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IMAGINARIES, INVARIANT TYPES AND PSEUDO

p-ADICALLY CLOSED FIELDS

SAMARIA MONTENEGRO AND SILVAIN RIDEAU-KIKUCHI

Abstract. In this paper, we give a general criterion for elimination of imagi-
naries using an abstract independence relation. We also study germs of defin-
able functions at certain well-behaved invariant types. Finally we apply these
results to prove the elimination of imaginaries in bounded pseudo p-adically
closed fields.

Introduction

Elimination of imaginaries is a positive answer to the question of finding definable
moduli spaces for every definable family of definable sets; that is, given definable
sets X ⊆ Y × Z, finding a definable map f ∶ Y → Z such that for all y1, y2 ∈ Y ,
f(y1) = f(y2) if and only if the fiber of X above y1 is equal to the one above
y2. This is equivalent to the existence, for every set defined with parameters, of
a smallest set of definition. In recent work of Hrushovski [13] on the elimination
of imaginaries in algebraically closed valued fields, the focus is shifted to the local
question of finding smallest sets of definition for definable types — and proving
that there are enough definable types to deduce elimination of imaginaries.

But there are many structures of interest, among which the field of p-adic num-
bers, where there are too few definable types for this local approach to work. It is
therefore tempting to work with invariant types instead. This presents a number of
issues, the principal one being that, generally, invariant types cannot have smallest
sets of definition due to their fundamentally infinitary nature. Some of them, for
example, encode the cofinality of an infinite ordered set. In this paper, we choose
to focus on a class of tractable invariant types: those that are arbitrarily close to
definable types; the set D(M/A) of Definition 1.1. The first part of this paper
consists in providing the tools for an approach to elimination of imaginaries based
on these definably approximable types.

The most important technical issue is the understanding of germs of definable
functions at definably approximable types. At general invariant types, these germs
are complicated hyperimaginaries. However, we show that, at a definably approx-
imable type, germs of definable functions are encoded by the cofinality of a filtered
ordered set of imaginary points. This can then used to encode germs of functions
in a theory using elimination of imaginaries in a reduct, cf. Proposition 1.8. We
also give necessary and sufficient condition for every invariant type to be definably
approximable — equivalently, in an NIP theory, for every non-forking formula to
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contain a definable type. In dp-minimal theories, Simon and Starchenko [27] give a
sufficient conditions for this density result to hold over models. We show that for
the density result to hold over arbitrary algebraically closed basis, it suffices for the
result to hold over models and for every definable set to contain a type definable
over the algebraic closure of its code. In particular, the density result holds in
algebraically closed valued fields (including imaginaries) — cf. Corollary 1.16.

The other abstract contribution of this paper is to provide a very general criterion
for weak elimination of imaginaries. Many proofs of elimination of imaginaries
in tame unstable contexts follow the outline of Hrushovski’s approach in bounded
pseudo algebraically closed fields [12, Proposition 3.1]. Thus, it seems interesting to
isolate an abstract criterion pinpointing the exact ingredients of this proof. We show
that if one can find an independence relation satisfying a strong form of extension
and a certain amalgamation result, then weak elimination of imaginaries follows.
For certain choices of independence relation (for example definable independence
or invariant independence), this criterion reduces to previously known criteria of
Hrushovski [13, Lemma 1.17] or the second author [26, Proposition 9.1]. For other
choices of independence relation, one recovers a large number of previously known
elimination of imaginaries proofs, for examples the one in algebraically closed fields
with a generic automorphism [5, §1.10].

The second part of this paper is devoted to applying these general methods
to the class of bounded pseudo p-adically closed fields. Note that the approach
presented in this paper does not rely on the elimination of imaginaries in p-adic
fields but rather reproves it, providing us with a new, slightly different, proof of
[14, Theorem2.6]. The new proof focuses, from the start, on constructing invariant
types rather than reducing the problem to the elimination of unary imaginaries.

Before defining pseudo p-adically closed fields, let us recall that a field is said to
be pseudo algebraically closed if every absolutely irreducible variety over this field
has a rational point. This class of fields first appeared in Ax’s work on pseudo finite
fields [2]. Their model theory has since been extensively studied, in parallel with
the development of simplicity. Indeed bounded pseudo algebraically closed fields
— those that have only finitely many extensions of any given degree — provide
the main example of simple unstable fields. As interest in less restrictive tameness
notions grew, for example notions like NTP2 that do not preclude the existence
of any definable order, it also became important to find algebraic examples, in
particular enriched fields, that would provide us with study cases.

In [20] and [21], the first author thus started a neostability flavored study of
two classes of large fields — see [23] — extending the class of pseudo algebraically
closed fields: pseudo p-adically closed fields and pseudo real closed fields. Those
two classes consist of the fields over which any absolutely irreducible variety with a
simple point over every p-adically closed (respectively real closed) extension has a
rational point. These classes were defined by van den Dries, Basarab, Prestel, Grob,
Jarden and Haran, Ershov over 30 years ago in [3,7,9,10,24,29]. A number of their
model theoretic properties, pertaining to model completeness and the description
of types, had been worked out. In [21], the first author provided new tools to study
these fields, mostly in the bounded case. She gives a description of definable sets
— the so-called density theorems [21, Theorem3.17 and 6.11] — which generalizes
cellular decomposition to the multi-valued (respectively multi-ordered) setting. She
also proves an amalgamation theorem [21, Theorem3.21 and 6.13] which is a weaker
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IMAGINARIES, INVARIANT TYPES AND PpC 805

version of the independence theorem of simple theories which holds in this non-
simple setting. She then uses those new tools to prove new classification results,
the main one [21, Theorem4.24 and 8.5] being that bounded pseudo p-adically
closed and pseudo real closed fields are NTP2 of finite burden.

One particularity that stands out in the first author’s work is that, although
most results are proved for both classes, elimination of imaginaries was only proved
for pseudo real closed fields [20]. The initial motivation for this paper was to repair
that asymmetry. As it turns out, we were also able to repair a small gap in the
proof of the pseudo real closed case, cf. §2.8.1.

Since bounded pseudo p-adically closed fields that are not pseudo algebraically
closed fields come with finitely many definable valuations, one cannot expect elimi-
nation of imaginaries in a language with just one sort for the field, contrary to what
happens with pseudo real closed fields. But since the work of [11], we know how
to circumvent that particular issue: we have to add, for each valuation, codes for
certain definable modules over the valuation ring; that is, work in the so-called geo-
metric language. The main question regarding the imaginaries in bounded pseudo
p-adically closed fields then becomes to prove that there are no imaginaries arising
from the interaction between the various valuations and, therefore, that it suffices to
add the geometric sorts for each of the valuations. The main result of this paper,
Theorem 2.58, is a positive answer to this question. We deduce it from our ab-
stract criterion, Proposition 1.17, applied to quantifier free invariant independence,
cf Defintion 1.18. The results of Section 1.2 play a fundamental role by allowing us
to deduce n-ary extension from unary extension for that particular independence
relation.

Our first step towards this elimination result, and a core ingredient of the rest
of the paper, is Proposition 2.26 which states that not only are the geometric sorts
for each valuation orthogonal but also that the structure of any given geometric
sort is the one induced by the relevant p-adic closure.

We then proceed to deduce, from this strong statement on the independence of
the valuations, a result on the structure of definable subsets of the valued field,
where, at first sight, the valuations do interact. The key ingredient of the first
author’s proof that pseudo real closed fields eliminate imaginaries is [21, Theorem
6.11] which states that, in dimension one, the decomposition given by the density
theorem can be chosen in a canonical way. In pseudo p-adically closed fields, it is
unclear if such a canonical decomposition exists. We choose instead to work at the
level of types by proving, in Theorem 2.43, that every type over algebraically closed
sets of imaginary parameters is consistent with a global quantifier free type which
is invariant over the geometric part of the parameters.

The last ingredient needed to prove weak elimination of imaginaries is to extend
the first author’s amalgamation result [21, Theorem 6.13] to allow geometric pa-
rameters, cf. Theorem 2.54. In particular, this requires us proving Theorem 2.17
which states an existential closedness property of pseudo p-adically closed fields in
a stronger language than the field language, containing Macintyre’s language for
each p-adic valuation.

As is often the case, coding finite sets is mostly an independent issue. Here,
we deduce it from the coding of finite sets in algebraically closed fields equipped
with finitely many independent valuations. Our approach, inspired by Johnson’s
account [18, §6.2] of the coding of finite sets in algebraically closed valued fields,
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806 SAMARIA MONTENEGRO AND SILVAIN RIDEAU-KIKUCHI

consists in first lifting tuples of geometric points by generically stable types of the
valued field and then using the code of these types to encode finite sets.

The organization of the paper is as follows. Section 1 contains the more abstract
results and Section 2 is devoted to pseudo p-adically closed fields. We start, in
Section 1.1, by recalling definitions related to imaginaries and their elimination. In
Section 1.2, we consider invariant types that can be approximated by definable types
and the germs of definable functions over such types. We conclude the abstract
part of the paper, in Section 1.3, by proving a criterion for weak elimination of
imaginaries and discussing various specific cases of that criterion.

Preliminaries on the model theory of valued fields and pseudo p-adically closed
fields can be found in Section 2.1. Section 2.2 contains various details regarding the
language that we will be using. The orthogonality and purity of the geometric sorts
is proved in Section 2.3. Section 2.4 is devoted to the description of the algebraic
closure in bounded pseudo p-adically closed fields, including geometric imaginaries,
and in Section 2.5, we prove the existence of quantifier free invariant extensions
of types over algebraically closed bases. Amalgamation over geometric points is
proved in Section 2.6. Finally, in Section 2.7, we code finite sets and we deduce
elimination of imaginaries in Section 2.8.

1. Imaginaries and germs of functions

1.1. Preliminaries. We will assume knowledge of standard model theoretic no-
tions and notation. We refer the reader to [28] for an introduction to model theory.

Let us start by recalling the basic definitions regarding elimination of imaginaries.
The reader can look at [22] for more details. Let X be a definable set in some L-
structure M . The tuple b ∈ M is a canonical parameter for X (via the L-formula
φ(x, y)) if for all tuples b′ ∈ M , X = φ(M,b′) if and only if b′ = b. An L-theory
T is said to eliminate imaginaries if every definable set in any model of T has a
canonical parameter (via some L-formula). Equivalently, if T has sufficiently many
constants, T eliminates imaginaries if and only if, for every L-formula φ(x, y), there
exists an ∅-definable map f such that

T ⊢ ∀y1∀y2 (f(y1) = f(y2) ↔ (∀x (φ(x, y1) ↔ φ(x, y2)))).

Note that if φ defines an equivalence relation E in T , then we have that T ⊢
∀x∀y (xEy ↔ f(x) = f(y)).

Given any language L, we define the language Leq that contains, for each L-
formula φ(x, y), a new sort Eφ and a new function symbol fφ from the product of
sorts of y to Eφ. Given an L-theory T , we define the Leq-theory

T eq ∶= T∪⋃
φ

{fφ is onto and ∀y1∀y2 (f(y1) = f(y2) ↔ (∀x (φ(x, y1) ↔ φ(x, y2))))}.

The theory T eq eliminates imaginaries and to any M ⊧ T , we can associate a unique
M eq ⊧ T eq whose reduct to L is M . We denote by acleq (respectively dcleq) the
algebraic (respectively definable) closure in M eq. If X is an L(M)-definable set,
we define ⌜X⌝ = dcleq(b) ⊆M eq for any choice of canonical parameter b of X.

1.2. Invariant types approximated by definable types. In this section, we
want to show how being able to approximate invariant types by definable types can
be helpful to compute ”canonical bases” of invariant types. This will allow us to
study the invariance of germs of functions over invariant types. In Proposition 1.11,
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IMAGINARIES, INVARIANT TYPES AND PpC 807

we also give necessary and sufficient conditions, that hold in algebraically closed
valued fields, for invariant types to be approximated by definable types.

We denote by S(M) the type space over M and by Sx(M) the type space over
M in variable x.

Definition 1.1. Let T be some L-theory and A ⊆M ⊧ T and p(x) ∈ Sx(M).
(1) We say that p is aut(M/A)-invariant if for all σ ∈ aut(M/A), any L-formula

φ(x, y) and tuple a ∈ A, φ(x, a) ∈ p if and only if φ(x, σ(a)) ∈ p.
(2) The type p is L(A)-definable if for every L-formula φ(x, y), there is some

L(A)-formula dpxφ(x, y) = θ(y) such that for all a ∈ A, p ⊢ φ(x, a) if and
only if M ⊧ dpxφ(x, a).

Definition 1.2. Let T be some L-theory and let A ⊆M ⊧ T . We define:

(1) Lx(M/A) ⊆ Sx(M) the set of aut(M/A)-invariant types over M ;
(2) Dx(M/A) ⊆ Sx(M) the set of L(A)-definable types over M ;

(3) Dx(M/A) the set of types p ∈ Sx(M) such that for all L(M)-formula φ(x) ∈
p, there exists q ∈ Dx(M/A) such that φ ∈ q.

Remark 1.3. We have Dx(M/A) ⊆ Dx(M/A) ⊆ Ix(M/A) and the last two sets are

closed in Sx(M). Moreover, as the notation indicates, Dx(M/A) is the closure of
Dx(M/A).

Fact 1.4. Let T be some L-theory, let A ⊆ M ⊧ T and let p ∈ Dx(M/A). Then
there exists a sequence (qi)i∈I ∈ Dx(M/A), indexed by a directed set of size at most

2∣L(A)∣, such that for all L(M)-formula φ(x), φ ∈ p if and only if φ ∈ qi for almost
all i.

By almost all i, we mean that it holds for all i greater that some i0 ∈ I. This is
just the characterization of closure by nets.

Definition 1.5. Let M be an L-structure p ∈ Sx(M) and f , g be L(M)-definable
functions, defined at p. We say that f and g have the same p-germ if p(x) ⊢ f(x) =
g(x). We denote by [f]p the class of f for this equivalence relation.

A priori, [f]p is an hyperimaginary: an equivalence class for an invariant equiv-
alence relation. If p is definable, it can be identified with an imaginary point. The
core of the following proposition is that, if p ∈ D(M/A), then the hyperimaginary
[f]p is coded by the “limit” of a sequence of imaginaries.

In what follows, let T0 be some L0-theory eliminating quantifiers and imaginaries
whose sorts we denote R0. Let T be a complete L-theory containing the universal
part of T0. When applying these results to pseudo p-adically closed fields, we take
T to be the complete theory of some bounded pseudo p-adically closed field and T0

to be the theory of its algebraic closure with (the extension of) one of its valuations.
Let M ⊧ T be sufficiently saturated and homogeneous and M0 ⊧ T0 containing

R0(M) be such that any automorphism of M extends to M0. When we say that
something is L0-definable, it will mean that it is definable in M0. Assume that:

(†) for all ε ∈ dclM0

L0
(R0(M)), there exists a tuple η ∈ R0(M) such that ε and

η are interdefinable in the pair (M0,M).

Proposition 1.6. Let A ⊆M eq be such that R0(aclL(A)) ⊆ A, p ∈ Dx(M0/R0(A))
and f be an L0(R0(M))-definable function defined at p. If [f]p has a finite orbit

under autL(M/A), then it is autL0
(M0/R0(A))-invariant.
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808 SAMARIA MONTENEGRO AND SILVAIN RIDEAU-KIKUCHI

Proof. Let (qi)i∈I ∈ DL0
x (M0/R0(A)) be as in Fact 1.4 with respect to p and let

εi ∶= [f]qi ∈ M0 and ηi be as in Hypothesis (†) with respect to εi. Let F = (Fm)m
be an L0-definable family of functions such that f = Fm0

for some m0. Note that
p(x) ⊢ Fm1

(x) = Fm2
(x) if and only if qi ⊢ Fm1

(x) = Fm2
(x) for almost all i. In

particular, for any σ ∈ autL0
(M0/R0(A)), σ([f]p) = [f]p if and only if σ(εi) = εi

for almost all i.

Claim 1.7. ηi ∈ R0(A), for almost all i ∈ I.

Proof. As ηi ∈ R0(M), it suffices to prove that ηi ∈ A for almost all i. If not, there
is an unbounded subset J ⊆ I such that for all j ∈ J , ηj has an infinite autL(M/A)-
orbit and hence autL(M/Aηj) has infinite index. By Neumann’s lemma, for all
choice of j1, . . . , jn ∈ J , there exists τ1, . . . τn ∈ autL(M/A) such that, for all k,
the τl(ηjk) are all distinct. By saturation and homogeneity, there exists (τl)l∈ω ∈
autL(M/A) such that, for all j ∈ J , the τl(ηj) are all distinct and hence, extending
τl to M0, so are all the τl([f]qj). Since the set J is unbounded, it follows that the

τl([f]p) are all distinct, a contradiction. �

We have proved that autL0
(M0/R0(A)) fixes almost all εi and hence it fixes

[f]p. �

Let H be a subset of R0. We now also assume that:

(⋆) For all tuple a ∈ H(N), where N ≽M , R0(aclL(Ma)) ⊆ aclL0
(R0(Ma)).

In our application to pseudo p-adically closed fields, the sort H will be the field
sort.

Proposition 1.8. Let N ≽M , A ⊆M eq such that R0(aclL(A)) ⊆ A, a ∈ H(N) and
c ∈ R0(acl

eq
L (Aa)) be tuples. Assume that p ∶= tpL0

(R0(a)/M0) ∈ D(M0/R0(A))
Then, there exists an L0(M)-definable map F such that [F ]p is autL0

(M0/R0(A))-
invariant and c ∈ aclL0

(F (a)).

Proof. Since c ∈ acleqL (Aa), we can find an Leq(A)-definable function f such that
f(a) encodes a finite set containing c. By (⋆), we have that f(a) ⊆ R0(aclL(Ma)) ⊆
aclL0

(Ma). It follows that we can find an L0(M)-definable function F such that
F (a) encodes (in M0) a finite set containing f(a). Note that we have c ∈ f(a) ⊆
aclL0

(F (a)).
By compactness (and replacing F with a finite union), we may assume that

f(x) ⊆ F (x) always holds. The cardinality of F is constant on realizations of
p. We may assume it is minimal among all possible F . Let σ ∈ autL(M/A), then
f(a) ⊆ F (a)∩F σ(a). By minimality, we must have ∣F (a)∩F σ(a)∣ = ∣F (a)∣ = ∣F σ(a)∣
and hence F (a) = F σ(a). We have just proved that [F ]p is autL(M/A)-invariant.
By Proposition 1.6, it is, in fact, autL0

(M0/R0(A))-invariant. �

The conclusion of Proposition 1.8 is weaker than one might expect. It does not
imply, in general, that c ∈ aclL0

(R0(A)a). However, if germs of functions over
p are particularly well-behaved, this can be the case. If p ∈ SL0

(M0) is L0(A)-
definable and f is L0(M0)-definable and defined at p, we say that [f]p is strong

if there exists an L0(A [f]p)-definable map g ∈ [f]p. This happens whenever p is
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IMAGINARIES, INVARIANT TYPES AND PpC 809

generically stable, see [1]; in particular, if T0 is stable. In that case, it becomes quite
clear that what we have been doing so far is indeed encode (germs of) functions:

Corollary 1.9. In the setting of Proposition 1.8, assume p is definable and germs
of functions over p are strong. Then

R0(acl
eq
L (Aa)) ⊆ aclL0

(R0(A)a).

Proof. Pick any c ∈ R0(acl
eq
L (Aa)) and let F be as in Proposition 1.8. Since p

is definable, we have that [F ]p ∈ dclL0
(R0(A)) ⊆ R0(A). Also, since [F ]p is

strong, we may assume that F is L0(R0(A))-definable. Thus, c ∈ aclL0
(F (a)) =

aclL0
(G(a)) ⊆ aclL0

(R0(A)a). �

For technical reasons, we will later need to involve a third intermediary language.
Let L0 ⊆ L1 ⊆ L, T0,∀ ⊆ T1,∀ ⊆ T and M ⊆ M1 ⊆ M0 be such that T1 eliminates
quantifiers, M1 ⊧ T1 and every automorphism of M1 extends to an automorphism
of M0. In our application to pseudo p-adically closed fields, M1 will be the p-adic
closure of our pseudo -p-adically closed field M with respect to one of its valuations,
in Macintyre’s language. Recall that M0 will be the algebraic closure of M with
an extension of that same valuation. The reason we need to consider those three
structures is that M1 is the one with the right quantifier free structure induced on
M , but M0 is the one with sufficiently many definable types.

However, the following corollary retains most of its content when T0 = T1 and
the reader should feel free to first consider that case. Not that even when T0 =
T1 = T , the statement is non-trivial and not known to be true in general. It
is known, however, when T0 = T1 = T is NIP by work of Hrushovski and Pillay
[15, Lemma 2.12].

Corollary 1.10. Assume T1 is NIP. Let N ≽ M and a ∈ H(N) be a tuple. If

p ∶= tpL0
(R0(a)/M0) ∈ D(M0/R0(A)) and q ∶= tpL1

(R0(a)/M1) ∈ I(M1/R0(A)),
then tpL1

(R0(acl
eq
L (Aa))/M1) ∈ I(M1/R0(A)).

Proof. By Proposition 1.8, we can find F such that [F ]p is autL0
(M0/R0(A))-

invariant and R0(acl
eq
L (Aa)) ⊆ aclL0

(F (a)) ⊆ aclL1
(F (a)). Since automorphisms

of M1 extend to automorphisms of M0, [F ]q is autL1
(M1/R0(A))-invariant and

hence tpL1
(F (a)/M1) ∈ I(M1/R0(A)). By [15, Lemma 2.12], we now have that

tpL1
(aclL1

(F (a))/M1) ∈ I(M1/R0(A)). In particular, tpL1
(R0(acl

eq
L (Aa))/M1) ∈

I(M1/R0(A)). �

Note that, in the above corollary, we only obtain an invariant type and not, a
priori, a definably approximable one. Let us conclude with examples of theories
in which I(M/A) = D(M/A), in which case we will be able to continue with the
induction and build invariant types in all arities, cf. Theorem 2.43.

Proposition 1.11. Let T be an L-theory that weakly eliminates imaginaries and
M be sufficiently saturated. Assume:

(i) for all N ≼M ⊧ T , I(M/N) = D(M/N);
(ii) for all A = acl(A) ⊆M ⊧ T , any unary L(A)-definable set is consistent with

a type p ∈ D(M/A).

Then, for all A = acl(A) ⊆M ⊧ T , I(M/A) = D(M/A).

Note that the converse is obvious.
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810 SAMARIA MONTENEGRO AND SILVAIN RIDEAU-KIKUCHI

Proof. Let us start with some classical results.

Claim 1.12. Let A = acl(A) ⊆ M . Assume tp(a/M) ∈ D(M/A) and c ⊆ acl(Aa),
then tp(c/M) ∈ D(M/A).

Proof. We may assume that c is a finite tuple. Let φ(y, x) be an L(A)-formula such
that φ(y, a) algebrizes c over Aa. Let p = tp(a/M) and pick ψ(y, z) any L-formula.
We define z1Ez2 to hold if M ⊧ dpx (∀y φ(y, x) → (ψ(y, z1) ↔ ψ(y, z2))). This is
an L(A)-definable finite equivalence relation and its classes are L(A)-definable by
weak elimination of imaginaries. Moreover, φ(c,M) is a finite union of E-classes.
It is therefore L(A)-definable. �

Claim 1.13. Pick A ⊆ N ≼ M , p ∈ D(N/A), a ⊧ p in M , q ∈ D(M/Aa) and c ⊧ q.
Then tp(ac/N) ∈ D(N/A).

Proof. Pick ψ(x, y, z) any L-formula. Let θ(y, z, a) be an L(A)-formula such that,
for all b, d ∈ M , ψ(b, y, d) ∈ q if and only if M ⊧ θ(b, d, a). Then, for all d ∈ N ,
M ⊧ ψ(a, c, d), if and only if M ⊧ θ(a, d, a), if and only if M ⊧ dpxθ(x, d, x). �

Claim 1.14. For all N ≼ M containing A, there exists N⋆ ≼ M containing A such
that tp(N⋆/N) ∈ D(N/A).

Proof. Let {φi(xi) ∣ i ∈ κ} be an enumeration of all consistent L(A)-formulas in
one variable xi. By induction, for all i, we build ai ∈ M such that M ⊧ φi(ai),
ci = acl(Ac<iai) and tp(ci/N) ∈ D(N/A). The element ai is found by Hypothesis (ii)
applied over Ac<i = acl(Ac<i). Then by Claim 1.13, tp(c<iai/N) ∈ D(N/A). Let
ci = acl(Ac<iai). By Claim 1.12, tp(ci/N) ∈ D(N/A).

Let d0 = A and d1 = c<κ = acl(Ad1). By repeating the above construction, we
obtain (di)i∈ω such that, for all i ∈ ω, tp(di/N) ∈ D(N/A) and any consistent
L(d<i)-formula in one variable is realized in di. Let N⋆ be the set enumerated by
d<ω. By Tarski-Vaught, N⋆ ≼M . Moreover, A ⊆ N⋆ and tp(N⋆/N) ∈ D(N/A). �

Pick p ∈ I(M/A). We have to show that for all L(M)-formula φ(x), if p ⊢ φ,
then there exists q ∈ D(M/A) such that q ⊢ φ. Actually, it suffices to find such a
q ∈ D(N/A) for some N ≼M containing A and such that φ ∈ L(N). By Claim 1.14,
we find A ⊆ N⋆ ⊆ M such that tp(N⋆/N) ∈ D(N/A). By Hypothesis (i), we find
q ∈ D(M/N⋆) consistent with φ. Let c ⊧ q, by Claim 1.13, tp(N⋆c/N) ∈ D(N/A).
In particular, φ ∈ q∣N = tp(c/N) ∈ D(N/A). �

Remark 1.15. Let H be a set of dominant sorts in T , i.e. any other sort is the
image of a ∅-definable function whose domain is a product of sorts in H. Then, in
Propostion 1.11, it suffices to assume Hypothesis (ii) for every definable subsets of
every sort in H.

Corollary 1.16. Let T be any C-minimal theory which weakly eliminates imaginar-
ies. Then, for all A = acl(A) ⊆M ⊧ T sufficiently saturated, I(M/A) = D(M/A).

Proof. Hypothesis (ii) of Proposition 1.11 holds for definable subsets of K in C-
minimal theories by taking the generic type of any outer ball of the Swiss cheese de-
composition. In [27, Theorem2.3], Simon and Starchenko show that for dp-minimal
theories (in particular, C-minimal theories), Hypothesis (i) of Proposition 1.11 fol-
lows from Hypothesis (ii). Note that, by [27, Lemma 2.4], Hypothesis (ii) does imply
their property (D). �
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1.3. A criterion using amalgamation. The following criterion is an attempt at
an abstract account of the proof given by Hrushovski in [12, Proposition 3.1] and
adapted in many various settings since then. Let T be an L-theory with sorts R
and M ⊧ T be sufficiently saturated and homogeneous.

Proposition 1.17. Let ⫝ be a ternary relation on small subsets of M . Assume:

(i) for all E = acleq(E) ⊆ M eq, tuple a ∈ M and C ⊆ M , there exists a⋆ such
that a⋆ ≡L(E) a and a⋆ ⫝R(E) C;

(ii) for all E = acl(E) ⊆ M and tuples a, b, c ∈ M , if b ⫝E a, c ⫝E ab and
a ≡L(E) b, then there exists c⋆ such that ac ≡L(E) ac⋆ ≡L(E) bc⋆.

Then T weakly eliminates imaginaries.

Proof. Pick any e ∈ M eq. There exists an ∅-definable map f and a tuple a ∈ M
such that e = f(a). Let E = acleq(e) and E = R(E). We want e ∈ dcleq(E). It
suffices to prove that tp(a/E) ⊢ f(a) = e.

Pick any b ≡L(E) a. By Hypothesis (i), there exists b⋆ ≡L(E) b such that b⋆ ⫝E a.

Applying Hypothesis (i) again, we find c ≡L(E) a such that c ⫝E ab. Note that

we have f(c) = e = f(a). Now, applying Hypothesis (ii), we find c⋆ such that
ac ≡L(E) ac⋆ ≡L(E) b⋆c⋆. It follows that e = f(a) = f(c) = f(c⋆) = f(b⋆). Since

b⋆ ≡L(E) b and e ∈ E, we have that f(b) = e. �

The notion of independence that we will be using, in this paper, is quantifier
free invariant independence.

Definition 1.18.

(1) Let A ⊆ M . A quantifier free type p over M is said to be aut(M/A)-
invariant if for every quantifier free L-formula φ(x, y), a ∈ M and σ ∈
aut(M/A), φ(x, a) ∈ p if and only if φ(x, σ(a)) ∈ p.

(2) Let a ∈ M be a tuple and C,B ⊂ M . We define a ⫝i,qf
C B to hold if

there exists an aut(M/A)-invariant quantifier free type p over M such that
a ⊧ p∣CB.

We write a ≡qf
L(E)

b to say a and b have the same quantifier free type over E.

Lemma 1.19. Hypothesis (ii) of Proposition 1.17 for ⫝i,qf follows from:

(ii’) for all E = acl(E) ⊆ M and tuples a1, a2, c1, c2, c ∈ M , if a1 ⫝
i,qf
E a2, c ⫝

i,qf
E

a1a2 and c1 ≡L(E) c2 and, for all i, aici ≡
qf
L(E)

aic, then there exists c⋆ such

that aici ≡L(E) aic⋆, for all i.

Proof. Let E, a, b and c be as in Hypothesis (ii). Since a ≡L(A) b, we can find

d such that ac ≡L(E) bd. Then we do have a ⫝i,qf b, c ⫝i,qf
E ab and c ≡L(E) d.

Moreover, since a and b are aut(M/E)-conjugated and there exists an aut(M/E)-
invariant quantifier free type p ⊇ qftpL(c/Eab), it follows that a ≡qf

L(Ec)
b and hence

bd ≡qf
L(E)

bc. It follows that we can apply (ii’) to find a c⋆ that ac ≡L(E) ac⋆ and

bd ≡L(E) bc⋆. Since bd ≡L(E) ac, we have the required conclusion. �

Remark 1.20. Note that if T eliminates quantifiers (or if we are working in the
Morleyized language), (ii’) and therefore (ii), holds trivially for ⫝i,qf . In that case,
Proposition 1.17 reduces to the statement that if every set X definable in some
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model of T contains a type which is R(acleq(⌜X⌝))-invariant, then T weakly elimi-
nates imaginaries. A particular case of that statement is Hrushovski’s criterion via
definable types [13, Lemma 1.17] where invariant is replaced by definable — and
the coding of definable types is made explicit.

One important difference of working with definable types, though, is that, as
pointed out in Remark 1.15, building types on some X which are definable almost
over ⌜X⌝, without controlling in which sorts the canonical basis lies, can be done
by looking only at unary dominant definable sets. The general case follows by
an easy induction. Also, contrary to definable types, invariant types do not have
an imaginary canonical basis and thus it is much harder to compute their canon-
ical basis, unless it is obvious from the construction of the invariant type, as in
Proposition 2.40.

2. Pseudo p-adically closed fields

2.1. Preliminaries. In this section we will give all the preliminaries on valued
fields, p-adically closed fields and pseudo p-adically fields that are required through-
out the rest of the paper.

Notation 2.1. Whenever F is a field, we denote by F a its algebraic closure.

Let us start by fixing our notations regarding valued fields and introduce the
geometric language.

Definition 2.2. A valuation on a field F is a group morphism map v ∶ F × → Γ,
where (Γ,+, 0,<) is a totally ordered abelian group, such that for all a, b ∈ F ,
v(a + b) ≥ min{v(a),v(b)}. The set O ∶= {x ∈ F ∶ v(x) ≥ 0} is a subring of F that
is called the valuation ring. The set m ∶= {x ∈ F ∶ v(x) > 0} is the unique maximal
ideal of O. The field k ∶= O/m is called the residue field of F .

Definition 2.3 (Geometric language). Let (F,v) be a valued field. For all m ∈ Z>0,
We define

Sm(F ) ∶= GLm(F )/GLm(O) and Tm(F ) ∶= GLm(F )/GLm,m(O),

where GLm,m(O) is the group of matrices M ∈ GLm(O) whose last column reduces
modulo m to a column of zero except for a 1 on the diagonal.

The geometric language LG consists of the sort K equipped with the ring lan-

guage, sorts Sm and Tm, for all m ∈ Z>0, maps sm ∶Km2

→ Sm and tm ∶Km2

→ Tm

interpreted as the canonical projections and the necessary predicates to have quan-
tifier elimination in the LG-theory ACVFG of algebraically closed valued fields.

Remark 2.4.

(1) The sort Sm is the moduli space ofl rank m free O-submodules of Km, i.e.
O-lattices. For all s ∈ Sm, let Λ(s) to be the lattice whose set of bases is s.

(2) We can identify S1 =K/O× with v(K×) and s1 with the valuation map.
(3) For all s ∈ Sm, the fiber of the natural map τm ∶ Tm → Sm above s can

be identified (once we add a zero) with the dimension m k-vector space
Λ(s)/mΛ(s).

(4) When the valuation v is discrete, i.e. there are elements θ with minimal
positive valuation, there is an ∅-definable map from Tm to Sm+1. It follows
that, in that case, the sorts Tm are not necessary to obtain elimination of
imaginaries.
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The geometric sorts where introduced by Haskell, Hrushovski and Macpherson
to prove:

Theorem 2.5 ([11]). The theory ACVFG of algebraically closed valued fields in the
geometric language eliminates imaginaries.

Let us now discuss p-adically closed fields.

Definition 2.6. Let (F,v) be a valued field.

(1) The valuation v is called p-adic if the residue field is Fp and v(p) is the
smallest positive element of the value group v(F ×).

(2) We say that (F,v) is p-adically closed if (F,v) is p-adically valued and it
has no proper p-adically valued algebraic extension.

(3) A p-adic closure of (F,v) is an algebraic extension (L,v), which is p-adically
closed. It always exists when (F,v) is p-adically valued.

Fact 2.7 (Properties of the theory of p-adically closed fields).

(i) The class pCF of p-adically closed fields is elementary in the language Lrg ∶=
{+,−, ⋅, 0, 1} of rings.

(ii) Let LMac be the language of rings to which we add a binary predicate ∣
and, for all m ∈ Z>0, unary predicates {Pm ∶ m > 1}. We interpret x∣y as
v(x) ≤ v(y) and Pm as set of non-zero m-th powers. By [19, Theorem1],
pCF eliminates quantifiers in LMac.

Remark 2.8. Observe that x∣y is quantifier-free definable in LMac ∖ {∣}:

M ⊧ a∣b if and only if M ⊧ P�(a
� + pb�),

where � ≠ p is prime.

We now define pseudo p-adically closed fields and recall known results. We end
this section by proving a new result regarding existential closedness of p-adically
closed fields with finitely many distinct p-adic valuations. We refer the reader to
[17], [10] and [21] for more details.

Definition 2.9. Let F ≤ L be an extension of characteristic 0 fields.

(1) F ≤ L is called totally p-adic if every p-adic valuation of F can be extended
to a p-adic valuation of L.

(2) F ≤ L is a regular extension if L ∩F a = F .

Definition 2.10. A field F of characteristic 0 is pseudo p-adically closed (PpC)
if it is is existentially closed, as an Lrg-structure, in every totally p-adic regular
extension.

Remark 2.11. By Lemma13.9 of [10] this is equivalent to every non-empty abso-
lutely irreducible variety V defined over F having an F -rational point, provided
that it has a simple rational point in each p-adic closure of F .

Fact 2.12 ([17, Theorem 10.8]). Let F be a PpC field and let v be a p-adic valuation
on F . Then:

(i) The p-adic closure of F with respect to v is exactly its Henselianization. In
particular all p-adic closures of F with respect to v are F -isomorphic.

(ii) F is dense, for the v-topology, in its p-adic closure F
p
.

(iii) v(F ) is a Z group.
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(iv) If v1 and v2 are distinct p-adic valuations on F , then v1 and v2 are inde-
pendent, i.e. v1 and v2 generate different topologies.

Remark 2.13. Let F be a PpC field and let v1, . . . ,vn be different p-adic valuations
on F . For all i ≤ n, let Ui be a non-empty subset of F r which is open in the topology
associated to vi. Then by [25, Theorem 4.1] and Fact 2.12 we have that ⋂iUi /= ∅.

Definition 2.14. Let F be a field, n ≥ 1, and let v1, . . . ,vn be n distinct p-adic
valuations on F . The field (F,v1, . . . ,vn) is n-pseudo p-adically closed (n−PpC) if
F is a PpC field and v1, . . . ,vn are the only p-adic valuations of F . If Ui is an open
(respectively closed) set for the topology associated to the valuation vi, we will say
that Ui is i-open (respectively i-closed).

Notation 2.15. Let F be a field and for 0 < i ≤ n, let vi be a p-adic valuation on F
and let us fix a p-adic closure Fi of F with respect to vi. Let L(i) = Lrg ∪ {∣i,Pi

m ∶
m ∈ Z>0, 1 ≤ i ≤ n}. Let L ∶= ⋃n

i=1L
(i). We interpret x∣iy as vi(x) ≤ vi(z) and

Pi
m(x) as Fi ⊧ ∃y ym = x ∧ x /= 0.

Recall that, by Fact 2.12, if F is n−PpC, Fi is unique up to isomorphism, so
the L-structure of F does not depend on the choice of Fi. In particular, if L is a
totally p-adic extension of F , the L-structure induced by L on F is that unique
L-structure. Note also that Pi

m(Fi) is an i-clopen subset of F ×i .

Fact 2.16 ([6, Lemma 3.6]). Let (F,v1, . . . ,vn) be an n−PpC field and let V be
an absolutely irreducible variety defined over F . For each 1 ≤ i ≤ n, let qi ∈ V (Fi)
be a simple point. Then V contains an F -rational point q, arbitrarily i-close to qi
for all i ∈ {1, . . . , n}.

We can now deduce a strengthening of [10, Lemma 13.9 (a)]. Note that in
the conclusion F is existentially closed as an L-structure and not only as an Lrg-
structure.

Theorem 2.17. Let (F,v1, . . .vn) be n−PpC and let L be a regular totally p-adic
extension of F . Then F is existentially closed in L as an L-structure.

Proof. Let ∃xφ be an existential L(F )-formula such that L ⊧ ∃xφ. We need to
show that F ⊧ ∃xφ. We may assume that φ(x) is of the form:

x ∈ V ∧ ⋀
i≤n

x ∈ Ui,

where V is Zariski closed over F and Ui is an i-open quantifier free Li(F )-definable
subset of V . Let a ∈ L be any tuple such that L ⊧ a ∈ V ∧⋀i∈I a ∈ Ui. Since F ≤ L is
a regular extension, so is F ≤ F (a). By [8, Corollary 10.2.2], there is an absolutely
irreducible variety W , defined over F such that a is a generic point of W . Note
that W ⊆ V .

For every i, let Li be the p-adic closure used to define the L-structure of L and
let Fi ≼ Li be a p-adic closure of F . Since L ⊆ Li,

Li ⊧ ψi(a) ∶= a is a simple point of W ∧ a ∈ Ui,

and hence we find bi ∈ Fi such that Fi ⊧ ψi(bi). By Fact 2.16 there is b ∈W (F ) such
that b is arbitrarily i-close to bi, for all i. In particular, we can choose b ∈ ⋂iUi.
Then we have F ⊧ φ(b). �
Definition 2.18. A field F is bounded if for any n ∈ Z>0, F has finitely many
algebraic extensions of degree n.
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Note that, by [21, Lemma 6.1], any bounded PpC field is n−PpC for some n ∈ Z≥0.

Remark 2.19. In Theorem 7.1 of [21], the first author showed that if n ≥ 2 and F
is a bounded n−PpC field, then ThLrg

(F ) is not NIP. An important ingredient of
the proof was that the p-adic valuations of a bounded PpC-field are definable —
with parameters — in the language of rings. As a consequence of Theorem 2.17,
this result can be generalized to arbitrary n−PpC fields. The proof is exactly as in
[21, Theorem 7.1]. Theorem 2.17 allows us to work in L without using boundedness.

2.2. Notations. In this section, we describe the language in which we prove elim-
ination of imaginaries for bounded PpC fields. Let us first fix some notation for the
rest of the paper.

Notation 2.20. Fix a bounded PpC field F and let {v1, . . . ,vn} be its p-adic valu-
ations. For each i ∈ {1, . . . , n} let Oi denote the valuation ring associated with vi
and let O ∶= ⋂iOi. We denote by mi the maximal ideal of Oi.

Let F0 ≼ F be a countable elementary substructure (in the language of rings).
Let La

i be a copy of LG(F0) sharing the field sort K and constant symbols for
the elements of F0. Let Gi denote the sorts of La

i . For all m ∈ Z>0, we denote
by Si

m the sort interpreted as GLm(K)/GLm(Oi) and Ti
m the sort interpreted

by GLm(K)/GLm,m(Oi). Let ACVFGi denote the copy of ACVF in La
i . Let Li

denote a definable enrichment of La
i in which pCFGi , the Li-theory of p-adically

closed fields, eliminates quantifiers. Let L ∶= ⋃i≤nLi and T ∶= ThL(F ), where the
Li-structure of F is induced by its p-adic closure for vi.

Remark 2.21. Observe that F a = F a
0F and hence, for all M ⊧ T , K(M)a =

F a
0K(M). So K(M) is bounded. Moreover the extension F0 ≤ K(M) is regu-

lar.

We now check that we have not added any new structure to F :

Proposition 2.22. In models of T , every L-definable set is Lrg(F0)-interpretable.

Proof. Let us first prove that LMac is definable in Lrg(F0):

Claim 2.23. Let M,N ⊧ T , A =K(A)a∩M ⊆M , B =K(B)a∩N ⊆ N and f ∶ A→ B
be an Lrg(F0)-isomorphism. Then f is an L-isomorphism.

Proof. By quantifier elimination in LMac and the fact that ∣i can be defined without
quantifiers using the predicates Pi

m of Notation 2.15, it suffices to check that these

predicates are preserved by f . Let Mi ⊧ pCFGi contain M . Then for any a ∈ A,
Pi
m(a) holds if and only if there exists y ∈ Mi such that ym = a. Let L ≥ K(M)

be the compositum of all degree m extensions of K(M) inside Mi. Since K(M) is
bounded, L is a finite extension and there exists α ∈ F a

0 , such that L = K(M)[α].
Then, Pi

m(a) holds if and only if there exists y ∈ K(M)[α] such that ym = a.
Identifying K(M)[α] with Kl(M) for some l, we see that the coordinates of y are
in (F0a)a ∩K(M) ⊆K(A). It follows that Pm,i(a) if and only if Pm,i(f(a)). �

It follows that every Oi is Lrg(F0)-definable and hence that the geometric sorts
for the valuation i are Lrg(F0)-interpretable.

Now, let φ(x) be any La
i -formula. Let f be the canonical projection from some

cartesian power of K to the sort of x. The formula ψ(y) ∶= φ(f(y)) is equivalent,

in ACVFGi , to a formula in the language Lrg ∪ {∣i} and hence φ(x) is equivalent,
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in ACVFGi to both ∀y (f(y) = x → ψ(y)) and ∃y (f(y) = x ∧ ψ(y)). It follows that

these two formulas also define the trace of φ in any model of pCFGi . So in models

of pCFGi , every La
i -definable set is interpretable in Lrg, since ∣i is definable in Lrg.

The same argument, but starting with a Li-formula and looking at its trace on M
allows us to conclude. �

Notation 2.24. For the rest of the paper, we fix M ⊧ T sufficiently saturated and
homogeneous. Let Ma

i ⊧ ACVFGi be the algebraic closure of M , along with an
extension of vi, and let Mi be the p-adic closure of M inside Ma

i . We denote by
acl, aclLa

i
, aclLi

, dcl, dclLa
i
and dclLi

the model theoretic algebraic and definable
closures in M , Ma

i and Mi respectively.
Let A ⊆ M and a, b ∈ M be tuples. We denote by a ≡L(A) b, a ≡La

i
(A)b and

a ≡Li
(A)b the fact that a and b have the same type over A in M , Ma

i and Mi

respectively. We also denote by tp, tpLa
i
and tpLi

the type in M , Ma
i and Mi

respectively.

Observe that a ≡La
i (A)

b (respectively a ≡Li(A) b) if and only if a and b have the

same quantifier free La
i -type (respectively Li-type) in M over A. Note also that

a ≡qf
L(A)

b if and only a ≡Li(A) b, for all i.

2.3. Orthogonality of the geometric sorts. In this section we will prove that
the Si

m sorts are orthogonal. We also show that their structure is the pure structure
induced by Mi.

Lemma 2.25. Let m ∈ Z>0, A ⊆ K(M) and, for all i ∈ {1, . . . , n} let si ∈ Si
m(M).

Assume M is ∣A∣+-saturated, then there exists c ∈ ⋂i si(M) such that trdeg(c/A) =
m2.

Proof. For all i, O×i is i-open in K(M) and hence GLm(Oi) ⊆ Km2

is i-open and
so is si. Therefore, there exists a product of i-closed balls Ui included in Si. So

it suffices to find c ∈ ⋂iUi ⊆ Km2

(M) such that trdeg(c/A) = m2. This is easily
seen to reduce (by induction on the dimension and translation) to showing that

⋂iOi = O contains transcendental elements over any small set of parameters and
by compactness to showing that O is infinite. But this is an immediate consequence
of Remark 2.13. �

Proposition 2.26. Let A ⊆ K(M) and, for all i ≤ n, let si and s′i ∈ S
i
m(M). If

si ≡Li(A) s
′
i, for all i, then (s1, . . . , sn) ≡L(A) (s′1, . . . , s

′
n).

Proof. By Lemma2.25, there exists c ∈ ⋂i si(M) such that trdeg(c/A) =m2 = ∣c∣.

Claim 2.27. There exists ci ∈ s′i(M) such that ci ≡Li(A) c.

Proof. By compactness, we have to show that for all (quantifier free) Li(A)-formula
φ(x) such thatMi ⊧ φ(c), s′i∩φ(M) ≠ ∅. Note that si∩φ(Mi) is an Li(A)-definable
subset of (K(Mi))m

2

that contains an element of transcendence degree m2 over A,
so it is i-open. As sipφ(Mi) is also i-open and non-empty. By the density of M in
Mi, this set has a point in M . �

By [21, Lemma 6.12], tp(c/A) ∪ {x ∈ ⋂i s
′
i} is consistent in M . Let c′ realize this

type. Then there exists an L(A)-automorphism of M sending c to c′ and hence
si = c ⋅GLm(Oi) to s′i = c′ ⋅GLm(Oi). �
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Corollary 2.28. For every L(A)-definable X ⊆ ∏i S
i
mi

, where A ⊆ K(M), there
exists finitely many quantifier free Li(A)-formulas φi,j(xi) with X = ⋃j ∏i φi,j(M).

Proof. By Proposition 2.26, the following set is inconsistent:

{ψ(xi) ↔ ψ(x′i) ∣ 0 < i ≤ n and ψ is an Li(A)-formula} ∪ {(xi)i ∈X ∧ (x′i)i ∉X}.

By compactness, it follows that there are ki formulas ψi,j(xi) such that

M ⊧ ∀x1 . . . xn ( ⋀
0≤j<ki

ψi,j(xi) ↔ ψi,j(x
′
i)) → ((xi)i≤n ∈X ↔ (x′i)i≤n ∈X).

For any formula ψ, ψ0 denotes ¬ψ and ψ1 denotes ψ. For every εi ∶ ki → 2, let
θi,εi(xi) = ⋀0≤j<ki

ψ(xi)εi(j) and for all tuple ε = (εi)i, θε(x) = θi,εi(xi). Then for
all ε, if θε(M) ∩X ≠ ∅, then θε(M) ⊆X. Let E = {ε ∣ θε(M) ∩X ≠ ∅}. Then

X = ⋃
ε∈E

θε(M) = ⋃
ε∈E

∏
i

θi,εi(M).

This concludes the proof. �

Define Gim
i to be the set of all Li-sorts but K.

Corollary 2.29. Let A ⊆M , Si be a product of sorts in Gim
i and X ⊆ ∏i Si be an

L(A)-definable subset. Then, there exists quantifier free Li(Gi(A))-definable sets
Xi,j ⊆ Si such that X = ⋃j ∏iXi,j(M).

Proof. Let X be defined by φ(s, ζ, a), where ζi ∈ Gim
i (A) and a ∈ K(A). Let Y be

the set defined by φ(s, y, a). It suffices to prove the proposition for Y . Indeed, if
Y is of the correct form, its fiber Yζ ∶= {x ∣ (x, ζ) ∈ Y } is also of the correct form,
so we may assume that A ⊆ K(M). Because any finite product of sorts from Gim

i

can be encoded, in pCFGi , in any Si
m for large enough m, we may also assume that

Si = Si
m for some fixed m. We can now apply Corollary 2.28. �

2.4. The algebraic closure. Let us now describe the algebraic closure in T .

Proposition 2.30. Let A ⊆M . Then, for all i, Si
m(acl(A)) ⊆ aclLi

(Gi(A)).

Proof. By Corollary 2.29, any (finite) L(A)-definable subset of Si
m is quantifier free

Li(Gi(A))-definable. The proposition follows. �

The sorts K and Si
m are obviously not orthogonal as there are functions with

infinite range from K to Si
m. However, there are no functions with infinite range

from Si
m to K:

Proposition 2.31. Let A ⊆M . Then K(acl(A)) ⊆K(A)a.

Proof. Let c ∈ K(acl(A)). As in the proof of Corollary 2.29, we may assume
that there exists si ∈ Si

m, for some fixed m, such that c ∈ acl(K(A)(si)i≤n). By
Lemma2.25, there exists e ∈ ⋂i si(M) such that trdeg(e/K(A)c) =m2 = ∣e∣. Then,
by [21, Lemma 5.10], c ∈ acl(K(A)e) ⊆K(A)ea. But e is algebraically independent
from c over A. It follows that c ∈K(A)a. �

Corollary 2.32. Let A ⊆M . Then,

acl(A) ⊆ ⋃
i

aclLi
(Gi(A)).

Proof. This is an easy consequence of Propositions 2.30 and 2.31. �
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Corollary 2.33. Let S be one of the sorts in Gim
i and S′ be a sort in Gj for some

j ≠ i. Then any L(M)-definable function S → S′ has finite image.

Proof. If S′ = Sj
m, then this follows immediately from Corollary 2.29. If S′ =K, it

follows from Proposition 2.31 and compactness. �

Corollary 2.34. Let A ⊆K(M). Then acl(A) ⊆ ⋃i aclLa
i
(A).

Proof. By Corollary 2.32, acl(A) ⊆ ⋃i aclLi
(A). Since the relative algebraic closure

of a field inside a p-adic field is its p-adic closure (cf. [14, Section 4.(i)]), we have
aclLi

(C) ⊆ aclLa
i
(C). �

We have proved that hypothesis (⋆) of Section 1.2 holds of ACVFGi and T . Let
us now prove that (†) also holds:

Lemma 2.35. Let ε ∈ dclLa
i
(M), for some i ≤ n. Then there exists η ∈M such that

ε and η are interdefinable in the pair (Ma
i ,M).

Proof. We know by Fact 2.12 that the Henselianization of K(M) with respect to
vi is the p-adic closure K(Mi) of K(M). It follows that if ε ∈ K(dclLa

i
(M)), then

ε ∈K(Mi). As K(M)a = F a
0K(M), and K(Mi) ⊆K(M)a there is b ∈ F a

0 such that
K(M)[ε] =K(M)[b]. Since ε ∈Mi, it follows that b ∈ F a

0 ∩K(Mi) ∶= F1 ⊆ dclLa
i
(∅).

Let η be the unique tuple in M such that ε = ∑i ηib
i. Then η and ε are interdefinable

in the pair (Ma
i ,M).

The case ε ∈ Si
m ∪Ti

m is tackled as in [14, (ii) p. 30]. Let us first assume that
ε ∈ Ti

m. Find a finite extension L of K(Mi), of degree r, in which the lattice coded
by τm(ε), denoted Λ(ε), has a basis and the coset coded by ε has a point c. Since
K(Mi)a = F a

1K(Mi), we can find a ∈ F a
0 such that O(L) = O(K(Mi))[a]. Let

fa ∶ (K(Mi))r → L be the map r ↦ ∑i ria
i. Then f−1a (c +miΛ(ε)) ⊆ (K(Mi))mr

is coded by some η ∈ Ti
mr(Mi) = Ti

mr(M). If a and a′ have the same La
i (F0)-

orbit, then they have the same La
i (F1)-orbit and hence the same La

i (Mi)-orbit.
In particular, there exists τ ∈ autLa

i
(Ma

i ) fixing Mi pointwise such that τ(a) = a′.

Then f−1a (c +miΛ(ε)) = f−1τ(a)(c +miΛ(ε)) = f−1a′ (c +mi(Λ(ε))). It follows that any

automorphism of Ma
i that stabilizes M globally fixes ε if and only if it fixes η. Note

that we did not use in the proof that Ma
i was the algebraic closure of M , so the

same argument works in a sufficiently saturated and homogeneous model of the
pair (Ma

i ,M). So η and ε are interdefinable. If ε ∈ Si
m, since ε and miΛ(ε) are

interdefinable in Ma
i , we can apply the previous case to miΛ(ε). �

We can now apply Corollary 1.10 in our setting. If we already knew elimination
of imaginaries in T , then the following result would be a rather immediate corollary
of the description of the algebraic closure and the fact that pCF and ACVF are
NIP. But since we do not know elimination of imaginaries yet, this is where the
encoding of (germs of) functions happens.

Corollary 2.36. Let i ∈ {1, . . . , n}. Let A ⊆ M eq containing G(acleq(A)) and
a ∈ K(N), where N ≽ M , be a tuple such that tpLa

i
(a/Ma

i ) ∈ I(M
a
i /Gi(A)) and

tpLi
(Gi(a)/Mi) ∈ I(Mi/Gi(A)). Then tpLa

i
(Gi(acl

eq(Aa))/Ma
i ) ∈ I(Ma

i /Gi(A))
and tpLi

(Gi(acl
eq(Aa))/Mi) ∈ (Mi/Gi(A)).

Proof. We apply Corollary 1.10 twice — once with T1 = ACVFGi and a second time

with T1 = pCFGi . �
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2.5. A local density result. In this section, we prove a weak equivalent for
bounded PpC fields of the first author’s canonical density result for bounded pseudo
real closed fields, which plays a key role in proving the elimination of imaginaries
for these structures. In [20], the first author proved the following:

Proposition 2.37 ([20, Proposition 4.8]). Let (M,<1, . . . ,<n) be a bounded n-PRC
field considered in the language of rings with constants for a countable elementary
substructure. Let S ⊆ M be definable. Then there are a finite set S0 ⊆ S, m ∈ Z≥0
and Iij, for j <m, an <i-interval in M , such that:

(1) S ⊆ S0 ∪⋃j Ij, where Ij ∶= ⋂i I
i
j;

(2) for every j, S ∩ Ij is dense in Ij for the topology generated be all the <i-
topologies;

(3) Every Ij is M ∩ acleq(⌜S⌝)-definable.

A non-canonical version of that result for PpC fields — where interval are re-
placed by p-adic 1-cells, and a weakening of (3) holds — was proved by the first
author, cf. [21, Theorem6.8]. However, since elimination of imaginaries is all about
canonicity, we need a stronger result:

Question 2.38. Does the n−PpC version of [20, Proposition 4.8] hold?

Instead of answering that question, in this paper, we choose to focus on a related,
more tractable, problem by describing types rather than definable sets. We now
revert to our standard notation described in 2.24.

Definition 2.39. Let Ma
i ⊧ ACVFGi . We denote by Bi(Ma

i ) the set of balls in
Ma

i . We consider points to be closed balls of infinite radius and the whole field to
be an open ball of radius −∞.

Let P ⊆B(Ma
i ). We define αP , the generic type of ⋂b∈P b as:

αP (x) ∶= {x ∈ b ∣ b ∈ P} ∪ {x ∉ b
′ ∣ ∀b ∈ P, b′ ⊂ b}.

By C-minimality of ACVF, when it is consistent, αP generates a complete type.
We will not distinguish αP from the complete type it generates. Note that, if
P ⊆ Bi(A), then αP ∈ I(Ma

i /A).

Proposition 2.40. Let A ⊆M eq containing G(acleq(A)) and c ∈K(M). For each
i ≤ n, let Pi = {b ∈ Bi(A) ∣ c ∈ b}. Then the partial type:

tp(c/A) ∪⋃
i

αPi

is consistent.

Proof. Assume that this type is not consistent. By compactness, there exists a
L(A)-formula φ(x), balls bi ∈ Pi and bi,j ∈ Bi(Ma

i ) with bi,j ⊂ bi for all bi ∈ Pi, such
that M ⊧ ∀x ((φ(x) ∧ ⋀i x ∈ bi) → ⋁i,j x ∈ bi,j). Because the valuation vi is p-adic,
any ball is covered by finitely many subballs and, because A contains G(acleq(A)),
Pi cannot have a minimal element. It follows that replacing the bi,j by the smallest
ball covering them, we may assume that there is only one bi,j denoted b′i. For all
tuple of balls b′2, . . . , b

′
n (with finite radius) where b′i ∈ Bi, let f1(b′2, . . . , b

′
n) be the

minimal ball covering (φ(M)∩⋂ bi(M))∖⋃i≥2 b
′
i(M). This ball exists because, by

Fac 2.12, vi(M) is a pure Z-group.
By Corollary 2.33, f1(b′2, . . . , b

′
n) ∈ A. Removing (the set coded by) f1(b′2, . . . , b

′
n)

from φ(x), we still have M ⊧ φ(c), but now M ⊧ ∀xφ(x) ∧ ⋀i x ∈ bi → ⋁i≥2 x ∈ b′i.
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By induction, removing Leq(A)-definable sets from φ(x), we can get to a situation
where M ⊧ φ(c) and φ(M) ∩ ⋂i bi(M) = ∅, a contradiction. �
Proposition 2.41. Let A ⊆M eq containing G(acleq(A)) and c ∈K(M). Then we
can find types pi ∈ I(Ma

i /Gi(A)) and qi ∈ I(Mi/Gi(A)) such that the partial type:

tp(c/A) ∪⋃
i

pi ∪⋃
i

qi

is consistent.

Proof. By Proposition 2.40, we can find Pi ⊆ Bi(A) such that tp(c/A) ∪ ⋃i αPi
is

consistent. If any of the αPi
is a realized type, then c ∈K(A) and we are done.

We may assume that c ⊧ αPi
. Pick any d ∈ ⋂b∈Pi

b(Mi) and let fm ∈ F a
0 ∩M be

such that fm(c−d) ∈K(Mi)m. Then for any d′ ∈ ⋂b∈Pi
b(Mi), fm(c−d′) ∈K(Mi)m

since d and d′ are much closer to each other than to c. Note also that for any
e ∉ ⋂b∈Pi

b(Mi), fm(c − e) ∈ K(Mi)m if and only if fm(d − e) ∈ K(Mi)m, a value
that does not depend on the choice of c.

So αPi
(x)∣Mi

∪ {fm(x − d) ∈ K(Mi)m ∣ m ∈ Z>0} generates qi(x) ∶= tpLi
(c/Mi),

which is therefore in I(Mi/Gi(A)). �
Remark 2.42. In fact, Proposition 2.41 would follow from a positive answer to 2.38.
The converse is far from clear.

Similarly, the pseudo real closed version of Proposition 2.41 follows from Propo-
sition 2.37.

The higher dimension version of Proposition 2.41 follows formally by induction
from Corollary 2.36:

Theorem 2.43. Let A ⊆ M eq containing G(acleq(A)) and c ∈ Km(M). Then we
can find types pi ∈ I(Ma

i /Gi(A)) and qi ∈ I(Mi/Gi(A)) such that the partial type:

tp(c/A) ∪⋃
i

pi ∪⋃
i

qi

is consistent.

Proof. We proceed by induction on m. Assume that we have pi(x) ∈ I(Ma
i /Gi(A)),

qi ∈ I(Mi/Gi(A)) and a ⊧ ⋃i pi∪⋃i qi. Pick some c ∈K(M). We want to find types
ri(x, y) ∈ I(Ma

i /Gi(A)) and si(x, y) ∈ I(Mi/Gi(A)) such that tp(ac/A)∪⋃i ri∪⋃i si
are consistant.

Let Ei = Gi(acl
eq(Aa)). By Corollary 2.36, we find p′i ∈ I(Ma

i /Gi(A)) and
q′i ∈ I(Mi/Gi(A)) such that Ei ⊧ p′i ∪ q′i. Let E ∶= A ∪⋃iEi, then G(acleq(E)) ⊆ E.
Let N ≽ M containing M ∪E, Ni and Na

i as in 2.24. Applying Proposition 2.40,
we can find p′′i ∈ I(Na

i /Ei), q′′i ∈ I(Mi/Ei) and c∗ ⊧ tp(c/E) ∪ ⋃i p
′′
i ∪ q′′i . Let

ri(x, y) ∶= {φ(x, y) ∣ φ(x, a) ∈ p′′i } and si(x, y) ∶= {φ(x, y) ∣ φ(x, a) ∈ q′′i }. It is easy
to check that these two types have the required properties. �
Remark 2.44. Note that, so far, we have not used [14, Theorem2.6] — elimination of
imaginaries in p-adically closed fields. Moreover, ifM is p-adically closed, then there
is just one p-adic valuation on M and the type q1 that we constructed is a complete
type. We have just reproved a strong version of the invariant extension property
(cf. [14, Corollary 4.7]), of which, by Remark 1.20, weak elimination of imaginaries
follows. The main difference between the two proofs is that the proof presented
here focuses from the start on finding invariant extensions. The arguments in this
paper could also easily be carried out in finite extensions of p-adically closed fields.
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2.6. Amalgamation over geometric points. The goal of this section is to im-
prove the first author’s amalgamation result [21, Theorem 3.21] to allow amalga-
mation over bases of geometric points.

Fact 2.45. Let E ≤ A ≤ C be field extensions.

(i) If E ≤ C is regular, then EaA ∩C = EA.
(ii) If A ≤ C is regular, then EaC ∩Aa = EaA

Proof.

(i) Since C is linearly disjoint from Ea over E, then C is linearly disjoint from
EaA over A.

(ii) Since Aa is linearly disjoint from C over A, and A ≤ EaA ≤ Aa, we also
have that Aa is linearly disjoint from EaAC = EaC over EaA. �

Lemma 2.46. Let A ⊆K(M). If Aa ∩K(M) ⊆ A, then Aa = F a
0A.

Proof. We have Aa ⊆ K(M)a = F a
0K(M). So Aa ⊆ F a

0K(M) ∩ Aa = F a
0A. The

equality follows from Fact 2.45.(ii) and the fact that A ≤K(M) is regular. �
Lemma 2.47. Let A ⊆ M ≼ N ⊧ T and K(A) ⊆ C ⊆ K(N). Assume that
K(dcl(A))∩M ⊆ A and that, for some i ≤ n, qftpLi

(C/M) is autL(M/A)-invariant.
Then C and and K(M) are algebraically disjoint over K(A).

Proof. Let m be any finite tuple in C and V be its algebraic locus over K(M).
We have to show that V is defined over K(B). Pick any σ ∈ autL(M/A). Since
qftpLi

(C/M) is autL(M/A)-invariant, we also have m ∈ σi(V ) = σ(V ) and hence

V ⊆ σ(V ). It follows, using σ−1, that V = σ(V ) and, by elimination of imaginaries
in ACF, V is defined over K(dcl(B)) =K(B)a ∩M =K(B). �

Let us first generalize the characterization of types in bounded pseudo p-adically
closed fields (cf. [17, Proposition 10.4] and [21, §6.4]) to allow geometric parameters:

Lemma 2.48. Let M , N ⊧ T , A ⊆M , B ⊆ N and f ∶ A→ B be an L-isomorphism.
Assume that K(A)a ∩M ⊆ A and K(B)a ∩N ⊆ B and N is ∣M ∣+-saturated. Then
there exists an L-embedding g ∶M → N such that K(g(M))a ∩N ⊆ g(M).

Proof. Let Ui ⊧ pCFGi be a sufficiently saturated and homogeneous model that
contains Gi(M) ∪ Gi(N). Let Ai ∶= aclLi

(A), Bi ∶= aclLi
(B) and fi ∶ Ai → Bi

be an Li-isomorphism extending f . Also, for each i, let pi ∈ I(Ui/Bi) extend
(fi)⋆tpLi

(K(M)/Ai) = {φ(x, fi(a)) ∣ φ(x, a) ∈ tpLi
(K(M)/Ai)}. Let Fi ⊧ pi∣NAi

.
Note that the fields Fi are all isomorphic as fields (over K(N)K(B)) so we may
identify them. Let M⋆ be the L-structure whose underlying field is Fi and whose
Li-structure is induced by Ui. Note that there is an L-isomorphism between M
and M⋆ extending f .

Since every automorphism of M extends to Ui, qftpLi
(M⋆/N) is autL(N/B)-

invariant. It follows, by Lemma 2.47, K(M⋆) is algebraically independent from
K(N) over K(B). Also, the extension K(A) ≤ K(M) is regular, hence so are the
extensions K(B) ≤K(M⋆) and K(N) ≤K(M⋆)K(N). Since, K(M⋆)K(N) ≤ Ui,
for all i ≤ n, this extension is totally p-adic. Let N0 ≼ N be a small model containing
B. As N is pseudo p-adically closed, there exists M◇ ≤ N which is Lrg(N0)-
isomorphic to M⋆. Since L is a definable enrichment of Lrg(F0), it follows that M◇

is L(B)-isomorphic to M⋆. Composing with the L-isomorphism between M and
M⋆, we get an L-isomorphism g ∶M →M◇ extending f .
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Claim 2.49. K(M◇)a ∩N =K(M◇)

Proof. Note that M◇ is L-isomorphic to M and hence M◇ ⊧ T . It follows that
K(M◇)a = F a

0K(M◇). Since F0 ≤ N is regular, by Fact 2.45.(i), K(M◇)a ∩ N =
F a
0K(M◇) ∩N =K(M◇). �

This concludes the proof. �

Proposition 2.50. Let M , N ⊧ T , A ⊆ M , B ⊆ N and f ∶ A → B be an L-
isomorphism. Assume that K(A)a ∩ M ⊆ A and K(B)a ∩ N ⊆ B. Then f is
elementary.

Proof. Assume M and N are sufficiently saturated. We proved in Lemma 2.48
that the set of L-isomorphisms between (small) A ⊆ M and B ⊆ N such that
K(A)a ∩M ⊆ A and K(B)a ∩N ⊆ B has the back-and-forth (if it is non-empty). It
follows that any such isomorphism is elementary. �

Using the results of Section 2.3 and and the fact that the L-structure on the
sort K in T is a definable expansion of the ring language, we can improve this last
result:

Corollary 2.51. Let F0 ⊆ E ⊆M and a ∈M be a tuple, then

qftpL(a/E) ∪ qftpLrg(F0)(K(E)K(a)a ∩M/K(E)) ⊢ tp(a/E).

Proof. It suffices to prove that if we have A,B ⊆ M containing F0,f ∶ A → B an
L-isomorphism and g ∶ K(A)a ∩M → K(B)a ∩M an Lrg(F0)-isomorphism such
that f ∣K(A) = g∣K(A), then f is an elementary L-isomorphism. By Claim 2.23, g is

an L-isomorphism. By Proposition 2.50, g is an elementary L-isomorphism which
extends to σ ∈ autL(M). Let C ∶= σ(A). It suffices to prove that C ≡L(F0) B.

We know that K(C) =K(B) so it suffices to prove that Gim(C) ≡L(K(B)) Gim(B),
where Gim is the set of all L-sorts except for K. By hypothesis, C ≡qfL A ≡qfL
B so Gim(C) ≡qf

L(K(B))
Gim(B). But, by Proposition 2.26, this is equivalent to

Gim(C) ≡L(K(B)) Gim(B). �

Lemma 2.52. Let L1, L2 ⊧ pCF∀ and k0 be a common LMac-substructure of L1

and L2 such that L1 and L2 are linearly disjoint over k0. Then L1L2 can be made
into an LMac-structure extending that L1 and L2 such that L1L2 ⊧ pCF∀.

Proof. Since pCF eliminates quantifiers in LMac, there exists U ⊧ pCF containing
both L1 and L2 as LMac-substructures. By induction, it suffices to consider the
case where L1 = k0(a). If a is algebraic over k0, then the minimal polynomial of
a over k0 and L2 coincide. So k0(a) and L2 are linearly independent over k0 (as
subfields of U) and we are done. If a is transcendental over k0, let c ∈ U∖La

2 realize
tpLMac

(a/k0). Then k0(c) is linearly independent from L2 over k0 and we are also
done. �

Remark 2.53. The above proof is not really about p-adically closed fields. It holds
of any theory of (enriched) fields that eliminates quantifiers and is algebraically
bounded.

Theorem 2.54. Let M ⊧ T , E ⊆ M and a1,a2, c1, c2, c ∈ K(M) be such that

K(E)a ∩ M ⊆ E, K(E)(a1)a ∩ K(E)(a2)a = K(E)a, c ⫝i,qf
E a1a2, c1 ≡L(E) c2,
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c ≡qf
L(Ea1)

c1 and c ≡qf
L(Ea2)

c2. Then tp(c1/Ea1) ∪ tp(c2/Ea2) ∪ qftpL(c/Ea1a2) is

satisfiable.

This is very similar to a result proved by the first author [21, Theorem6.13]. The
main difference is that in Theorem 2.54, E is allowed to contain geometric points.

Proof. Let p be a quantifier free autL(M/E)-invariant type extending the quantifier
free type of c over Ea1a2. Choosing c ⊧ p in some N ≽ M , we may assume that

c ⫝i,qf
E M . By Lemma 2.47, K(E)(c) is algebraically disjoint from K(M) over

K(E). Let Aj ∶=K(E)aaj ∩M , Cj ∶=K(E)caj ∩M , C ∶=K(E)ca∩M , F = A1A
a
2∩M

and Bj ∶= AjC
a
j ∩M . Since c ≡qf

L(Eaj)
cj and aclLi

= dclLi
, we have that C ≡qf

L(Aj)
Cj .

So there exists an L(Aj)-isomorphism φj ∶ AjCj → AjC sending Cj to C. We
can extend this isomorphism to an Lrg(F0)-isomorphism φa

j ∶ AjC
a
j → AjC

a. Let

Dj ∶= φa
j(Bj). A picture of the involved fields might help:

B1

φa
1 �� D1 F D2 B2

φa
2��

A1C1
φ1 �� A1C A1A2 A2C A2C2

φ2��

C1 A1

������������
������

�����

C

������������

������������
A2

������

�����
������������

C2

K(E)(c1) K(E)(a1) K(E)(c) K(E)(a2) K(E)(c2)

K(E)

����������������������

����������

����������

����������������������

By [4, Lemma 2.5.(2)],

CAa
1 ∩CAa

2A1A
a
2 = Ca(Aa

1 ∩Aa
2)

aAa
1 = CaAa

1 =K(E)aCA1.

The last equality follows from Lemma 2.46. Since K(E) ≤ C2F ≤K(M) is regular,
it follows K(E) ≤ D2F is regular and hence that D2F is linearly disjoint from
K(E)aCA1 over CA1. In conclusion, we have that CAa

1 ∩ D2F = K(E)aCA1 ∩
D2F = CA1, i.e. the extension CA1 ≤ D2F is regular. By a symmetric argument,
the extension CA2 ≤ D1F is also regular. Since D2F is linearly disjoint from
D1 ≤ CAa

1 over CA1 and the extension CA1 ≤ D2F is regular, then so is the
extension D2F ≤ D1D2F . Since K(E) ≤ F is regular, it follows that D1D2F is
linearly disjoint from F a = K(E)aF over F , i.e. the extension F ≤ D1D2F is
regular.

Note that CF ⊆ N can be made into a model of ⋃i pCFi,∀. Also, Bj can be
made into a model of ⋃i pCFi,∀ and hence so does Dj by transfert. Note that since
φj is an L-isomorphism, the Li-structures induced by Dj and CF on CAj coincide.
Note also, that since CAj ≤ DlF , where l ≠ j is regular, Dj and CF are linearly
disjoint over CAj . By Lemma 2.52, it follows that DjF can be made into a model
of pCFi,∀ whose Li-structure extends that of CF . Since CA1 ≤D2F is regular, we
also have that D1F and D2F are linearly disjoint over CF . By Lemma 2.52 again,
D1D2F can be made into a model of pCFi,∀ whose Li-structure extends that of F .
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Recall that K(E)(c) is algebraically disjoint from K(M) over K(E). It follows
that CF is algebraically disjoint from K(M) over F and thus that D1D2F ⊆ CF a

is algebraically disjoint from K(M) over F . Since F ≤K(M) is regular, D1D2F ⊆
CF a and K(M) are in fact linearly disjoint over F and, since F ≤ D1D2F is also
regular, M ≤ D1D2K(M) is regular. Moreover, by Lemma 2.52, D1D2M can be
made into a model of pCFi,∀ for all i, i.e. the extension if totally p-adic. Since
M ⊧ n−PpC, by Theorem 2.17, there exists M⋆ ≽ M containing D1D2F as an
L-substructure.

Since Ba
j = K(E)aBj , we also have Da

j = K(E)aBj . As K(E) is regular in

K(M⋆), it then follows that Da
j ∩ M⋆ = Dj . Note that, since the L-structure

on M(c) coincides with the one we built on D1D2F and hence with the one in

N(c), qftpM
⋆

L (c/Ea1a2) = qftpNL (c/Ea1a2) has not changed and we still have that

c ≡qf
L(Eaj)

cj . By construction, we also have Dj ≡
qf
L(Aj)

Bj . It follows, from Corol-

lary 2.51, that c ≡L(Eaj) cj . �

2.7. Finite sets. Our goal, in this section, is to prove that finite sets are coded.
We first prove that finite sets are coded in the algebraic closure of a n−PpC field
equipped with extensions of the geometric language for each valuation and then we
conclude with Lemma 2.35. The proof technique is inspired by Johnson’s account
of elimination of imaginaries in algebraically closed valued fields [18, §6.2].

In what follows, let F be an algebraically closed field and vi, 1 ≤ i ≤ n, be
n independent valuations on F . Recall Notation 2.20. Let Oi also denote the
valuation ring for vi and O = ⋂iOi. Let La ∶= ⋃iLa

i . The field F can naturally be
made into an La-structure.

A quantifier free La-type p(x) over F is said to be definable if for each quantifier
free La

i -formula φ(x, y), there exists a quantifier free La
i -formula θ(y) such that

φ(x, a) ∈ p if and only if ⊧ θ(a). If p(x) and q are quantifier free La-types over F ,
then we define p ⊗ q to be the quantifier free definable La-type of tuples ab where
a ⊧ p and b ⊧ q∣Fa. It is also a quantifier free definable La-type. The type p is said
to be symmetric if for any quantifier free definable La-type q, p ⊗ q = q ⊗ p, i.e. if
a ⊧ p and b ⊧ q∣Fb, then a ⊧ p∣Fb. This happens if and only if, for all i, p∣La

i
is a

symmetric definable type in ACVFGi .

Lemma 2.55. Pick any s ∈ Sm(F ) ∶= GLm(F )/GLm(O). There exists a quantifier
free symmetric s-definable La-type qs such that qs(x) ⊢ x ∈ s.

Proof. Let ki be the residue field for the valuation vi and pi be the generic type of
GLm(ki). Let qi be the type of matrices in GLm(O) whose reduct modulo m realizes
pi. By [16, Lemma 6.7 and Proposition 2.10,(1)], qi is a symmetric definable type.
Note that, by independence of the valuations, q ∶= ⋃i qi is consistent and also that,
since qi is invariant by multiplication in GLm(Oi), q is invariant by multiplication
in GLm(O).

Pick any M ∈ s(F ). The quantifier free definable La-type qs of elements MN for
some N ⊧ q does not depend on the choice of M and it is quantifier free symmetric
s-definable. �

Lemma 2.56. Let C be a finite subset of Sm(F ) × F l for some m and l. Then C
is coded in G ∶= ⋃i Gi.
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Proof. By Lemma 2.55, for all c ∈ C, there exists a quantifier free symmetric c-
definable type pc concentrating on c, i.e. if c = c1c2 with c2 ∈Kl, then pc(x1, x2) ⊧
x1 ∈ c1 ∧ x2 = c2. Let s be the definable map sending a finite subset of K∣x1∣+∣x2∣ of
size ∣C ∣ to its code. Note that we can choose the image of s to be a subset of some
Km. Let pC = s⋆(⊗c∈C pc). Note that since each pc is symmetric, the type pC does
not depend on a choice of enumeration for C. So pC is a ⌜C⌝-definable quantifier
free type and C is La(⌜pC⌝)-definable. By elimination of imaginaries in ACVFi,
each pC ∣La

i
has a canonical basis in Gi and since pC = ⋃i pC ∣La

i
, pC , and hence C,

is G(⌜C⌝)-definable. �

Corollary 2.57. Let M ⊧ T , and C be a finite subset of Gk(M). Then C is coded
in G.

Proof. Any product of sorts from Gim
i can be Li-definably embedded in Si

m for large
enough m. Also, there is an L-definable injection Si

m(K) → Sm(K) sending a coset
of GLm(Oi) to its intersection with ⋂j≠iGLm(Oj). So we may assume that C is a

subset of Sm ×Kl for some m and l. By Lemma 2.56, C is coded by some ε ∈Ma.
Note that since C is La(M)-definable, Gi(ε) ⊆ dclLa

i
(M). Thus, by Lemma 2.35,

we can find ηi ∈ M such that Gi(ε) and ηi are interdefinable in the pair (Ma
i ,M).

It follows that ⋃i ηi is a code for C in M . �

2.8. The elimination of imaginaries. We can now prove our main result regard-
ing bounded PpC fields:

Theorem 2.58. The theory T eliminates imaginaries.

Proof. We apply Propostion 1.17 and Lemma 1.19 to obtain weak elimination of
imaginaries. Hypothesis (i) is proved in Theorem 2.43 and Hypothesis (ii’) is proved
in Theorem 2.54. Since, by Corollary 2.57, finite sets are coded, we obtain elimi-
nation of imaginaries. �

Remark 2.59. As noted in Remark 2.4.(4), for all m, Ti
m is Li-definably embedded

in Si
m, so the Ti

m are not necessary to eliminate imaginaries. Also the map sending
a coset of GLm(O) in GLm(K) to the tuple of GLm(Oi) cosets is an L-definable
bijection. Its inverse is given by taking the intersection of the GLm(Oi) cosets. So
T also eliminates imaginaries in the language with a sort for K and, for all m ∈ Z>0,
a sort Sm for GLm(K)/GLm(O).

2.8.1. A pseudo real digression. Recall that a pseudo real closed field is a field
which is existentially closed in any regular extension to which every order extends.
Elimination of imaginaries for bounded pseudo real closed fields, in the language of
rings with constants for an elementary subfield, was proved in [20]. However, there
seems to be an error in the final arguments.

Recall the set up of [20, Lemma 4.9]. Let M be a sufficiently saturated pseudo
real closed field, in the language of rings with constants for a countable elementary
substructure. Pick e ∈ M eq, and a ∈ M a tuple such that e ∈ dcleq(a). Let E =
acl(E) ⊇ acleq(e)∩M and E = acleq(Ee)∩M . Then by the arguments of [12, Claim
1 of Proposition 3.1], we find b1, b2 ∈M such that tp(b1/Ee) = tp(b2/Ee) = tp(a/Ee)
and acl(Eb1) ∩ acl(Eb2) = E.
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However, unless we already know weak elimination of imaginaries in bounded
pseudo real closed fields, we could have E ⊂ E. Since acl(Eb1) ∩ acl(Eb2) =
acl(Eb1) ∩ acl(Eb2) = E, b1 and b2 would not be algebraically independent over
E which is crucial later in the proof.

The correct version of [20, Lemma 4.9] is therefore:

Lemma 2.60. Let e ∈M eq, f a ∅-definable map and a ∈M a tuple such that f(a) =
e. Let E ⊆ M be such that acleq(Ee) ∩M ⊆ E. Then there exists tuples b1, b2 ∈ M
which are algebraically independent over E, such that tp(b1/Ee) = tp(b2/Ee) =
tp(a/Ee).

But in [20, Claim 1 of Theorem4.11], given a′ ⊆ a such that trdeg(E(a)/E(a′)) =
1, if we replace E by acl(E(a′)), the stronger hypothesis of Lemma 2.60 might not
hold anymore. This is easy to fix using the technology developed in this paper:

Lemma 2.61. Let M be a bounded pseudo real closed field and let X be M -
definable. There exists p ∈ D(Ma/acleq(⌜X⌝) ∩M) consistent with X.

Proof. Take p to be the generic type of any irreducible component of the Zariski
closure of X(M). By elimination of imaginaries in algebraically closed fields (and
Galois theory), p is acleq(⌜X⌝) ∩M -definable. �

Now in the proof of [20, Theorem4.8], given e ∈ M eq in the range of some ∅-
definable function f , one can, using Lemma 2.61, first find p ∈ D(Ma/E) consistent
with f−1(e) and then choose a ⊧ p. It then follows from Corollary 1.9 that for any
a′ ⊆ a, E′ ∶= acleq(ea′) ∩M = acl(Ea′) and hence that acleq(E′e) ∩M ⊆ E′. We can
thus safely apply Lemma 2.60 to E′.

Another, somewhat overkill, approach would be to adapt the general outline of
the proof presented in this paper. The only result on bounded pseudo p-adically
closed fields which is proved in this paper and whose pseudo real closed equivalent is
not already proved in [21] is Proposition 2.41. But the bounded pseudo real closed
equivalent is an easy consequence of Proposition 2.37. The rest of the arguments
can be copied mutatis mutandis replacing ACVFG by the theory of algebraically
closed fields and pCFG by the theory of real closed fields.
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