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DEFINABLE AND INVARIANT TYPES IN ENRICHMENTS OF NIP
THEORIES

SILVAIN RIDEAU AND PIERRE SIMON

Abstract. Let T be an NIP L-theory and T̃ be an enrichment. We give a sufficient condition on T̃
for the underlying L-type of any definable (respectively invariant) type over a model of T̃ to be definable
(respectively invariant). These results are then applied to Scanlon’s model completion of valued differential
fields.

Let T be a theory in a language L and consider an expansion T ⊆ T̃ in a
language L̃. In this paper, we wish to study how invariance and definability of types
in T relate to invariance and definability of types in T̃ . More precisely, let U |= T̃
be a monster model and consider some type p̃ ∈ S(U) which is invariant over some
smallM |= T̃ . Then the reduct p of p̃ to L is of course invariant under the action
of the L̃-automorphisms of U that fixM (which we will denote as L̃(M )-invariant),
but there is, in general, no reason for it to be L(M )-invariant. Similarly, if p̃ is
L̃(M )-definable, p might not be L(M )-definable.
When T is stable, and φ(x;y) is an L-formula, φ-types are definable by Boolean
combinations of instances of φ. It follows that if p̃ is L̃(M )-invariant then p is both
L(M )-invariant and L(M )-definable. Nevertheless, when T is only assumed to be
NIP, then this is not always the case. For example one can take T to be the theory
of dense linear orders and L̃ = {≤, P(x)} where P(x) is a new unary predicate
naming a convex nondefinable subset of the universe. Then there is a definable type
in T̃ lying at some extremity of this convex set whose reduct to L = {≤} is not
definable without the predicate.
In the first section of this paper, we give a sufficient condition (in the case where
T is NIP) to ensure that any L̃(M )-invariant (resp. definable) L-type p is also
L(M )-invariant (resp. definable). The condition is that there exists a model M of
T̃ whose reduct to L is uniformly stably embedded in every elementary extension
of itself. In the case where T is o-minimal for example, this happens whenever the
ordering onM is complete.
The main technical tool developed in this first section is the notion of external
separability (Definition 1.2). Two sets X and Y are said to be externally separable
if there exists an externally definable set Z such that X ⊆ Z and Y ∩ Z = ∅.
In Proposition 1.3, we show that in NIP theory, external separability is essentially
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a first order property. The results about definable and invariant sets then follow by
standard methods along with a “local representation” of φ-types from [7].
The motivation for these results comes from the study of expansions of ACVF
and in particular the model completion VDFEC defined by Scanlon [5] of valued
differential fields with a contractive derivation, i.e., a derivation ∂ such that for all
x, val(∂(x)) ≥ val(x). In the third section, we deduce, from the previous abstract
results, a characterisation of definable (resp. invariant) types in models of VDFEC
in terms of the definability (resp. invariance) of the underlying ACVF-type. This
characterisation also allows us to control the canonical basis of definable types in
VDFEC , an essential step in proving elimination of imaginaries for that theory in [4].

Notation. Let us now define some notation that will be used throughout the
paper. When φ(x;y) is a formula, we implicitly consider that y is a parameter of
the formula and we define φopp(y;x) to be equal to φ(x;y).
We write N ≺+ M to denote that M is a |N |+-saturated and (strongly) |N |+-
homogeneous elementary extension of N .
Let X be an L(M )-definable set (or a union of definable sets) and A ⊆ M . We
denote byX (A) the set of realisations ofX inA, i.e., the set {a ∈ A :M |= a ∈ X}.
If R is a set of definable sets (in particular a set of sorts), we define R(A) :=⋃
R∈RR(A).

§1. External separability.
Definition 1.1 (Externally φ-definable). Let M be an L-structure, φ(x; t) be an

L-formula andX a subset of someCartesian power ofM .We say thatX is externally
φ-definable if there exist N �M and a tuple a ∈ N such that X = φ(M ; a).
Definition 1.2 (Externally φ-separable). Let M be an L-structure, φ(x; t) be an

L-formula and X , Y be subsets of some Cartesian power ofM . We say that X and
Y are externally φ-separable if there exist N � M and a tuple a ∈ N such that
X ⊆ φ(M ; a) and Y ∩ φ(M ; a) = ∅.
We will say that X and Y are φ-separable if a can be chosen inM . Note that a
set X is externally φ-definable if X and its complement are externally φ-separable.
Proposition 1.3. Let T be an L-theory and φ(x; t) anNIP L-formula. Let U (x)
and V (x) be new predicate symbols and let LU,V := L ∪ {U,V }. Then, there is an
LU,V -sentence �U,V and an L-formula �(x; s) such that for all M |= T and any
enrichmentMU,V ofM to LU,V , we have:

if U and V are externally φ-separable, thenMU,V |= �U,V
and

ifMU,V |= �U,V , then U and V are externally �-separable.
Proof. Let k1 be the VC-dimension of φ(x; t). By the dual version of the (p, q)-
theorem (see [3] and [6, Corollary 6.13]) there exists q1 and n1 such that for any setX ,
any finite A ⊆ X and any S ⊆ P(X ) of VC-dimension at most k1, if for all A0 ⊆ A
of size at most q1 there exist S ∈ S containing A0, then there exists S1, . . . , Sn1 ∈ S
such that A ⊆ ⋃

i≤n1 Si . Let k2 be the VC-dimension of
⋃n1
i=1 φ(x; ti ) and q2 and n2

the bounds obtained by the dual (p, q)-theorem for families of VC-dimension at
most k2. Let
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�U,V := ∀x1, . . . , xq1 , y1, . . . , yq2
∧
i≤q1
U (xi) ∧

∧
j≤q2
V (yj)

⇒ ∃t
∧
i≤q1
φ(xi ; t) ∧

∧
i≤q2

¬φ(yj ; t).

Now, letM ≺+ N |= T , U , and V be subsets ofM |x| and d ∈ N be a tuple. If
U ⊆ φ(M ; d ) andV ⊆ ¬φ(M ; d ) then for anyA ⊆ U andB ⊆ V finite there exists
d0 ∈M such that A ⊆ φ(M ; d0) and B ⊆ ¬φ(M ; d0). In particular,MU,V |= �U,V .
Suppose now that MU,V |= �U,V . Let B0 ⊆ V have cardinality at most q2. The
family {φ(M ; d ) : d ∈ M a tuple and B0 ⊆ ¬φ(M ; d )} has VC-dimension at
most k1 (a subfamily always has lower VC-dimension). BecauseMU,V |= �U,V , for
any A0 ⊆ U of size at most q1, there exists d ∈ M such that A0 ⊆ φ(M ; d ) and
B0 ⊆ ¬φ(M ; d ). It follows that for any finiteA⊆ U there are tuples d1, . . . , dn1 ∈M
such that A ⊆ ∨

i≤n1 φ(M ; di) and for all i ≤ n1, B0 ⊆ ¬φ(M ; di ), in particular,
B0 ⊆ ¬(∨i≤n1 φ(M ; di )). By compactness, there exists tuple d1, . . . , dn1 ∈ N such
that U ⊆ ∨

i≤n1 φ(M ; di ) and B0 ⊆ ¬(∨i≤n1 φ(M ; di )).
The family {¬(∨i≤n1 φ(M ; di )) : di ∈ N tuples and U ⊆ ∨

i≤n1 φ(M ; di )}
has VC-dimension at most k2. We have just shown that for any B0 of size at
most q2, there is an element of that family containing B0. It follows by the
(p, q)-property and compactness that there exists tuples di,j ∈ N � M such
that V ⊆ ∨

j≤n2 ¬(
∨
i≤n1 φ(M ; di,j)) = ¬(∧j≤n2

∨
i≤n1 φ(M ; di,j)) and U ⊆∧

j≤n2
∨
i≤n1 φ(M ; di,j ). Hence, U and V are externally

∧
j≤n2

∨
i≤n1 φ(x; ti,j)-

separable. �
We would now like to characterise enrichments T̃ of NIP theories that do not
add new externally separable definable sets, i.e., L̃-definable sets that are externally
L-separable but not internally L-separable. We show that if there is one model of T̃
where this property holds uniformly, then it holds in all models of T .
Proposition 1.4. Let T be anNIP L-theory (with at least two constants), L̃ ⊇ L
be some language, T̃ ⊇ T be a complete L̃-theory and �1(x; s) and �2(x; s) be
L̃-formulas. The following are equivalent:
(i) For all L-formulas φ(x; t), all M |= T̃ and all a ∈ M there exists an L-
formula �(x; z) such that if �1(M ; a) and�2(M ; a) are externally φ-separated
then they are �-separated ;

(ii) For all L-formulas φ(x; t), there exists an L-formula �(x; z) such that for all
M |= T̃ and all a ∈M , if �1(M ; a) and �2(M ; a) are externally φ-separated
then they are �-separated ;

(iii) For all L-formulas φ(x; t), there exists an L-formula �(x; z) and M |= T̃
such that for all a ∈M , if �1(M ; a) and �2(M ; a) are externally φ-separated
then they are �-separated.

Proof. The implications (ii)⇒ (i) and (ii)⇒ (iii) are trivial.
Let us now show that (iii) implies (ii). By Proposition 1.3, there exists an L̃-
formula �(s) and an L-formula �(x; u) such that for all N |= T̃ and a ∈ N :

�1(N ; a) and �2(N ; a) externally φ-separated implies N |= �(a)
and

N |= �(a) implies �1(N ; a) and �2(N ; a) externally �-separated.
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LetM and � be as in condition (iii) with respect to �. We have:

M |= ∀s �(s)⇒ ∃u (∀x (�1(x; s)⇒ �(x; u)) ∧ (�2(x; s)⇒ ¬�(x; u))).
As T̃ is complete, this must hold in any N |= T̃ . Thus, if �1(N ; a) and �2(N ; a)
are externally φ-separated, we haveN |= �(a) and hence �1(N ; a) and �2(N ; a) are
�-separated.
There remains to prove that (i) ⇒ (iii). Pick any M ≺+ U |= T̃ . By (i), it is
impossible to find, in any elementary extension (U�,M�) of the pair (U,M ), a tuple
a ∈M� and b ∈ U� such that �1(M�; a) and �2(M�; a) are separated by φ(M�; b),
but they are not separated by any set of the form �(M�; c) where � is an L-formula
and c ∈M�. By compactness, there exists �i(x; ui) for i ≤ n such that for all a ∈M
if �1(M ; a) and �2(M ; a) are externally φ-separated, there exists an i such that they
are �i -separated. By classic coding tricks, we can ensure that n = 1. �
Definition 1.5 (Uniform stable embeddedness). Let M be an L-structure and
A ⊆M . We say thatA is uniformly stably embedded inM if for all formulas φ(x; t)
there exists a formula �(x; s) such that for all tuples b ∈ M there exists a tuple
a ∈ A such that φ(A, b) = �(A, a).
Remark 1.6. If there existsM |= T̃ such that M |L is uniformly stably embedded
in every elementary extension, then such anM witnesses Condition 1.4.(iii) for every
choice of formulas �1 and �2.

Corollary 1.7. Let T be an NIP L-theory that eliminates imaginaries, L̃ ⊇ L
be some language and T̃ ⊇ T be a complete L̃-theory. Suppose that there exists
M |= T̃ such that M |L is uniformly stably embedded in every elementary extension.
Let φ(x; t) be an L-formula, N |= T̃ , A = dcleqL̃ (A) ⊆ N eq and p ∈ Sφx (N). If p is
L̃eq(A)-definable, then it is in fact L(R(A))-definable where R denotes the set of all
L-sorts.
Proof. Let a |= p. Then X := {m ∈ N : φ(x;m) ∈ p} = {m ∈ N : |= φ(a;m)}
is L-externally definable and L̃eq(A)-definable (by some L̃-formula �). It follows
from Remark 1.6 that Condition 1.4.(iii) holds and hence, by Condition 1.4.(i),
taking �1 = � and �2 = ¬�, it follows that X is L-definable.
BecauseT eliminates imaginaries, we have just shown thatwe canfind �X�L ∈ R.
But X is also L̃eq(A)-definable, hence any L̃eq(A)-automorphism of N eq stabilises
X (N) globally and therefore fixes �X�L. If we assume that N is strongly |A|+-
homogeneous (and we can), it follows that �X�L ∈ dcleqL̃ (A) = A. Thus �X�L ∈
A ∩R = R(A) and X is L(R(A))-definable. �
We will need the following result, which is [7, Proposition 2.11].

Proposition 1.8. Let T be any theory, φ(x;y) an NIP formula,M ≺+ N |= T
and p(x) a globalM -invariant φ-type. Let b, b′ ∈ U � N such that both tp(b/N) and
tp(b′/N) are finitely satisfiable inM and tpφopp(b/N) = tpφopp(b

′/N). Then we have
p|U � φ(x; b) ⇐⇒ φ(x; b′).

Proposition 1.9. Let T be an NIP L-theory, L̃ ⊇ L be some language and
T̃ ⊇ T be a complete L̃-theory. Let R denote the set of L-sorts. Suppose that there
exists M |= T̃ such that M |L is uniformly stably embedded in every elementary
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extension. Let φ(x; t) be an L-formula, N |= T̃ be sufficiently saturated, A ⊆ N
and p ∈ Sφx (N) be L̃(A)-invariant. Assume that every L̃(A)-definable set (in some
Cartesian power of R) is consistent with some global L(R(A))-invariant type. Then
p is L(R(A))-invariant.
Proof. Let us first assume that A |= T̃ . Let b1 and b2 be such p(x) � φ(x, b1) ∧

¬φ(x, b2). We have to show that tpL(b1/A) �= tpL(b2/A). Let pi = tpL̃(bi/A), Σ(t)
be the set of L̃(N)-formulas �(t) such that ¬�(A) = ∅ and Δ(t1, t2) be the set:

p1(t1) ∪ p2(t2) ∪ Σ(t1) ∪ Σ(t2) ∪ {φ(n, t1) ⇐⇒ φ(n, t2) : n ∈ N}.
If Δ were consistent, there would exist b�1 and b

�
2 such that bi ≡L̃(A) b

�
i ,

tpL̃(b
�
i /N) is finitely satisfiable in A and tpφopp(b

�
1/N) = tpφopp(b

�
2/N). Apply-

ing Proposition 1.8 it would follow that p(x) � φ(x; b�1) ⇐⇒ φ(x; b�2). But,
because p is L̃(A)-invariant and p(x) � φ(x, b1) ∧ ¬φ(x, b2), we also have that
p(x) � φ(x; b�1) ∧ ¬φ(x; b�2), a contradiction.
By compactness, there exists �i ∈ pi , �i ∈ Σ, n ∈ 	 and (ci)i∈n ∈ N such that

∀t1, t2 �1(t1) ∧ �2(t2) ∧ (
∧
i

φ(ci , t1) ⇐⇒ φ(ci , t2)) ∧ �1(t1)⇒ ¬�2(t2).

In particular, because ¬�i(A) = ∅, for all m1 and m2 ∈ A, (∧i φ(ci ,m1) ⇐⇒
φ(ci ,m2)) ∧ �1(m1) ⇒ ¬�2(m2). For all ε : n → 2, let φε(t, c) :=

∧
i φ(ci , t)

ε(i)

where φ1 = φ and φ0 = ¬φ. It follows that if φε(A, c)∩�1(A) �= ∅, then φε(A, c) ∩
�2(A) = ∅. Let

�(t, c) :=
∨

φε(A,c)∩�1(A) �=∅
φε(c, t).

We have �1(A) ⊆ �(A, c) and �2(A) ∩ �(A, c) = ∅, i.e., �1(A) and �2(A)
are externally �-separable. By Proposition 1.4 and Remark 1.6, �1(A) and
�2(A) are in fact �-separable for some L(R(A))-formula �. It follows that
N |= ∀t1, t2 (�1(t1) ⇒ �(t1)) ∧ (�2(t2) ⇒ ¬�(t2)) and, in particular N |=
�(b1) ∧ ¬�(b2). So tpL(b1/A) �= tpL(b2/A).
Let us now conclude the proof when A is not a model. Let M |= T̃ contain A
and pick any a and b ∈ N such that a ≡L(R(A)) b.

Claim 1.10. There existsM� ≡L̃(A) M (in particular, it is a model of T̃ containing
A) such that a ≡L(R(M�)) b.
Proof. By compactness, it suffices, given �(y, z) ∈ tpL̃(M/A), where y is a
tuple of R-variables, and �i(t;y) a finite number of L-formulas, to find tuples m,
n such that |= �(m, n) ∧ ∧

i �(a;m) ⇐⇒ �(b;m). By hypothesis on A, there
exists q ∈ Sy(N |L) which is L(R(A))-invariant and consistent with ∃z �(y, z). Let
m |= q|R(A)ab ∪ {∃z, �(y, z)}. Then tpL(a/m) = tpL(b/m) and |= ∃z �(m, z). In
particular, we can also find n. �
As p is L̃(A)-invariant it is in particular L̃(M�)-invariant. But, as shown above,
p is then L(R(M�))-invariant. It follows that p � φ(x; a) ⇐⇒ φ(x; b). �
The assumption that all L̃(A)-definable sets are consistent with some globalL(A)-
invariant type may seem like a surprising assumption. Nevertheless, considering a
coheir (in the sense of T̃ , whose restriction to L is also a coheir in the sense of T ),
this assumption always holds when A is a model of T̃ .
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§2. Valued differential fields. The main motivation for the results in the previous
sections was to understand definable and invariant types in valued differential fields
and more specifically those with a contractive derivation, i.e., for all x, val(∂(x)) ≥
val(x). In [5], Scanlon showed that the theory of valued fields with a valuation
preserving derivation has a model completion named VDFEC . It is the theory of
∂-Henselian fields whose residue field is a model of DCF0, whose value group is
divisible and such that for all x there exists a y with ∂(y) = 0 and val(y) = val(x).
The main result that we will be needing here is that the theory VDFEC eliminates
quantifiers in the one sorted language L∂,div consisting of the language of rings
enrichedwith a symbol∂ for the derivation and a symbolx|y interpreted as val(x) ≤
val(y). This result implies that for all substructures A≤M |= VDFEC the map
sending p = tpL∂,div (c/A) to∇	p := tpLdiv ((∂i(c))i∈	/A) is injective, where Ldiv :=L∂,div � {∂} denotes the one sorted language of valued fields.
Lemma 2.1. Let k |= DCF0. TheHahn field k((tR)), with derivation ∂(

∑
i ai t

i ) =∑
i ∂(ai)t

i and its natural valuation, is a models of VDFEC and its reduct to Ldiv is
uniformly stably embedded in every elementary extension.

Proof. The fact that k((tR)) |= VDFEC follows from the fact that its residue field
k is a model of DCF0, its value group R is a divisible ordered Abelian group and
that Hahn fields are spherically complete, cf. [5, Proposition 6.1].
The fact that k((tR)) is uniformly stably embedded in every elementary extension
is shown in [4, Corollary A.7]. �
Recall that Haskell, Hrushovski and Macpherson [1] showed that algebraically
closed valued fields eliminate imaginaries provided the geometric sorts are added.
We will be denoting by G the set of all geometric sorts.
Proposition 2.2. Let A = acleqL∂,div (A) ⊆ M |= VDFEC . A type p ∈ SLdiv (M ) is

Leq∂,div(A)-definable if and only if it is Leqdiv(G(A))-definable.
Proof. If p isLeqdiv(G(A))-definable then it is in particularLeq∂,div(A)-definable. The
reciprocal implication follows immediately from Corollary 1.7 and Lemma 2.1. �
An immediate corollary of this proposition is an elimination of imaginaries result
for canonical bases of definable types in VDFEC :

Corollary 2.3. Let A = acleqL∂,div (A) ⊆ M |= VDFEC and p ∈ SL∂,div (M ). The
following are equivalent:

(i) p is Leq∂,div(A)-definable;
(ii) ∇	(p) is Leqdiv(G(A))-definable;
(iii) p is Leq∂,div(G(A))-definable.
Proof. The implication (iii)⇒ (i) is trivial. Let us now assume (i). An Ldiv(M )-
formula φ(x;m) is in ∇	(p) if and only if φ(∂	(x);m) ∈ p, where ∂	(x) =
(∂i(x))i∈	 . It follows that ∇	(p) is Leq∂,div(A)-definable. By Proposition 2.2, ∇	(p)
is in fact Leqdiv(G(A))-definable.
Let us now assume (ii) and let �(x;m) be any L∂,div(M )-formula. By quanti-
fier elimination, �(x;m) is equivalent to φ(∂	(x); ∂	(m)) for some Ldiv-formula
φ(x; t). Therefore �(x;m) ∈ p if and only if φ(x; ∂	(m)) ∈ ∇	(p) and hence p is
Leq∂,div(G(A))-definable. �
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In [4], it is shown that there are enough definable types to use this partial elim-
ination of imaginaries result to obtain elimination of imaginaries to the geometric
sorts for VDFEC.
Thanks to the result in Section 1 and results from [4], we can also characterise
invariant types in VDFEC . Note that, although the main results in [4] depend on
the results proved in the present paper, the result from [4] that we will be using in
what follows does not.

Proposition 2.4. Let M |= VDFEC and A = acleqL∂,div (A) ⊆ M eq. A type p ∈
SLdiv (M ) is Leq∂,div(A)-invariant if and only if it is Leqdiv(G(A))-invariant.
Proof. To prove the non obvious implication, by Proposition 1.9, we have to
show that VDFEC has a model whose underlying valued field is uniformly sta-
bly embedded in any elementary extension—that is tackled in Lemma 2.1—and
that any Leq∂,div(A)-definable set (in the sort K) is consistent with an Leqdiv(G(A))-
invariant Ldiv-type. It follows from [4, Proposition 9.7] (applied to T = ACVF
and T̃ = VDFEC) that any Leq∂,div(A)-definable set (in the sort K) is consis-
tent with an Leq∂,div(A)-definable Ldiv-type. But, by Proposition 2.2, such a type is
Leqdiv(G(A))-definable. �
Corollary 2.5. Let A = acleqL∂,div (A) ⊆ M |= VDFEC and p ∈ SL∂,div (M ). The
following are equivalent:

(i) p is Leq∂,div(A)-invariant;
(ii) ∇	(p) is Leqdiv(G(A))-invariant;
(iii) p is Leq∂,div(G(A))-invariant.
Proof. This is proved as in Corollary 2.3, except that Proposition 2.4 is used
instead of Proposition 2.2. �
We can now give a characterisation of forking in VDFEC.

Corollary 2.6. LetM |= VDFEC be |A|+-saturated, A = acleqL∂,div (A) ⊆ M and
φ(x) be an L∂,div(M )-formula. Then φ(x) does not fork over A if and only if for all
Ldiv(M )-formulas such that φ(x) is equivalent to �(∂	(x)), �(x) does not fork over
G(A) (in ACVF).
Proof. Let us first assume that φ(x) does not fork over A and let p be a
global nonforking extension of φ(x). As VDFEC is NIP, by [2, Proposition 2.1],
p is invariant under all automorphisms that fix Lascar strong type over A. But,
because VDFEC has the invariant extension property (cf. [4, Theorem2.14]),
Lascar strong type and strong type coincide in VDFEC (see [2, Proposition 2.13]),
hence p is Leq∂,div(A)-invariant. It follows from Corollary 2.5 that ∇	(p) is
Leqdiv(G(A))-invariant and hence �(x) does not fork over G(A).
Let us now assume that no �(x) such that φ(x) is equivalent to �(∂	(x)) forks
over G(A). Then there exists q ∈ SLdiv

x (M ) which is Leqdiv(G(A))-invariant and
consistent with all such formulas �(x). Now, the image of the continuous map
∇	 : SL∂,div

x (M )→ SLdiv
x (M ) is closed and if �(x) is an Ldiv(M )-formula containing

the image of ∇	 and �(x) is as above, �(∂	(x)) ∧ �(∂	(x)) is also equivalent to
φ(x). Therefore, q = ∇	(p) for some Leq∂,div(A)-invariant p ∈ SL∂,div

x (M ). This type
p implies φ(x) and hence φ(x) does not fork over A. �
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Remark 2.7. The previous corollary is somewhat unsatisfying as one needs to
consider all possible ways of describing φ(x) as the prolongation points of an Ldiv-
formula � (with parameters in a saturated model) to conclude whether φ forks or
not.
Considering only one such � cannot be enough. For example, consider any
definable set φ(x) forking (in VDFEC) over A and let �(x0, x1) = (val(x0) ≥
0 ∧ val(x1) < 0) ∨ φ(x0). Then the set {x ∈ M : M |= �(x, ∂(x))} = φ(M ) but
� does not fork over A (in ACVF). The obstruction here might seem frivolous, but
it is the core of the problem. Indeed, it is not clear if there is a way, given φ to find
a formula � as above that does not contain “large” subsets with no prolongation
points.
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