove a few claims to take care of certain induction steps.
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Claim 6.14. Fix e and n ∈ N. Suppose that the lemma holds for all (u, J, n, e). Then it

holds for any (u, J, n, e+ 1), where u is a monic polynomial in xn .

Note that the case when e = 0 does not require any hypothesis (other than the induction

hypothesis on J ).

Proof. Let u = xe+1
n +

∑
i6e ui (x 6=n)x i

n and, for all f 6 e, s f :=
∑

i6 f ui (x 6=n)x i
n . Let a

be a pseudo-limit of (xα). Then we can find α0 such that, for all j 6= n, val(s f (a 6= j , x j ))

and val(u f+1(a 6= j , x j )) are constant on b j,0, and u f+1(a 6= j , x j ) has a Weierstrass

preparation. By induction on f and invariance under addition, se(a 6= j , x j ) has a

Weierstrass preparation on b j,0. Let s := se. Making α0 bigger we can also assume that

val(∂s/∂x j (a 6= j , x j )) is constant on b j,0. By Proposition 3.27, we find c j ∈ K(C) such

that, for all y j and z j ∈ b j,0, rv(u(a 6= j , y j )− u(a 6= j , z j )) = rv(s(a 6= j , y j )− s(a 6= j , z j )) =

rv(c j )rv(y j − z j ). By field quantifier elimination, this statement only depends on the

value of rv(v(a 6= j )) for a finite number of LA,Q
∣∣
K(C)-terms v, and hence, by induction,

making α0 bigger, we may assume that this statement is true of all a ∈ b0. When j = n,

the same arguments yield some cn ∈ K(C) as u is already polynomial in xn and ∂u/∂xn(x)
is polynomial in xn of degree at most e. It now follows from Proposition 4.6 that c linearly

approximates u on b0.

Let (yα) ∈ F be such that, for any pseudo-limit a, val(c · (a− yα)) = min j {val(c j )+

val(a j − y j,α)}. Then val(u(a)− u(yα)) = min j {val(c j )+ val(a j − y j,α)}. If, for all α,

val(u(a)) > min j {val(c j )+ val(a j − y j,α)}, then val(u(yα)) = min j {val(c j )+ val(a j − y j,α)}

and u(yα)↝ 0, contradicting the minimality of t . Hence val(u(a)) < min j {val(c j )+

val(a j − y j,α)} for α � 0, and rv(u(a)) = rv(u(yα)) ∈ rv(K(C)). By compactness, making

α0 bigger, this is true for any a ∈ b0. �

Claim 6.15. Fix e and n ∈ N. Suppose that the lemma holds for (u, J, n, e) monic

polynomial in xn . Then it holds for any (u, J, n, e).

Proof. Dividing by the dominant coefficient ue (which has constant rv on b0 by

induction), we obtain a term v monic polynomial of degree at most e in xn and which

must also have constant rv on b0 if we take α0 big enough. �

Claim 6.16. Fix n ∈ N. Suppose that, for all e ∈ N, the lemma holds for all (u, J, n, e).
Then it also holds for all (u, J, n,∞).

Proof. Let a be a pseudo-limit of (xα). Any S ∈ SCR(C〈a 6=n〉) that contains an must

contain bn,0 for α0 big enough. If not, there exists c ∈ K(C〈a 6=n〉)
alg

such that xn,α↝ c.

Let P(a 6=n, xn) =
∑

i pi (a 6=n)x i
n be its minimal polynomial. Then, by hypothesis, for all

e ∈ b0 (for α0 big enough), rv(P(e)) = 0, and we must have pi (a 6=n) = 0 for all i , but that

is absurd.

It follows that we can find α0 such that u(a 6=n, xn) has a Weierstrass preparation on

bn,0; i.e., there exist F ∈ A, c ∈ K(C〈a 6=n〉) and LA,Q
∣∣
K(C)-terms P and Q polynomial in

xn such that, for all xn ∈ b j,0,

u(a 6=n, xn) = F
(

xn − xn,α0+1

xn,α0+1− xn,α0

, c
)

P(a 6=n, xn)

Q(a 6=n, xn)
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and val(F((xn − xn,α0+1)(xn,α0+1− xn,α0), c)) = 0. In turn, this implies that rv(u(a 6=n, xn))

does not depend on xn ∈ bn,0, and, by the usual uniformization argument (making α0
bigger), we can ensure that rv(u(e)) does not depend on e ∈ b0. �

Proposition 6.13 follows by induction. �

Remark 6.17. Note that the proof of Claim 6.14 also shows that there exists d ∈ K(C)
that linearly approximates t on b0 for α0 big enough.

Let M |H TA,σ be sufficiently saturated and C 6M such that res(K(C)) is linearly

closed.

Proposition 6.18. Let xα be a pseudo-convergent sequence of C. Then the family {σ(yα) :
yα is a pseudo-convergent sequence of C equivalent to xα} is a rich enough family of

equivalent pseudo-convergent sequences of C.

Proof. Let P(X) =
∑

i pi X i ∈ K(C)[X ]. If, for all i , pi = 0, we are done. Otherwise, let

εα = xα+1− xα, let i0 such that val(pi0)+ val(σ i0(εα)) is minimal, and let

Qα(σ (X)) = p−1
i0
σ i0(εα)

−1 P(σ (εαX)) =
∑

i

pi p−1
i0
σ i (εα)σ

i0(ε−1
α )σ i (X).

As res(Qα) is linear with coefficients in res(K(C)), which is linearly closed, we can find

dα ∈ K(C) such that res(Qα(σ (dα))) 6= res(Qα(σ (1))). In particular, res(dα) 6= res(1) and

val(dα − 1) = 0. Let yα = xα + εαdα.

Let a be such that σ(xα)↝ a. Then

rv(ai − σ
i (yα)) = rv(ai − σ

i (xα+1)+ σ
i (xα+1)− σ

i (xα)+ σ i (xα)− σ i (yα))

= rv(σ i (εα))rv(1− σ i (dα)).

It follows that val(a0− yα) = val(εα) = val(a0− xα). By Lemma 6.11, (yα) is equivalent

to (xα). Let ci = (ai − σ
i (yα))/σ i (εα). Then

res(P(a− σ(yα))p−1
i0
ε−1
α ) = res(Q)(res(c))

= res(Q)(res(σ (1)− σ(dα)))

= res(Q(σ (1)))− res(Q(σ (dα)))

6= 0.

Hence, we have val(P(a− σ(yα))) = val(pi0)+ val(σ i0(εα)) = mini {val(pi )+ val(ai −

σ i (yα))}. �

And now let us prove another embedding theorem for immediate extensions. Let M1
and M2 |H TA,σ−Hen be sufficiently saturated, Ni 6Mi have no immediate extension in

Mi and be σ -Henselian (as we will see in Remark 6.21 this second hypothesis follows from

the first one), and let Ci 6 Ni be such that res(K(C1)) is linearly closed and f : C1 → C2
an LRV−Mor

A,Q,σ -isomorphism.

Definition 6.19 (Minimal term of a pseudo-convergent sequence). Let (xα) be a

pseudo-convergent sequence of C1. We say that (t, I,m, d) ∈ T0(C1) is its minimal term
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if it is minimal such that it is monic polynomial in xn and it is σ -pseudo-solved by a

pseudo-convergent sequence equivalent to (xα).

Note that any pseudo-convergent sequence has a minimal term, as any

pseudo-convergent sequence σ -pseudo-solves 0.

Proposition 6.20. Let (xα) be a pseudo-convergent sequence of K(C1) (indexed by a limit

ordinal) which is eventually in R. Let (t, I,m, d) be its minimal term. Then

(i) there exist a1 ∈ N1 and a2 ∈ N2 such that xα↝ a1, f (xα)↝ a2 and t (σ (a1)) = 0 =
t f (σ (a2));

(ii) for any such a1, C1〈a1〉σ is an immediate extension of C1;

(iii) for any such ai , f can be extended to an LRV−Mor
A,Q,σ -isomorphism sending a1 to a2.

Proof. If t is zero, it suffices to choose any a1 and a2 such that xα↝ a1 and f (xα)↝ a2.

These exist in Mi , and we will see in the end why they exist in Ni . Let us now assume

that t is not zero. By Remark 6.17 (and Propositions 6.13 and 6.18), we find α0 and
d ∈ K(C1) that linearly approximate t at prolongations on b0 := B̊val(xα0+1−xα0 )

(xα0+1). By

Proposition 6.18, we can find a pseudo-convergent sequence (zα) of C1 equivalent to (xα)
such that, for all pseudo-limit a of (xα), val(t (σ (a))− t (σ (zα))) = mini {val(di )+ val(σ i (a−
zα))}. If, for all such a, val(t (σ (a))) < mini {val(di )+ val(σ i (a− zα))} for α big enough,

then val(t (σ (a))) = val(t (σ (yα))). By compactness, val(t (σ (x))) is constant on some b0.
But this contradicts the fact that we can find yα equivalent to xα that σ -pseudo-solves t .

Hence there exists a pseudo-limit a such that val(t (σ (a))) > mini {val(di )+ val(σ i (a−
zα))} > mini {val(di )+ val(σ i (ξ0))}, where ξ0 is the radius of b0 and (t, a, d, ξ0) is in

σ -Hensel configuration. As N1 is σ -Henselian, we can find a1 ∈ K(N1) such that t (a1) = 0
and val(a1− a) > maxi {val(σ−i (t (σ (a))d−1

i ))} > val(xα+1− xα); i.e., xα↝ a1. As f is an

LA,Q,σ -isomorphism, (t f , I,m, d) is the minimal term of ( f (xα)), and the same argument

shows that there is a2 ∈ K(N2) such that t f (a2) = 0 and f (xα)↝ a2.

If t 6= 0, let us now show that xm must be the last variable appearing in t . If it is not,

let xn be that last variable. By Proposition 6.13, we can find LA,Q
∣∣
K(A)-terms E , P,

and Q such that E is a strong unit in xn , P and Q are polynomial in xn , and, for all
a ∈ b0, t (a) = E(a)P(a)/Q(a). As t (σ (a1)) = 0, we also have P(σ (a1)) = 0, and because

(P, I, n,∞) < (t, I,m, d), we have rv(P(a)) = 0 (and hence rv(t (a)) = 0) for all a ∈ b0,

contradicting the fact that we can find yα equivalent to xα that σ -pseudo-solves t .
We can now conclude as in Proposition 6.5 by extending f to C1,n := C1〈σ6n(a1)〉

progressively, by sending σ n(a1) to σ n(a2). For n < m, it is exactly the same, and for

n > m, use the fact that σ n(a1) is the only zero of Pσ
n−m
(X) in (bn,0) for α0 � 0, where

P(Xm) = t (σ 6=m(a1), Xm).

If n < m, we have proved in Proposition 6.13 that the extension is immediate. If n > m,

we have just seen that σ n(a1) is ACVF-definable over K(C1〈σ6n−1(a1)〉). It follows that

σ n(a1) ∈ K(C1〈σ6n−1(a1)〉)
h , which is an immediate extension of K(C1〈σ6n−1(a1)〉), and

we conclude by Proposition 3.26.
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In the case where t is zero, we have yet to show that we can take ai ∈ Ni . Let (u, J, n, e)
be minimal over N1 that is σ -pseudo-solved by a pseudo-converging sequence equivalent

to xα. We can find a1 in M1 such that u(σ (a1)) = 0 and xα↝ a1. But then K(N1〈a1〉σ ) is

an immediate extension of N1, and we must have a1 ∈ N1. �

Remark 6.21. Note that we have just shown that, if we only assume that N1 has no

immediate extension in M1 (and not that N1 is σ -Henselian), then N1 is maximally

complete, and hence, by Proposition 4.14, it is σ -Henselian.

Definition 6.22 (Minimal term of a point). Let a ∈ M1. We say that (t, I,m, d) ∈ T0(C1)

is the minimal term of a over C1 if it is minimal such that it is monic polynomial in xm
and t (σ (a)) = 0.

Note that, because of Weierstrass preparation, minimal terms will always be polynomial

in their last variable.

Definition 6.23 ((t, I,m, d)-fullness). Let (t, I,m, d) ∈ T0(C1). We will say that C1 is

(t, I,m, d)-full if, for all pseudo-convergent sequences (xα) (indexed by a limit ordinal) of

elements in C1 that are eventually in R with minimal term (u, J, n, e) < (t, I,m, d), (xα)
has a pseudo-limit in C1.

Corollary 6.24. Let (xα) be a maximal pseudo-convergent sequence in C1 (indexed by

a limit ordinal) pseudo-converging to some a1 ∈ R(M1). If (t, I,m, d) ∈ T0(C1) is its

minimal term over C1 and C1 is (t, I,m, d)-full, then K(C1〈a1〉σ ) is an immediate

extension of K(C1), and f extends to a morphism from C1〈a1〉σ into N2.

Proof. Since C1 is (t, I,m, d)-full, (xα) (or any equivalent pseudo-convergent sequence)

cannot pseudo-solve a term of order-degree strictly less than (t, I,m, d) (this would

contradict either (t, I,m, d)-fullness of C1 or maximality of (xα)). By Propositions 6.13

and 6.18, there is a tuple d and there is a sequence (yα) equivalent to (xα) such that

val(t (σ (yα))) = val(t (σ (a))− t (σ (yα))) = min
i
{val(di )+ val(σ i (a− yα))};

i.e., t (σ (yα))↝ 0. We have just shown that t is the minimal term of the pseudo-convergent

sequence (xα), and thus we can now apply Proposition 6.20. �

From now on, suppose that K(Ni ) is an immediate extension of K(Ci ); hence it is a

maximal immediate extension of K(Ci ) in Mi .

Corollary 6.25. Suppose that all a ∈ R(N1) with a minimal term of order-degree strictly

smaller than (t, I,m, d) are already in C1. Then C1 is (t, I,m, d)-full.

Proof. Let (xα) be a pseudo-convergent sequence of C1 (indexed by a limit ordinal) that

is eventually in R and (u, J, n, e) < (t, I,m, d) that is σ -pseudo-solved by (xα). We may

assume that (u, J, n, e) is its minimal term. By Proposition 6.20, there is a1 ∈ N1 such

that xα↝ a1 and u(a1) = 0. Hence a1 has a minimal polynomial of order-degree strictly

lower than (t, I,m, d), so a1 ∈ C1, and C1 is indeed (t, I,m, d)-full. �
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Corollary 6.26. The isomorphism f extends to an isomorphism between N1 and N2;

i.e., maximum immediate extensions (in some saturated model) — and hence maximally

complete extensions — are unique up to isomorphism.

We could prove this corollary without using the notion of fullness and without doing

the extensions in the right order: just pick any maximal pseudo-convergent sequence

indexed by a limit ordinal, find its minimal term, and apply Proposition 6.20 to extend
f some more and iterate. But the following proof provides a better description of the

information needed to describe the type of a given point in an immediate extension.

Proof. Let us consider the extensions C16 Lα 6 N1 defined by taking Lα+1 = Lα〈cα〉σ ,

where cα ∈ R(N1)r Lα has a minimal term of minimal order-degree over Lα+1 and Lλ =⋃
α<λ Lα for λ limit. Then we can show by induction that we can extend f to Lα in a

coherent way.

Let us suppose that we have extended f to fα on Lα. Let a = cα. Let xβ ↝ a be a

maximal pseudo-converging sequence of Lα. If (t, I,m, d) is a minimal term of a, then by

Corollary 6.25, Lα is (t, I,m, d)-full. Applying Corollary 6.24, we obtain that fα can be

extended to Lα〈a〉σ = Lα+1. The limit case is trivial.

As N1 is the field generated by
⋃
α Lα, by Remark 5.1 we can extend f to a morphism

from N1 into N2. Now, if f is not onto, pick a ∈ K(N2)rK( f (N1)), (xα) maximal

pseudo-converging to a and (t, I,m, d) its minimal term. Then, applying Proposition 6.20

the other way round, we would find an immediate extension of N1 in M1, but that is

absurd. �

6.3. Relative quantifier elimination

Theorem A:
The theory TA,σ−Hen eliminates quantifiers resplendently relatively to RV.

Proof. By Proposition A.9, it suffices to show that TA,σ−Hen eliminates quantifiers

relatively to RV. Note that if two models of TA,σ−Hen contain isomorphic substructures

they have the same characteristic and residual characteristic; hence it also suffices to prove

the result for TA,σ−Hen,0,0 and TA,σ−Hen,0,p. Let us first consider the equicharacteristic

zero case.

It suffices to show that, if M1 and M2 are sufficiently saturated models of TRV−Mor
A,σ−Hen,0,0,

f a partial LRV−Mor
A,Q -isomorphism with (small) domain C1, and a1 ∈ K (M1), f can be

extended to C1〈a1〉σ . Let N16M1 with no immediate extension in M1 and containing

both C1 and a1. By Morleyization on RV and Lemma A.11, we can extend f to D16 N1
such that RV(D1) = RV(N1). Then applying Corollary 6.8 repetitively we can extend f
to E16 N1 such that rv(K(E1)) = RV(E1). Now K(N1) is a maximal immediate extension

of K(E1), and we can extend f to N1 by Proposition 6.20.
Now that we know the equicharacteristic zero case, the mixed characteristic case follows

from Propositions B.5 and 4.23. �

We also obtain the corresponding results when there are angular components. Let

Lac
A,Q,σ be Lac

A,Q enriched with a symbol σ : K→ K, symbols σ n
: Rn
→ Rn , and a
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symbol σ0 : 0
∞
→ 0∞. Let Tac

A,σ−Hen be the Lac
A,Q,σ -theory of σ -Henselian analytic

difference valued fields with a linearly closed residue field and angular components that

are compatible with σ ; i.e., acn ◦ σ = σn ◦ acn . Let Lac,fr
A,Q,σ be the enrichment of Lac,fr with

the same symbols and Tac,e−fr
A,σ−Hen,p be the theory of finitely ramified characteristic (0, p)

valued fields as above with ramification index at most e; i.e., e · 1 > val(p).

Corollary 6.27. Tac
A,σ−Hen and Tac,e−fr

A,σ−Hen,p for all p and e eliminate K-quantifiers

resplendently.

Proof. By Proposition A.9, resplendence comes for free once we have K-quantifier

elimination. Moreover, by Propositions 1.8 and B.5, we can transfer quantifier elimination

in an RV-enrichment of TA,σ−Hen (cf. Theorem A) to quantifier elimination in a definable

R∪0-enrichment of Tac
A,σ−Hen, and hence K-quantifier elimination in Tac

A,σ−Hen.

The proof for Tac,e−fr
A,σ−Hen,p now follows by Remark 1.9.3. �

Remark 6.28.

1. In a valued field with isometry and val(Fix(K)) = val(K), angular components that

are compatible with σ are determined by their restriction to the fixed field. Indeed,
if val(x) = val(ε), where ε ∈ Fix(K), then acn(x) = Rn(xε−1)acn(ε). In fact, any

angular components on the fixed field can be extended using this formula to angular

components on the whole field that are compatible with σ , and hence any valued

field with an isometry and val(Fix(K)) = val(K) can be elementarily embedded into

a valued field with an isometry and compatible angular components.

2. In fact, the existence of angular components in a σ -Henselian valued field with an

isometry implies that val(Fix(K)) = val(K).

Until the end of this section, we will add constants to Lac
A,Q,σ and Lac,fr

A,Q,σ for acn(t)
and val(t) for every LA,Q,σ

∣∣
K-term t without any free variables. The reason for which

we need to add these constants is that, although these are Lac
A,Q,σ -terms, we may have

no trace of them in Lac
A,Q,σ

∣∣∣
R

and Lac
A,Q,σ

∣∣∣
0

. Ax–Kochen–Eršov type results now follow

by the usual arguments.

Corollary 6.29 (Ax–Kochen–Eršov principle for analytic difference valued fields).

(i) Let L be an R-extension of a 0-extension of Lac
A,Q,σ , T an L-theory containing

Tac
A,σ−Hen,0,0, and M and N |H T . Then the following hold.

(a) M ≡ N if and only if R1(M) ≡ R1(N ) as L|R1-structures and 0∞(M) ≡
0∞(N ) as L|0∞-structures.

(b) Suppose that M 6 N . Then M 4 N if and only if R1(M)4R1(M) as

L|R1-structures and 0∞(M)40∞(N ) as L|0∞-structures.
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(ii) Let L be an R-extension of a 0-extension of Lac
A,Q,σ , T an L-theory containing

Tac,e−fr
A,σ−Hen,p, and M and N |H T . Then the following hold.

(a) M ≡ N if and only if R(M) ≡ R(N ) as L|R-structures and 0∞(M) ≡ 0∞(N )
as L|0∞-structures.

(b) Suppose that M 6 N . Then M 4 N if and only if R(M)4R(N ) as

L|R-structures and 0∞(M)40∞(N ) as L|0∞-structures.

Remark 6.30.

1. In mixed characteristic with finite ramification, if R = O, we have better results.

Indeed, the trace of any unit E on any RVk is given by the trace of a polynomial
(which depends only on E and not on its interpretation), and the Ek are in

fact useless. Hence the Rn are pure rings with an automorphism. If there is no

ramification (i.e., e = 1), the Rn are ring schemes over R1 (the Witt vectors of

length n) (the ring scheme structure does not depend on the actual model we are

looking at, contrary to the general finite ramification case), and the automorphism

on Rn can be defined using the automorphism on R1, and hence R is definable in
R1. Finally, if σ is a lifting of the Frobenius, σ0 is definable in the ring structure

of R1. It follows that we obtain Ax–Kochen–Eršov results looking only at R1 as a

ring and 0∞ as an ordered abelian group (after adding some constants).

2. The fact that the Ek are useless is also true in equicharacteristic zero when R = O.

3. It also follows that, in equicharacteristic zero or mixed characteristic with finite

ramification (with angular component), R and 0∞ are stably embedded and have

pure L|R-structure (respectively, L|0∞-structure), where L is either Lac
A,Q,σ or

Lac,fr
A,Q,σ . In particular, it will make sense to speak of the theory induced on R

or 0∞.

Proposition 6.31. Let L be the language LA,Q,σ enriched with predicates Pn on RV1
interpreted as n|val1(x). The L-theory of Wp is axiomatized by TA,σ−Hen and σ1 is the

Frobenius, the induced theory on R1 is ACFp, p has minimal positive valuation, and 0

is a Z-group. Moreover, R1 is a pure algebraically closed valued field and 0 is a pure
Z-group, and they are stably embedded.

Proof. Any model of that theory has definable angular components compatible with

σ . And these angular components extend the usual ones on the field of constants

W(Fp
alg
). Hence the only constants we add are for elements of Fp

alg
⊆ R1 and Z ⊆ 0. The

proposition now follows from the discussion above (and the fact that ACF and Z-groups

are model complete). �

7. The NIP property in analytic difference valued fields

Let us first recall what is shown by Delon and Bélair in the algebraic case [7, 13]. Let

Tac
Hen be the Lac-theory of Henselian valued fields with angular component maps.
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Theorem 7.1.

Let L be an R-enrichment of a 0∞-enrichment of Lac and T ⊇ Tac
Hen be

an L-theory implying either equicharacteristic zero or finite ramification

in mixed characteristic. Then T is NIP if and only if R (with its

L|R-structure) and 0∞ (with its L|0∞-structure) are NIP (not the

independence property).

Proof. See [7, Théorème 7.4]. The resplendence of the theorem is not stated there, but

the proof is exactly the same after enriching on R and 0∞. �

This result can be extended first to analytic fields and then to analytic fields with an

automorphism.

Corollary 7.2. Let L be an R-enrichment of a 0∞-enrichment of Lac
A,Q and T ⊇ Tac

A,Hen
be an L theory implying either equicharacteristic zero or finite ramification in mixed

characteristic. Then T is NIP if and only if R (with its L|R-structure) and 0∞ (with its

L|0∞-structure) are NIP.

Proof. Suppose that T is not NIP. Then there is a formula ϕ(x, y) which has the

independence property and where |x | = 1. Note that, since for any sort there is an

∅-definable function from K onto that sort, we may assume that x and y are K-variables.

By Remark 5.6.2, there is an Lr(A∪ {Q})-formula ψ(x, z) and there are LA,Q
∣∣
K

terms u(y) such that ϕ(x, y) is equivalent to a ψ(x, u(y)). But then ψ would have the

independence property too, contradicting Theorem 7.1. �

Corollary 7.3. Let L be an R-enrichment of a 0∞-enrichment of Lac
A,Q,σ and T ⊇

Tac
A,σ−Hen be an L theory implying either equicharacteristic zero or finite ramification

in mixed characteristic. Then T is NIP if and only if R (with its L|R-structure) and 0∞

(with its L|0∞-structure) are NIP.

Proof. Suppose that T is not NIP. Then there is a formula ϕ(x, y) which has the

independence property (where x and the y are K-variables). By Corollary 6.27, we

may assume that ϕ is without K-quantifiers; i.e., there is a K-quantifier free Lac
A,Q,σ r

{σ }-formula ψ(x, z) such that ϕ(x, y) is equivalent to ψ(σ(x), σ (y)). But then ψ would

have the independence property too, contradicting Corollary 7.2. �

Remark 7.4. In the isometry case with val(Fix(K)) = val(K), this last result also holds

without angular components because any such valued field can be elementarily embedded

into a valued field with angular components compatible with σ .

Corollary 7.5. The LA,Q,σ -theory of Wp is NIP.

Proof. This is an immediate corollary of Remark 7.4, Corollary 7.3, and the fact that

R is definable in R1 which is a pure algebraically closed field (where the Frobenius

automorphism is definable) and that 0 is a pure Z-group (see Proposition 6.31). �
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Appendices

A. Resplendent relative quantifier elimination

This section, although it may appear fastidious and nitpicking, is actually an attempt at

clarifying some notions and properties that are often assumed to be clear when studying

model theory of valued fields, but may actually need precise and careful presentation. In

all this section, L will denote a language and 6, 5 a partition of its sorts.

Definition A.1 (Restriction). If L′ ⊆ L is another language and T an L-theory, we will

denote by T |L′ the L′-theory {ϕ an L′-formula : T |H ϕ}, and, if C is an L-structure, C |L′
will have underlying set

⋃
S∈L′ S(C) with the obvious L′-structure. In particular, when 6

is a set of L sorts, let L|6 be the restriction of L to the predicate and function symbols

that only concern the sorts in 6. Then we will write T |6 := T |L|6 and C |6 := C |L|6 .

Note that the restriction is a functor from Str(T ) to Str(T |L′) respecting models,

cardinality, and elementary submodels (see § B for the definitions).

Definition A.2 (Enrichment). Let Le ⊇ L be another language and 6e the set of new

Le-sorts, i.e., the Le-sorts that are not L-sorts. The language Le is said to be a

6-enrichment of L if Le rLe|6∪6e ⊆ L; i.e., the enrichment is limited to the new sorts

and the sorts in 6. If, moreover, 6e = ∅ and Le rL consists only of function symbols,
we will say that Le is a 6-term enrichment of L.

Let T be an L-theory. An Le-theory Te ⊇ T is said to be a definable enrichment of

T if there are no new sorts and, for every predicate P(x) (respectively, function f (x))
symbol in Le rL, there is an L-formula ϕP (x) (respectively, ϕ f (x, y) such that T |H
∀ x ∃=1 y, ϕ f (x, y)) and that Te = T ∪ {P(x)↔ ϕP (x)} ∪ {ϕ f (x, f (x))}.

Definition A.3 (Morleyization). The Morleyization of L on 6 is the language L6−Mor
:=

L∪{Pϕ(x) : ϕ(x) an L|6-formula}. If T is an L-theory, the Morleyization of T on 6 is the

following L6−Mor-theory, T6−Mor
:= T ∪ {Pϕ(x)↔ ϕ(x)}, and, if M is an L-structure,

M6−Mor is the L6−Mor-structure with the same L-structure as M and where Pϕ is

interpreted by ϕ(M).
On the other hand, we will say that an L-theory T is Morleyized on 6 if every

L|6-formula is equivalent, modulo T , to a quantifier free L|6-formula.

Note that T6−Mor is a definable 6-enrichment of T , and if M |H T then M6−Mor
|H

T6−Mor.

Definition A.4 (Elementary on 6). Let M1 and M2 be two L-structures. A partial

isomorphism M1 → M2 is said to be 6-elementary if it is a partial L6−Mor-isomorphism.
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Definition A.5 (Resplendent relative elimination of quantifiers). Let T be an L-theory.

We say that T eliminates quantifiers relatively to 6 if T6−Mor eliminates quantifiers.

We say that T eliminates quantifiers resplendently relatively to 6 if, for any

6-enrichment Le of L (with possibly new sorts 6e) and any Le-theory Te ⊇ T , Te
eliminates quantifiers relatively to 6 ∪6e.

Definition A.6 (Resplendent elimination of quantifiers from a sort). We will say that

an L-theory T eliminates 5-quantifiers if every L-formula is equivalent modulo T to a
formula where quantification only occurs on variables from the sorts in 6.

We will say that T eliminates 5-quantifiers resplendently if, for any 6-enrichment Le
of L and any Le-theory Te ⊇ T , Te eliminates 5-quantifiers.

Definition A.7 (Closed sorts). We will say that 6 is closed if Lr(L|5 ∪ L|6) only consists
of function symbols f :

∏
i Pi → S, where Pi ∈ 5 and S ∈ 6. Equivalently, any predicate

involving a sort in 6 and any function with a domain involving a sort in 6 only involves

sorts in 6.

Remark A.8.

1. Note that if the sorts 6 are closed then, in any 6-enrichment (with possibly new

sorts 6e) of a 5-enrichment of L (or vice versa), the sorts 6 ∪6e are still closed.

2. Elimination of quantifiers relative to 6 implies elimination of 5-quantifiers. But

the converse is in general not true. Indeed, if L is a language with two sorts S1
and S2 and a predicate on S1× S2, then the formula ∃x R(x, y) is an S2-quantifier

free formula, but there is no reason for it to be equivalent to any quantifier free

LS1−Mor-formula.

3. However, if the sorts 6 are closed, then it follows from Remark A.10.1 that T
eliminates 5-quantifiers if and only if T eliminates quantifiers relatively to 6. If

Le is a 6-enrichment of L with new sorts 6e, then 6 ∪6e is still closed, and thus

the equivalence is also true resplendently.

We will now suppose that 6 is closed, and we will denote by F the set of functions

f :
∏

i Pi → S, where Pi ∈ 5 and S ∈ 6.

Proposition A.9. Let T be an L-theory. If T eliminates quantifiers relatively to 6 then T
eliminates quantifiers resplendently relatively to 6.

Let us begin with some remarks and lemmas that will have a more general interest.

Remark A.10.

1. Any atomic L-formula ϕ(x, y), where x are 5-variables and y are 6-variables,

is either of the form ψ(x), where ψ is an atomic L|5-formula, or of the form

ψ( f (u(x)), y), where ψ is an atomic L|6-formula, u are L|5-terms, and f are

functions from F .

2. If T eliminates quantifiers relatively to 6, it follows from Remark A.10.1 above that,

for any M |H T , any L(M)-definable set in a product of sorts from 6 is defined by
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a formula of the form ϕ(x, f (a), b), where ϕ is a L|6-formula. Hence 6 is stably

embedded in T ; i.e., any L(M)-definable subset of 6 is in fact L(6(M))-definable.

Moreover, these sets are in fact L|6(6(M))-definable. In that case, we say that 6

is a pure L|6-structure.

Lemma A.11. Suppose that T is an L-theory Morleyized on 6. Then, for any sufficiently

saturated M1, M2 |H T , any partial L-isomorphism f : M1 → M2 with small domain

C1, and any c1 ∈ 6(M1), f can be extended to a partial L-isomorphism whose domain

contains c1.

Proof. First we may assume that C16M1, and in particular, for all g ∈ F , g(C1) ⊆

6(C1). Because f is a partial L-isomorphism and T is Morleyized on 6, f |6 is a partial

elementary L|6-isomorphism. By saturation of M2 we can extend f |6 to f ′
∣∣
6
: M1|6 →

M2|6 , a partial elementary L|6-isomorphism whose domain contains c1. Let f ′ = f |5 ∪
f ′
∣∣
6

.

As f |5 is a partial L|5-isomorphism, f ′ respects formulas ϕ(x), where ϕ is an

atomic L|5-formula ( f |5 also respects L|5-terms). Moreover, as for all g ∈ F , f ′
∣∣
g(C1)
=

f |g(C1)
, f ′ still respects g. As f ′

∣∣
6

is a partial L|6-isomorphism, it respects all atomic

L|6-formulas. It follows that f ′ also respects formulas of the form ψ(g(u(x)), y), where

ψ is an atomic L|6-formula, u are L|5-terms, and g ∈ F . By Remark A.10.1, f ′ respects

all atomic L-formulas, and hence is a partial L-isomorphism. �

Definition A.12 (Generated structure). Let L be a language, M an L-structure, and C ⊆
M . The L-structure generated by C will be denoted 〈C〉L. If C is an L-structure and

c ∈ M , the L-structure generated by C and c will be denoted C〈c〉L.

Lemma A.13. Let M1, M2 |H T , f : M1 → M2 a partial L-isomorphism with domain

C16M1, and let c1 ∈ 5(M1) be such that 6(C1〈c1〉L) ⊆ 6(C1). Suppose that f ′ is a

partial L|5 ∪F-isomorphism extending f whose domain is C1〈c1〉L. Then f ′ is also a

partial L-isomorphism.

Proof. First, by hypothesis, f ′ respects atomic L|5-formulas. Moreover, as 6(C1〈c1〉L) ⊆
6(C1), f ′

∣∣
6
= f |6 , and it is a partial L|6-isomorphism. As, by hypothesis, f ′ respects

g ∈ F , it respects all formulas of the form ψ(g(u(x)), y), where ψ is an atomic

L|6-formula, u are L|5-terms, and g ∈ F . Hence, by Remark A.10.1, f ′ is a partial

L-isomorphism. �

Proof (Proposition A.9). We want to show that, if Le is a 6-enrichment of L (with

new sorts 6e) and Te ⊇ T an Le-theory, then T6∪6e−Mor
e eliminates quantifiers. It

suffices to show that, for all M1 and M2 |H Te that are |Le |
+-saturated, for all partial

L6∪6e−Mor
e -isomorphism f : M1 → M2 of domain C1 with |C1| 6 |Le |, and for all c1 ∈

M1, f can be extended to a partial L6∪6e−Mor
e -isomorphism whose domain contains c1.

Note first that 6 ∪6e is closed. If c1 ∈ 6 ∪6e(M1), then we can conclude by

Lemma A.11 (where L is now L6∪6e−Mor
e ). If c1 ∈ 5(M1), by repetitively applying

Lemma A.11, we can extend f to f ′ whose domain contains all of 6 ∪6e(C1〈c1〉Le ).

Then f ′ is in particular an L6−Mor-isomorphism and, as T eliminates quantifiers relatively
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to 6, f ′ is in fact a partial elementary L-isomorphism that can be extended to a partial

L-isomorphism f ′′ whose domain contain c1. But, by Lemma A.13, f ′′
∣∣
C1〈c1〉Le

is also a

partial L6∪6e−Mor
e -isomorphism. �

B. Categories of structures

Recall that structures are always non-empty.

Definition B.1 (Str(T )). Let L be a language, and let T be an L-theory. We will denote
by Str(T ) the category whose objects are the L-structures that can be embedded in a

model of T (i.e., models of T∀) and whose morphisms are the L-embeddings between

those structures.

Moreover, let Ti be an Li -theory for i = 1, 2, F : Str(T1)→ Str(T2) be a functor, and κ

be a cardinal. We will denote by StrF,κ(T2) the full subcategory of Str(T2) of structures

that embed into some F(M) for M |H T1 κ-saturated.

A functor F : Str(T1)→ Str(T2) is said to respect

• models if, for all M |H T1, F(M) |H T2;

• κ-saturated models if, for all κ-saturated M |H T1, F(M) |H T2;

• cardinality if, for all C |H T1,∀, |F(C)| 6 |C |;

• cardinality up to κ if, for all C |H T1,∀, |F(C)| 6 |C |κ ;

• elementary submodels if, for all M14M2 |H T1, F(M1)4 F(M2).

Let 6i be a closed set of Li -sorts for i = 1, 2. We say that f : C1 → C2 in Str(T1) is a
61-extension if C2 r f (C1) ⊆ 61(C2). We say that the functor F sends 61 to 62 if, for

all 61-extensions C1 → C2, F(C1)→ F(C2) is a 62-extension.

Let me recall some basic notions of category theory. A natural transformation α between

functors F , G : C1 → C2 associates a morphism αc ∈ HomC2(F(c),G(c)) to every object

c ∈ C1 such that, for all morphism f ∈ HomC1(c, d), we have G( f ) ◦αc = αd ◦ F( f ). A

natural transformation is said to be a natural isomorphism if, for all c ∈ C1, αc is an

isomorphism in C2. It is easy to check that, when α is a natural isomorphism, its inverse

(namely the transformation that associates α−1
c to any c ∈ C1) is also natural.

A pair of functors F : C1 → C2 and G : C2 → C1 are said to be an equivalence of

categories between C1 and C2 if GF and FG are naturally isomorphic to the identity
functor of, respectively, C1 and C2. We can always choose the natural isomorphisms

α : FG→ Id and β : GF→ Id such that αF = F(β) and βG = G(α), where αF : c 7→ αF(c)
and F(α) : c 7→ F(αc).

Until the end of this section, let κ be a cardinal, Ti be an Li -theory, 6i be a set
of closed Li -sorts for i = 1, 2, and F be a full subcategory of Str(T1) containing the

κ+-saturated models such that, for any C → M1 |H T1 where M1 is κ+-saturated and

|C | 6 κ, there is some D in F such that C → D→ M1 and C → D is a 61-extension.

Let F : Str(T1)→ Str(T2) and G : Str(T2)→ Str(T1) be functors that respect cardinality

up to κ and induce an equivalence of categories between F and StrF,κ+(T2). We will also

suppose that G respects models and elementary submodels and sends 62 to 61, and that

F respects κ+-saturated models.
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The goal of this section is to show that these (somewhat technical) requirements are

a way to transfer elimination of quantifiers results from one theory to another and to

give a meaning to (and in fact extend) the impression that if theories are quantifier

free bi-definable (whatever that means) then elimination of quantifiers in one theory

should imply elimination in the other. Proposition B.5 will be used, for example, to

deduce valued field quantifiers elimination with angular components from valued field

quantifiers elimination with sectioned leading terms. It will also be used to reduce the

mixed characteristic case to the equicharacteristic zero case.

Proposition B.2 is only used to prove Corollary B.4, which in turn will be very useful

to show that the functors between mixed characteristic and equicharacteristic zero can
be modified to take in account Morleyization on RV while remaining in the right setting

to transfer elimination of quantifiers.

Proposition B.2. Suppose that T1 is Morleyized on 61, and let M1 and M2 |H

T1 be (|L2 |
κ)+-saturated. Then any partial L2-isomorphism f : F(M1)→ F(M2) is

62-elementary.

Proof. To show that f is 62-elementary, it suffices to show that the restriction of f
to any finitely generated structure is 62-elementary. To do so it suffices to show that

the restriction of f can be extended (on both its domain and its image) to any finitely

generated 62-extension. By symmetry, it suffices to prove the following property: if D1,

D26 F(M1) are such that D1 → D2 is a 62-extension, |D2| 6 |L2 | and f : D1 → F(M2)

is an L2-embedding, then f can be extended to some g : D2 → F(M2).

Applying G to the initial data, we obtain the following diagram:

GF(M1) M2 GF(M2)
βM2oo

G(D2)

OO
g

::

G(D1)

OO G( f )

::

where g comes from the fact that, as T is Morleyized on 61, βM2 ◦G( f )
∣∣
61

is in fact

elementary and, as |G(D2)| 6 |L2 |
κ , M2 is (|L2 |

κ)+-saturated, and G(D1)→ G(D2) is a

61-extension, by Lemma A.11, βM2 ◦G( f ) can be extended to g : G(D2)→ M2. Applying

F , we now obtain

D2

α−1
D2 // FG(D2)

F(g) // F(M2)

D1 //

OO

f

II

FG(D1)

OO 99

and F(g) ◦α−1
D2

is the extension we were looking for. �
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Remark B.3.

1. One could hope the proposition to be true without the saturation hypothesis. But,

without some saturation, it is not even true that M14M2 implies F(M1)4 F(M2).

Take for example the coarsening functor C∞ of § 2 and Qp 4M , where M is

ℵ0-saturated. Then C∞(Qp) is trivially valued but C∞(M) is not.

2. One should beware that, as F(M1) and F(M2) are not saturated, we have not
proved that T2 eliminates quantifiers.

3. We have proved nonetheless that, if 6i is the set of all Li sorts (in that case we

ask that T2 eliminates all quantifiers) then, for all M1 and M2 |H T1 sufficiently
saturated, M1 ≡ M2 implies that F(M1) ≡ F(M2).

Corollary B.4. Let T e
2 be a definable 62-enrichment of T2 (in the language Le

2). Then F
induces a functor Fe

: Str(T1)→ Str(T e
2 ) and G induces a functor Ge

: Str(T e
2 )→ Str(T1).

We can also find a full subcategory Fe of F such that Fe and Ge induce an equivalence of

categories between Fe and StrFe,(|L2 |κ )+(T
e

2 ). The functor Ge still respects cardinality up to
κ, models, and elementary submodels, and sends 62 to 61, and Fe respects cardinality up

to κ + |L2 | and (|L2 |
κ)+-saturated models. Finally, Fe contains all (|L2 |

κ)+-saturated

models, and any C in Str(T1) has a 61-extension D in Fe. Moreover, if C 6M1 |H T1 and

M1 is (|L2 |
κ)+-saturated, then we can find such a D6M1.

Proof. Let C 6M |H T1. We can suppose that M is (|L2 |
κ)+-saturated. As F(M) |H

T2, we can enrich F(M) to make it into an Le
2-structure F(M)e |H T e

2 , and we take

Fe(C) = 〈C〉Le
2
. Note that, if M1 and M2 are two (|L2 |

κ)+-saturated models containing

C , then Proposition B.2 implies that idF(C) is a partial isomorphism F(M1)→ F(M2)

62-elementary, and hence the generated Le
2-structures are Le

2-isomorphic. As Fe(C) does

not depend (up to Le
2-isomorphism) on the choice of (|L2 |

κ)+-saturated model containing

C , Fe is well defined on objects. If f : C1 → C2 is a morphism in Str(T1), by the same

Proposition B.2, F( f ) is 62-elementary and can be extended to a Le
2-isomorphism

on the Le
2-structure generated by its domain. Note that, if we denote by iC the

embedding F(C)→ Fe(C), we have also defined a natural transformation from F to Fe

(a meticulous reader might want to add the forgetful functor Str(T e
2 )→ Str(T2) for it all

to make sense).

We define Ge to be G (precomposed by the same forgetful functor). All the statements
about Ge follow immediately from those about G. As 〈F(C)〉Le

2
has cardinality at

most |C |κ |L2 | 6 |C |κ+|L2 |, F respects cardinality up to κ +L2, and if M |H T1 is
(|L2 |

κ)+-saturated then, seeing it as a substructure of itself, we obtain that Fe(M) |H T e
2 .

We define Fe to be the full subcategory of F containing the C such that iC is

an isomorphism. In particular, it contains (|L2 |
κ)+-saturated models. Let D be an

Le
2-substructure of Fe(M) for some (|L2 |

κ)+-saturated M |H T1. Then FeGe(D) =
〈FG(D)〉Le

2
, where the generated structure is taken in F(M). By Proposition B.2, the

(natural) isomorphism D→ FG(D) is 62-elementary and can be extended (uniquely)

into an Le
2-isomorphism between D = 〈D〉Le

2
and FeGe(D). This new isomorphism is also
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natural. It follows that FG(D) = FeGe(D) and that iG(D) is in fact an isomorphism; hence

G(D) ∈ Fe.

If C ∈ Fe, βC ◦G(i−1
C ) : Ge Fe(C)→ C is a natural isomorphism. Finally, it remains to

show that any C → M |H T1, where M is (|L2 |
κ)+-saturated, can be embedded in some

E ∈ Fe such that C → E is a 61-extension and E → M . We already know that there

exists D ∈ F such that C → D→ M and C → D is a 61-extension. Now F(D)→ Fe(D)
is a 62-extension; hence D∼=GF(D)→ GFe(D) is a 61-extension. Moreover, GFe(D)→
GFe(M)∼=M and, as Fe(D) is an Le

2-structure of Fe(M), GFe(D) ∈ Fe. Thus we can take

E = GFe(D). �

Let us now prove a second result in the spirit of Proposition B.2, but the other way

round.

Proposition B.5. If T1 is Morleyized on 61 and T2 eliminates quantifiers, then T1
eliminates quantifiers.

Proof. To show that T1 eliminates quantifiers it suffices to show that, for all κ+-saturated

Mi |H T1, i = 1, 2, C16C2 ⊆ M1, and f : C1 → M2 an L1-embedding, then f can be

extended to an embedding from C2 into some elementary extension of M2. Let D1 ∈ F be

such that C1 → D1 → M1 and C1 → D1 is a 61-extension. As T1 is Morleyized on 61, by

Lemma A.11, we can extend f to an embedding from D1 into an elementary extension

of M2. Replacing C1 by D1, C2 by 〈D1C2〉L1 , and M2 by its elementary extension, we can

consider that C1 ∈ F. Applying F , we obtain the following diagram:

F(M1) M?
2

F(C2)

OO
g

::

F(M2)

4

OO

F(C1)

OO

F( f )

::

where M?
2 is a (|C1|

ℵ0)+-saturated extension of F(M2) and g comes from quantifier

elimination in T2 and saturation of M?
2 . Applying G, we obtain

C2 // GF(C2) G(g)
// G(M?

2)

C1

OO

//

f

66GF(C1)

OO

GF( f )
// GF(M2)

4

OO

oo // M2

4
cc

and we have the required extension. �
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motivic integration, Ann. Sci. Éc. Norm. Supér. (4) 39(4) (2006), 535–568.

12. R. Cluckers and F. Loeser, B-minimality, J. Math. Log. 7(02) (2007), 195–227.

498 S. Rideau

https://doi.org/10.1017/S1474748015000183 Published online by Cambridge University Press

http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
http://www.arxiv.org/abs/1312.5932
https://doi.org/10.1017/S1474748015000183


13. F. Delon, Types sur C((x)), in Groupe d’étude sur les théories stables, année 2, 1978/79,
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