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Imaginaries and invariant types in existentially
closed valued differential fields

By Silvain Rideau at Berkeley

Abstract. We answer three related open questions about the model theory of valued
differential fields introduced by Scanlon. We show that they eliminate imaginaries in the ge-
ometric language introduced by Haskell, Hrushovski and Macpherson and that they have the
invariant extension property. These two results follow from an abstract criterion for the density
of definable types in enrichments of algebraically closed valued fields. Finally, we show that
this theory is metastable.

1. Introduction

In [18], Scanlon showed that the model theory of equicharacteristic zero fields equipped
with both a valuation and a contractive derivation (i.e. a derivation 0 such that for all x,
val(d(x)) > val(x)) is reasonably tractable. Scanlon proved that the class of existentially
closed such differential valued differential fields, which we will denote by VDFge, is ele-
mentary and he proved a quantifier elimination theorem for these structures. In this paper, we
wish to investigate further their model theoretic properties.

A theory is said to eliminate imaginaries if for every definable set D and every defin-
able equivalence relation £ C D?, there exists an definable function f such that xEy if and
only if f(x) = f(y); in other words, a theory eliminates imaginaries if the category of defin-
able sets is closed under quotients. In [7], Haskell, Hrushovski and Macpherson proved that
algebraically closed valued fields (ACVF) do not eliminate imaginaries in any of the “usual”
languages, but it suffices to add certain collections of quotients, the geometric sorts, to obtain
elimination of imaginaries. By analogy with the fact that differentially closed fields of charac-
teristic zero (DCFp) have no more imaginaries than algebraically closed fields (ACF), it was
conjectured that VDFge also eliminates imaginaries in the geometric language with a symbol
added for the derivation.

To prove their elimination results Haskell, Hrushovski and Macpherson developed the
theory of metastability, an attempt at formalizing the idea that, if we ignore the value group,
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algebraically closed valued fields behave in a very stable-like way (cf. Section 2.3 for pre-
cise definitions). Few examples of metastable theories are known, but VDFge seemed like
a promising candidate. Once again, the analogy with differentially closed fields is tempting.
Among stable fields, algebraically closed fields are extremely well understood but are too tame
(they are strongly minimal) for any of the more subtle behavior of stability to appear. The the-
ory DCFy of differentially closed fields in characteristic zero, on the other hand, is still quite
tame (it is w-stable) but some pathologies begin to show and, by studying DCFy, one gets a
better understanding of stability. The theory VDFge could play a similar role with respect to
ACVF: it is a more complicated theory in which to experiment with metastability.

Nevertheless, it was quickly realized that the metastability of VDFge was an open ques-
tion, one of the difficulties being to prove the invariant extension property. A theory has the
invariant extension property if, as in stable theories, every type over an algebraically closed
set A has a “nice” global extension: an extension which is preserved under all automorphisms
that fix A (Definition 2.10). In Theorem 2.14, we solve these three questions, by showing that
VDFge eliminates imaginaries in the geometric language, has the invariant extension property
and is metastable over its value group.

Following the general idea of [12,14], elimination of imaginaries relative to the geometric
sorts is obtained as a consequence of the density of definable types over algebraically closed
parameters and of computing the canonical basis of definable types in VDFge. This second
part of the problem is tackled in [17]. Moreover, the invariant extension property is also a
consequence of the density of definable types. One of the goals of this paper is, therefore, to
prove density of definable types in VDFge: given any A-definable set X in a model of VDFge,
we find a type in X which is definable over the algebraic closure of A.

Let £giy be the one-sorted language for ACVF and £34iv := £Laiv U {0} be the one-
sorted language for VDFge, where 0 is a symbol for the derivation. It follows from quantifier
elimination in VDFge that, to describe the &£5 qiy-type of x (denoted p), it suffices to give
the Lgiv-type of 04, (x) 1= (0" (X))n<e (denoted V4, (p)). Moreover, p is consistent with X if
and only if V,,(p) is consistent with d,, (X). Note that V,(p) is the pushforward of p by 9,
restricted to £4jy and, thus, V, (p) is definable if and only if p is. Therefore it is enough to
find a “generic” definable £g4iy-type ¢ consistent with 9, (X).

A definable £4,-type is a consistent collection of definable A-types where A is a fi-
nite set of £45y-formulas and so we can ultimately reduce to finding, for any such finite A, a
“generic” definable A-type consistent with some £ giy (M )-definable set (see Proposition 9.5).
It follows that most of the preparatory work in Sections 6-9 will focus on understanding A-
types for finite A in ACVF.

An example of this convoluted back and forth between two languages £4;y and £ giy is
underlying the proof of elimination of imaginaries in DCFp; in that case the back and forth is
between the language of rings and the language of differential rings, although, in the classical
proof, it may not appear clearly. Take any set X definable in DCFy, let X, := 9, (X) where
On(x) := (0'(x))o<i<n and let Y, be the Zariski closure of X,,. Now, choose a consistent
sequence (pn)n<w of ACF-types such that p, has maximal Morley rank in Y;,. Because ACF
is stable, all the p, are definable and, by elimination of imaginaries in ACF, they already have
canonical bases in the field itself. Then the complete type of points x such that d,(x) E pp is
also definable, it has a canonical basis of field points, and it is obviously consistent with X.

In ACVF, we cannot use the Zariski closure because we also need to take into account
valuative inequalities. But the balls in ACVF are combinatorially well-behaved and we can
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approximate sets definable in VDFge by finite fibrations of balls over lower dimensional sets:
cells in the C-minimal setting (see Section 9). Because C -minimality is really the core property
of ACVF which we are using, the results presented here generalize naturally to any C-minimal
extension of ACVF. We hope it might lead in the future to a proof that VDFge with analytic
structure has the invariant extension property and has no more imaginaries than ACVF with
analytic structure (denoted ACVF 4) which is C-minimal. Note that we have no concrete idea
of what those analytic imaginaries might be (see [9]).

The paper is organized as follows. The first part (Sections 2—5) contains model theoretic
considerations about VDFge. In Section 2, we give some background and state Theorem 2.14,
our main new theorem about VDFge whose proof uses most of what appears later in the paper.
Section 3 explores the properties of an analog of prolongations on the type space. In Section 4,
we study the definable and algebraic closures. Finally, in Section 5, we prove that metastability
bases exist in VDFge.

The second part (Sections 6—10) contains the proof of Theorem 9.7, an abstract criterion
for the density of definable types. In Section 6 we study certain “generic” A-types, for A
finite, in a C-minimal expansion 7" of ACVF (see Definition 6.11). In Section 7, we introduce
the notion of quantifiable types and we show that the previously defined “generic” types are
quantifiable. In Section 8, we consider definable families of functions into the value group, in
ACVF and ACVF 4. We show that their germs are internal to the value group. In Section 9, we
put everything together to prove Theorem 9.7. Finally, in Section 10, we use this density result
to give a criterion for elimination of imaginaries and the invariant extension property.

Appendix A contains improvements of known results on stable embeddedness in pairs of
valued fields which are used in order to apply the results of [17].

2. Background and main results

Whenever X is a definable set (or a union of definable sets) and A is a set of parameters,
X(A) will denote X N A. Usually in this notation there is an implicit definable closure, but we
want to avoid that here because more often than not there will be multiple languages around.
Similarly, if & is a set of definable sorts, we will write §(A) for | Jgc g S(A4). The symbol C
will denote strict inclusion.

For all the definitions concerning stability or the independence property, we refer the
reader to [20].

2.1. Valued differential fields. We will mostly study equicharacteristic zero valued
fields in the leading term language. It consists of three sorts K, RV and I', maps rv : K — RV
and valry : RV — T, the ordered group language on I' and the ring language on RV and K.
The group structure will be denoted multiplicatively on RV and additively on T'.

A valued field (K, val) has a canonical £RV-structure given by interpreting T’ as its
value group and RV as (K /(1 4+ 9t)) where 9t denotes the maximal ideal of the valuation
ring @ € K. The map rv is interpreted as the canonical projection K — RV. The func-
tion - on RV is interpreted as its (semi-)group structure. We have a short exact sequence
1 - k* - RV* - T — 0 where k := @/ is the residue field. The function + is in-
terpreted as the function induced by the addition on the fibres RV, := Vali{, (y) U {0} (and
for all x, y € RV such that valry (x) < valry(y), we define x + y = y + x = x). Note
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that (RV,,, +, ) is a one-dimensional k-vector space and that RV = k. Although valgy (0)
is usually denoted by +00 # y, we consider that 0 lies in each RV ,. In fact, it is the identity
of the group (RV,, +).

The valued fields we consider are also endowed with a derivation 0 such that for all
x € K, val(d(x)) > val(x). Such a derivation is called contractive. We denote by :ﬁgv the
language £RV enriched with two new symbols @ : K — K and ogy : RV — RV. In a valued
differential field with a contractive derivation, we interpret 0 as the derivation and dry as the
function induced by 0 on each RV,,. This function dry turns RV, into a differential k-vector
space and for any x, y € RV, we have dry (x - y) = ory (x) - y + x - Orv (). We denote by
£5 rv the restriction of igv to the sorts RV and T'.

Let 9, (x) denote (x,0(x),...,0"(x)) and let d, (x) denote (0" (x));eN.

Definition 2.1 (0-Henselian). Let (K, val, 0) be a valued differential field. The field K is
0-Henselian if forall P € O(K){X}:= O(K/X) :i e N)anda € O(K), if val(P(a)) > 0
and min; {val(ﬁP(a))} = 0, then there exists ¢ € @ such that P(c) = 0 and res(c) =res(a).

Definition 2.2 (Enough constants). Let (K, val, d) be a valued differential field. We say
that K has enough constants if val(Cg) = val(K) where Cx := {x € K : d(x) = 0} denotes

the field of constants.

Let £g4iv be the one-sorted language for valued fields. It consists of the ring language
enriched with a predicate x|y interpreted as val(x) < val(y). Let £54iv := £aiv U {0} and
VDFge be the £5 qiv-theory of valued fields with a contractive derivation which are 0-Hensel-
ian with enough constants, such that the residue field is differentially closed of characteristic
zero and the value group is divisible.

Example 2.3. Let (k,0) = DCFy and let ' be a divisible ordered Abelian group. We
endow the Hahn field K = k((t7)) of power series Zyer‘ ayt? with well-ordered support and
coefficients in k, with the derivation

oD ayt”) =Y aanr.

yel yel

Then (K, val, 0) = VDFge.

As in the case of ACVF, VDFge can also be considered in the one-sorted, two-sorted,
three-sorted languages and the leading term language which are enrichments of the valued field
versions with symbols for the derivation. Recall that an &£-definable set D in some £-theory
T is said to be stably embedded if, for all M = T and all £(M )-definable sets X, X N D is
£(D(M))-definable.

Theorem 2.4 ([18, 19]). (i) The theory VDFge eliminates quantifiers and is com-
plete in the one-sorted language, the two-sorted language, the three-sorted language and
the leading term language.

(i1) The value group I is stably embedded. It is a pure divisible ordered Abelian group.
(iii) The residue field Kk is stably embedded. It is a pure model of DCFy.
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Proof. By [18, Theorem 7.1] we have field quantifier elimination in the three-sorted
language. The stable embeddedness and purity results for k and I' follow (see, for example,
[16, Remark A.10.2]). Now, the theory induced on k and I' are, respectively, differentially
closed fields and divisible ordered Abelian groups. Both of these theories eliminate quantifiers.
Quantifier elimination in the three-sorted language follows and so does qualifier elimination in
the one-sorted and two-sorted languages.

As for the leading term structure, by [19, Corollary 5.8 and Theorem 6.3], VDFge elim-
inates quantifiers relative to RV. Hence one can easily check that RV is stably embedded and
it is a pure &£5 ry-structure. Quantifier elimination for VDFge in the leading term language
now follows from quantifier elimination for the structure induced on RV which we prove in
the following lemma. o

Lemma 2.5. Let Try be the £3 Ry -theory of short exact sequences of Abelian groups
1 - k* > RV* - T — Osuchthatk = DCFy, forally € T, (RV,, +,-,0) is a differential
k-vector space, forall x, y € RV, 0(x - y) = 9(x) -y 4+ x - 0(y), and I is a divisible ordered
Abelian group. Then T eliminates quantifiers.

Proof. If suffices to prove that for any M, N |= Try such that N is | M | -saturated and
for any partial isomorphism f : M — N, there exists an isomorphism g : M — N extending
f defined on all of M.

Let A be the domain of f. We construct the extension step by step. By quantifier elim-
ination in divisible ordered Abelian groups, there exists g : I'(M) — T (N) defined on all of
I'(M) and extending f|r. It is easy to see that f U g is a partial isomorphism. So we may
assume that I'(A) = I'(M). We may also assume that A is closed under inverses: for any
a,b € RV(A), we define g(a™! - b) := f(a)™' - f(b). Then g U f is a partial isomorphism.
Finally, By elimination of quantifiers in DCFy, and saturation of N, f|x can be extended to
h : k(M) - Kk(N). Now define g(A-a) = h(A)- f(a) forall A € kanda € A. As A
is closed under inverse, this is well-defined and one can check that f U g is indeed a partial
isomorphism. So we may assume that k(M) C A.

Leta € M and y = valry(a). If a ¢ A, then RV, (4) = 0. Pick any ¢ € RV;(M).
We have d(¢) = A - ¢ for some A € k(M). We want to find i # 0 such that d(u - ¢) = 0, i.e.
d(u)-c+ puA-c = 0and equivalently, 0(u) + A = 0. But this equation has a solution in k(M)
as it is differentially closed. Thus, we may assume that d(c) = 0. If there exist an n € N
such that ¢ € A, let ng be the minimal such #; if such an n does not exist, let ng = 0. In both
cases, let b € RV (,,)(N) be such that 9(h) = 0 and "0 = f(c"?).

Now, for alla € RV(A) and n € N, define g(a - ¢”) = f(a) - b". Tt is easy to check
that g U f is a partial isomorphism. Applying this last construction repetitively, we obtain a
morphism g : M — N. ]

Remark 2.6. If M = VDFgeg, then K(M) and Cx (M) are algebraically closed, but
K (M) is not differentially closed. In fact, the set {x € K(M) : Iy, d(y) = xy} defines the
valuation ring.

2.2. Elimination of imaginaries. Let us now recall some facts about elimination of
imaginaries. A more thorough introduction can be found in [15, Sections 16.4 and 16.5]. An
imaginary is a point in an interpretable set or equivalently a class of a definable equivalence
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relation. To every theory 7" we can associate a theory 7°? obtained by adding all the imaginar-
ies. More precisely a new sort and a new function symbol are added for every @-interpretable
set and they are interpreted, respectively, as the interpretable set itself and the canonical pro-
jection to the interpretable set. A model of 74 is usually denoted by M 1. We write dcl®? and
acl®l to denote the definable and algebraic closure in M 4, respectively.

We will also need to speak of the imaginaries internal to some *-definable set.

Definition 2.7. Let N an £-structure and x a (potentially infinite) tuple of variables.
Let P be a set of £-formulas with variables x. The set

P(N):={me N :V¢ € P, N E ¢(m)}

is said to be (&£, x)-definable. We say that an (£, x)-definable set is strict (£, x)-definable if
the projection on any finite subset of x is £-definable. If we do not want to specity x (resp. &£),
we will simply say that a set is (£, x)-definable (resp. x-definable).

If X is an (£(A), x)-definable set for some set of parameters A, then X can be considered
as a structure with one predicate for each £(A)-definable subset of some Cartesian power
of X. Then X will denote the imaginary structure on X, which can be seen as an (£(A), *)-
definable subset of M 4. We might have to specify for which language the induced structure is
considered, in which case, we will write X ;l.

To every set X definable (with parameters in some model M of T'), we can associate
the set " X7 C M®© which is the smallest definably closed set of parameters over which X is
defined. We usually call " X ' the code or canonical parameter of X .

Let T be a theory in a language &£ and R a set of £-sorts. The theory 7" eliminates
imaginaries up to R if every set X definable with parameters is in fact definable over R(" X );
we say that X is coded in R. If every X is only definable over R (acl®d(" X ™)), we say that
T weakly eliminates imaginaries. A theory eliminates imaginaries up to R if and only if it
weakly eliminates imaginaries up to & and every finite set from the sorts (R is coded in R.

In [7], Haskell, Hrushovski and Macpherson introduced the geometric language £7. 1t
consists of a sort K for the valued field and, for all n € N, the sorts S,, = GL,(K)/GL,(0O)
and the sorts T, = GL,(K)/GL, »(OQ) where GL, ,(O) < GL,(O) consists of the matrices
which are congruent modulo the maximal ideal It to the matrix whose last column contains
only zeros except for a one on the diagonal. The language also contains the ring language on K
and the canonical projections onto S, and T;,,. We will denote by § the sorts of the geometric
language. Note that S is exactly the value group, and the canonical projection from K* onto
S; is the valuation.

The main “raison d’étre” of this geometric language is the following theorem.

Theorem 2.8 ([7, Theorem 1.0.1]). The theory ACVF? of algebraically closed valued
fields in the geometric language eliminates imaginaries.

2.3. Metastability. Let 7 be a theory, M = T sufficiently saturated and A € M. The
set X is stable stably embedded if it is stably embedded and the £(A4)-induced structure on
X is stable. We denote by Stff the structure whose sorts are the stable stably embedded sets
which are &£(A)-definable, equipped with their £ (A4)-induced structure. We will denote by i%
forking independence in St% . When it is not necessary, we will not specify £.
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Definition 2.9 (Stable domination). Let M be an £-structure, C € M, f an (£(C), x)-
definable map to St¢ and p € §(C). We say that p is stably dominated via f if for every
a | pand B € M such that Stc (dcl(CB)) ¢ f(a),

tp(B/Cf(a)) - tp(B/Ca).

We say that p is stably dominated if it is stably dominated via some map f. It is then
stably dominated via any map enumerating Stc (dcl(Ca)).

Definition 2.10 (Invariant extension property). Let T be an £-theory that eliminates
imaginaries, A € M for some M = T. We say that T has the invariant extension property
over A if, for all N = T, every type p € §(A) can be extended to an Aut(N/A)-invariant
type.

We say that 7" has the invariant extension property if 7" has invariant extensions over any
A=acl(A)CMET.

Definition 2.11 (Metastability). Let 7" be a theory and I' an ¢J-definable stably embed-
ded set. We say that 7" is metastable over I if

(i) the theory T has the invariant extension property;

(ii) for all A € M, there exists C € M containing A such that for all tuples a € M,
tp(a/CT (dcl(Ca))) is stably dominated. Such a C is called a metastability basis.

In [8], Haskell, Hrushovski and Macpherson showed that ACVF is metastable over its
valued group and that maximally complete fields are metastability bases. Recall that a valued
field (K, val) is maximally complete if every chain of balls contains a point or equivalently
every pseudo-Cauchy sequence from K (a sequence (Xq)qer such that forall o < B < vy,
val(x, —xg) > val(xg — x¢)) has a pseudo-limit in K (a pointa € K such that for all o« < ,
val(a — xg) > val(a — xq)).

To finish this section, let us introduce two other kinds of types which coincide with stably
dominated types in NIP metastable theories.

Definition 2.12 (Generic stability). Let M be some NIP £-structure and p € §(M).
The type p is said to be generically stable if it is £(M )-definable and finitely satisfiable in
some (small) N < M.

Definition 2.13 (Orthogonality to I'). Let M = T be sufficiently saturated, C € M,
I' be an £-definable set and p € (M) be an Aut(M/C)-invariant type. The type p is said to
be orthogonal to I if for all B € M containing A and a = p|p, I'(dcl(Ba)) = I' (dcl(B)).

2.4. New results about VDFge. Let ig be the language £¥ enriched with a symbol
for the derivation 0 : K — K and let VDF?C, be the iﬁf—theory of models of VDFge. The
goal of this paper is to prove the following theorem.

Theorem 2.14. The theory VDFgf eliminates imaginaries, has the invariant extension
property and is metastable. Moreover, over algebraically closed sets of parameters, definable
types are dense.
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By density of definable types, we mean that every definable set X is consistent with a
global é@f (acl®d(" X ))-definable type p.

Proof. The density of definable types is proved in Corollary 9.9. Elimination of imagi-
naries and the invariant extension property are proved in Corollary 10.4. Finally, the existence
of metastability bases is proved in Corollary 5.3 O

At the very end of [8], an incorrect proof of the metastability of VDFge (in particular, of
the invariant extension property) is sketched. Because it overlooks major difficulties inherent
to the proof of the invariant extension property, there is no easy way to fix this proof; new
techniques had to be developed.

3. Prolongation of the type space

The goal of this section is to study the relation between types in VDFge and types in
ACVF. This construction plays a fundamental role in the rest of this paper. However, in the
proof of Theorem 9.7, it appears in a more abstract setting.

For all x € K or x € RV, let dy(x) denote (dgy (X))nen. If x € T, let 9 (x) denote
(X)nen. If x is a tuple of variables, we denote by X the tuple (x@);cny where each x@) is
sorted like x. Let M = VDFge be sufficiently saturated and A < M be a substructure. We
write & ;‘F (A) for the space of complete £-types over A in the variable x.

Definition 3.1. Let A € K UT URV. We define V,, : 85 (4) — 8L (4) to be
the map which sends a complete type p to the complete type

Vo(p) := {¢(xoo, a): ¢ isan 2RV formula and ¢ (0p(x),a) € p}.
Proposition 3.2. The function V, is a homeomorphism onto its image (which is closed).

Proof. As$§ fgw (A) is compact and § f::v (A) is Hausdorff;, it suffices to show that V,,
is continuous and injective. Let us first show continuity. Let U = (¢ (xo0,a)) C 85:‘] (A).
Then

Vo U) = (p@u(x).a)) € 8L (4).

As for V,, being injective, let p and g € 855{ v (A) and let ¢(x,a) be an igv—formula in
p \ ¢. By quantifier elimination, we can assume that ¢ is of the form 6(d, (x), a) for some
£RY formula 0. Then 8(xo0. @) € Vo (p) \ Va(q). m]

We will now look at how V,, and its inverse behave with respect to various properties
of types. Transferring certain properties actually presents real challenges: proving Proposi-
tions 3.3 and 3.4 required the development of [17]. Note that in [17] the variables of the type p
are in K, the same proof applies if the variables are in K, RV and I' (we have to use elimination
of quantifiers in é@gv instead).
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Proposition 3.3 ([17, Corollary 3.3]). Let p € 8% (M). Assume A = acl ey (4).
The following are equivalent: ’

Q) pis LN *9(4)-definable.
(i) Ve(p)is £%(8(A))-definable.
(iii) p is £ (§(A))-definable.

Proposition 3.4 ([17, Corollary 3.5]). Let p € 8% (M). Assume A = acl ey (4).
The following are equivalent: ?

(i) pis Aut,Rry .« (M/ A)-invariant.
o]
(ii) Vo(p) is Autys (M/§(A))-invariant.
(iii) p is Autg? (M/§(A))-invariant.

Proposition 3.5. Let p € Px(A). Let f be an (£¥ (A), »)-definable map defined on p,
and D the image of f. Assume that A C K UT URYV, p is stably dominated via f and that

D ;IRV (adig;w (A) =D ;IRV (aCI?RV (A)).
Then V' (p) is also stably dominated (via f o 0y).
Proof. 'We will need the following result.

Claim 3.6. Let D be £%(M)-definable. If D is stable and stably embedded in ACVF,
then it is also stable and stably embedded in VDFge.

Proof. 1t follows from [7, Lemma 2.6.2 and Remark 2.6.3] that D C dclg# (E U k) for
some finite £ C D. Because k also eliminates imaginaries, is stable and stably embedded in
VDFge, it immediately follows that D is stably embedded and stable in VDFge too. |

Now let ¢ = V,1(p) and B C K be such that

RV
:fa

S (delgry (AB) 15 f(@0(0)).

By hypothesis,
D ;]RV (adzggw (A) =D ;]RV (aCI?RV (A)),

and hence Ry oy
St (delgrv (A0 (B) V1 /(3w (©))-
Since d, () = p and p is stably dominated via f, we have
tpgrv (B/Af(05(c))) F tpgrv (0n(B)/Af (0w (c)))
= tpgry @0 (B)/43, ()
F PRV (B/Ac).

The last implication comes from the fact that V,, is one-to-one on the space of types. |
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Pré)position 3.7. Let M = VDFge be sufficiently saturated and homogeneous and
pes fa (M) be Autgs (M/A)-invariant for some A € M. The following are equivalent:

(1) p is stably dominated.

(i1) p is generically stable.
(iii) p is orthogonal to T .
(iv) Vo (p) is stably dominated.
(v) Vu(p) is generically stable.
(vi) Vu(p) is orthogonal to T.

Proof. Since V,(p) is an ACVF-type. The equivalence of (iv), (v) and (vi) is proved
in [13, Proposition 2.8.1]. Actually, the implications (i) = (ii) = (iii) hold in any NIP theory
where I' is ordered.

We proved in Proposition 3.5 that (iv) implies (i). Let us now prove that (iii) implies (iv).
By Proposition 3.3, V, (p) is Autgg (M/C)-invariant for some C € M. We may assume that
C E VDFge and C is maximally complete. Let ¢ = p|c. As p is orthogonal to I', we have

I'(C) C T'(delgrv(Ce)) C T (delgrv (Cc)) = T (C).

As C is maximally complete, we have tpg . (9p(c)/CT (dclgrv (Cc))) is stably dominated
(see [8, Theorem 12.18 (ii)]). But

tpcfdiv(a‘D(C)/Cr(dCliRV (Ce))) = tpxdiv(aw(c)/C) = Vo (p)lc

and hence V,,(p) is also stably dominated. m]

4. Definable and algebraic closure in VDFge

In this section, we investigate the definable and algebraic closures in VDFge. We show
that they are not as simple as one might hope. In DCF, the definable closure of a is exactly
the field generated by 9, (a). In VDFge, we have, at least, to take into account the Henselian-
ization, but we show that the definable closure (in the field sort) of a new field element a can
be even larger than the Henselianization of the field generated by 0, (a). This fact was already
known to Ehud Hrushovski and Thomas Scanlon but was never written down. However, we
also show that the I', k and RV points of the definable closure (resp. algebraic closure) are
exactly what one would expect: the ACVF definable closure (resp. algebraic closure) of the
differential structure generated by the parameters.

We will, again, work in the leading term language and all the sets of parameters that
appear in this section will live in the sorts K UT URV. We denote by (A4)s (resp. (4)—1,5) the
éﬁgv-structure generated by A (resp. the closure of A under both Igv -terms and inverses).

Proposition 4.1. Let M = VDFge be sufficiently saturated. For all C € M, there
exists A € M, such that C C A and
— h
K(dclgrv ({(4)5)) = K({4)-1,5) C K(dclg, ,, (A4)).

In fact, there exists a € K(dclg, ,, (A)) which is transcendental over (A)s. In particular, we
also have a ¢ aclgRrv ((A)p).
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We show that certain differential equations which have infinitely many solutions in dif-
ferentially closed fields have only one solution in models of VDFge. We then show that this
unique solution is not algebraic over the parameters.

Proof. Let P(X) e OM){X},ae O(M),e e M(M) and Q,(x) = x —a + €P(x).
Then Q, has a unique zero in M. Indeed

val(Qg4(a)) > 0,
004
Val(aXQ(O) (a)) =val(l) =0,
00, opP
val <a)(Q(i) (a)) = val(e) + Val(ax- (a)) > 0.

Hence o-Henselianity applies and Q, has at least one zero.
If Qu(x) = Qu(y) = 0, then res(x) = res(a) = res(y). Let n := x — y. We have

Qa(y) =x+n—a+eP(x+n)

=x+ n—e(z PI(a)UI) =1 "‘6( ) PI(a)nI).
I

|[I|>0

But, if  # 0, then val(e Pr(a)n?) > |I|val(n) > val(n) and val(Q4(y)) = val(n) # oo, a
contradiction. Hence the equation Q4 (x) = 0 has a unique solution in M.

Let us now show that, if ¢ and P are chosen correctly, the solution to this equation is
not algebraic. We may assume that C = dclgrv (K(C)). Let k be a differential field, and
a € k differentially transcendental. Let us equip k[[€]] with the usual contractive derivation
(cf. Example 2.3). We embed k[[¢]] in M so that k and k(C) are independent and K(C)(¢) is
a transcendental ramified extension of K(C). To avoid any confusion, let us denote by a the
image of a by the embedding of k into k[[€]] and into M. One can check that for all n € N,

res(K(C) (€. 0n(a))) = k(C)(0n(a)).

Let us now try to solve x —a — €d(x) = 0 in k[[€]]. Let x = 3_ x;€’ where x; € k. The
equation can then be rewritten as

Zx,-ei = ae + Za(x,-)eiH.
Hence xo = a and x; 11 = 0(x;) = o' T1(a). If

-
X € (C,a,e)_lgaag,

then for some n € N, we must have
x e K(C)(0p@), o) .

Any automorphism of ¢ : k U k(C) fixing k(C) can be lifted into an automorphism of
k[[€]] U C fixing C and sending " x;e' € k[[¢]] to 3 o(x;)e’. Because 0"*!(a) is tran-
scendental over k(C)(0d,(a)), it follows that x has an infinite orbit over A = K(C)(9,(a), €).
Therefore x € dclgRv (A) \Zalg. ]
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Let us now consider what happens for I' and k.

Proposition 4.2. Let M |= VDFge and A C M. Then

T (dclgRrv (4)) = T (aclgrv (4)) = Q ® T ({(4)_1,9),
k(delgrv (A)) = k({(4)-15),  k(aclgrv (4)) = K({A)_1,) .

Proof.  Let us first show that I"(aclgRv (4)) = Q ®val({A4)-1,5). By quantifier elimina-
tion in the leading term language, any formula with variables in I' and parameters in A is of the
form ¢ (x,a) where a € T ({A)p) (note that this is a stronger result than stable embeddedness
of T as we have strong control over the new parameters). In particular, any y € I' (M) alge-
braic over A is algebraic over I' ((4)3), in I’ which is a pure divisible ordered Abelian group.
It follows immediately that y € Q ® I' ((A)—1,5). Finally, as Q ® val({A4)—1,5) is rigid over
val({A4)—1,0) € T (dclgRv (A)), the equality I (dclgRV (A4)) = T (aclgRv (A4)) also holds.

As for the results concerning k, they are proved similarly. Indeed, any formula with
variables in k and parameters in A is of the form ¢(x,a) where a € k({A4)—1) is a tuple.
The proof of this fact requires a little more work than for I' because formulas of the form
Yoier a;x" = 0 where a; € RV((4)_15) are not immediately seen to be of the right form.
But we may assume that all a; have the same valuation (as only the monomials with minimal
valuation are relevant to this equation). Hence, this formula is equivalentto ) _; o; a; a;)lx" =0
which is of the right form.

The results now follow from the fact that in DCFy the definable closure is just the differ-
ential field generated by the parameters and the algebraic closure is its field theoretic algebraic
closure. ]

Proposition 4.3. Forall M |= VDFge and A C M,

RV (dclgkv (4)) = RV({4)_15) and RV (aclgkv(4)) = RV (aclgrv ((4)3)).

Proof. Let A := (RV U I')({(A)-1,5). By quantifier elimination for VDFge in the
leading term language, any formula with variables in RV and parameters in A is of the form
¢(x,a) where a € A is a tuple. In particular,

RV (dclgRrv (A)) = RV (dclgRv (A)) and RV (aclgRv (A4)) = RV (aclgRv (A)).

Claim4.4. Forally € T \ Q ® valry (RV(4)),

RV, (aclgRv (4)) = 0.

Proof. Pick any (d;);en € k suchthatd}!, = d,, and 0(dy,) = Oforallm andn € N.
Letus write T = (Q ® T'(4)) D, c; Qyi where one of the y; is y. Define a group morphism
o:T — k(M) sendingall of Q®T (A) andall y; # y toOand p/q-y to df. Forall x € RV,
we now define 7(x) = o(valry(x)) - x. It is easy to check that t is an £3 rv-automorphism
of RV and that 7 fixes A.

On the fibre RV, 7 sends x to d; - x. It immediately follows that, because we have
infinitely many choices for dy (as Ck is algebraically closed), the Autg,  (RV/ A)-orbit of x
is infinite. Thus RV (dclgRv (A)) = RV, (aclgRv (4)) = 0. o
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Claim 4.5. Forall y € Q ® valgy (RV(A)) \ valry (RV (4)),

RV, (dclgrv (A)) =0 and RV, (aclgrv (A)) # 0.

Proof.  Let n be minimal such that § = y” € valgy (RV (A4)). Taking d; as above, with
dy = 1, and defining o such that o(p/q-y) = dqp , wWe obtain an :C}}V—automorphism T which
fixes A and acts on RV, by multiplying by d,,. As there are n choices for d,, we obtain that
RV, (dclgrv (A)) = 0.

Now, let us show that RV (aclggRV (A)) # 0. Let c € RV,,. We have valgry(c") = y"
and there exists A € k such that )L ¢" € A. Let u € k be such that £ = A and leta = - c.
Then a” = A - ¢" € A. As, the kernel of x > x” is finite, we have a € aclgrv (A). |

Let ¢ € RV (dclgrv (A)). By Claims 4.4 and 4.5, valry (¢) = valry (@) for some a € A.
It follows that ¢ - a~! € k(dclxRV (A)), which, by Proposition 4.2 is equal to k(A). Hence
¢c =(-aY-aeRVA. Ifc RV(aclxRV (A)), then, again by Claims 4.4 and 4.5,
valgy (¢) = valry (a) for some a € aclgRv (A). Then

c-ale k(aclgRv (A)) = k(aclgrv (4)). ]

Concerning the definable closure and algebraic closure in the sort K, although the situa-
tion is not ideal, we nevertheless have some control over it:

Corollary 4.6. Le{ M |= VDFge and A € K(M), then K (aclgRV (A)) is an immediate
extension of K({(A)—1,3)

Proof. By Proposition 4.2, we have

val(K (aclgrv (4))) € val(K({A)_1 ) "),

res(K (aclzrv (4))) € res(K((A)_1)""). o

Corollary 4.7. Let M |= VDFge and A € K(M). Then K(dclgRY (A)) is an immedi-
ate extension of K((A)—1,5).

Proof. Let
L:=K(dclgrv(4)) and F:=K({A) 15) -

By Proposition 4.2, we have res(L) C res(F) and val(L) € Q ® val(F). Letc € L. We
already know that val(c) € Q ® val(F). Let n be minimal such that n - val(c¢) = val(a) for
some a € F. Let us show that » = 1. We have res(ac™) € res(L) = res(F’), so we can find
u € F such that res(ac™") = res(u). As L must be Henselian (indeed L~ = dclg,, (L) = L)
we can find v € L such that v” = ac™"u"!,ie. (cv)” = au~! € F. Hence we may assume
that ¢” itself is in F.

Derivations have a unique extension to algebraic extensions and, as F' is Henselian, the
valuation also has a unique extension to the algebraic closure. It follows that any algebraic
conjugate of ¢ is also an £ giy-conjugate of ¢. As K(M) is algebraically closed, it contains
non-trivial n-th roots of the unit. It follows that we must have n = 1.
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We have just proved that K(dclgRv (A)) is an immediate extension of K({4)-1,3) " and
hence of K({A4)—1.,3). m

5. Metastability in VDFge

In this section we prove that maximally complete models of VDFge are metastability
bases. The main issue is that we can only prove Proposition 3.5 when we control the £RV -
algebraic closure of the parameters inside the stable part. Thus we cannot apply it blindly to
sets of the form CT (dclgg (Cc)). However, in ACVF, we have a more precise description of
types over maximally complete fields:

Proposition 5.1 ([8, Remark 12.19]). Let M = ACVF, C € M be maximally complete
and algebraically closed, a € K(M) a tuple and H := T (dclgrv (Ca)). Then tp(a/CH) is
stably dominated via rv(C(a)), where rv(x) is seen as an element of RV v,y C Stcq.

It follows that, to prove the existence of metastability bases, we have to study the
éﬁgv—algebraic closure in RVZgRV. In Proposition 4.3, we showed that we have control over
the iﬁgv—algebraic closure in RV, hence it suffices to prove that RV with its £V -induced
structure eliminates imaginaries. As a matter of fact, we only need to prove elimination for the
LRV structure induced on RV gy = Uye g RV, where each fibre is a distinct sort.

In [11], Hrushovski studies such structures. He shows in [11, Lemma 5.6] that they
eliminate imaginaries. Note that, as every RV, is one-dimensional, these structures have flags.

Proposition 5.2. Let M = VDFge, C € K(M) be a maximally complete alge-
braically closed differential subfield and a € K(M). Then PRV (a/CT (dclgRrv (Ca))) is
stably dominated.

Proof. Let H := T (dclgRv (Ca)). By Proposition 5.1,
H =Q®TI((Ca)-1,) =T (dclgrv(Coy(a))).

By Proposition 5.1, tpgrv (0, (a)/ CH) is stably dominated via rv(C(a)) € RV g. Moreover,
by Proposition 4.3, we have

(RVH)ZgRV (ad?gw (CH)) = RVy (aclgrv(CH)) = RV g (aclgrv (CH)).
Proposition 3.5 now allows us to conclude that tp LRV (a/CH) is stably dominated. O
Corollary 5.3. The theory VDFge admits metastability bases.

Proof. By Proposition 5.2, we only have to show that any A € M | VDFge is con-
tained in a (small) maximally complete C € K(M). As the sort K is dominant, we may
assume that A C K(A). Taking any lifting in K of the points in A, we may assume that
A C dclgg (K(A4)). If K(A) is not maximally complete, take (x) to be a maximal pseudo-
convergent sequence with no pseudo-limit in K and such that the order-degree of the minimal
differential polynomial P pseudo-solved by (x4 ) is minimal among all such pseudo-convergent
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sequences. Then the extension by any root of P which is also a pseudo-limit @ is immediate,
see [18, Proposition 7.32]. Iterating this last step as many times as necessary, we obtain an
immediate extension C of A which is maximally complete. Because K(C) is an Henselian
immediate extension of an algebraically closed field, it follows that K(C) is also algebraically
closed. |

6. Types and uniform families of balls

Let £ D £4iv and T O ACVF be an £L-theory that eliminates imaginaries. We assume
that 7" is C-minimal, i.e. every £-sort is the image of an £-definable map with domain some
K” (we say that K is dominant) and for all M | T, every £ (M )-definable unary set X C K
is a Boolean combination of balls. For a more extensive introduction to C-minimal theories,
one can refer to [4].

In this section, we wish to make precise the idea that, in C-minimal theories, (n + 1)-
types can be viewed as generic types of balls parametrized by realizations of an n-type. This
is an obvious higher dimensional generalization of the unary notion of genericity in a ball (see
[7, Definition 2.3.4]). To do so, we introduce a class of A-types (see Definition 6.11) for A a
finite set of £-formulas that will play a central role in the rest of this text. We also show that at
the cost of enlarging A, we may assume that all types are of this specific form.

The points in K are closed balls of radius 4+oco and K itself is an open ball of radius —oo.

Definition 6.1 (B!'! and Bg]) Let B be the set of all closed balls (potentlally with radius
+00), B the set of all open balls (potentially with radius —oc) and B := B U B. For [ € N~g,
we define

B .= {BcCB: (B <},

Bg] ={B ¢ BU : all the balls in B have the same radius and
they are either all open or all closed}.

The index sr stands for “same radius”.

Notation 6.2. For all B € Bl let S(B) denote the set Upep b. i.e. the set of valued
field points in the balls of B. Because the balls can be nested, S is not an injective function.
However, in each fibre of S there is a unique element with minimal cardinality, the one where
there is no intersection between the balls. We denote by B this section of S.

Points in Bgr] behave more or less like balls. For example if By, By € Bgr] are such that
S(B1) C S(B»), then either all the balls in B; have smaller radius than the balls in B or if
they have equal radiuses, then the balls in B1 must be open and those in B> must be closed.

Definition 6.3 (Generalized radius). Let B € Bg] \ {@}. We define the generalized
radius of B (denoted grad(B)) to be the pair (y, 0) when the balls in B are closed of radius y
and the pair (y, 1) when they are open of radius y. The set of generalized radiuses is ordered
lexicographically. We define the generalized radius of @ to be (400, 1), i.e. greater than any
generalized radius of non-empty B € BS£ .
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Proposition 6.4. Let (B;)icy < Bg]. Assume that there exists iy such that the balls in
Bi, have generalized radius greater or equal than all the other B;. Then B(("); S(B;)) € B,
Moreover, there exists (ij)o<j<; € I such that (); S(B;) = ﬂ5~=0 S(B;;).

Proof. Forany b € B, if (); S(B;) Nb # @ then b C (); S(B;). It follows that
MsB) = S({b € Biy:bn (B # @}).
i i

Thus B((); S(Bi)) € Bi,. Moreover, if (); S(B;) N b = @, then there exists i; such that
bNS(Bj,) = @ and (); S(B;) can be obtained by intersecting B;, with the B;, of which there
are at most /. m]

Definition 6.5 (d; (B1. B2)). Letby,by € B. When by N by = @, we define d(b1, by)
to be val(x; — x2), where x; € b;, which does not depend on the choice of the x;. When
b1 N by # O, we define d(b1, b2) = min{rad(by), rad(b)}, where rad denotes the radius.

For all By, B, € B[l], we define

D(Bl,Bz) = {d(bl,bz) Ibl € B] and bz S Bz}.

Let us list the elements in D(By, Bz) as dy > da > --- > dj. Foralli < k, we define
dl'(Bl, Bz) = d,’.

When Bq, B, € Bg], we also define do(B1., B2) := min{rad(B1),rad(B;)}; it is equal to
d1(B1, B2) when S(B1) N'S(B2) # @. Later, for coding purposes, we might want d; (B1, B>)
to be defined for all i < [Z, in which case, fori > k, we set d; (B1, B>) = dy.

Let M =T, F = (Fy)jea be an £(M )-definable family of functions K” — Bg] and
A(x, y;t) a finite set of £-formulas where x € K", y € K and ¢ is a tuple of variables. To
simplify notation, we denote S(F) (x)) by F f (x). We define WA F(x, y;t, A) to be the set for
formulas A(x, y;t) U{y € Ff(x) AL E A}

Note that if n = 0, all of what we prove in this section and in Section 7 holds. It is, in
fact, much more straightforward because we are considering fixed balls instead of parametrized
balls.

Definition 6.6 (A adapted to F'). We say that A is adapted to F if forall p € § xA’y (M),
A, (Ui)o<i<i € A(M)andi < 12, p(x,y) decides

(1) if Ff(x) O Uo<i< FEZ. (x) (resp. F(x) O Up<;<; Fu; (x)), where O € {=, C};
(i) if FP(x) = FS (x) N FS(x);
(iii) if the balls in F (x) are closed;
(iv) ifrad(Fy, (x)) O d; (F, (x), Fyu,(x)) where O € {=, <}.

Moreover, we require that there exist Ag, Ak € A such that for all x € K", F,(x) = 0 and
Fx (x) = {K}.

Note that none of the above formulas actually depend on y so what is really relevant is
not p but the closed set induced by p in § f (M). Until Proposition 6.14, let us assume that A
is adapted to F'. Let p € 8xA’y (M).
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Definition 6.7 (Generic intersection). We say that F is closed under generic intersection
over p if forall A1, A, € A(M), there exists u € A(M) such that

plx.y) F FS(x) = F§ (x) N F (x).
Let us assume, until Proposition 6.14, that F' is closed under generic intersection over p.

Definition 6.8 (Generic irreducibility). Forall A € A(M), we say that F is generically
irreducible over p if for all u € A(M), if p(x, y) = F,,(x) C Fy(x) and p(x,y) = Fy(x) # 0
then p(x,y) = Fu(x) = Fy(x).

We say that F' is generically irreducible over p if for every A € A(M), F) is generically
irreducible over p.

Let us now show that generically irreducible families of balls behave nicely under generic
intersection.

Proposition 6.9. Let A1,A> € A(M) be such that F), and F,, are generically irre-
ducible over p and p(x,y) implies that the balls in F)  (x) have smaller or equal generalized
radius than the balls in F),(x). Then either

Py EF(x)NFL(x) =0 or p(x.y)b Fp(x)NFp (x) = Fp (x).

Proof. Let (a,c) E p. By Proposition 6.4, we have [B%(FS (a) N FS (a)) < FS (a).
By generic intersection, there exists p such that p(x, y) - F S(x) F; S (x) NFy S (x) Then
Fy(a) € Fj,(a). Hence, if F},(a) # @, then Fy, (a) = F,ll(a) m]
Corollary 6.10. Assume p is £(M)-definable. Then
Ap = {)L € A : F is generically irreducible over p}

is £(M)-definable and the £(M)-definable family (F3)jen,, is closed under generic intersec-
tion over p.

Proof. The definability of A, is a consequence of the definability of p. The closure of
(F3)aen, under generic intersection follows from Proposition 6.9. |

Until Proposition 6.14, let us also assume that F' is generically irreducible over p.

Definition 6.11 (Generic type of E over p). Let E C A(M). We define ag/,(x,y),
the (A, F)-generic type of E over p, to be the following WA  r-type over M:

px,y)U{ye Ff(x) A€ E}
U {y ¢ FMS(x) e A(M)andforall A € E, p(x,y) FE(x) C FAS(X)}.

Note that, most of the time, A and F will be obvious from the context, so it will not be
an issue that the notation « g/, mentions neither A nor F.

Proposition 6.12. Let E C A(M) be such that o, is consistent. Then ag,, gener-
ates a complete WA f-type over M.
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Proof. Pickany u € A(M). If thereis A € E suchthat p(x,y) FE(x)ﬂFf(x) =0,
then
ap/p(x.y) by ¢ FP ().

If there exists A € E such that p(x, y) Ff (x) C FE (x), then

ag/p(x,y)Fye Ff(x).

If none of these cases apply, then, forall A € E,
p(x,y)I—FE‘(x)CFAS(x) and ozE/p(x,y)I—y¢F§(x). m]

When it is consistent, we will identify o/, with the type it generates.

Remark 6.13. Any g € /Sgﬁ’F(M) is of the form ag,,. Indeed, let p := g|a and
E:={le€AM):q(x,y)Fy € Fy(x)}. Then, quite clearly, ¢ = ag/p.

Let us show that any finite set of formulas with variables in K”*! can be decided by
some Wa r for well-chosen A and F.

Proposition 6.14 (Reduction to WA r). For all finite sets O(x, y;t) of L-formulas,
where x € K" and y € K, there exists an £-definable family (Fy) e of functions K" — Bl
and a finite set of L-formulas A(x;s) such that any W f-type decides all the formulas in ©.

Proof. Let ¢(x, y;t) be aformulain ®. As T is C-minimal, for all tuples ¢ € K and
¢ € M, the set ¢(a, M; c) has a canonical representation as Swiss cheeses, i.e. it is of the form
U; (b \ b;, ;) where the b; and b; ; are algebraic over ac. In particular, there exist / € Nxg
and £(c)-definable functions Hyp . : K" — Bl and G . : K* — Bl such that

M EVy, (y € Hy (a)\ G5 (a) < ¢(a.y:c)).

By compactness, we can find finitely many £-definable families (H; ¢.c)cem and (G ¢.c)cem
of functions K" — Bli.#] such that for any choice of ¢ and a there is an 7 such that

¢la,y:c) <=y e HiS,qS,c(a) \ st,rﬁ,c(a)‘

Choosing [ to be the maximum of the /; ¢ and using some coding trick, one can find an &£-
definable family (F)) e of functions K” — BUI such that for any ¢ € O, i and ¢ we find
i, v € A such that Hi,¢,c = FM and Gi,¢,c =F,.

Now let

At 1) = {Yy. (p(x.yi1) < y € FS(x)\ FS(x)) : ¢ € O).

Then for any p € /Sgﬁ’F(M), ¢ € O and tuple ¢ € M, there exist ,v € A(M) such that
p(x, V) p(x,y;c) <y € FE(x) \ F‘,S(x) and either p(x,y) F y € FE(x) Ay ¢ FUS(x),
in which case p(x, y) F ¢(x, y;¢), or not, in which case p(x, y) = =¢(x, y:c). m|

Now, let us show that we can refine any A and F into a family verifying all previous
hypotheses.
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Proposition 6.15 (Reduction to BLY). Let A € M and (Fy)cp be an £(A)-definable

family of functions K" — BU. Then there exists an £(A)-definable family (Gy)weq of func-

tions K" — Bsﬁ such that for all A, there exists (w;)o<j <] such that Fy(x) = |; G, (x) and
for all w there exists A such that G4, (x) € Fy(x).

Proof. ForallA € A,0<i </and j =0, 1, we define

Gpij(x):= {b € F)(x) :bisopenif j =0, closed otherwise, and b has
the i-th smallest radius among the balls in F (x)}.

As i and j only take finitely many values, G = (G )peq can indeed be viewed as an £(A4)-
definable family. Then for all x, G, (x) € Bg]. For all x and A, G, ; ;(x) € Fj(x) and
Fy(x) = Ui’ ; Ga.i,j(x). Moreover, at most [ of them are non-empty. m]

Definition 6.16 (Generic complement). We say that F is closed under generic comple-
ment over p if forall A, u € A(M) such that p(x) = F,(x) € Fj(x), there exists k € A(M)
such that
p(x) F Fp(x) = Fu(x) U Fe(x).

Note that p can decide any such statement as it is equivalent to Fj (x) = Fy(x) U Fi(x)
and Ff(x) N FKS(x) =0.

Lemma 6.17. Let F = (F)) ecp be an £(M)-definable family of functions K" — Bs[f],
A(x:t) a finite set of L-formulas adapted to F and p € § xA (M). Assume that F is closed

under generic complement over p. Let Ap := {A € A : F)_is generically irreducible over p}.
Then for all A € A(M) there exists (A;)o<i<i € Ap(M) such that p(x) = Fy(x) =J; Fy, (x).

Proof. Let x = p. We work by induction on | F; (x)|. If there exists © € A(M) such
that F,(x) C F;(x) and F,(x) # @, then there exists k € A(M) such that

Fi(x) = Fu(x) U Fe(x).

We now apply the induction hypothesis to F,(x) and Fi(x). Finally, because | F (x)| < [, we
cannot cut it in more than / distinct pieces. |

Proposition 6.18 (Reduction to irreducible families). Let A C M, (Fj)rep be an
£ (A)-definable family of functions K" — B££] and A(x;t) a finite set of L-formulas. Then,
there exists an £(A)-definable family (Gy)epeq of functions K* — Bsi] and a finite set of
E-formulas O(x;t,s) D A(x;t) such that ® is adapted to G and for any p € 89 (M):

(1) G is closed under generic intersection and complement over p.
(il) Forall w € Q(M), there is A € A(M) such that p(x) - G, (x) C Fy(x).
(iii) Forall A € A(M), there is w € QM) such that p(x) = Fy(x) = Gy (x).
(iv) Forallw € Q(M), there is (w;)o<i<1 € 2p(M) suchthat p(x) = Gu(x) = |; G, (x).

Here Q) = {w € Q : Gy, is generically irreducible over p}.
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Proof. Adding them if necessary, we may assume that /' contains the constant functions
equal to @ and {K}, respectively. For all A € A/*1 Jet

Hy(x) = IB( N F$ (x)).
o<i<l

It follows from Proposition 6.4, that H = (HI)XE Ar+1 18 well-defined and that (ii) holds
for H. Adding finitely many formulas to A(x;?), we obtain E (x;s) which is adapted to H.
Letped xE (M). Proposition 6.4 also implies that for a given x, the intersection of any number
of F AS (x) is given by the intersection of / 4+ 1 of them. Hence it is an instance of H. As E is
adapted to H, we have proved that H is closed under generic intersection over any Z-type p.
Hypothesis (iii) also clearly holds for H.

Let B € Bg]. We define B! to be B and B° to be its complement (in B). As previously,
to simplify notation, for € € {0, 1}, we will write H (x) for (H,(x))¢.

Claim 6.19. Let B € Bg]. Any Boolean combination of sets (C;)i<r S B (where we
take the complement in B, i.e. C° N B) lives in Bgr] and can be written as

N U@ ns).

j<l k<l

where the C; i are taken among the C; and €; ;. € {0, 1}.

Proof. Such aBoolean combination lives in Bg] because it is a subset of B. The fact that
it can be written as [); i U k(C kN B) is just the existence of the conjunctive normal form.
Moreover, as in Proposition 6. 4 any intersection () CJ’ *'M B for fixed j can be rewritten
as the intersection of at most / of them (for each ball from B missing from the intersection,
choose a k such that this ball is not in C] kN B). Similarly, the union can be rewritten as the
union of at most / of them by choosing, for every b € B which appears in the union, a j such
that b appears in |_J;, (Cjejck N B). O

Forallv € Al+1,ﬁ € (AZ‘H)Z2 and € € 212, let

Gyae) =) J((HLZ () N Hy(x))
i<l j<lI
whenever all the Hy,, ; € Hy(x). Otherwise, let G, ze(x) = Hy(x). Adding some more
formulas to &, we obtain a finite set of formulas ®(x; ¢, s, u) which is adapted to G. It is clear
that (ii) and (iii) of Proposition 6.18 still hold. Furthermore,

Gy e NGS 220 = JSWHL (x) N SHE (x)) N HY (x) 0 HS (x).
ik j.r
As H is closed under generic intersection, there exists p such that H pS (x) = HVS (x)NH (§ (x).
By Proposition 6.4,

B(S(H,%” (x)) N HY(x)) € Ho(x) and B(S(He! (x)) N HY(x)) € Hy(x).

Tk.r

We can conclude by Claim 6.19 that G is also closed under generic intersection over p. Sim-
ilarly we show that whenever G, 7 e(x) € G4z 7(x) then Ggsﬁ’g(x) N Ggz,75(x) is also an
instance of G, i.e. G is closed under generic complement over p. Hence (iv) is proved in
Lemma 6.17. m]
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7. Quantifiable types

Let us begin with the example that motivates the definition of quantifiable types. Let b
be an open ball in some model of ACVF and «y, its generic type. Let X be any set definable in
an enrichment of ACVF. Then all the realizations of ¢y, are in X, i.e. @y - x € X, if and only
if there exists »* € B such that b’ C b and b \ b’ C X. Although for most definable sets X,
both X and its complement are consistent with «. If it happens that any realization of «y is
in X, then there is a formula which says so. We have just shown that &, is quantifiable as a
partial £- -type (see Definition 7.1) for any enrichment £ of ACVEF. If (b;); ey is a strict chain
of balls, i.e. P :=("); b; is not a ball, the exact same proof shows that the generic type of P is
also quantifiable as a partial f@-type, if P is £-definable.

If b is a closed ball, the situation is somewhat more complicated because oy (x) F x € X
if and only if there exist finitely many maximal open subballs (b;)o<;<x of b such that for all
x € K, x € b\ |J; b; implies x € X. Because the set of maximal open subballs of a given ball
is internal to the residue field, to obtain that ¢, is quantifiable (as a partial fﬁ—type), we need to
know that the £-induced structure on k eliminates 3% to bound the number of maximal open
subballs we have to remove. Recall that an £-theory T eliminates 3°° if for every £-formula
¢(x;s) thereis ann € N such that forall M = T and m € M, if |¢p(M;m)| < oo then
lp(M;m)| < n.

The notion of quantifiable type will play a fundamental role in Section 9. The main
result of the present section is Corollary 7.9 which says that, under some more hypotheses
on the families of parametrized balls, the types of the form ag,, (see Definition 6.11) are
quantifiable if E is definable and p is quantifiable. The proof is essentially a parametrized
version of the argument above. We then prove that we can refine families of parametrized balls
so that they have the necessary properties.

Let &£ be a language and M an £-structure.

Definition 7.1 (Quantifiable partial £-types). Let p be a partial £(M)-type. We say
that p is quantifiable if for all £-formulas ¢ (x; s) there exists an £ (M )-formula 6(s) such that
for all tuples m € M,

M [ 6(m) if and only if p(x) - ¢(x;m).

Let A € M. If we want to specify that 6 is an £(A4)-formula, we will say that p is £(A)-
quantifiable.

Remark 7.2. (i) A type p(x) is quantifiable if we can quantify universally and existen-
tially over realizations of p, that is, for every £-formula ¢(x;y), “for all x = p|y, ¢(x;y)
holds” and “there exists an x |= p|, such that ¢ (x;y) holds” are both first-order formulas.
Hence the name.

(i1) There are various ways in which to extend definability to partial types depending on
two things: do we want the defining scheme to be ind-definable, pro-definable or definable?
And do we want the closure under implication of the partial type also to be definable? Quan-
tifiable partial types correspond to the case where the closure under implication of the type has
a definable defining scheme. Although these different notions have often been indistinctively
called definability, we feel that it is better to try to distinguish them.
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(iii) The partial types we will consider here are A-types for some set A(x;t) of £-
formulas. Note thatif p € § xA (M) is £(A)-quantifiable, it is £(A)-definable as a A-type, i.e.
for any formula ¢(x;7) € A, there is an £(A)-formula dpx¢(x;t) = 6(¢) such that for all
tuplesm € M, ¢(x;m) € pifandonly if M |= dpx¢(x;m). In particular, p has a canonical
extension p|y to any N > M defined using the same defining scheme. If M was sufficiently
saturated, this canonical extension is also &£ (A4)-quantifiable.

As previously, let now £ 2 :(idw, T > ACVF be a C-minimal £-theory which eliminates
imaginaries, &R the set of £-sorts, £ an enrichment of £, T an £- -theory containing 7, MET
and M := M|g. We will also assume that k is stably embedded in T and that the induced
theory on k eliminates 3°°. Until the end of the section, quantifiability of types will refer to
quantiﬁability as partial £- -types.

Let A € M and A := R(A). Let F = (F3)ea be an £(A)-definable family of
functions K" — B[l] and A(x, y;t) a finite set of £-formulas where x € K” and y € K.
Let p € é’x,y (M) be definable. Assume that A is adapted to F and that F is generically
irreducible and closed under generic intersection over p.

Definition 7.3 (Generic covering property). We say that F has the generic covering
property over p if for any £ € A(M) and any finite set (A;)o<j<x € A(M) such that for all
nweE, pkx,yt Ff_ (x) C FE(X), there exists (kj)o<;<; € A(M) such that

(i) forall j, p(x,y) I “the balls in Fy, (x) are closed”;
(ii) forall w € E and j, p(x,y) F;c,- (x) © F(x);
(iii) foralli, p(x,y) - Ffi (x) €U; Fe ().

Note that if £ = {4} and p(x, y) I “the balls in F},(x) are closed”, then the generic
covering property holds trivially as it suffices to take all k; = A¢. It will only be interesting if
p(x,y) = “the balls in F(x) are open” or £ does not have a smallest element over p, i.e. for
all A € F there exists u € E such that p(x, y) - FS(x) C FS(x)

Let & C A be £(A)-definable.

Proposition 7.4. Assume that one of the following holds:

(i) €(M) does not have a smallest element over p.
(i) There is a Ao € &(M) such that for all A € &(M), p(x,y) F Ffo(x) - FAS(x) and
p(x,y) & “the balls in F,(x) are open”.

Assume also that p is éC(A) quantifiable and F has the generic covering property over p. Then
ag(i)/p is cf(A) -quantifiable.

Proof.  Let ¢ (x, y;t) be an £-formula. If agn)/p(x.y) = ¢(x, y;m), for some tuple
m € M, then there exist Ao € (M) and a finite number of (A;)g<;<x € A(M) such that for
all u € &(M)andi > 0,

pee.y)EyeFp )\ FL () = ¢(x.yim) and p(x,y) b Fp (x) C FP(x).

i>0
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By the generic covering property, we can find (k;)o<;<; € A(M) such that, for all j,
p(x,y) = “the balls in Fy, (x) are closed”;
forall u € &(M) and j,
plx,y) F FS(x) € FZ(x);

and for alli > 0,
px.y) F Fp(x) € JFS ().
J
If &(M) does not have a smallest element over p, then, for all € (M) and Js

p(x.y) F FS(x) C FF(x).

If &(M) has a smallest element, because the balls in F 20 (x) are open and those in Fj, (x) are
closed, we also have
p(x,y) F FS(x) C Fy (x).

AsJ; FKS/, (x) covers | J; FAS (x), it follows that
pe.yEyeFp @\ | Fo) —ox,yim).
0<j<l
We have just shown that, for all tuples m € M, agn)/p(x,y) F ¢ (x, y;m) implies that
MEoe€ FeA, [\ Vet 8i(. 1) Aba(ho.K.m).
j<l
where 81 (k, i) and 85 (Lo, k., m) are £(A)-formulas equivalent to, respectively,
pl.y)F Fo(x) CFS(x) and p(x,y) by e Fp )\ FSx) > ¢(x,yim).
j<l

The converse is trivial. O

Definition 7.5 (Maximal open subball property). We say that F' has the maximal open
subball property over p if for all A1, A, € A(M) such that p(x,y) - F ASI (x) CF fz (x), there
exists (14 )o<i<i € A(M) such that

(i) foralli, p(x,y) = “the balls in F,, (x) are open”;
(i) foralli, p(x,y) Frad(Fy,(x)) = rad(Fy, (x));
(i) p(x,y) = FP (x) € U; FS (x).

Note that when the balls in F};, (x) are open, it suffices to take all u; = A>. Hence this
property is only useful when the balls in F, (x) are closed.

Proposition 7.6. Assume that there is a Ao € &(M) such that for all A € &(M),
px,y)F FS (x) € FS(x) and that p(x,y) = “the balls in F (x) are closed”. Assume
also that p is i(A) quantzﬁable and that F has the maximal open subball property over p.
Then the type agpr)/p is éﬁ(A) quantifiable.
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Proof. 1f the balls in Fj(x) have radius +o0, they are singletons. By irreducibility,
F},(x) does not have any strict subset of the form Fj (x). Moreover, agr)/p = ¢ (x, y:m)
if and only if p(x,y) = y € F; S (x) — ¢(x,y;m). So we can conclude immediately by
éC(A) quantifiable of p. We may now assume that the balls in F},(x) have a radius different
from +oo. Let us begin with some preliminary results. Let B y(a) denote the closed ball of
radius y around a.

Claim 7.7. Let (Yo x)weq.xekn be a definable family of sets such that for all o € Q
and x € K", Y, x € {b : bis amaximal open subball of some b’ € F)(x)}. Then there
exists k € N such that for all » € Q and x € K", either |Y,, x| > 00 or |Yy x| < k.

Proof. Let
Yiwxac = 1{b €B:b €Y, bisamaximal open subball offval(c)(a)}.

For any maximal open subball b of fval(c) (a), the set {(x —a)/c : x € b} is an element of k
which we denote by res, . (b). The function res, . is one-to-one. Let

Yz,w,x,a,c ‘= TI€Sq,c (Yl,w,x,a,c)-

Then Y2 = (Y2,0,x.a,¢)w,x,a,c 1S an fﬁ(]\;l)—deﬁnable family of subsets of k. By stable embed-
dedness of k in 7" (as well as compactness and some coding) there exists an fC(k(M ))-definable
family (X4)gep where D C Kk” for some r such that for all (w, x,a, c¢), there exists d € D
such that Y3 ¢ x.a,c = X4. As the theory induced on k eliminates 3°°, there exists s € N such
that for all d € D, either |X; | > oo or |Xz| < s. It follows that for all (w, x,a, ¢), either
|Y1,0,x,a,c| = 00 0r [Y1,6,x,a,c| < 5. But there are at most / balls in F}(x) and each of these
balls contains infinitely or at most s maximal open subballs from Y, x. Therefore, we have
that for all x and @, |Yy x| > 00 or |Yy x| < Is. m|

Let

X = {AeA:p(x,y) ¥yeFP(x)— ¢(x,y;m)and
p(x,y) F “the balls in F) (x) are maximal open subballs of the balls in Fj,(x)”}.

By quantifiability of p, X3, is an c%(]l;l )-definable family. Let
Ymyx :={b:3A € Xpn, b € Fj(x)}.

Then by Claim 7.7, there exists k such that for all m and x, |Y;, x| < oo implies |V, x| < k.
Assume that agiz)/p(x, y) = ¢ (x, y;m). Then, there exists (i;)o<i<r € A(M) such
that

plx,y) F FS(x) C Fip(x) and p(x,y) by e Fy () \ | F (x) > ¢(x, yim).
i
As F has the maximal open subball property over p and is closed under generic intersection,

we may assume that

p(x,y) I “the balls in the F,; (x) are maximal open subballs of the balls in F (x)”.
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Claim 7.8. X,,(M) C {A € A(M) : forsomei, p(x,y) = F)(x) = F,,(x)}. In
particular, | Yy x| < 0o and hence Yy, x| < k.

Proof. Let A € X,,. There exist x, y = p such that y € F S(x) the balls in F (x) are
maximal open subballs of the balls in Fj(x) and = —~¢(x, y;m). Hence y € | J; F; § - (x). We
may assume that y € (x) and hence that F); S ,(X) N F S(x) # (. By Proposmon 6.9, we
must have FS (x) N Fg(x) FS(x) for both Kk = Aand k = po, i.e. Fy(x) = Fyq(x).
Because such an equality is decided by p, this holds for all realizations of p.

It follows that Y, x € UJ; Fy, (x) and therefore that | Yy, x| < rl < oo. O

Thus for all (x, y) |= p, only k balls among the ones in (_J; Fm (x) cover ¢ (x, FS (x) m).
As in Proposition 6.4, we may assume that for all i, Fy,; (x) € U i1 Fu; (x). It follows that

k k
py) B N ES 0 C S A (v e FE N U FS 0 > ox,yim)),

j=1 i=1

where k does not depend on m. We can now conclude as in Proposition 7.4. |

Corollary 7.9. Assume p is i(/f)-quantiﬁable and F has both the generic covering
property and the maximal open subball property over p. Then agpr)/p is £(A)-quantifiable.

Proof.  This follows immediately from Propositions 7.4 and 7.6. Indeed, either & (M) is
non-empty and has no smallest element or it has a smallest element which consists of open balls
or it has a smallest element which consists of closed balls. If it is empty, we could, equivalently,
take & to consist of all the A € A such that F is constant equal to K. |

Let us conclude this section by showing that, as previously, we can find families of balls
verifying all the necessary hypotheses. Because both the generic covering property and the
maximal open subball property are instances of being able to find large balls in a family, let us
first consider the following definition. Recall that d; (B1, B») is the i-th distance between balls
of B and balls of B, (see Definition 6.5)

Definition 7.10 (Generic large ball property). We say that F has the generic large ball
property over p if forall A1,A> € A(M) andi € N, there exists (4;)o<j<; € A(M) such
that

(i) forall j, p(x,y) I “the balls in F,; (x) are closed”;
(ii) forall j, p(x, y) - rad(F; (x)) = di(Fy, (x). Fy,(x));
(i) px,y) = Fg (x) € U; FS (0);
and, if
p(x,y) Frad(Fy, (x)) < di(Fy,(x), F,(x))

or
p(x,y) I “the balls in F} (x) are open”,

there exists (p;); <; € A(M) such that
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(i) forall j, p(x,y) I “the balls in F; (x) are open”;
(ii) forall j, p(x,y) Frad(Fp, (x)) = d; (Fy, (x), F3,(x));
(i) p(x,y) = Fg (x) € U; Fy (x).

Definition 7.11 (Good representation). Let A(x, y;t) and ®(x, y;s) be two finite sets
of £-formulas where x € K”. Let (Fy)iea and (Gy)peq be two £-definable families of
functions K" — Bg]. We say that (®, G, x) is a good representation of (A, F, x) if for all
£ (M )-definable p € 89 (M):

(i) ® is adapted to G.

(i) (Gw)wes , 1s closed under generic intersection over p.
(iii) (Gw)weg, has the generic large ball property over p.
(iv) p decides all formulas in A.

(v) For all A € A(M), there exists a finite number of (w;)o<i<; € 2p(M) such that
p(x.y) F Fy(x) = U; Go; (x).

Here @2, := {0 € Q : G, is generically irreducible over p}.
If we only want to say that (i) to (iii) hold, we will call (®, G, x) a good representation.

Proposition 7.12 (Existence of good representations). Let (Fy)rep be any L-definable
family of functions K" — Bg] and A(x:t) any finite set of £-formulas where x € K". Then,
there exists a good representation (Y, G, x) of (A, F, x).

Proof. Let us begin with some lemmas.

Lemma 7.13. There exist (Hp),er, an £-definable family of functions K" — BE],
and E(x;t,s) 2 A(x;t), afinite set of £-formulas adapted to H, such that H has the generic
large ball property over any E-type and for all A € A, there exists p € R such that H, = F).

Proof. Forall A\, u,n € A andi < [?, define Hj ji.n,i,1(x) to be the closed balls with
radius min{d; (F},(x), Fy(x)),rad(F(x))} around the balls in F} (x). If the balls in F} (x) are
open or if they are closed of radius strictly smaller than d; (F, (x), Fy(x)), define Hj ;, , i 0(x)
to be the set of open balls with radius d; (F,(x), F;;(x)) around the balls in F} (x). Otherwise,
define Hy ,, pi0(x) to be the closed balls with radius min{d; (F,(x), Fy(x)),rad(F(x))}
around the balls in F) (x). By usual coding tricks, we may assume that H is an £-definable
family of functions. Adding finitely many formulas to A, we obtain E (x; ¢, s) which is adapted
to H.Let p € 8Z(M) and x = p.

Let us first show the closed ball case of the generic large ball property.

For all Ag, g, ne € A(M), iy, jr € N,fork € {1,2},andr € N,

d:= dr(HM,ll«l,m,il,jl (x), le,Mz,ﬂz,iz,jz(x))

is either the radius of the balls in Hy, i, n,.ix.jx (X)s 1.6 diy (Fu, (), Fp, (x)) orrad(Fy, (x)),
or the distance between two disjoint balls from the Hy, ;. ». ir,ji (X), in which case it is also
the distance between some disjoint balls in the F, (x). If d = d;; (F, (x), Fy, (x)), itis easy
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to check that Hy, p. .. i.,1 has all the suitable properties; and that this one instance suffices.
Otherwise there exists some m such that Hy | 3, 1,.m,1(x) is suitable.

The same reasoning applies to the open ball case (the extra hypotheses under which we
have to work are just here to ensure that the balls in F} (x) are indeed smaller than those we
are trying to build around them). |

Lemma 7.14. Assume that F has the generic large ball froperty over any A-type. Let
(Gw)weq be any £(M)-definable family of functions K" — Bg' and ©(x;s) any finite set of
EL-formulas adapted to G such that for all p € 85) (M), we have:

(1) Forall w € Q(M), thereis A € A(M) such that p(x) = Gy (x) C Fy(x).
(i) Forall A € A(M), there is (w;)o<i<i € UM ) such that p(x) = F)(x) = {; G, (x).
Then G also has the generic large ball property over any ©-type.

Proof. Let wi,wy € Q(M),i € Nsg and x = p. Then there exist A1,A» € A(M)
such that Gy, (x) € F, (x). Then d;(Gy, (x), Gw,(x)) is either the radius of one of the
balls involved and hence is the radius of one of Fj, (x) or the distance between a ball in
Gy, (x) and a ball in G, (x), i.e. the distance between a ball in Fj, (x) and one in Fj,(x).
In both cases, the large closed ball property in F allows us to find (i) )o<;<; € A(M) such
that GEI (x) C Ff‘l (x) C Uj FEJ, (x), for all j, the balls in F,; (x) are closed and their
radius is d; (G, (x), Gw,(x)). But, by hypothesis there are (0 x)o<k<i € 2(M) such that
Fu,; (x) = Uk Gp,  (x). By picking one p; x per ball in Gy, (x), we see that [ of them are
enough to cover G, (x) and we are done. The open ball case is proved similarly as the extra
hypotheses hold for G, and G, if and only if they hold for F, and F},. |

Adding them if we have to, we may assume that there is an instance of F' constant equal
to @, and another one constant equal to {K}. Let (H,),er and E be as in Lemma 7.13. Let
(Gp)wen and O(x; u) be as given by Proposition 6.18 applied to H. Let p € § )(? (M). Then
hypotheses (i), (iv) and (v) of Definition 7.11 hold. Hypothesis (ii) holds by Corollary 6.10.
Hypothesis (iii) holds by Lemma 7.14 applied to (Gy)weg, - |

Proposition 7.15. Let (A(x;t), (F3)aiea.X) be a good representation and p € /SxA (M)
L(M)-definable. Then Fp := (F))arep, has the generic covering property and the maximal
open subball property over p, where Ap :={A € A : F, is generically irreducible over p}

Proof. Letx = p, A1,A2 € Ap(M) be such that Ff1 (x) C Ffz(x). By the generic
large ball property, there exists p; € Ap(M) such that the balls in F),; (x) are open of radius
rad(F;,(x)) and F f} x) <y i F Ej (x). We have proved the maximal open subball property.

Let us now consider £ € Ap(M) and (A;)o<j<k € Ap(M) such that for every u € E,
FS (x) C FS(x) For any py,u2 € E, 1f the balls in Fy,, (x) are smaller than the balls in

Fu,(x), by 1rreduc1b111ty, as FS (x)NF (x) 2 Fp,(x) 75 @, we have F (x) - (x)
Let us define the following equlvalence relat10n on(\;eg F xX):y1 =y 1f for all u € E Y1
and y, are in the same ball from F,(x). For all non- equlvalent y1 and y», there exists u € E
such that y; and y, are not in the same ball from F,(x). This also holds for any n € E such
that F,;Q’ (x) € F E (x). Thus there are at most [ equivalence classes and there exists g € E
such that each equivalence class is contained in a different ball of F},(x).
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Let (P;);jes denote these equivalence classes and B; = {b € | J; F),(x) : b € P;}. The
set Rj := {d(b1,b2) : b1,by € Bj} U {rad(b) : b € By} is finite and hence has a minimum
yj. By the generic large ball property, there exists i; € Ap(M) such that the balls in F,; (x)
are closed of radius y; and one of its balls (call it bg) contains one of the balls in B;. In fact,
bo contains all of them as y; is the minimum of R;. Forall k € E, all b € B; are such that
b C FKS(x). If rad(bo) = d(b1,b>) for some by,br € Bj, then, because by and by are in
the same ball from Fy (x), rad(by) = d(b1,bs) < rad(Fy(x)). If rad(by) = rad(b) for some
b € B;, then, because b is inside one of the balls from Fy (x), rad(bg) = rad(d) < rad(Fi(x)).
In both cases, by C Ff(x). Let n; be such that FnSj (x) = F/i_ (X)) N eer FKS(x). Such an
n; exists by generic intersection and because, by Proposition 6.4, this intersection is given by
the intersection of a finite numbers of its elements.

Then, as Fy, (x) € Fy,; (x), the balls in Fy; (x) are closed. Obviously, for all x € E,
we have FnSj (x) € FKS(x). Moreover, for all i, FAS’, (x) € Uj FEJ, (x), and for all k € E,
Ffi (x) C FKS (x), hence we also have

Fj(x) < | Fy ().
J

As there are at most / of the 1;, we are done. ]

8. T'-reparametrizations

Let £ 2 £4iv, I’ 2 ACVF be an L-theory which eliminates imaginaries. Assume that
T is C-minimal. The two main examples of such theories are ACVF? and ACVFiE where
A is some separated Weierstrass system (for example ( ,, , Z[Xo, - .., Xn][[Yo, ..., Ym]]) and
ACVF 4 denotes the theory of algebraically closed valued fields with #-analytic structure (see
[3] or [16, Section 3]). This structure is considered in the language &£ 4. @ := Laiv U A U {1

Lemma 8.1. The value group T is stably embedded and o-minimal in T. As T is an
o-minimal group, the induced structure on I eliminates imaginaries.

Proof. Let M }= T and X C T be a unary £ (M )-definable set. The set val~!(X) is
both a (potentially infinite) union of annuli around 0 and a finite union of Swiss cheeses. Hence
it is a finite union of annuli around 0 and X must be a finite union of intervals. Therefore, I is
o-minimal in 7. By [10], T is stably embedded in models of 7. D

Let M =T, f = (fy : K" = I')jep be an £(M)-definable family of functions,
A(x:t) a finite set of £-formulas and p € § XA (M). We wish to study the family f and in
particular its germs over p (see Definition 8.3) to show that they are internal to I'. This is later
used as a partial elimination of imaginaries result in enrichments T of T where T is stably
embedded: any subset of these germs definable in 7" is coded in I'®d. The idea of the proof is
to reparametrize the family of functions.

Definition 8.2 (I -reparametrization). An &£ (M )-definable family (g, : K" — I'),eq,
where G C T'* for some k, I -reparametrizes f over p if forall A € A(M), thereisy € G(M)

such that p(x) = fi(x) = gy (x).
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An £(M)-definable family (g, : K" — TI')peq,yec of functions K" — I', where
G C T* for some k, uniformly T'-reparametrizes f over A-types if for every p € § xA (M)
there exists wg € (M) such that go, = (gw,,y)yec I -reparametrizes f over p.

We say that 7' admits uniform I'-reparametrizations if for every &£ (M )-definable family
f = (fi)rea of functions K — T there exists a finite set of £-formulas A(x;s) and
an £ (M )-definable family ¢ = (gw,y)weq,yec of functions K” — T which uniformly I -
reparametrizes f over A-types.

We will say that the set A is adapted to f (resp. to g) when any A-type decides when
JFaa (%) = fo,(x) (resp. gy, (x) = gy, (x)).

Definition 8.3 (p-germ). Assume that A is adapted to f and that p is £ (M )-definable.
We say that f;, and fj, have the same p-germ if p(x) & f;,(x) = f3,(x). Leto, f € M
denote the code of the equivalence class of A under the equivalence relation “having the same
p-germ”.

Proposition 8.4. Ler g be a I -reparametrization of f over p, let A be adapted to both
Jf and g, and let p be (M )-definable. The set {0, f) : A € A} is internal to T, i.e. there is
an £ (M )-definable one-to-one map from this set into some Cartesian power of I.

Proof.  As T is stably embedded in 7" and eliminates imaginaries (see Lemma 8.1), we
may assume that d,g, € I'. Now pick any A. Let y be such that p(x) = fi(x) = gy(x).
Then dp g, only depends on d, f3 and not on A or y. It follows that the set {dp f3 : A € A} is
in £ (M )-definable one-to-one correspondence with a subset of the set {dpg, : ¥ € G} which
is itself a subset of some Cartesian power of I". ]

If Z; and Z, C K are finite sets, we define
D(Zl,Zz) = {V&l(Zl —22) 1z1 €21, 25 € Zz}

Let us order the elements in D(Z1,Z3)asdy > dp > -+ > dp andlet d; (Z1,Z5) := d;. If
Z1 = {z} is a singleton, we will write d;(z, Z>).

Proposition 8.5. Let t(x, y,A) : K*T1F! — K be an | (M)-term polynomial in y,
ie.t =% 1;(x. )y, where |x| = n, |y| = land |A| = I. Let

Z)(x) = {y :1(x,y,A) = 0}.

Then there exists an £ (M )-definable family g = (qy)nen of functions K" — T such that for
all N = M, x € K"(N) and y € K(N), there exists jo € A(M) such that for all A € A(M)
there exists n € H(M) and n smaller than the degree of t in y such that

val(t(x, y, 4)) = qy(x) +n-di(y, Z,(x)).
Proof. Let us define

T Teezy O —a)yme”
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where my denotes the multiplicity of «. Let us also define

k

D7) = Val(u(x, 1) + Y djy (Z(x), Zn(x)),
i=0

where k is at most the degree of # in y and j; < /2. Note that because we can code disjunctions
on a finite number of integers, ¢ can be considered as an &£ (M )-definable family of functions
K" - T.

Let N = M, x € K"(N) and y € K(N). First, assume that there exists g € A(M)
and ag € Z,(x) such that val(y — ) = di(y, Z;0(x)) = max, {d1(y, Z,(x))}. Now pick
any A € A(M)and o € Z,(x).

Claim 8.6. Either val(y —a) = d1(y, Zyuy(x)) or val(y — ) = d;,(Z(X), Z (X))
for some jq.

Proof. If val(y — o) # di(y, Z,(x)), then val(y — o) < d1(y, Zy,(x)). It follows
that val(y — o) = val(e — o) = d;(Z;(x), Z,,,(x)) for some j. m]

Let
Zy:={a € Z)(x) :val(y —a) = di(y, Z(x))}

andn := ), mq. We have

val(t(x. . ) = val(u(x. 1)) + > mgval(y — )

aeZ;(x)

=val(u(x, ) + Y Madj, (Z3(x). Zpuo(x) + 1 - di(y. Zpuo(x))
a¢Z

=k jnX) +n-di(y, Zu(x))

for some k and j.

If there does not exist a maximum in {d1(y, Z,(x))}, for any A € A(M), then there
exists n € A(M) and o9 € Zy(x) such that val(y —ao) = d1(y, Zy(x)) > d1(y, Z,(x)). For
alla € Z)(x), val(y —a) = val(a — ap) = d;, (Z(x), Zy(x)) for some ju. It follows that

val(t(x,y,A)) = val(u(x, 1)) + Z Madjo (Z)(x), Zy (X)) =4 g 7.0 (X)

aeZ)(x)

for some k and j. m]
Proposition 8.7. Uniform I -reparametrizations exist in ACVF? and ACVFGX.

Proof. Let f = (fi)irea be an £ (M )-definable family of functions K* — TI'. We
work by induction on n. The case n = 0 is trivial as f is nothing more than a family of
points in I' that can be reparametrized by themselves. Let us now assume that n = m + 1 and
x = (y,z) where |z| = 1. Because K is dominant, we may assume up to reparametrization
that A is a tuple from K. If 7 = ACVF? | the graph of fj is given by an £% (M )-formula.
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ItTr = ACVFZ‘&, by [16, Corollary 5.5] there exists an £¥ (M )-formula ¥ (z, W, y) and £|k-
terms 7(x,A) such that M &= f3(y,z) = y if and only if M | ¥ (z,7(y,A),y). Taking 7
to be the identity, the graph of £} also has this form when T = ACVF?. By elimination of
quantifiers in ACVF? (or in the two-sorted language), we know that ¥ (z, w, y) is of the form
x((val(P;(z,w)))o<i<k,y) Where x is an £¥|p-formula and P; € K(M/Y, W). We may also
assume that y defines a function 4 : r« »r.

Let t;(y,z,A) = P;i(z,7(y,A)) and ¢; = (qi,n)yen; be an (M )-definable family of
functions K — T as in Proposition 8.5 with respect to #;. By the usual coding tricks we may
assume that there is only one family ¢ = (¢5)yen such that for all i and n € H; there exists
€ € H such that g; ; = g.. By induction, there exists a uniform I'-reparametrization for ¢,
i.e. there exist a finite set of £-formulas E(y;s) and an &£ (M )-definable family (v s)ccE.5eD
of functions K™ — T, where D C T’/ for some /, such that for any p € SyE (M), for some
€0 € E(M), (ue,,s5)sep is a I -reparametrization of g. Let

Zia(y) =1z : Pi(y,z,1) = 0},
ge,ﬁj,ﬁ(% z) = h((ue,Si (x) +ni - di(z, Zi,pL,' (y)))0§i<k)’
bn="o(y.2) =8, 5:(0.2)".
A:=EU{¢n:7 €N}
For all p € /SyA,Z (M), there exists €9 € E(M) such that (u¢, s)sep I -reparametrizes g over

plz. Let (y,z) = p. By Proposition 8.5 there exists a tuple 1, € A(M) such that for all
A € A(M), there exist tuples 1 € H(M) and 7 such that

val(t; (v, z,4)) = qp; (y) +n; - d1(y, Zi,uo,i(x))-

As y |= p|z, there exists §; € D(M) such that gy, (y) = u¢, s, (y). Therefore,

Fo(y.2) = h((val(ti (y. 2, A)))o<i<k)
= h((ueo,&' ()’) +n; - dl (yv Zl',pb()j (x)))0§i<k)
= ggo’m’g’ﬁ(y’ z).

Because p decides such equalities, this holds in fact for all realizations of p. We have just
shown that (g eo,m,ﬁ,ﬁ,)ge D.fieN reparametrizes f over p. But because § is a tuple from T’
and disjunctions on a finite number of bounded integers can be coded in I', it is in fact a
I' -reparametrization. |

Question 8.8. Do uniform I'-reparametrizations exist in all C-minimal extensions of
ACVF?

9. Approximating sets with balls

As before, let £ D> &£ O &£4iv be languages, R the set of L-sorts, T O ACVF a
C-minimal £-theory which eliminates imaginaries and admits I -reparametrizations, 7 an -
theory containing 7, N = ~7~“, N:=Nl|gand 4 = acl‘}g(/f) C N®4. Let us assume that k and
I' are stably embedded in 7" and that the induced theories on k and IT'®? eliminate 3°°.
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In this section we bring together all the work we have done in Sections 6, 7 and 8 to
construct definable types, in order to prove Theorem 9.7. The core of the work is done in
Lemma 9.1 where we show that we can enrich a quantifiable partial £- -type with formulas
of the form y € Fj(x), where F) is an £-definable family of functions K — Bgr], while
maintaining consistency with a given £-definable set. Once this is done, it is only a question
of proving the various reductions sketched in the introduction. In Proposition 9.5, we show
that we can enrich a quantifiable partial fﬁ-type with arbitrary formulas while maintaining
consistency with a given £L-definable set. Finally, in Proposition 9.6, we show that every strict
(fﬁ, *)-definable set X (see Definition 2.7) is consistent with a definable £-type.

Note that, even though all the types which are constructed in this section are £-types (or
A-types for some set A of £-formulas), they are definable using fC(N )-formulas: for every
¢(x;t) € A, there exists an fﬁ(ﬁ)—formula dpx¢(x;t) such that ¢(x;m) € p if and only if
N E dpx¢(x;m). One of the goals of [17] is to show that, under some more hypotheses, such
types are indeed &£ (N )-definable.

Lemma 9.1. Let Y C K"t! be an éﬁeq(A) deﬁnable set and (A(x i 1), (F))yen,X)
be a good representation where x € K". Let p(x,y) € 8 ', (N) be £°9(A)-quantifiable (as
a partial £ea- -type) and consistent with Y. Assume that there exists an L (N )-definable family
g = (gy)yec of functions K" — T which I -reparametrizes the family (rad o F) ) e over p.
Then there exists a type g(x, y) € & ;Il ST (N) which is fﬁeq(ff)-quantiﬁable and consistent with
pandY.

We are looking for a type ¢ = ag/, so most of the work consists in finding the right £

Proof. Let A, :={A € A : F) is generically irreducible over p}. We define a preorder
<don Ay by

A Quifandonlyif p(x,y) F (y € Ff(x)A(x,y) eY)—ye FE(X).

By £¢4(A)-quantifiability of p, < is £%(A)-definable. Let ~ be the associated equivalence
relation, i.e.

A ~ w if and only if p(x, y) (Ff(x) ANx,y)eY)« (ye FE(x) Ax,y)eY).

The preorder < induces an order on Ap/~ that we will also denote by <. We denote by
A c Ap the ~-class of A. The set A,/~ has a greatest element, K, given by the class of any
A e A p such that F is constant equal to {K}. It also has a smallest element, 2, given by
the class of any A € A, such that F) is constant equal to @. Because p is consistent with Y,
K # 0.

Claim 9.2. Letd € Ap \ @, then < totally orders {L:peAp,nd<<pu)

Proof. Let py, w2 € Ap(N) such that A < ;. Because A ¢ 0 there exists x,v)EDPp

such that y e FS(x) A(x,y) € Y. As A < pui, we also have y € FS (x) Hence
(x) nF (x) # 0. By Proposition 6.9, we may assume F; S (x) € (x) Then

M1<‘M2 O
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Hence ((Ap/~) \ {@}, <) is a tree with the root on the top. Let us now show that the
branches of this tree are internal to I'. Let #(A) := dpgrad(F)). By Proposition 8.4, we may
assume (after adding some parameters) that the image of h is in some Cartesian power of T'.
Let us also define 1, : A — "h (/\)—' By stable embeddedness of T, &, takes its values in I"®9,

Claim 9.3. Pickany A € Ap \ 0, then the function h, is injective on {iv: A <

Proof. Let puq and ,uz be such that A < u;. We have seen in Claim 9.2 that we may
assume that p(x y)HF (x) - FS (x). Let (x y) E p. If i1 # [1p then we must have
FE‘I (x) C F (x) In partlcular grad(Fm(x)) < grad(F,,(x)) and h(p1) # h(pz). In fact,
we have just shown that for all w; € [1;, h(wy) # h(wyz). Hence hy (f11) # hy(i12). O

Let A € A, (N) be such that Ae A Ifa A(N)/p 18 consistent with Y, it is, in particular,
consistent with p. By Proposition 6.12, it is a complete WA p-type. By Corollary 7.9, &} (§)/p
is £29(A)-quantifiable. It follows that taking ¢ = « A(N)/ p Works. Therefore, it suffices to find
aA € Ap(N) such that r27 e Aand ®3(W)/p 1S consistent with Y.

Claim 94. Let A € Ap(N). If/\ #* 0 and (W) p is not consistent with Y . Then there
exists ju such that [L is an immediate <-predecessor of A and "1 € acleq (A'_)t—')

Proof.  As aj(#)/p is not consistent with Y, there exists (i;)o<;i <k € Ap(N) such that
Wi < A and

k
px,y)Fye FAS(x)/\(x,y) €Y »>ye U FEl,(x).
i=1

We may assume that for all i, u; ¢ ¢ and that p(x,y)F FS (x)n FS (x) =@ foralli # j.
Let k € Ap(N) be such that p;, <k < A for some ip. Because Mio <l K, we have

p(x.y) F FE() N ES (x) # 0.

If p(x,y) FS(x) C FS (x) then k < w;, and hence k ~ ;.
Also, as k < A, we have

P F (Y EFS(X)A(x.y)€Y) >y e FP(x) =y € FS (x).
For any i # iy, if p(x,y) FKS(x) N F/i (x) # 0 then we must have
pley) b FJ(x) € FE ().
Therefore, we have

P F(eFS@ Ay eY) o \/(y e FL(x)A(x.y) €Y),

iel

where [ = {i : FS (x) N Fe(x)S # @). It follows that the set {& : u; <« < A for some i}is
finite. In partlcular we could choose p; such that there is no x such that le 4R <. The L
are the (finitely many) direct <J-predecessors of 2 and therefore i € acleq (Ar)t—') |
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Let us assume that there does not exist A such that A7 e A and & A(N)/p 1s consistent
with Y. Starting with lo =K € 4, we construct, using Claim 9.4, a sequence (4;);ew such
that /\, +1 1s a direct J-predecessor of /\ For all i, we have

M de S =i+ 1=|h(i: A <,

contradicting the elimination of 3% in I'®4, This concludes the proof O

Proposition 9.5. Let Y C K" be an £%9(A)-definable set. Let A(x, y'l) and
O(y:s) be finite sets of L-formulas where |x| = n and [y| = m. Let p € 8 y(N)
be iﬁeq(A) quantifiable and consistent with Y. Then there exists a finite set of £ formulas
E(x,y;s,t,r) D AUBOandatype q € Sx’y (N) which is éﬁeq(A) -quantifiable and consistent
with p and Y .

Proof. We proceed by induction on |y|. The case |y| = 0 is trivial. Let us now assume
that y = (z,w) where |w| = 1. By Proposition 6.14 there exist a finite set of £-formulas
®(z;u) and an £-definable family F = (Fj) e of functions K”~! — B such that Vo
decides any formula in ®. By Propositions 6.15 and 7.12 we can assume that the pair
F : K" Bg] and (®, F,z) is a good representation. We can make F into an £-
definable family of functions K"+7~1 — Bg] by setting G (x,z) = F;(z). As T admits
I' -reparametrizations, there exists Y (x, z; v) such that for any p € /SyT (N), there exists a
I' -reparametrization (g, ), of (rad o G3) e oOver p.

By induction applied to A(x,z,w;t), ®(z;u) U Y(z;v) and p, we obtain a finite set
of £-formulas Q(x,w,z;r) 2 AU ® U T and a type g1 € 8)522 w(N) which is £29(A)-
quantifiable and consistent with p and Y. We can now apply Lemma9.1to Y, (2, G, (x, 2)),
q1 and g to find a type ¢ € sy .02 (N) which is éﬁeq(A) -quantifiable and consistent with g1
and Y. As all the formulas in ® are decided by Wq ¢, we may assume that g is in fact a
(Vq,g U®)-type. Then B = Vg ¢ U © and g = g5 are suitable. O

Proposition 9.6. Let X be non-empty strict (qu(A) X)-definable. Let A(x;t) be a
countable set of L£-formulas. Then there exists an :ﬁeq(A) definable type p € § A(N ) consis-
tent with X.

Proof. We may assume that X C K" for some n. Let {¢;(x;;#;) : j < w} be an
enumeration of all formulas in A where |x;| < oo. Let Ay := @ and = 0. We
construct, for all j, a finite set A;(x<;;s;) of £-formulas and a type p; € §_; <x; (N ) such that
forall j < w, Aj U{¢;} € Ajy1and pj41is éﬁeq(A) quantifiable and consistent with p;
and X. Let us assume that p; and A; have been constructed. Let Y; 1 be the projection of X
on the variables x<; 1. Then Y; 11 is £°4(A)-definable. We can then apply Proposition 9.5 to
Aj(x<jisj),{¢(xjr1:tj4+1)}, pj and Y; 41 in order to obtain p;+1. As Y; 11 is the projection
of X on the variables which appear in p; and p; 41, and as p;, pj+1 and Y are consistent, it
follows 'Ehat pj, pj+1 and X are also consistent. We can now take p := | J i <w Pj- Aseach p;
is £%9(A)-definable (as a A;-type), so is p and thus p|a. m|

We now prove the main result we have been aiming for.
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Theorem 9.7. Let £ O £ D Laiy be languages, R the set of £-sorts, T O ACVF a
C-minimal £- theory which eliminates imaginaries and admits T -reparametrizations. Let T
be a complete £- theory containing T such that K is dominant in T and

(1) the sets k and T are stably embedded in T and the induced theories on k and T4
eliminate 3°°;

(i) for any N~|= T, A = K(dclg(A)) € N and any £(A)-definable set X < K", there
exists an L-definable bijection f : K" — Y such that f(X) = Y N Z where Z is
£ (A)-definable; note that f has to be defined without parameters.

Then for any N = T, any countable set A(x;t) of £-formulas and any non-empty £(N)-
definable set X(x), there exists p € 8°(N) which is consistent with X and £ea (acleq('_X N)-
definable. If, moreover,

(iii) there exists M = T such that M |¢ is uniformly stably embedded in every elementary
extension,

then the type p can be assumed to be flf(ﬁ(acl?('_X N))-definable.

Proof. Let A := acl?('—X ). We may assume that X C K" for some n. Indeed, let
S; be the sorts such that X C [[S;. Since K is dominant, there is an £-definable surjection
7w : K* — []S;. If we find p consistent with ¥ := 7~ 1(X) and é‘i(acleq('—Yj)) definable,
then 7, p is consistent with X and £ (A4)-definable. So we may assume that X C K",

Let

F = { fisan £-definable bijection whose domain is K"},
O (x) = (f(x))feF.

Then 0d, (X)) is strict (fﬁeq(ff), *)-definable. Pick any ¢(x;¢) € A(x;¢). As K is dominant,
we may assume f is a tuple of variables from K too. By (ii), for all tuples m € K(N),
there exists (f : K" — Y) € F and an £-definable map g (into K/ for some /) such that
f(@(N;m)) = Y(N) N Z(N) where Z is £(g(m))-definable. As N is arbitrary, we may
assume that it is sufficiently saturated and, by compactness, there exists a finite number of
(f; : K" = Y;) € F, $-definable maps g; and £-formulas v; (y;;s;) such that for any tuple
m € K(ZV ) there exists io such that

ﬁo(ﬁi’(ﬁ,m)) = 1pio(ﬁ];gio(””l)) n YZO(N)

Let ©(y; s) be the (countable) set of all y; (y;;s;) that can appear for a ¢(x;1) € A(x;1).

By Proposition 9.6, there exists an £ (A)-definable type p € 8 ®(N ) consistent with
0w (X). Letg = {x : 0y (x) = p}. Then ¢ is consistent with X . There remains to show that it
is a complete A-type and that it is éﬁ(A) definable. Pick ¢(x;t) € A(x;t). Let f;, gi, Vi, m
and iy be as above. Let ¢, ¢2 = ¢. Assume that = ¢ (c1;m). Then

Jio(€1) € Yig(N: 8ig (m)) N Y (N).
As 0, (c1) and 9, (c») have the same ®@(y; s)-type over N and fio(c2) € Yy (N), we also have

fio(€2) € Yig (N gig(m) N Yig(N) = fio ((N:m)).
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Because f;, is a bijection, = ¢ (c2;m). As for definability, we have just shown that ¢ (x;m) € g
if and only if ¥;, (yi: gi,(m)) € p for some i such that

Jio(@(N3m)) = Yig (N gy (m)) N Yig (V).

Since that can be stated with an fﬁ(ff)—formula, q is i(ﬁ)—deﬁnable.
If Hypothesis (iii) holds, we deduce from [17, Corollary 1.7] that the type p is L(R(A))-
definable, and hence ¢ is £(R(A))-definable. m]

Question 9.8. Can the restriction on the cardinality of A be lifted to obtain the density
of complete definable £-types even when &£ is not countable?

The main problem is to prove Proposition 9.6 without any cardinality assumption on A.
The present proof relies on an induction that cannot be carried out beyond w because the union
of quantifiable types might not be quantifiable.

Corollary 9.9. Let M = VDFge. Any éﬁf (M)-definable set X is consistent with an
L% (¢ (acl®(" X 7)))-definable p € §(M).

Proof. This follows from Theorem 9.7, taking 7 to be ACVF? and T to be VDF,..
The fact that ACVF? admits T -reparametrizations is proved in Proposition 8.7.

Hypothesis (i) in Theorem 9.7 follows from Theorem 2.4 (ii) and (iii) and the fact that
both DCFy and DOAG eliminate 3°°.

Hypothesis (ii) in Theorem 9.7 is an easy consequence of elimination of quantifiers.
Let ¢(x;s) be an éﬁg—formula such that x and s are tuples of field variables. Then there
exist an £Lgiy-formula ¥ (u;7) and n € N such that ¢(x;s) is equivalent modulo VDFge to
W (0, (x): 0n(s)), ie. forall m € N, 9, is an &£5,4iv-definable bijection between #(N:;m) and
W (x, 0 (m)) N 0, (KX,

Hypothesis (iii) in Theorem 9.7 follows from the fact that if k = DCFy then the Hahn
field k((®)) (with the derivation described in Example 2.3) is a model of VDFge. By Corol-
lary A.7 the underlying valued field is uniformly stably embedded in every elementary
extension. O

10. Imaginaries and invariant extensions

In this section, we investigate the link between the density of definable types, elimination
of imaginaries and the invariant extension property (see Definition 2.10). I am very much in-
debted to Hrushovski [12] and Johnson [14] for making me realize that the density of definable
types could play an important role in proving elimination of imaginaries. To be precise, we
will show that both the elimination of imaginaries and the invariant extension property follow
from the density of types invariant over real parameters.

In the following proposition, we show that the density of A-types invariant over real
parameters for finite A suffices to prove weak elimination of imaginaries.
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Proposition 10.1. Let T be an £-theory and R a set of its sorts such that forall N = T,
all non-empty £ (N )-definable sets X and all L£-formulas ¢ (x;s) (where x is sorted as X),
there exists p € § f (N) which is consistent with X and Aut(N/R(acl®d(" X )))-invariant.
Then T weakly eliminates imaginaries up to R.

Proof. Let M be a sufficiently saturated and homogeneous model of 7, £ any £-
definable equivalence relation, X one of its classes in M, ¢(x, y) an L-formula defining E
and A = tﬂ(aclzig('—X ). By hypothesis, there exists an Aut(N/A)-invariant type p € § f (M)
consistent with X. Because X is defined by an instance of ¢, we have in fact p(x) - x € X.
For all ¢ € Aut(N/A), o(X) is another E-class and 6(p) = p = x € X. It follows that
o(X)NX #@and X = o(X). Therefore " X ' € dcl®4(A) = dcleq(gﬂ(acl?('—X—'))), ie Xis
weakly coded in R. o

Let us now consider the invariant extension property.

Proposition 10.2. Let T be an £-theory, and A € M for some M = T. The following
are equivalent:

(1) Forall £(A)-definable non-empty sets X(x), ¢ (x;s) an £-formulaand N =T, N C A,
there exists p € 8 f (N) such that p is Aut(N/A)-invariant and consistent with X.

(i1) T has the invariant extension property over A.

Proof. Let us first show that (ii) implies (i). Let N = T, X(x) be an £(A)-definable
non-empty set, ¢(x;s) an L-formula and p € 8x(A) any type containing X. Let g € 8x(N)
be an Aut(N/A)-invariant extension of p. Then g|¢ is consistent with X.

Conversely, let

© = {p(x;a) < ¢(x:b) :a,b € N and tp(a/A) = tp(b/A)}.

Then g € 8x(N) is invariant if and only if ® C ¢. Pick any p € 8,(A4). Hypothesis (i)
exactly implies that every finite subset of p U © is consistent, so, by compactness, there exists
¢ |E pU®. Then g = tp(a/N) is an invariant extension of p. i

Theorem 10.3. In the setting of Theorem 9.7, T eliminates imaginaries and has the
invariant extension property.

Proof.  Weak elimination of imaginaries follows from Proposition 10.1 and the invariant
extension property follows from Proposition 10.2. In both cases the assumption on density of
invariant ¢-types follows from Theorem 9.7. Elimination of imaginaries then follows as any
finite set in JR is also definable in 7" and hence is coded in 7T'. ]

Corollary 10.4. The theory VDFg€ eliminates imaginaries and has the invariant ex-
tension property.

Proof. This follows from Theorem 10.3. The fact that VDFgE verifies the hypotheses
of Theorem 9.7 is proved in the proof of Corollary 9.9. o
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A. Uniform stable embeddedness of Henselian valued fields

The goal of this appendix is to study stable embeddedness in pairs of valued fields and,
in particular, to show that there exist models of ACVF uniformly stably embedded in every
elementary extension. These models are used to prove that there are models of VDFge whose
underlying valued field is stably embedded in every elementary extension in the proof of The-
orem 2.14. These results are valid in any characteristic.

Following Baur, let us first introduce the notion of a separated pair of valued fields.

Definition A.1 (Separated pair). Let K € L be an extension of valued fields. Call a
tuple a € L K-separated if for any tuple A € K, val(}_; A;a;) = min;{val(4;a;)}. The
pair K € L is said to be separated if any finite dimensional sub-K-vector space of L has a
K-separated basis.

Recall that a maximally complete field is a field where every chain of balls has a point.
Let us now recall a well-known result of [1].

Proposition A.2. If K is maximally complete, any extension K C L is separated.

Following [5, 6], let us give the links between separation of the pair K € L and uniform
stable embeddedness of K in L. But first let us define this last notion.

Definition A.3 (Uniform stable embeddedness). Let M be an £-structure and A C M.
We say that A is uniformly stably embedded if for all formulas ¢ (x;7) there exists a formula
x(x;s) such that for all tuples b € M there exists a tuple a € A such that ¢(A4,b) = y(A,a).

The proof of Proposition A.4 is taken almost word for word from [5], although we put
more emphasis on uniformity here. Let &£ denote the two-sorted language for valued fields.

Proposition A.4. Let M = ACVF and ¢(x;s) an L-formula where x is a tuple of
K-variables. There exist an €| -formula W (y;u) and polynomials Q; € Z[X,T] such that
for any N < M, where the pair K(N) C K(M) is separated, and any a € M, there exist
b € K(N) and ¢ € T (M) such that $(N;a) = ¥ (val(Q (N, b)); c).

Proof. By elimination of quantifiers (and the fact that K is dominant), we may assume
that ¢ (x; a) is of the form v (val(P (x))) where P is a tuple of polynomlals from K(M/X),
n € N and ¢ is an £|p-formula. Let us write each of the P; as »_ i MX Since the pair
K(N) € K(M) is separated, the K(N)-vector space generated by the a;,;, is generated by a
K(N)-separated tuple d € K(M). Note that |d| < |a|. Adding zeros to d, we may assume
|d| = |a|. For each i and p, find A; ., € K(N) such that a; ;, = Z] iw,jdj. We can
rewrite each P; as ZJ diQi (X, 1), where Q; ,j € Z[X, T] does not depend on a. For all
x € K(N) we have

val(P; (x)) = m_in{val(dj 0i,j (x,I))}.
J

The proposition now follow easily by taking b = Aand ¢ = val(d). m)
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Theorem A.5. Let K C L be a separated pair of valued fields such that L is alge-
braically closed. Then K is stably embedded in L if and only if T (K) is stably embedded in
I' (L), as an ordered Abelian group. Moreover, if T (K) is uniformly stably embedded in T (L),
then K is uniformly stably embedded in L.

Proof. This follows immediately from Proposition A.4. |

Remark A.6. The computation of Proposition A.4 also applies to the rv map (and the
higher order leading terms rv, : K — K/1 + nt = RV, in the mixed characteristic case).
We get that rv, (P (x)) = > 1va(d; Qi,j (x, A)).

It follows that if the pair K C L is separated and L is a characteristic zero Henselian field,
K is stably embedded in L if and only if | J,, RV, (K) is stably embedded in | J,, RV, (L). If we
add angular components (which correspond to splittings of RV ;) and restrict to the unramified
case (either residue characteristic zero or positive residue characteristic p and val(p) is minimal
positive), then K is stably embedded in L if and only of T (K) is stably embedded in I" (L) and
k(K) is stably embedded in k(L).

Corollary A.7. Let k be any algebraically closed field. The Hahn field K = k((t®))
is uniformly stably embedded (as a valued field) in any elementary extension.

Proof. The field K is Henselian, as are all Hahn fields. Its residue field & is algebraically
closed and its value group R is divisible. It follows that K is algebraically closed. By Propo-
sition A.2, any extension K C L is separated. By Theorem A.5, it suffices to show that R is
uniformly stably embedded (as an ordered group) in any elementary extension. But that follows
from the fact that (R, <) is complete and (R, +, <) is o-minimal, see [2, Corollary 64]. |

Remark A.8. An easy consequence of this result is that the constant field Ck is stably
embedded in models of VDFge. Indeed by quantifier elimination, we only need to show that
Ck is stably embedded in K as a valued field. But that follows from Corollary A.7 and the fact
that for any k = DCFy, K = k((t®)) = VDFgg (for the derivation described in Example 2.3)
and its constant field Cx = Cg ((#®)) is uniformly stably embedded in K.

It then follows from quantifier elimination that Ck is a pure algebraically closed field.
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