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Pseudo T -closed fields

Samaria Montenegro and Silvain Rideau-Kikuchi

À Zoé, pour toutes les maths qu’elle nous a fait apercevoir.

Pseudo algebraically closed, pseudo real closed, and pseudo p-adically closed
fields are examples of unstable fields that share many similarities, but have mostly
been studied separately. We propose a unified framework for studying them: the
class of pseudo T -closed fields, where T is an enriched theory of fields. These
fields verify a “local-global” principle for the existence of points on varieties with
respect to models of T. This approach also enables a good description of some
fields equipped with multiple V -topologies, particularly pseudo algebraically
closed fields with a finite number of valuations. One important result is a (model
theoretic) classification result for bounded pseudo T -closed fields, in particular we
show that under specific hypotheses on T, these fields are NTP2 of finite burden.

1. Introduction

One of the main examples (and motivations) for the development of unstable theories,
especially simple theories, was that of pseudo algebraically closed fields (PAC fields),
especially those that have a small Galois group — those with finitely many extensions
of any given degree d , usually called bounded fields. This class of fields was intro-
duced in [Ax 1968] to describe the theory of finite fields. A PAC field is a field K such
that any geometrically integral variety over K admits a K-rational point; in other
words, they are existentially closed (in the language of rings) in any regular extension.

This notion has proven to be very fruitful, whether from the arithmetic point of
view (see, for example, [Fried and Jarden 2008]) or the model theoretic point of view,
where it continues to be the source of many examples of moderate structures (see,
for example, [Chatzidakis 2002]). It was eventually reinterpreted as a special case
of a wide range of local-global principles for the existence of rational points with the
emergence of the pseudo real closed fields (PRC) of [Prestel 1981] (the existence
of smooth points in any real closure implies the existence of rational points) and
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pseudo p-adically closed fields (PpC) [Grob 1987; Haran and Jarden 1988] (the
analogous notion for p-adic valuations) and, eventually, the pseudo classically
closed fields of [Pop 2003] or the regularly T -closed fields of [Schmid 2000].

Despite the great activity in model theory surrounding PAC fields, for quite some
time, the model theoretic study of these fields was mostly confined to questions
of completeness and decidability. Montenegro [2017b] initiated the classification
(in the sense of Shelah) of bounded PRC and PpC fields by showing, among other
things, that bounded PRC and PpC fields are NTP2 of finite burden. This was
followed by further work on imaginaries [Montenegro 2017a; Montenegro and
Rideau-Kikuchi 2021] and definable groups [Montenegro et al. 2020].

Notwithstanding an apparent similarity in techniques, PRC fields and PpC fields
are studied separately in those works. The purpose of this text is to propose a
common framework for the study of these fields. This has, of course, already been
attempted before, and our approach is closely related to that of [Schmid 2000]:
given a theory T of (large) fields, we say that a field K is pseudo T -closed if every
geometrically integral variety over K with a smooth point in every model of T
containing K has a point in K (see Definition 3.4). This class generalizes several
of the notions that appear in the literature (see Example 3.6).

What sets this work apart, however, is that we aim for a more model theoretic
flavor both in our definitions and in our goals. In particular, we also aim to describe
pseudo algebraically closed fields endowed with a finite number of valuations, a
family of structures that has to the best of our knowledge escaped scrutiny so far,
despite its apparent similarities with the aforementioned examples.

One striking phenomenon that seems to arise in the study of all these “local-
global” principles is the fact that an apparently arithmetic hypothesis, phrased
uniquely in terms of existence of rational points in varieties, has strong topological
implications on the density of points for a priori unrelated topologies. In other
words, existential closure as a topological field comes for free from existential
closure as a field. This was first observed for PRC fields by Prestel [1981], and was
later generalized to other classes. However, in all of these examples, that behavior is
not completely surprising since the topologies considered can be defined in the field
structure alone. Somewhat more surprisingly, this is also true of algebraically closed
fields by the historic theorem of Robinson [1977] which states that algebraically
closed fields are existentially closed as valued fields despite the valuation very much
not being definable. This was generalized much later to PAC fields in [Kollár 2007]
and was also noticed by Johnson [2022], who showed that this happens as well
when adding independent valuations to a Henselian valued field.

This stronger form of existential closure has been shown to have model theoretic
consequences [Geyer and Jarden 2013; Hong 2023], and plays a central (albeit
somewhat hidden) role in the first author’s work. It is therefore natural, given a set I
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of completions of T — which we think of as “localizations of T ” coming with their
topologies — to define the notion of I -pseudo T -closed fields (see Definition 4.4),
which isolates this stronger notion of existential closure. Two obvious questions
then arise:

• Are all pseudo T -closed fields I -pseudo T -closed?

• Are I -pseudo T -closed fields interesting from a model theoretic perspective?

The first half of this text gives a positive answer to the first question (under some
finiteness hypothesis), showing that earlier instances of this phenomenon were not
isolated incidents and that, indeed, I -pseudo T -closure is essentially just indepen-
dence of the involved topologies on top of pseudo T -closure — see Theorem 5.11
for a precise statement. For example, PAC fields remain existentially closed when
endowed with independent valuations.

The second half of the text aims at giving a partial answer to the second question
by showing that, at least in the bounded perfect case, I -pseudo T -closed fields
display tame model theoretic behavior, in line with what we could expect from
generalized PAC fields. The presence of topologies is an obvious obstruction to the
simplicity of these fields, but we show that they are essentially the only obstructions
and that they are essentially only as complicated as their “localizations”. For
example, we show that their burden is the sum of the burden of the “localizations”
(Theorem 7.9).

Paired with the positive answer to the first question, this provides a wealth of
new examples of finite burden, strong and NTP2 fields. One of the most natural
finite burden examples is the aforementioned case of bounded perfect PAC fields
with several independent valuations. In the Appendix, we also explain how to get
rid of the independence assumption.

The organization of the text is as follows. In Section 2, we give some preliminaries
on burden, forking, large fields and V -topologies. In Section 3, we define the class
of pseudo T -closed fields for a given theory T of (enriched) large fields and give
several equivalent definitions in terms of “local-global” principles and existential
closure. We then proceed to prove an approximation theorem for rational points of
varieties (Theorem 3.17) under some finiteness hypothesis.

In Section 4, we define, given a set I of completions of T, the class of I -pseudo
T -closed fields, and we give several equivalent definitions in terms of approximation
properties and existential closure. We also prove that this is an elementary class
under some mild hypotheses that will always be verified when the theories in I
are theories of Henselian valued (or real closed) fields. In Section 6, we initiate
the model theoretic study of perfect bounded I -pseudo T -closed fields. We show
that the theory is model complete once the Galois group is fixed, and types are
given by the isomorphism type of their algebraic closures (Proposition 6.7). We
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then deduce that these fields enjoy a form of quantifier elimination “up to density”
(see Corollary 6.13).

This last property can also be naturally rephrased as an “open core” property that
is typical of generic topological structure: any open definable set is quantifier free
definable (Theorem 6.12). Note that our methods are, in fact, more general and also
allow proving such “open core” properties for topological fields with additional
nontopological generic structure.

In Section 7, generalizing work of the first author, we prove that although the
presence of topologies is an obvious obstruction to the simplicity of these fields,
it is essentially the only obstruction. For example, 3-amalgamation holds up to
quantifier free obstructions (see Theorem 7.1). Along with the earlier density result,
this allows us to compute burden in perfect bounded I -pseudo T -closed fields
(Theorem 7.9) and characterize forking (Corollary 8.5).

We conclude with a short appendix describing how, although I -pseudo T -closure
forces all the considered topologies to be independent, following an approach of
Johnson [2019], we can also describe what happens for dependent valuations.

2. Preliminaries

In this section we recall some notions (and fix some notation) that are used through-
out the paper.

Model theory. Most of the structures in this paper, if not all, are fields that we
consider in (some expansion of) the ring language Lrg := {+,−, ·, 0, 1}.

Notation 2.1. Let L be a language and M an L-structure. We write acl and dcl for
the model theoretic algebraic and definable closure in M . If a and b are tuples in
M and A ⊆ M , then we say that a ≡A b if a and b have the same type over A, and
a ≡

qf
A b if they have the same quantifier free type over A. We write S(A) for the

space of L-types with parameters in A.

Definition 2.2. If K is a field (considered as a structure in some expansion of Lrg)
and X is an L(K )-definable set, we write dim(X) for the algebraic dimension of X :

dim(X) := max{trdeg(a/K ) : a ∈ X (M) where K ≼ M}.

Definition 2.3. Let X be definable in some L-structure M and κ a cardinal.

(1) An inp-pattern of depth κ in X consists of definable subsets φl(M, al j ) of X ,
with l < κ and j < ω, such that

• for every l < κ , (φl(x, al j )) j<ω is kl-inconsistent for some kl ≥ 1;
• for every f : κ → ω, (φl(x, al f (l)))l<κ is consistent.
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(2) The burden of X , denoted by bdn(X), is greater than or equal to κ if there
exists an inp-pattern of depth κ in X and

bdn(X)= sup{κ : bdn(X)≥ κ}.

To keep track of finer estimates, burden can be computed in Card⋆ [Touchard
2023, Definition 1.27].

(3) The burden of M , or equivalently the burden of Th(M), is the burden of the
home sort (provided M has a unique dominant sort).

Remark 2.4. (1) By Lemma 2.2 of [Chernikov 2014], if φl(M, al j ) is an inp-
pattern, then you can always assume that the sequences (al j ) j<ω are mutually
indiscernible over any given A ⊆ M , meaning that (al j ) j<ω is indiscernible over

A ∪ {al ′ j : l ′ ̸= l, j < ω}.

(2) By Lemma 7.1 of [Chernikov 2014], if φl,0(M, al,0, j )∨ φl,1(M, al,1, j ) is an
inp-pattern, then φl, f (l)(M, al, f (l), j ) is an inp-pattern for some f : λ→ {0, 1}.

(3) If X, Y are definable, then bdn(X)+ bdn(Y )≤ bdn(X × Y ).

(4) If X, Y are definable, then bdn(X ∪ Y )= max(bdn(X), bdn(Y )).

(5) If f : Y → X is definable and surjective, then bdn(Y )≥ bdn(X).

(6) If f : Y → X is definable and finite-to-one, then bdn(X)≥ bdn(Y ).

Definition 2.5. A theory T is called strong if there are no inp-patterns of infinite
depth in its models. It is NTP2 if there is a (cardinal) bound on the depth of
inp-pattern in its models.

The burden of a real closed field (in the ring language, or equivalently the ordered
ring language) is 1. In examples, we also consider valued fields. Given a valued field
(K , v), we denote by O its valuation ring with maximal ideal m, by k = O/m its
residue field, by 0= v(K ×) its valuation group and by RV = K/(1+m) its leading
terms. We refer the reader to [Touchard 2023] for a very thorough introduction to
their model theory and the proof of the following burden computations:

Fact 2.6 [Touchard 2023, Corollary 3.13 and Theorem 3.21]. Let (K , v) be a valued
field.

(1) If K eliminates quantifiers relative to RV1, is elementarily equivalent to a
maximally complete valued field and the k⋆/k⋆n are finite, then

bdn(K )= max{bdn(k), bdn(0)}.

(2) If K eliminates quantifiers relative to
⋃

n RVn , is elementarily equivalent to
a maximally complete valued field and K is finitely ramified — that is, for
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all n ≥ 1, (0, v(n)) is finite — then

bdn(K )= max{ℵ0 · bdn(k), bdn(0)}.

These equalities hold resplendently for 0-expansions of k-expansions.

In [Touchard 2023], the results are stated under stronger assumptions, but as
noted there, they hold at this level of generality — up to the fact that Touchard
considers unramified mixed characteristic fields (and not finitely ramified ones),
but the proof there also applies since the higher residue rings Rn = O/nm are also
interpretable in k in that case.

Definition 2.7. Let M be a (sufficiently saturated) L-structure and A ≤ M .

(1) We say that the formula φ(x, a) divides over A if there exists an indiscernible
sequence (a j ) j∈ω over A such that a0 = a and {φ(x, a j ) : j ∈ω} is inconsistent.

(2) We say that the formula φ(x, a) forks over A if there is an integer m and for-
mulas ψ j (x, a j ) for j <m such that φ(x, a)⊢

∨
j<m ψ j (x, a j ) and ψ j (x, a j )

divides over A for every j < m.

(3) A partial type p forks (respectively, divides) over A if there is a formula in p
which forks (respectively, divides) over A.

(4) We say that A is an extension base if for all tuples a in M , tp(a/A) does not
fork over A.

By Theorem 1.2 of [Chernikov and Kaplan 2012], in an NTP2 theory, forking equals
dividing over extension bases.

Large fields. By a variety V over a field K , we mean a separated integral scheme
of finite type over K . We denote by V (K ) the set of its K-rational points. We also
denote by Vsm(K ) the set of smooth K-rational points.

Remark 2.8 [Stacks, Tag 01V7]. A point x ∈ V (K ) is smooth if there exists an
affine neighborhood U ⊆ V of x and an étale morphism U → Ad — that is, U is
isomorphic to Spec(S), where S = K [x1, . . . , xc+d ]/( f1, . . . , fc) and the matrix
(d fi/dx j )i≤c, j≤c is invertible in S.

Definition 2.9. A field K is large if for every irreducible variety V, if Vsm(K ) ̸=∅,
then V (K ) is Zariski dense in V — equivalently, by compactness, K (V ) can be
Lrg(K )-embedded in some K ⋆ ≽ K .

We know that algebraically closed fields, real closed fields, p-adically closed
fields and, more generally, Henselian fields are large, as well as pseudo algebraically
closed fields, pseudo real closed fields and pseudo p-adically closed fields, and
further generalizations of these notions.

https://stacks.math.columbia.edu/tag/01V7
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Finally, given two extensions M and K of a field F , we write M |⌣
ℓ
F K if the

field M is linearly disjoint from K over F and L |⌣
a
F K if M and K are algebraically

independent over F. We also denote by K a the algebraic closure of K and by K s

its separable closure. Recall that a variety V over K is geometrically integral
(equivalently, absolutely irreducible defined over K ) if the extension K ≤ K (V ) is
regular — that is, K (V ) |⌣

ℓ
K K a.

V-topological fields.

Definition 2.10. Let (K , τ ) be a (nondiscrete) topological field.

(1) A subset S ⊆ K is said to be bounded if for every open neighborhood of the
identity U ⊂ K , there exists x ∈ K × such that x S = {x · y : y ∈ S} ⊆ U —
equivalently, {x ∈ K : x S ⊆ U } is a (nontrivial) neighborhood of 0.

(2) A subset S ⊆ K is said to be bounded away from 0 if there exists a neighbor-
hood U of 0 such that S ∩ U = ∅.

(3) The topology τ is said to be a V -topology if, whenever S−1
= {x−1

: x ∈ S} is
bounded away from 0, S is bounded.

(4) The topology τ is said to be Henselian if for every integer n ≥ 1 there is a
neighborhood U of 0 such that every polynomial in Xn+1

+ Xn
+ U [X ]

n−1

has a zero in K — where U [X ]
n−1 denotes the set of polynomials of degree at

most n − 1 with coefficients in U .

By a theorem of Dürbaum–Kowalsky, and independently Fleischer, a topology
is a V -topology if and only if it is induced by either an order or a valuation. We
refer the reader to [Prestel and Ziegler 1978] for further detail on V -topologies.

In this text, the most useful consequence of Henselianity (and an equivalent
characterization) is the inverse function theorem:

Fact 2.11 [Halevi et al. 2020, Proposition 2.8]. Let (K , τ ) be a Henselian V -
topological field and f : V → W be an étale morphism of varieties. Then any
x ∈ V (K ) admits a neighborhood U such that f |U is a homeomorphism onto its
open image.

Definition 2.12. A V -topology on a field K is said to be definable if it admits
a uniformly definable basis — equivalently, if there exists one definable bounded
open set.

Remark 2.13. In fact, by (the proof of) [Engler and Prestel 2005, Lemma B.2],
if τ is a definable V -topology on K , then there exists an open bounded definable
neighborhood U of 0 such that K = U ∪ (U ∖ {0})−1.

For more details on definable V -topologies, we refer the reader to [Halevi et al.
2020, Section 3].



8 SAMARIA MONTENEGRO AND SILVAIN RIDEAU-KIKUCHI

3. The class of pseudo T -closed fields

Let L enrich the language of rings, T be an L-theory of large fields and K be an
L-structure that is a field — we refer to those as L-fields from now on. We write
TK for the theory of models of T containing K .

Definition 3.1. • We say that a field extension K ≤ F is totally T if, for every
M |H TK , F can be Lrg(K )-embedded in some M⋆ ≽ M .
• We say that a variety V over K is totally T if, for every M |H TK , Vsm(M) ̸= ∅.

Observe that if V is a geometrically irreducible variety over K , then Vsm is
Zariski open in V [Stacks, Tag 056V]. In particular Vsm(K (V )) ̸= ∅. It follows
that, since models of T are large, V is totally T if and only if K ≤ K (V ) is totally T.

Remark 3.2. Observe that if T is RCF in Lrg, we have that K ≤ F is totally T if
and only if it is a totally real extension, meaning that every order on K extends to
some order on F. Similarly, if T is pCF in Lrg, then K ≤ F is totally T if every
p-adic valuation on K extends to some p-adic valuation on F.

Proposition 3.3. The following are equivalent:

(i) For every geometrically integral (affine) totally T variety V over K , we
have V (K ) ̸= ∅.

(ii) For every geometrically integral (affine) totally T variety V over K , V (K ) is
Zariski dense in V .

(iii) Any regular totally T extension K ≤ F is Lrg-existentially closed.

Proof. We obviously have that (ii) implies (i).

(i) ⇒ (iii) Let F be as in (iii) and let φ(x) be some quantifier free Lrg-formula
such that F |H ∃xφ(x). Adding existential quantifiers, we may assume that φ is of
the form

∧
i<n Pi (x) = 0, where Pi ∈ K [x]. Let a |H φ in F and V be the locus

of a over K . Since K ≤ K (a)≤ F is regular, V is geometrically integral and, by
[Stacks, Tag 056V], Vsm(F) ̸= ∅. Moreover, by the hypothesis on F , for every
M |H TK , there exists M⋆ ≽ M such that F ≤ M⋆. So Vsm(M⋆) ̸= ∅ and hence
Vsm(M) ̸= ∅. By (i), we find c ∈ V (K ). In particular, K |H

∧
i Pi (c)= 0.

(iii) ⇒ (ii) Let V be as in (ii). Any M |H TK is large and hence, if Vsm(M) ̸=∅, then
some M⋆≽ M contains a K-generic point a — that is, a is not in any proper subvari-
ety of V over K . In other terms, F := K (V ) is Lrg(K )-embeddable in M⋆. By (iii),
F is Lrg(K )-embeddable in K ⋆≽ K , or equivalently, V (K ) is Zariski dense in V . □

Definition 3.4. The L-field K is said to be pseudo T -closed (PT C) if the statements
of Proposition 3.3 hold.
Remark 3.5. (1) It follows from Proposition 3.3(ii) that PT C fields are large.
(2) The class of PT C fields is inductive in L; see Proposition 4.9.

https://stacks.math.columbia.edu/tag/056V
https://stacks.math.columbia.edu/tag/056V
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Example 3.6. For different choices of T, the following are examples of PT C fields:

• If T = ACF in Lrg, then PT C fields are exactly PAC fields.

• If T = RCF in Lrg, then PT C fields are exactly PRC fields.

• If T = RCF< in Lrg ∪ {<}, then PT C fields are exactly 1-PRC fields, i.e., PRC
fields whose only order is <. The equivalence of those two classes is not obvious
from the definition and relies crucially on Proposition 3.12 to show the only order
on a PT C field is <.

• Let L=Lrg∪{<1, . . . , <n} and T =
∨

i RCF<i , whose models are the L-structures
M with M |Li |H RCF<i , for some i . Then PT C fields where the <i define distinct
orders are exactly n-PRC fields. This equivalence relies again on Proposition 3.12.

• If T = pCF in Lrg, then PT C-fields are exactly PpC fields.

• For i < n, let Li be copies of Macintyre’s language sharing the ring language
and pCFvi the Li -theory of p-adically closed fields. Then PT C fields whose Li -
structure induces distinct p-adic valuations are exactly n-PpC fields. Once again
the equivalence relies on Proposition 3.12.

• Fehm’s pseudo S-closed fields [2013] also fit in this framework.

Lemma 3.7. Let F, K be L-fields, F ≤ M be regular and totally T, and f : F → K
be an L-embedding. Then K ≤ K ⊗F M is regular and totally T.

Proof. We may assume that M is finite type over F . Then M = F(V ), where
V is a geometrically integral totally T variety over F . Let E |H TK . Then
E |H TF and hence Vsm(E) ̸= ∅. Since E is large, we find an Lrg(E)-embedding
g : E ⊗F M ≃ E(V )→ E⋆ ≽ E — in particular, we have an Lrg(K )-embedding
K (V )≃ K ⊗F M → E⋆. □

Convention 3.8. Replacing T by the theory whose models are either models of
T or algebraically closed does not change the notion of pseudo T -closed fields:
algebraically closed fields always have rational smooth points in any variety. So,
from now on, we assume that any algebraically closed field is a model of T.

We now study the topological properties of PT C fields. We fix K a PT C field.

Notation 3.9. • For every M |H TK , let KM := M ∩ K s.

• For every V -topology τ on K , let Cτ be the set of those KM that can be endowed
with a Henselian V -topology that induces τ on K .

• We say that F ∈ Cτ is minimal if any Lrg(K )-embedding E → F , with E ∈ Cτ ,
is surjective.

• For every V -topology τ on K , let Kτ = (̂K , τ )∩ K s, where (̂K , τ ) is the com-
pletion of (K , τ ).
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Note that, by convention, K a
|H T and hence K s

∈ Cτ , for every τ . Also, by
uniqueness of the Henselian V -topology on a nonseparably closed field [Prestel
and Ziegler 1978, Theorem 7.9], if τ and τ ′ are distinct V -topologies on K , then
Cτ ∩ Cτ ′ = {K s

}.

Hypothesis 3.10. Until the end of Section 3, we assume:

(H) For every M |H TK , KM can be endowed with at least one Henselian V -
topology.

Lemma 3.11. For every τ , Cτ admits minimal elements.

Proof. By Zorn’s lemma, it suffices to show that any decreasing chain (of nonsepa-
rably closed fields) (Ki )i∈I in Cτ admits a lower bound. Let Mi |H TK such that
Ki = Mi ∩ K s. The theory

TK ∪ {∀x P(x) ̸= 0 : P ∈ K [x] such that, for some i ∈ I, Mi |H ∀x P(x) ̸= 0}

is consistent since any finite subset is realized in an Mi . Let M be a model. For all
i ∈ I and P ∈ K [x], if KM |H ∃x P(x)= 0, then we also have Mi |H ∃x P(x)= 0,
so KM can be embedded in Mi over K , i.e., it is a lower bound. Moreover, by
Hypothesis (H), KM admits a Henselian V -topology which extends to the unique
Henselian V -topology on every Ki . In particular, it induces τ on K . □

As in [Schmid 2000, Proposition 4.5], we will see that minimal elements are
unique (up to isomorphism).

Proposition 3.12. Let τ be a V -topology on K and F ∈ Cτ be minimal. Then F is
Lrg(K )-homeomorphic to Kτ . In particular, K is τ -dense in F.

Proof. We start with two intermediary results:

Claim 3.12.1. There exists a τ -continuous Lrg(K )-embedding σ : Kτ → F.

Proof. There is a continuous Lrg(K )-embedding σ : (̂K , τ )→ (̂F, τ ), by universality
of the completion. Since K ⊆ Kτ is separable and F , being topologically Henselian,
is separably closed in (̂F, τ ) [Prestel and Ziegler 1978, Corollary 7.6], we have
σ(Kτ )≤ (̂F, τ )∩ K s

= F . □

Claim 3.12.2. There exists M |H TK and an Lrg(K )-embedding ρ : KM → (̂K , τ ).

Proof. If no KM embeds in (̂K , τ ), then, by compactness, there exists a (nontrivial)
separable P ∈ K [x] with a zero in each KM but no zero in (̂K , τ ). Then there
exists a neighborhood U ⊆ K of 0 such that P((̂K , τ )) ∩ U = ∅. In particular,
P(K )∩U =∅. It follows that P(K )−1 is bounded and hence so is 1−P(0)P(K )−1.
Let c ∈ K ⋆ be such that c(1 − P(0)P(K )−1)⊆ U . Let

Q(x, y)= P(x)(1 − c−1 P(y))− P(0) ∈ K [x, y].
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By [Heinemann and Prestel 1984, Proposition 1.1], the zero locus V of Q is
geometrically integral. For every M |H T, one can check that (0, a) ∈ Vsm(M),
where a ∈ M is a zero of P . So there exists (b, a) ∈ V (K ), that is, P(b) =

c(1 − P(0)P(a)−1) ∈ U , a contradiction. □

Note that, since K ≤ KM is separable, ρ(KM)≤ Kτ . If KM ∈Cτ ′ , for some τ ′
̸=τ ,

then τ ′ extends to a Henselian V -topology on Kτ , distinct from τ . Moreover, Kτ

is, by definition, separably closed in its τ -completion. It follows by [Prestel and
Ziegler 1978, Improved Theorem 7.9], that Kτ = K s, and hence F Lrg(K )-embeds
in Kτ . So we may assume that KM ∈ Cτ .

Now, the Lrg(K )-embedding σ ◦ ρ : KM → Kτ → F must be surjective by
minimality of F and hence σ is a τ -continuous Lrg(K )-isomorphism. In particular,
K is τ -dense in F . It follows that the identity on K extends to a (unique) τ -
continuous Lrg(K )-morphism F → Kτ which is the inverse of σ , and σ is indeed
an Lrg(K )-homeomorphism. □

Notation 3.13. Fix (τi )0≤i<n distinct V -topologies on K and Ki = Kτi ∈ Cτi

minimal.

Since, by Stone’s approximation theorem [Prestel and Ziegler 1978, Theorem 4.1],
distinct V -topologies are independent, we deduce the following approximation result
on the affine line:

Corollary 3.14. For every nonempty τi -open Oi ≤ Ki ,
⋂

i Oi ∩ K ̸= ∅.

Our goal now is to extend this approximation result to arbitrary geometrically
integral totally T varieties. We don’t know, however, if we can do so without the
following finiteness hypothesis:

Hypothesis 3.15. Until the end of Section 3, we assume:

(F1) There are only finitely many nonseparably closed Kτ , among all possible τ .

Proposition 3.16. Let C be a totally T smooth projective geometrically integral
curve over K . For every nonempty τi -open set Oi ⊆ C(Ki ),

⋂
i<n Oi ∩ C(K ) is

infinite.

This statement (and its proof) is inspired by similar statements in two important
and orthogonal subcases: Henselian fields enriched with further valuations [Johnson
2022, Theorem 4.1] (see also [Halevi et al. 2020, Proposition 4.2]) and PAC fields
with a valuation [Kollár 2007, Theorem 2].

Proof. We proceed by induction on n. If n = 0, since C(K ) is Zariski dense in C , it
is, in particular, infinite. Let us now assume n > 0. By induction,

⋂
i>0 Oi ∩ C(K )

contains a finite set P of size d larger than the genus of C . By Riemann–Roch,
there exists a nonconstant rational function f on C over K , whose set of poles
is contained in P and whose poles are all simple. This gives rise to a morphism
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f : C → P1 over K with f −1(1 : 0)⊆ P ⊆
⋂

0<i<m Oi ∩ C(K ) and which is étale
above (1 : 0).

Let τ be any V -topology on K distinct from τ0. If τ = τi , let Oτ = Oi and
otherwise, let Oτ = V (Kτ ). By the inverse function theorem, Fact 2.11, for every
p ∈ P ⊆ Oτ there exists a τ -open neighborhood Wp,τ ⊆ Oτ of p such that f |Wp,τ

is a homeomorphism unto its open image. We may assume that the Wp,τ do not
intersect when p varies. Let Uτ :=

⋂
p∈P f (Wp,τ ). It is open (and hence Zariski

dense) in P1(Kτ ). For every y ∈ Uτ , f −1(y) consists of d distinct elements of Oτ .
Let e ≥ 1 be maximal such that

{t ∈ P(K0) : ∃
̸=y0 . . . ye−1 ∈ C(K0) f (y j )= t and y0 ∈ O0}

is infinite. Let D be the normalization of the irreducible component of the e-fold
product of C over P1 containing y<e. Then K ≤ K (D)= K (y<e) is regular and D
is geometrically integral. Let g : D → C be the projection on the first coordinate and
h = f ◦ g. Let Wτ0 := {x ∈ O0 : ∃y ∈ D(K0) : g(y)= x and g is smooth at y} and
Uτ0 = f (Wτ0). Recall that, τ0 being Henselian, f and g are local homeomorphisms
at smooth points, so both sets have nonempty τ0-interior. Shrinking them, we may
assume that they are τ0-open and that Uτ0 is a ball.

Let J := {τ : Kτ ̸= K s
τ }∪ {τi : i < n}, which is finite by (F1). By Corollary 3.14,

there exists a ∈
⋂
τ∈J Uτ ∩ K . Composing f with a degree one morphism, we

may assume that a = (1 : 0). For every s ∈ A1, let Bs ⊆ D × D be defined by
(s2u1u2 −v1v2)◦(h ×h)= 0, where ([u1 : v1], [u2, v2]) are coordinates on P1 ×P1.
By [Kollár 2007, Lemma 15], for all but finitely many s, Bs is geometrically integral.
Applying Corollary 3.14 again, we find s ∈ K × such that Bs is geometrically integral
and (1 : s) ∈

⋂
τ∈J Uτ . Then, for every τ ∈ J and y ∈ D(Kτ ) with h(y)= (1 : s),

(y, y) is a smooth point of Bs(Kτ )— with (h × h)(y, y) ∈ Uτ × Uτ . Note that for
every M |H TK , if KM is not separably closed, it contains some nonseparably closed
Kτ and hence there is a smooth M-point on Bs . If KM is separably closed, Bs also
has a smooth M-point, so Bs is totally T.

By induction, we can find infinitely many points (y1, y2) ∈ Bs(K ) such that
h(yk) ∈

⋂
0<i Uτi ∖ {(0 : 1)}. Considering the affine coordinates v/u on P1, we

see that one of the h(yk) is τ0-closer to 0 than s and hence h(yk) ∈ Uτ0 . In other
words, we have found infinitely many t ∈

⋂
i<n Uτi (K ) and (xt,i )i<e ∈ C(K ) with

f (xt,i ) = t . By construction there exist xt ∈ O0 with f (xt) = t . By maximality
of e, xt is distinct from the xt,i for at most finitely many t . So we may assume
that xt,0 = xt ∈ O0(K ). Moreover, for every i > 0, since f (xt)= t ∈ Uτi , we have
xt ∈ f −1(Uτi )⊆ Oi and hence xt ∈

⋂
i Oi (K ). □

Theorem 3.17. Let V be a geometrically integral K-variety. Let Oi ⊆ Vsm(Ki ) be
nonempty τi -open sets, for every i < n. Then

⋂
i<n Oi ∩ V (K ) ̸= ∅.
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Proof. For every i < n, fix an ai ∈ Oi ⊆ V (K s). By [Jarden and Razon 1998,
Lemma 10.1] there exists a smooth geometrically integral affine K-curve C ⊆ V
containing the ai . Let Ui = Oi ∩ C , which is a τi -open nonempty subset of C(Ki ).
Let C be a smooth projective model of C . By Proposition 3.16, there exists
y ∈

⋂
i Ui ∩ C(K )⊆

⋂
i Oi ∩ V (K ). □

Remark 3.18. Schmid proved a similar result [2000, Theorem 4.9], without any
finiteness hypothesis, but requiring that no minimal KM is separably closed — a
case that we certainly do not want to omit if we want to say anything about valued
pseudo algebraically closed fields.

On the other hand, the proof we give here relies heavily on hypothesis (F1).
Without it, we would have to find points in infinitely many (uniformly defined)
open sets for independent topologies. This is reminiscent of known approximation
theorems (e.g., [Anscombe et al. 2020]), but it is not obvious that they apply here.

4. The class of I-pseudo T -closed fields

Let us fix the following notation for the rest of the text. As before, let L enrich the
language of rings and T be an L-theory of large fields.

Let I be a (potentially infinite) set of theories which eliminate quantifiers in
(disjoint) relational expansions of the language of rings. We often denote by Ti the
element i ∈ I and Li its language. From now on, all Li -formulas are assumed to be
quantifier free. Let LI =

⋃
i Li and TI =

⋃
i Ti,∀.

For every K |H Ti,∀, we denote by Ti,K the theory of models of Ti containing K .
We also assume that any Mi |H Ti,K can be expanded to a model of TK . When I is
finite, this can always be assumed by replacing T by T ∨

∨
i Ti , whose models are

the L∪LI -structures M such that M |L |H T or M |Li |H Ti for some i .
For each i ∈ I , we denote by acli and dcli the algebraic and definable closure

in models of Ti . We also write S i (K ) for the space of (quantifier free) Li -types
with parameters in K . We use the notation tpi (a/A) for the type of a over A in the
language Li .

Let us fix some L-field K |H TI and Mi |H Ti,K , for all i ∈ I .

Lemma 4.1. Let V be an irreducible variety over K and let us assume that
dcli (K ) ⊆ K a. Then, for any Li (K )-definable X ⊆ V , X (Mi ) is Zariski dense
in V if and only if it is K-Zariski dense in V (i.e., is not contained in any proper
subvariety of V over K ).

Proof. Note first that this statement is clear for K = Mi — i.e., X (Mi ) is Zariski
dense in V if and only if it is Mi -Zariski dense in V . Let us now assume that
X (Mi ) is K-Zariski dense in V . We may assume Mi is sufficiently saturated
and homogeneous. Let W ⊆ V be the Zariski closure of X (Mi ). Then W is
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aut(Mi/K )-invariant and hence it is defined over dcli (K ) ⊆ K a. Let (W j ) j≤n be
the K-conjugates of W . Then X (Mi )⊆

⋃
i Wi ⊆ V . So V =

⋃
i Wi = W . □

Remark 4.2. Since finite sets in fields can be coded using symmetric polynomials,
we have that acli (K ) ⊆ dcli (K )a. It follows that acli (K ) ⊆ K a if and only if
dcli (K )⊆ K a.

Proposition 4.3. The following are equivalent:

(i) Any regular totally T extension K ≤ F |H TI is LI -existentially closed.

(ii) For every geometrically integral (affine) totally T variety V over K , and, for
all i ∈ I , every pi ∈ S i (K ) K-generic in V ,

⋃
i pi is realized in some K ⋆ ≽ K .

(iii) For every geometrically integral (affine) totally T variety V over K , and, for
all i ∈ I0 ⊆ I finite, every Li (K )-definable K-Zariski dense X i (Mi ) ⊆ V ,⋂

i X i (K ) ̸= ∅. Equivalently, it is Zariski dense in V .

(iv) For all i ∈ I , dcli (K )⊆ K a and for every geometrically integral (affine) totally
T variety V over K , and, for all i ∈ I ′

⊆ I finite, every Li (K )-definable
Zariski dense X i (Mi )⊆ V ,

⋂
i X i (K ) ̸= ∅. Equivalently, it is Zariski dense

in V .

Proof. (i) ⇒ (ii) Let pi and V be as in (ii) and let ai |H pi (in some M⋆
i ≽ Mi ).

Note that K ≤ K (ai ) is isomorphic to K (V ). These isomorphisms allow us to make
K (V ) into a model of TI , where all the ai coincide. Since K ≤ K (V ) is regular
and totally T, we find an LI (K )-embedding f : K (V )→ K ⋆ ≽ K . The common
image of the ai in K ⋆ is a realization of

⋃
i pi .

(ii) ⇒ (iii) Let X i and V be as in (iii). If i /∈ I0, let X i (Mi ) = V (Mi ). Note that
since Mi can be made into a model of TK and V is totally T, V (Mi ) is Zariski
dense in V . For all i ∈ I , by compactness, we find ai ∈ X i (M⋆

i ), where M⋆
i ≽ Mi ,

which is K-generic in V . Applying (ii) to pi = tpi (ai/K ), we find a |H
⋃

i pi in
some K ⋆ ≽ K ; in particular, a ∈

⋂
i∈I0

X i ∖W , where W ⊆ V is any K-subvariety.

(iii) ⇔ (iv) Let us first assume (iii) and prove that dcli (K )⊆ K a. By contradiction,
consider some a ∈ acli (K )∖ K a. Let X i be Li (K )-definable such that X i (Mi ) is
minimal finite containing a. Then X i (Mi ) is K-Zariski dense in A1. So X i (K ) ̸=∅,
contradicting the minimality of X i . The equivalence now follows from Lemma 4.1.

(iii) ⇒ (i) Let F be as in (i) and X be a quantifier free L(K )-definable set with
X (F) ̸= ∅. We may assume that X =

⋂
i∈I0

X i , where I0 ⊆ I is finite and X i is
Li (K )-definable. Fix some a ∈ X (F). Let V be the locus of a over K . Since K ≤ F
is regular and totally T, V is geometrically integral and totally T. By construction,
X i (Mi ) is K-Zariski dense in V . By (iv), X (K )=

⋂
i X i (K ) ̸= ∅. □

Definition 4.4. The L-field K is said to be I -pseudo T -closed (PT CI ) if the
statements of Proposition 4.3 hold.
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Conditions (i) and (ii) have a similar flavor to the interpolative fusion of [Kruck-
man et al. 2021], although the main difference here is that K is not required to be a
model of the Ti but only of Ti,∀.

Example 4.5. The following are examples of PT CI fields for different choices of
Ti and T :

• By [Prestel 1981, Theorem 1.7], n-PRC fields are PT CI , for Ti = RCF<i and
T =

∨
i Ti , as in Example 3.6.

• By [Montenegro and Rideau-Kikuchi 2021, Theorem 2.17], n-PpC fields are
PT CI , for Ti = pCFvi and T =

∨
i Ti , as in Example 3.6.

• More generally, it follows from [Schmid 2000, Theorem 4.9] that if K is PRC
and (<i )i∈I are distinct orders on K , then it is PT CI , for T = RCF and Ti = RCF<i .
The same holds for PpC fields with named p-adic valuations.

• It follows from [Kollár 2007, Theorem 2] that a PAC field with one valuation
is PT CI , for T = ACF and T0 = ACVF.

• In the present paper we generalize this result by showing that a PAC field with n
distinct valuations is PT CI , for T = ACF and (Ti )i<n copies of ACVF. This is a
consequence Theorem 5.11.

• By [Johnson 2022, Theorem 4.1], if K is real closed (resp. p-adically closed,
algebraically closed), and the (vi )0<i≤n are distinct valuations, then it is PT CI , for
T0 = RCF<0 (resp. pCFv0 , ACVF), Ti = ACVF, for 0< i < n and T =

∨
i Ti .

• As a consequence of Theorem 5.11, we also generalize this result by showing
that if I = {Th(Ki ) : i < n}, where Ki is either real closed or a characteristic zero
Henselian valued field — in an adequate language to eliminate quantifiers — and
T =

∨
i Ti , then every PT C field where the Ti induce distinct topologies is PT CI .

Note that if all Ti but T0 are equal to ACVF, then any model of T0 is PT C.

Lemma 4.6. Fix an i ∈ I and let K,M |HTi,∀, F ≤M be regular with acli(F)∩M⊆F
and f : F → K be an Li -embedding. Then K ⊗F M can be made into a model
of Ti,∀, extending the Li -structure on both K and M.

Proof. By quantifier elimination, we can extend f to some g : M → N |H Ti . Since
acli (F)∩ M ⊆ F , any Li (F)-definable set containing a tuple in M \ F is infinite
and thus, if N is a sufficiently saturated extension of M , it contains a realization
in N \ K . By compactness, we may assume that K |⌣

a
F g(M). Since F ≤ M is

regular, we have K |⌣
ℓ
F M . Then K ⊗F M ≃ K g(M) |H Ti,∀. □

Corollary 4.7. Let K,M |HTI , F ≤M be regular and totally T, with acli(F)∩M⊆F,
for all i ∈ I , and f : F → K be an LI -embedding. Then K ≤ K ⊗F M is a regular
totally T extension that can be made into a model of TI extending the LI -structure
on K and M.
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Proof. This follows from Lemmas 3.7 and 4.6. □

We also need the following orthogonal case of free amalgamation:

Lemma 4.8. Fix an i ∈ I and let K ,M |H Ti,∀, F ≤ M be algebraic and f : F → K
be an Li -embedding with M ⊗F K integral. Then K ⊗F M can be made into a
model of Ti,∀, extending the Li -structure on both K and M.

Proof. By quantifier elimination we can extend f to some g : M → N |H Ti . Since
F ≤ M is algebraic and K ⊗F M is integral, we have K ⊗F M ≃ K g(M) |H Ti,∀. □

Let us now prove that, in the cases which we will later consider, PT CI is
elementary:

Proposition 4.9. Assume that for all i ∈ I ,

(Ai ) For every F |H Ti,∀, acli (F)⊆ Fa.

(Zi ) Maximal Zariski dimension is definable in family: for every Li definable sets
X ⊆ An+m , the set {s ∈ An

: dim(Xs) = m} is Li -definable, where Xs is the
fiber of X in s.

Then the class of PT CI fields is elementary — in fact, inductive — in L∪LI .

Remark 4.10. Instead of assuming Hypothesis (Ai ), we can allow the following
generalization. For all i ∈ I , let T ′

i ⊇Ti,∀ be such that for every F |HT ′

i , dcli (F)⊆ Fa.
Then the class of PT CI models of T ′

I :=
⋃

i T ′

i is elementary.
For example, one could take T ′

i to be the class of dcli -closed models of Ti,∀.

Proof of Proposition 4.9. Let us first show that if F ≤ K |H TI is LI -existentially
closed and K is PT CI , then so is F . Let F ≤ M |H TI be regular and totally T. By
Hypothesis (Ai ), for all i , acli (F)∩ M ⊆ Fa

∩ M = F and hence, by Corollary 4.7,
K ≤ K ⊗F M |H TI is regular and totally T and the LI -structure on K ⊗F M
extends both that of M and K . Since K is PT CI , it follows that this extension is
LI -existentially closed and hence so is F ≤ M .

Now, we let J be a set of indices and let K j be PT CI , for all j ∈ J , and
U be an ultrafilter on J . We wish to show that K :=

∏
j→U K j is PT CI . Let

V be a smooth geometrically integral totally T variety over K such that for all
M |H TK , V (M) ̸= ∅. By definability of irreducibility in ACF, we can find
smooth geometrically irreducible varieties V j over K j such that V =

∏
j→U V j .

Let Y := { j : for all M j |H TK j , V j (M j ) ̸= ∅}. If Y /∈ U, then for every j /∈ Y , let
M j |H TK j such that V j (M j ) = ∅. Then M :=

∏
j→U M j |H TK , but V (M) = ∅,

a contradiction. So, we may assume that Y = J . For i ∈ I0 ⊆ I finite, let now
Mi |H Ti,K and X i (Mi )⊆ V be Li (K )-definable and Zariski dense — in other words,
dim(X i )= dim(V ) or equivalently, any coordinate projection which is dominant
from V is dominant from X i . By Hypothesis (Zi ), we find M j i |H Ti,K j and
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X j i (M j i ) ⊆ V j Li (K )-definable and Zariski dense with
∏

j→U X j i = X i . Since
K j is PT CI ,

⋂
i X j i (K j ) ̸= ∅. Hence,

⋂
i X i (K ) ̸= ∅.

It follows that the class PT CI is elementary in L∪LI . Note that, since it is in
fact closed under existentially closed substructures, it is, in fact, inductive this can
be seen, e.g., by working in the enrichment of L∪LI by all existential formulas
which yields a class closed under all substructures, i.e., a universal class. □

5. V -topological theories

We now fix an i ∈ I and Mi |H Ti . We wish to consider that Li -definable sets are
essentially open. This is closely related to the notion of “t-theory” in [van den Dries
1978, Chapter III].

Hypothesis 5.1. In this section, we assume that:

(Hi ) Ti admits a definable (nondiscrete) Henselian V -topology τi and, for every
Mi |H Ti , any Li (Mi )-definable set X i has nonempty τi -interior in (the Mi -
points of) its Zariski closure.

Example 5.2. (1) Hypothesis (Hi ) holds if Ti is the theory of real closed fields.
Indeed, the order topology is a definable Henselian V -topology and any definable set
is a disjoint union of sets of the form V ∩U , where V is Zariski closed and U is open.

(2) Similarly, Hypothesis (Hi ) also holds if Ti is a theory of (RV1-enriched)
Henselian valued fields which eliminates quantifiers relatively to RV1 — or, more
generally, relatively to

⋃
n RVn in characteristic zero.

Remark 5.3. (1) Whenever (Hi ) holds, Hypothesis (Zi ) of Proposition 4.9 also
holds since a definable set is Zariski dense in An if and only if it has nonempty
τi -interior.

(2) As we will see in Lemma 5.4, Hypothesis (Ai ) of Proposition 4.9 also holds
provided dcli (∅)⊆ Fa, where F is the field generated by the constants — constants
that we may add for this exact purpose.

As it turns out, we can almost control the parameters in Hypothesis (Hi ):

Lemma 5.4. Let F ≤ Mi . The following are equivalent:

(i) dcli (∅)⊆ Fa.

(ii) acli (F)⊆ Fa.

(iii) Any Li (F)-definable set X has nonempty τi -interior in its F-Zariski closure.

Proof. It is clear that (ii) implies (i).

(i) ⇒ (ii) Let E = dcli (∅). We prove, by induction on dim(V ), that for any
variety V over E and X ⊆ V × A1 Li -definable with Xa := {y ∈ A1

: (a, y) ∈ X}

finite for every a ∈ X (Mi ), we have Xa(Mi ) ⊆ E(a)a. We may assume that V
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is irreducible. By finiteness of Xa , X is not τi -open in V × A1 and hence is not
Zariski dense. So there exists P =

∑
j p j (x)y j

∈ E[x, y] with P(V ×A1) ̸= 0 but
P(X) = 0. Let V j be the zero locus of p j in V and J := { j : V j ⊂ V } ̸= ∅. By
induction, for any j ∈ J and a ∈ V j , Xa(Mi )⊆ E(a)a and by construction, for any
a ∈ V ∖

⋃
j V j , P(a, y) ̸= 0 and P(a, Xa)= 0.

(ii) ⇒ (iii) By Lemma 4.1, X (Mi ) is Zariski dense in its F-Zariski closure V . It
now follows from (Hi ) that X has nonempty interior in V .

(iii) ⇒ (ii) Let X ⊆ A1 be a minimal finite Li (F)-definable set and V its F-
Zariski closure. Then either dim(V ) = 0, in which case X ⊆ Fa as required, or
dim(V )= 1 and V = A1. By (iii), the finite set X is τi -open in A1, contradicting
its nondiscreteness. □

Lemma 5.5. Let F ≤ Mi be such that any nonempty open Li (F)-definable subset of
A1(Mi ) has an F-point. Then the topology generated by the X (F), where X ⊆ Mi

is open and Li (F)-definable, is a V -topology. If , moreover, F s
∩ Mi ⊆ F , then it is

Henselian.

We also denote this topology on F by τi even if it might not be the induced
topology, per se.

Proof. Let S be Li (F)-definable and bounded (in Mi ) and let U be an Li (F)-
definable neighborhood of zero. Then {x ∈ Mi : x S ⊆ U } is an Li (F)-definable
neighborhood of 0. So, by hypothesis, its τi interior contains a point distinct
from 0; in other terms, S(F) is bounded in F . So, if U ⊆ Mi is an Li (F)-definable
neighborhood of 0, (Mi ∖U )−1 is bounded in Mi and hence in F , proving that the
topology is a V -topology.

The second statement follows from the fact that Henselianity states the existence
of roots to certain separable polynomials. □

Lemma 5.6. Let F ≤ Mi |H Ti be such that F s
∩ Mi ⊆ F and any nonempty τi -

open Li (F)-definable subset of A1(Mi ) has an F-point. Let V be a geometrically
irreducible variety over F and X (Mi ) ⊆ V (Mi ) be τi -open and Li (F)-definable.
The following are equivalent:

(i) X (Mi ) is Zariski dense in V .

(ii) X (Mi )∩ Vsm ̸= ∅.

(iii) X (F)∩ Vsm ̸= ∅.

Proof. Note that (i) obviously implies (ii), and so does (iii). Also, shrinking V , we
may assume (Remark 2.8) that it is affine smooth and that there exists an étale map
f : V → An over F .

(ii) ⇒ (iii) By Fact 2.11, f (X) ⊆ An has a nonempty interior, so there exists
y∈ f (X)∩An(F) and hence x∈X(Mi ) with f (x)= y. Then x∈F( f (x))s∩Mi = F .
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(ii) ⇒ (i) By Fact 2.11 we can find a nonempty Li (Mi )-definable τi -open U ⊆

X (Mi ) such that f |U is a homeomorphism onto its open image. Since open subsets
of An are Zariski dense, (i) follows. □

Lemma 5.7. Let F ≤ Mi , with dcli (∅)⊆ Fa. Let V be a geometrically irreducible
variety over F and X ⊆ V be Li (F)-definable. The following are equivalent:

(i) X (Mi ) is Zariski dense in V .

(ii) X (Mi ) is F-Zariski dense in V .

(iii) The τi -interior of X (Mi ) in V contains a smooth point.

Proof. It is clear that (i) implies (ii) and, by Lemma 5.6, (iii) implies (i). So let us
prove that (ii) implies (iii). Assume that X (Mi ) is F-Zariski dense in V and let U
be its τi -interior in V . Since X ∖U has empty τi -interior in V , by Lemma 5.4, it is
not F-Zariski dense in V . It follows that U is F-Zariski dense in V . In particular,
U ∩ Vsm ̸= ∅. □

Remark 5.8. Note that Hypothesis (Zi ) of Proposition 4.9 follows from (Hi ) (see
Hypothesis 5.1). Indeed, by Lemma 5.7, a definable set X ⊆ An is Zariski dense if
and only if it has nonempty τi -interior.

Also, if F |H Ti,∀ is such that dcli (∅)⊆ Fa, then, by Lemma 5.4, Ti,F,∀ satisfies
the conditions of Remark 4.10. Therefore, for topological theories, the conditions
for PT CI to be elementary given in Proposition 4.9 and Remark 4.10 are easy to
ensure.

We now show the remarkable fact that, under some finiteness hypothesis, LI -
existential closure comes essentially from independence of the τi topologies.

Hypothesis 5.9. We consider the following hypothesis:

(F2) The set I is finite and for every M |H TK , there exists i ∈ I and an Lrg(K )-
embedding Mi → M⋆ ≽ M .

In particular, the minimal fields of the form M ∩ K s, where M |H TK , are among
the Ki = Mi ∩ K s, where Mi |H Ti,K . Note that it also follows that every extension
K ≤ M |H TI is totally T.

It follows that a field is then I -pseudo T -closed if and only if it is I -pseudo∨
i∈I Ti -closed, so the mention of T is now redundant.

Definition 5.10. If I is finite, we say that K is pseudo I -closed (PIC) if it is
I -pseudo

∨
i∈I Ti -closed.

Theorem 5.11. Assume (Hi ) for all i ∈ I (see Hypothesis 5.1) and (F2). The
following are equivalent:

(i) K |H PIC.

(ii) The following hold:
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(a) K |H PT C.
(b) For all i ∈ I , dcli (∅)⊆ K a.
(c) The τi are distinct topologies on K as i ∈ I varies.
(d) For all i ∈ I , any nonempty open Li (K )-definable X ⊆ A1 contains a

K-point.

Proof. Assuming (i), clearly condition (a) follows. Condition (b) follows from
Proposition 4.3(iv) and conditions (c) and (d) follow from Proposition 4.3(iii)
applied to A1. Conversely, let us assume (ii). By Proposition 4.3 and Lemmas 5.7
and 5.6, it suffices to prove that, given V a geometrically integral totally T variety
over K and X i ⊆ V Li (K )-definable τi -open with X i (Ki ) ∩ Vsm ̸= ∅, we have⋂

i X i (K ) ̸= ∅.
Note that, by Hypothesis (F2), any KM = M ∩ K s, where M |H TK , is an

algebraic extension of some Ki , which by Lemma 5.5 admits a Henselian V -
topology extending τi . So (H) holds and if KM is minimal in some Cτ and not
separably closed, then τ = τi and KM ≃ Ki — in particular, (F1) holds. Since the
τi are all distinct, it also follows that every Ki is minimal in Cτi . We can, therefore,
conclude with Theorem 3.17. □

Remark 5.12. If (F2) does not hold, but instead (H) holds and no M |H TK

contains K s, then by [Schmid 2000, Theorem 4.9], Theorem 5.11 also holds.

6. Bounded PIC fields

From now on, we assume that I is finite and that T =
∨

i∈I Ti . In particular, any
extension K ≤ M |H TI is totally T, and we therefore prefer the terminology pseudo
I -closed (see Definition 5.10).

We fix some Iτ ⊆ I , and we assume that, for every i ∈ Iτ , (Hi ) holds (see
Hypothesis 5.1). By Remark 5.3, hypotheses (Zi ) and (Ai ) of Proposition 4.9 hold
for every i ∈ τ (provided we add constants). We also assume that (Zi ) holds for
every i /∈ Iτ , and we fix T ′

i as in Remark 4.10.

Definition 6.1. A field K is called bounded if for any integer n, K has finitely
many extensions of degree n.

Notation 6.2. Fix d : Z>0 → Z>0. Let Ld := LI ∪ {c j : j > 0 and |c j | = d( j)}.
We denote by Td the Ld-theory of fields such that Pi := Xd(i)

+
∑

j<d(i) ci, j X j is
irreducible and every separable polynomial of degree i is split modulo Pi . Let PICd

be the (elementary) class of PIC models of Td ∪
⋃

i /∈Iτ T ′

i .
From now on, we always work in the language Ld, so if K is PICd and A ≤ K ,

then acl(A), dcl(A), acli (A), dcli (A) always contain the constants.

Remark 6.3. Any model of Td is bounded. Conversely, any bounded model of T
can be made into a model of Td for some well-chosen d.
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Lemma 6.4. Let K |H T and F ≤ K . The following are equivalent:

(1) K |H Td and res : Gal(K )→ Gal(F) is surjective.
(2) F |H Td and res : Gal(K )→ Gal(F) is a homeomorphism.
(3) K |H Td and F |H Td.

This is rather standard, but we could not find a reference, so we sketch the proof.

Proof. Let us first assume (1) and prove (3). The polynomial Pn is clearly irreducible
over F . Let Q ∈ F[X ] be an irreducible separable polynomial of degree n and a
one of its roots. Since Q is split in K [X ]/Pn , Pn admits a root e ∈ F s of Pn such
that a ∈ K [e]. Then Gal(F[e]) = res(Gal(K [e])) ≤ res(Gal(K [a])) = Gal(F[a]),
where the equalities follow from surjectivity, and hence F[a] ≤ F[e].

If (3) holds, then every separable extension of K is included by one generated
by an element of F s and hence res : Gal(K ) → Gal(F) is injective. Also, any
separable extension of F is contained in one generated by a root of a Pn which is
also irreducible over K . It follows that F s is linearly disjoint from K over F and
hence res : Gal(K )→ Gal(F) is surjective, so (2) holds. Conversely, if (2) holds,
then by Galois correspondence, the Pn are irreducible over K and K s

= K F s so
K |H Td and (1) holds. □

Lemma 6.5. Let K ,M |HPICd with K perfect, and F ≤ K with acli (F)∩K ⊆ F for
all i ∈ I . Then any Ld-embedding f : F → M can be extended to an Ld-embedding
g : K → M⋆ ≽ M with acli (g(K ))∩ L⋆ ⊆ g(K ) for all i ∈ I .

Proof. Note that F is perfect and hence F ≤ K is regular. So g exists by Corollary 4.7
and the fact that M |H PIC. It remains to show that acli (g(K ))∩ M⋆

⊆ g(K ). Since
acli (K ) ⊆ K a, it suffices to show that g(K )a ∩ M⋆

⊆ g(K ). By Lemma 6.4,
since K |H Td and F ≤ K is regular, F |H Td and hence, by Lemma 6.4 again,
Gal(M⋆)→ Gal(g(F)) is a homeomorphism. It factorizes through the homeomor-
phism res : Gal(K )→ Gal(F) and hence res : Gal(M⋆)→ Gal(g(K )) is surjective;
i.e., g(K )a ∩ M⋆

= g(K ). □

Definition 6.6. For every K |H PICd and A ⊆ K , let aclI (A)⊆ K be the smallest
subset C ⊆ K containing A such that acli (C)∩ K ⊆ C for all i ∈ I .

Proposition 6.7. Let K ,M |H PICd be perfect, F ≤ K and f : F → M be an
Ld-embedding. The following are equivalent:

(1) f extends to an Ld-embedding g : aclI (F)→ M.
(2) f is Ld-elementary (from K to M).

Proof. (1) ⇒ (2) Let g : aclI (F)→ M extend f . By a standard back and forth
argument using Lemma 6.5, we build K ≼ K ⋆, M ≼ M⋆ and an Ld-isomorphism
h : K ⋆

→ M⋆ extending g. Elementarity of f follows immediately.

(2) ⇒ (1) This is immediate. □
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Corollary 6.8. Any K ≤ M , with both fields PICd perfect, is Ld-elementary.

Proof. By Lemma 6.4, the morphism res : Gal(K )→ Gal(F) is surjective. Since
acli (K )⊆ K a, it follows that aclI (K )∩ M ⊆ K and hence, by Proposition 6.7 the
inclusion is elementary. □

For the rest of the section we fix a perfect K |H PICd and Mi |H Ti,K .

Proposition 6.9. Let F ≤ K . Then acl(F)= aclI (F).

Proof. Let E = aclI (F)⊆ acl(F). By Corollary 4.7, we find an Ld(E)-embedding
f : K → K ⋆ ≽ K with f (K ) |⌣

ℓ
E K . By Corollary 6.8, f is elementary. It follows

that acl(F)⊆ K ∩ f (K )= E . □

Notation 6.10. For every p ∈ S(F), where F ≤ K , let pi denote the underlying
(quantifier free) Li -type.

Proposition 6.11. Let F = acl(F)≤ K , V an irreducible variety over F, p ∈ S(F)
F-generic in V and, for i ∈ Iτ , let Oi ⊆ V (Mi ) be Li (K )-definable τi -open sets
consistent with pi (modulo Ti,K ). Then p is consistent with

⋂
i∈Iτ Oi (K ).

Proof. Let a |H p (in some K ⋆≽ K ). Let ac enumerate acl(Fa). By Proposition 6.7,
it suffices to find de ≡

qf
F ac with d ∈

⋂
i∈Iτ Oi . By compactness, we may assume c

is finite. Let qi = tpi (ac/F) for every i ∈ I , and W be the geometrically integral
algebraic locus of ac. For every i ∈ Iτ , we also denote by Oi the corresponding
open subset of W .

Let us fix some i ∈ Iτ . For every Li (F)-definable X , by (Hi ), qi ⊢ X if and
only if qi ⊢ X̊ ∩ Wsm, where X̊ denotes the τi -interior of X ∩ W in W . In par-
ticular, X̊ ∩ Wsm ∩ Oi ̸= ∅ and, by Lemma 5.6, X ∩ Oi is consistent with the
K-generic of W . So, by compactness, we find ai ci |H qi K-generic in W with
ai ∈ Oi . If i /∈ Iτ , by Lemma 4.6 we can also find ai ci |H qi K-generic in W .
Let ri := tpi (ai ci/K ) ⊇ qi . Note that since tp(ac/F) is finitely satisfiable in K ,
Wsm(K ) ̸= ∅. By Proposition 4.3, there exists de |H

⋃
i ri in some K ⋆ ≽ K . By

construction, for every i ∈ Iτ , we have d ∈ Oi and, for every i ∈ I , we have de |H pi ,
concluding the proof. □

Let τ be the topology generated by the τi for i ∈ Iτ .

Theorem 6.12. Let F = acl(F)≤ K , and X be Ld(F)-definable and τ -closed (or
τ -open) in its Zariski closure V . Then X is quantifier free

⋃
i∈Iτ Li (F)-definable.

Proof. Assume that X is τ -closed. Let x ∈ X (K ) and y ∈ V (K ) be such that⋃
i∈Iτ tpi (x/F)=

⋃
i∈Iτ tpi (y/F). By compactness, it suffices to show that y ∈ X .

For every i ∈ Iτ , Oi ⊆ V (Mi ) τi -open containing y. Let W be the locus of x (and
hence y) over F . By Proposition 6.11, tp(x/F) is consistent with W ∩

⋂
i Oi . In

particular, there exists z ∈ X ∩
⋂

i Oi . So y is in the τ -closure of X , which is X
itself. □
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Considering the τ -closure of a definable set, we have generalized the “density
theorem” of [Montenegro 2017b, Theorem 3.17]:

Corollary 6.13. Let F = acl(F) ≤ K , and X be Ld(F)-definable with Zariski
closure V . Then there exists an integer m, Li (F)-definable τi -open sets Yi j ⊆ V for
i ∈ Iτ and j <m, and a quantifier free Ld(F)-definable set Y with dim(Y )<dim(X)
such that

X ⊆

⋃
j

⋂
i

Yi j ∪ Y is τ -dense.

Proof. Applying Theorem 6.12 to the τ -closure of X , we find Li (F)-definable sets
Yi j such that X ⊆

⋃
j
⋂

i Yi j is τ -dense. Further dividing, we may assume that Yi is
either τi -open or has empty τi -interior (and hence has lower dimension by (Hi )). □

Remark 6.14. The previous result generalizes the common pattern, that, when
adding a “generic” topology to some structure, the “open core” consists only of sets
definable in the topology on its own. In fact, this result provides a broad setting in
which to consider these questions, which does not depend on the initial structure
and allows for more than one topology.

Generic derivations. To illustrate that point, let us consider the following example.
Let T1 = DCF0 be the (Morleyized) theory of characteristic zero differentially
closed fields with a derivation, T2 = ACVF and I := {T1, T2}. Then existentially
closed valued fields with a derivation are PIC. Hence, definable closed sets in such
fields are definable using only the valued field structure, recovering a special case
of [Cubides Kovacsics and Point 2023, Theorem 3.1.11].

The proof given here would extend immediately to bounded perfect PAC fields
with independent valuations and generic commutative derivations (which are PIC
for T1 = DCFn and T2, . . . , Tm = ACVF), if we knew that this class is indeed closed
under elementary extensions. Proposition 4.9 does not apply in that context, but a
geometric axiomatization seems plausible, along the lines of [Tressl 2005].

There is another issue if we wish to consider fields that are not PAC, namely our
reliance on relational languages. If T2 = RCF< and T1 = DCF0 (Morleyized), then
existentially closed ordered differential fields might not be PIC. Indeed, the order
on a subfield of a differential field might not extend to the whole field. However,
the setup presented here can be adapted to allow for nonrelational Li ; the main
issue being, again, the elementarity of the class.

7. Amalgamation and burden in PICd

Recall that we now assume that I is finite and that T =
∨

i∈I Ti . In particular, any
extension K ≤ M |H TI is totally T. We now work with Iτ = I and therefore assume
that (Hi ) holds for every i ∈ I (see Hypothesis 5.1), and τ denotes the topology
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generated by the τi for all i ∈ I . Finally, we fix K |H PICd perfect, sufficiently
saturated and homogeneous (see Notation 6.2) and Mi |H Ti,K .

We start by proving that obstructions to 3-amalgamation only arise from the
quantifier free structure.

Theorem 7.1. Let F ≤ K and a1, a2, c1, c2, c ∈ K . Suppose that dcli (∅)⊆ Fa for
all i , F = acl(F), a j enumerates A j := acl(Fa j ) and c j enumerates C j := acl(Fc j )

for j = 1, 2. Assume also that A1 ∩ A2 = F, c |⌣
a
F a1a2, c1 ≡F c2 and c ≡

qf
A j

c j

for j = 1, 2. Then

tp(c1/A1)∪ tp(c2/A2)∪ qftp(c/A1 A2)

is consistent.

This is a minor variation on [Montenegro 2017b, Theorem 3.21].

Proof. First note that, since A1 A2 is a regular extension of A1 and of A2, by
[Chatzidakis 2002, Lemma 2.1] we have that Aa

1 ∩ Aa
2 = (A1 ∩ A2)

a
= Fa. Note

also that for any F ≤ E ≤ K , by Lemma 5.4 acl(E)= Ea
∩ K .

Let C := F(c) and A := acl(A1 A2). Since c ≡
qf
a j c j , we have an LI (A j )-

isomorphism f j : A j C j → A j C sending c j to c. This map extends to an Lrg(A j )-
embedding B j := acl(A j C j ) → (A j C)a. We endow D j := f j (B j ) with the LI -
structure making f j into an LI (A j )-isomorphism. This structure extends the LI -
structure on A j C .

Note that both A2 ≤ A and A2 ≤ D2 ≃ B2 are regular and that, since a1 |⌣
a
a2

c,
we have A |⌣

a
A2

D2. It follows that A ≤ D2 A, A2 ≤ D2 A and F ≤ D2 A are regular.
So D2 A |⌣

ℓ
F Fa and hence D2 A |⌣

ℓ
C A1

FaC A1. Moreover, since Ca |⌣
ℓ
Fa Aa

1 Aa
2, by

[Chatzidakis 2002, Lemma 2.5(2)] we have

(C A1)
a
∩ (C A2)

a(A1 A2)
a
= (Ca(Aa

1 ∩ Aa
2))

a Aa
1 = Ca Aa

1.

By Lemma 6.4, Gal(C)≃ Gal(F), and hence Ca
= FaC . Similarly, Aa

1 = Fa A1 and
thus Ca Aa

1 = FaC A1. So, (C A1)
a
∩D2 A = FaC A1∩D2 A =C A1; i.e., C A1 ≤ D2 A

is regular. By symmetry, C A2 ≤ D1 A is also regular.
Since D j |⌣

ℓ
C A j

C A ≤ Dk A for k ̸= j , by Lemma 4.6, D j A can be made into a
model of TI whose LI -structure extends that of D j and C A. Since D1 |⌣

ℓ
C A1

D2 A,
we also have D1 A |⌣

ℓ
C A D2 A and, by Lemma 4.8, D1 D2 A can be made into a model

of TI whose LI -structure extends that of C A, D1 and D2. Also, since C A1 ≤ D2 A
is regular and D1 ≤ (C A1)

a, it follows that D1 ≤ D1 D2 A, and thus F ≤ D1 D2 A,
are regular. So D1 D2 A |⌣

ℓ
A Fa A = Aa and A ≤ D1 D2 A is regular.

By Corollary 4.7, there exists an LI (A)-embedding g : D1 D2 A → K ⋆ ≽ K .
Let c⋆ = g(c). We have c⋆ ≡

qf
LI (a1a2)

c. Moreover, by Proposition 6.7, g ◦ f j is a
LI (A j )-elementary isomorphism sending c j to c⋆. □
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Burden. We now study the burden of perfect bounded PIC fields in terms of the
burden of each theory Ti .

Notation 7.2. We denote by bdni the burden computed in models of Ti,K .

Lemma 7.3. Let X be an Li (Mi )-definable set of dimension d. Then

bdni (X)= bdni (A
d).

Proof. By Remark 2.13, there exists an Li (Mi )-definable bounded τi -open neigh-
borhood Oi of 0 such that Mi ⊆ Oi ∪ (Oi ∖ {0})−1. Then

Ad(Mi )=

⋃
ε∈2d

∏
j<d

Oε j
i ,

where O1
i = Oi and O0

i = (Oi ∖ {0})−1. Since bdni
(∏

j<d Oi
)

=
∏

j<d Oε j
i for

every ε, it follows that bdni
(∏

j<d Oi
)

= bdni (A
d). If U ⊆ Ad is an Li (Mi )-

definable open set, it contains a definable subset of the form
∏

j<d U j , where
U j ⊆ Mi is in (affine) Li (Mi )-definable bijection with Oi . It follows that

bdni (A
d)= bdni

(∏
j<d

Oi

)
= bdni

(∏
j<d

Ui

)
≤ bdni (U )≤ bdni (A

d).

Now, since dim(X) = d, there exists an Li (Mi )-definable finite-to-one map
f : X → Ad whose image is Zariski dense and hence has nonempty interior. So,

we have bdni (X)= bdni ( f (X))= bdni (A
d). □

Proposition 7.4. Let A = acl(A) ⊆ K , X be quantifier free LI (A)-definable and
nonempty, φ(x, y) be an Ld-formula and (a j ) j∈ω ∈ K y be an indiscernible sequence
over A. Suppose that φ(K , a0) is τ -dense in X. Then

∧
j φ(x, a j ) is consistent.

Proof. By compactness, extend (a j ) j∈ω to an A-indiscernible sequence indexed
by some sufficiently large cardinal κ . For every finite J ⊆ κ , let aJ enumerate
acl(Aa j : j ∈ J ) in a way compatible with inclusions: if f : J1 → J2 is an increasing
bijection, then for any J ⊆ J1, aJ and a f (J ) appear in the same place in aJ1 and aJ2 ,
respectively.

Claim 7.4.1. There exists c ∈ X such that c |⌣
a
A

⋃
j<ω a j and, for all finite J ⊆ ω,

tp(aJ/Ac) only depends on |J |.

Proof. Note that, by invariance, the Zariski closure of X is over A and hence we
can find c ∈ X with c |⌣

a
A

⋃
j a j . By iterated applications of Erdős–Rado and

at the cost of reducing κ (exactly as when extracting an indiscernible sequence),
we find J0 ⊆ κ , with order type ω, such that for all finite J ⊆ J0, tp(aJ/Ac) only
depends on |J |. By homogeneity (and changing c), we may assume that J0 =ω. □
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Note that if J1, J2 ⊆ ω are disjoint of the same cardinality, if e ∈ aJ1 ∩ aJ2 , then
there is some n,m with aJ1,n = e = aJ2,m . Spreading J1 and J2 apart, we can find
J3 such that J1 ∪ J2, J1 ∪ J3 and J2 ∪ J3 are ordered in the same way. It follows
that aJ1,n = aJ3,m = aJ2,n . So e appears in the same place in all aJ , with J of the
given cardinality, and tp(aJ/Ace) only depends on |J |. So we may assume that for
disjoint J1, J2 ⊆ ω, aJ1 ∩ aJ2 = A.

Claim 7.4.2. There exists c ∈ φ(K , a0) such that c |⌣
a
A

⋃
j<ω a j and, for all finite

J ⊆ ω, qftp(aJ/Ac) only depends on |J |.

Proof. Let 6i (x) be the (closure under consequence of the) partial type express-
ing that tpi (aJ/Ax) only depends on |J |. By compactness, it suffices, given
ψi (x) ∈ 6i (x) for every i and U ⊆ V Zariski open over A(a j ) j<ω, to find e ∈ U
realizing φ(x, a0) and the ψi .

Let c be such as in Claim 7.4.1 and let V be its algebraic locus over A, which is
also its algebraic locus over Aa j<ω. Then c is in the τi -interior of ψi (K ) in V and,
since c ∈ ψi (K )∩ X , ψi (K ) has nonempty τi -interior in X . The existence of e as
above now follows from the τ -density of φ(K , a0) in X and the fact U is τ -open
(in V and hence in X ). □

Note that if E is an Li (Ac)-definable finite equivalence relation, for some finite
J1, J2 ⊆ ω we have aJ1 EaJ2 and hence this holds for all J1, J2. In other words,
tpi (aJ/ acli (Ac)) only depends on |J | and hence, since acl(Ac)⊆ A(c)a ⊆ acli (Ac)
for all i , qftp(aJ/ acl(Ac)) only depends on |J |. Let d enumerate acl(Ac).

Claim 7.4.3. For all n > 0, there is dn ≡
qf
a{0,...,2n−1}

d such that K |H
∧

j<2n φ(dn, a j ).

Proof. We proceed by induction on n and let us assume we have found dn — note
that d0 = d works. Let a1

= a{0,...,2n−1} and a2
= a{2n,...,2n+1−1}, d1

= dn and d2 be
such that d2a2

≡A d1a1; in particular, d2
|H

∧
2n≤ j<2n+1 φ(x, a j ). Then

a1
∩ a2

= A, d |⌣
a
A a1a2, d1

≡A d2,

d1a1
≡

qf
A da1 and d2a2

≡A d1a1
≡

qf
A da1

≡
qf
A da2.

By Theorem 7.1, we can find a dn+1 such that dn+1a j
≡A d j a j — and hence

dn+1 ∈
⋂

j<2n+1 φ(K , a j )— and dn+1 ≡
qf
a1a2 d. □

So
∧

j φ(x, a j ) is indeed consistent. □

Proposition 7.5. Let X be Ld(K )-definable of dimension d. If for every i ∈ I ,
bdni (A

d)≤ κi for some cardinal κi , then

bdn(X)≤

∑
i∈I

κi .



PSEUDO T -CLOSED FIELDS 27

Moreover, if bdni (A
d) < κ , where κ is an infinite cardinal, then

bdn(X) <
∑
i∈I

κ.

Proof. We proceed by induction on d and assume K is sufficiently saturated. Let
φl(x, al j )l<κ, j<ω be an inp-pattern of depth κ in X — where κ >

∑
i bdni (A

d) in
the first case. Let A = acl(A)≤ K be such that the φl and X are all over A. We may
assume that the (al j ) j<ω are mutually indiscernible over A. Let V be the Zariski
closure of X .

By [Chernikov 2014, Lemma 7.1] (see Remark 2.4(2)), Theorem 6.12 and
indiscernibility, we find (uniformly) Li (al j )-definable Yl j i ⊆ V such that φl(K , al j )

is τ -dense in Yl j :=
⋂

i Yl j i . If any Yl0 j0i0 has dimension smaller than d, then, by
induction, bdn(Yl0 j0i0)≤

∑
i∈I λi , where λi +1=κi . However, the φl(x, al j )l ̸=l0, j<ω

is an inp-pattern of depth λ in Yl0 j0i0 , where λ+ 1 = κ . So

κ = λ+ 1 ≤ bdn(Yl0 j0i0)+ 1 ≤

∑
i∈I

λi + 1 ≤

∑
i∈I

κi < κ,

a contradiction. In the second case, by induction, we would have κ≤bdn(Yl0 j0i0)<κ ,
which is also a contradiction.

So we may assume that all the Yl j i have dimension d. In particular, they have
nonempty τi -interior in V . Since the border of Yl j i in V has lower dimension, by
[Chernikov 2014, Lemma 7.1] and induction, we may further assume that the Yl j i

are τi -open in V .
Since φl(x, al j ) is an inp-pattern, for all f : κ → ω we have that

∧
l Yl, f (l),i is

consistent. It follows that there are at most κi many l (or strictly less than κ in the
second case) such that

∧
l Yl j i is inconsistent. In both cases, it follows that we can

find an l such that for all i ,
∧

j Yl j i is consistent.
Since the Yl j i are τi -open (in V ), by compactness,

∧
j Yl j i contains some Li (K )-

definable τi -open Ui ⊆ V . Let U =
⋂

i Ui . Then for every j , φ(K , al j ) is τ -dense
in U . Let B ⊇ A be such that U is quantifier free LI (B)-definable. We may
assume that al j is B-indiscernible. By Proposition 7.4,

∧
j φ(K , al j ) is consistent —

contradicting that φl(x, al j )l<κ, j<ω is an inp-pattern. □

We also have the following qualitative corollary:

Corollary 7.6. Suppose that for all i ∈ I , Ti is NTP2 (or strong). Then any perfect
K |H PICd also is.

The bound in Proposition 7.5 is actually tight (although the argument is surpris-
ingly more involved than we expected at first).

Lemma 7.7. If for some i ∈ I , bdni (A
d)≥ κ for some cardinal κ , then there exists

an inp-pattern (φl(x, al j ))l<κ, j<ω of depth κ in any τi -open Li (K )-definable set
X ⊆ Ad such that al j ∈ K and φl(x, al j ) defines a τi -open set.
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Proof. Note first that, at the cost of reducing X , we may assume that X =
∏

k<d Xk

is a product of open (bounded) subsets of A1. By Lemma 7.3, we find Mi |H Ti,K

and (φl(x, al j ))l<κ, j<ω an inp-pattern of depth κ in X (Mi ). Writing φ(Mi , al j ) as
the union of its interior and a lower-dimensional set, by Remark 2.4(2), we may
assume that either φ(Mi , al j ) is τi -open or dim(φ(Mi , al j )) < d . In the latter case,
it follows by Remark 2.4(6) that bdn(Ad−1)≥ λ, where λ+1 = κ . By induction, we
find an inp-pattern of depth λ in

∏
k<d−1 Xk with ψl(Mi , cl j ) consisting of τi -open

sets. Together with a uniformly definable family of disjoint τi -open subsets of Xd−1,
they yield an inp-pattern of depth κ in X .

So we may assume that the φl(Mi , al j ) are τi -open and it only remains to
prove that we can choose the al j in K . Let cl j be generic in some Ad such
that al j ∈ acl(cl j ). We may assume that al j enumerates acli (cl j ), that (cl j al j ) j

are mutually indiscernible sequences and that it is the middle part of a sequence
indexed by ω+ω+ω⋆. Let Al consist of the union of K , the ω initial segment and
the ω⋆ final segment of the sequence. For each j , let El j be the set of Li (Alcl j )-
conjugates of al j .

Claim 7.7.1. For every j0 < ω, El j0 is a complete type over Al(cl j ) j (al j ) j ̸= j0 .

Proof. Assume there exists E ⊂ El j nonempty defined over Al(cl j ) j (al j ) j ̸= j0 . Then,
by indiscernibility, moving the parameters to the initial and final segment, such a
set also exists with parameters in A. □

Let Xl j =
⋃

a∈El j
φl(x, a). If the Xl j are consistent, then for every k and j < k

there exists el j ∈ El j such that
∧

j<k φl(x, el j ) is consistent. But, by Claim 7.7.1,∏
j<k El j is a complete type. This would imply that

∧
j<k φl(x, al j ) is consistent,

contradicting that the φl(x, al j ) form an inp-pattern. It follows that the Xl j form an
inp-pattern (of depth κ in X ).

So, at the cost of allowing φl(x, y) to be an Li (A)-formula for some A ⊆ Mi con-
taining K , we may assume the al j to be generic in some Am (over A). Let C be a tran-
scendence basis of A over K and b ∈ A ⊆ acli (C) be such that φl(x, y)=ψ(x, y, b),
where ψ is an Li (K (C))-formula. As above, possibly enlarging C , we may assume
that the set E of Li (K (C))-conjugates of b is a complete type over K (C, cl j ). Then,
for every e ∈ E , the ψ(x, al j , e) are inconsistent. It follows that the

θ(x, al j )=
∨

e∈E ψ(x, al j , e)

are inconsistent and hence form an inp-pattern (of depth κ in X ). So we may assume
that A = K (C) is generated over K by a (finite) set of algebraically independent
elements. Then C(al j )l<κ, j<ω is a tuple of algebraically independent elements
over K ; in other words any finite subtuple is K-generic in the affine space of the
right dimension. It follows, e.g., by Proposition 4.3(ii) that its Li (K )-type can be
realized in K . □
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Proposition 7.8. Let X be Ld(K )-definable of dimension d. If for every i ∈ I ,
bdni (A

d)≥ κi for some cardinal κi , then

bdn(X)≥

∑
i∈I

κi .

Proof. By Remark 2.4(6), we may assume that X ⊆ Ad . By Corollary 6.13, we
may further assume that X is τ -dense in

⋂
i X i , where X i is Li (K )-definable and

τi -open. By Lemma 7.7, assuming that K is sufficiently saturated, for every i ∈ I
we find an inp-pattern φi,l(x, ai,l, j )l<κi , j<ω of τi -open sets in X i , with ai,l, j ∈ K .

Note that for any finite Yi ⊆ κi and fi : Yi → ω,
⋂

l∈Yi
φi,l(Mi , ai,l, f (i,l)) is

τi -open and hence, by τ density, X ∩
⋂

i,l∈Yi
φi,l(Mi , ai,l, f (i,l)) ̸=∅. It follows that

together, the φi,l(x, ai,l, j ) form an inp-pattern of depth
∑

i κi in X . □

We have thus proved the following equality:

Theorem 7.9. For every perfect K |H PICd and Ld(K )-definable set X of dimen-
sion d , we have

bdn(X)=

∑
i

bdni (A
d).

The equality holds in Card∗ [Touchard 2023, Definition 1.29].

Corollary 7.10. Let K |H PAC be perfect and bounded and vi be n independent
nontrivial valuations on K . Then

bdn(K , v1, . . . , vn)= n.

A similar corollary holds for PRC and PpC fields, but we refer the reader to the
more general statement in Corollary A.3.

8. Forking and dividing

In this section we study the relationship between forking (and dividing) in the
theories Ti and in the theory PICd.

Let us recall our conventions and notation. We assume that I is finite and that
T =

∨
i∈I Ti . We also assume that (Hi ) holds for every i ∈ I (see Hypothesis 5.1).

We denote by τ the topology generated by the τi , and we fix K |H PICd perfect,
sufficiently saturated and homogeneous. We fix some Mi |H Ti,K .

Proposition 8.1. Let A = acl(A) ≤ K and let X be an Ld(K )-definable set such
that X ⊆

⋂
i X i is τ -dense, where X i is Li (K )-definable and τi -open. Then X does

not divide over A if and only if for all i , X i does not divide over A (in Mi ).

Proof. (⇐) We assume that, for every i , X i := θi (Mi , b) does not divide over
A in Mi , and we write X as ψ(K , b). Let κ be a sufficiently large cardinal and
(b j ) j<κ be an indiscernible sequence over A with b0 = b. Let X i j = θi (Mi , b j ).
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By indiscernibility, X j = ψ(K , b j )⊆
⋂

i X i j is τ -dense. Since X i does not divide
over A, we have

⋂
j X i j ̸= ∅ and, by compactness, it contains some nonempty

Li (K )-definable τi -open Ui . Enlarging A and taking an appropriate subsequence
of the b j , we may assume that Ui is Li (A)-definable.

Note that since U :=
⋂

i Ui is τ -open, X is τ -dense in U . It follows by
Proposition 7.4 that

⋂
j (X j ∩ U ) ̸= ∅, and hence X does not divide over A.

(⇒) We now assume that for some fixed i , X i := θi (Mi , b) divides over A, and let
(b j ) j<ω be an A-indiscernible sequence such that b0 = b and

∧
j θ(x, b j ) is incon-

sistent. We may assume that the b j are algebraically independent over A. For all j ,
A(B j )≃ A(b)≤ K . Since A ≤ A(b j ) is regular, we have A(b j+1) |⌣

l
A A(b0 . . . b j )

and, by Lemma 4.6 and induction, we see that A(b j : j<ω) |H Ti,∀. By Corollary 4.7,
K ≤ K (b j : j < ω) ≃ K ⊗A A(b j : j < ω) is LI -existentially closed, so we may
assume that the b j are in K . It follows that X i ∩ K divides over A in K , and hence,
so does X ⊆ X i ∩ K . □

Corollary 8.2. Let a be a tuple of K and A ⊆ B ⊆ K such that A = acl(A) and
B =acl(B). Then tp(a/B) does not divide over A if and only if for all i ∈{1, . . . , n},
tpi (a/B) does not divide over A (in Mi ).

Proof. This follows from Proposition 8.1 and Corollary 6.13. □

Theorem 8.3. Let A = acl(A) ≤ K . If A is an extension base of Ti for all i ∈ I ,
then A is an extension base of K .

Proof. By transitivity of forking, it suffices to show that no Ld(A)-definable set
X ⊆ K forks over A. So, if X ⊆

⋃
j<m Y j , where the Y j are Ld(K )-definable, we

have to show that one of the Y j does not divide over A. To do so, we may assume:

(i) X ⊆
⋂

i X i is τ -dense, where the X i are Li (A)-definable.

(ii) X \
⋃

j Y j is finite.

(iii) Y j ⊆
⋂

i Y j i is τ -dense, where Y j i ⊆ X i is τi -open and Li (K )-definable.

(iv) For every i and j1, j2, Y j1i = Y j2i or Y j1i ∩ Y j2i = ∅.

(v) X i \
⋃

j Y j i is finite and does not contain any element of A.

Indeed, by Corollary 6.13, X is τ -dense in
⋃

l
⋂

i X il ∪ Z where the X il are Li (A)-
definable and Z is finite and Ld(A)-definable. If Z is nonempty, it does not fork
over A, and we are done. Otherwise, it suffices to show that any of the X ∩

⋂
i X il

does not fork over A. Similarly, by Corollary 6.13, Y j is τ -dense in
⋃

l
⋂

i Y j il ∪ Z j ,
where the Y j il are Li (K )-definable τi -open and Z j is finite. Replacing the Y j by
the Y j ∩

⋂
i (Y j il ∩ X i ) and setting the finite sets aside, we can ensure (ii) and (iii).

Replacing the Y j i by the τi -interior of the atoms of Boolean algebra that they
generate (for fixed i), we can further assume (iii). Now, for some finite set Z , we
have X ⊆

⋃
j Y j i ∪ Z ⊆ X i , and since X is τi -dense in X i , Zi := X i \

(⋃
j Y j i ∪ Z

)
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has empty τi -interior and is therefore finite. Now, if (Zi ∪ Z)∩ A ̸= ∅, we can
remove those points from X and the X i without losing any of the other properties.

It remains to show that one of the Y j does not divide over A. Note first that for
every f : I → m, by τ -density, there exists an a ∈ X ∩

⋂
i Y f (i)i . Let j be such that

a ∈ Y j ⊆
⋂

i Y j i . Then, by (iv), for all i we have Y f (i)i = Y j i .
Now, by hypothesis, X i does not fork over A, and since any finite set that does

not divide over A = acl(A) must contain a point from A, there is an f (i) <m such
that Y f (i)i does not divide over A. As noted above, we may assume that f (i)= j
is constant. It now follows from Proposition 8.1 that Y j does not divide over A. □

Definition 8.4. Let a be a tuple of K and A, B ⊆ K . We write a |⌣A B if tp(a/AB)
does not fork over A (in K ) and a |⌣

i
A B if tpi (a/AB) does not fork over A (in Mi ).

Corollary 8.5. Suppose that Ti is NTP2 for all i ∈ I and that forking equals dividing
in Ti . Then forking equals dividing in K and if a, A, B are in K , then a |⌣

i
A B for

all i ∈ I if and only if a |⌣A B.

Proof. Since K is NTP2 (Corollary 7.6), to show that forking equals dividing in
K it’s enough to show that any set in K is an extension base. But this is trivial by
Theorem 8.3.

The last equivalence is clear from Proposition 8.1 and the fact that forking equals
dividing in K . □

Appendix: Dependent topologies

Following the approach of [Johnson 2019] we can also understand dependent
valuations and orders by reduction to the case of independent topologies.

We now fix a finite tree I — that is, a filtered partial order such that for all i ∈ I ,
the set { j ∈ I : i ≤ j} is totally ordered. Let r be its maximal element — its root.
To every leaf i — that is, every minimal element — we associate:

• An integer pi which is either prime or zero.

• A complete theory Ti of fields of characteristic pi which eliminates quanti-
fiers in a relational expansion of the ring language such that (Hi ) holds (see
Hypothesis 5.1).

To every nonleaf i ∈ I , we associate:

• An integer pi which is either prime or zero. We assume that for all daughters
j of i , the p j are equal. Moreover, they are equal to pi if it is nonzero. We
also assume that pr is equal to its daughter p j .

• A complete theory Ti,0 of (enriched) ordered abelian groups. We assume that
it is the theory of the trivial group if and only if i = r . If pi is nonzero, we
assume that models of Ti,0 are pi -divisible. If pi is zero and its daughters p j
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are nonzero, we require Ti,0 to come with a constant ci for a positive element.
We then assume that [−ci , ci ] is either p j -divisible or finite — in the latter
case, we say that i is finitely ramified.

For every nonleaf i ∈ I , we define the theories Ti,k and Ti by induction:

• The theory Ti,k (the residual theory of i) is the theory of pseudo Ii -closed fields
without finite extensions of degree divisible by pi (if it is nonzero), where
Ii = {T j : j daughter of i}.

• The theory Ti is a Morleyization of the theory of characteristic pi algebraically
maximal complete fields with residue field a model of Ti,k and value group a
model of Ti,0. If pi is zero and the daughters p j are nonzero, then we also
require that ci = val(p j ).

Note that, by [Halevi and Hasson 2019, Corollary A.3], if i is not finitely ramified,
the reduct of Ti to the valued field language eliminates quantifiers relative to RV1;
and it eliminates quantifiers relative to

⋃
n RVn if i is finitely ramified by [Basarab

1991, Theorem B]. Moreover, each completion admits maximally complete models.
In particular, (Hi ) holds in every Ti .

Definition A.1. We say that a field is pseudo I -closed if it is pseudo Ir -closed.

This is coherent with our earlier notation, provided we identify a set of indepen-
dent valuations to the tree of height one with trivial valuation at the root, and the
independent valuations as leaves.

We also define:

κi =


bdn(Ti ) if i is a leaf,
max

(
ℵ0 ·

∑
j∈I j

κ j , bdn(Ti,0)
)

if i is finitely ramified,
max

(∑
j∈I j

κ j , bdn(Ti,0)
)

otherwise.

Once again, for a finer estimate, κi can be computed in Card⋆ [Touchard 2023,
Definition 1.29].

Theorem A.2. Let K be a bounded perfect pseudo I -closed field. Then

bdn(K )= κr .

Proof. We proceed by induction on i . By Theorem 7.9, bdn(Ti,k)=
∑

j∈Ii
κi (by

Theorem 7.9) and, by Fact 2.6, bdn(Ti )= κi . □

Corollary A.3. Let K be a bounded perfect PAC, m-PRC or m-PpC field (setting
m = 0 if K is PAC) and v1, . . . , vl be valuations on K . Let n be the maximal
number of nondependent valuations among the vi that are also not dependent from
the m orders (resp. p-adic valuations) if K is PRC (resp. PpC). Then

bdn(K , v1, . . . , vl)= m + n.
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Proof. We assume K is PAC. Let I be the tree of valuations generated by the vi ; in
other words, the nodes of I are the valuation rings

∏
i∈J Oi , where J ⊆ I and Oi

is the valuation ring of vi (and the trivial valuation at the root). For any node i ∈ I
we also write vi for the associated valuation. Since K is PAC, the residue field of
any of the vi is algebraically closed and its value group is divisible — this follows,
for example, from Proposition 3.12. We annotate I with a copy of ACVF on each
leaf and with the theory of divisible ordered abelian groups on each nonleaf node
(except for the root), as well as the relevant characteristics and constants.

It follows from Theorem 5.11 that K |H PIC and this structure is bi-interpretable
with (K , v1, . . . , vn). By induction on i we see that κi is the number of leaves
below the node i . The corollary follows.

The PRC and PpC cases follow in a similar manner, noting that orders (or p-adic
valuations) can only be leaves in the tree. □

Acknowledgment

We thank the referee for careful reading and insightful remarks on an earlier version
of this text.

References

[Anscombe et al. 2020] S. Anscombe, P. Dittmann, and A. Fehm, “Approximation theorems for
spaces of localities”, Math. Z. 296:3-4 (2020), 1471–1499. MR Zbl

[Ax 1968] J. Ax, “The elementary theory of finite fields”, Ann. of Math. (2) 88 (1968), 239–271. MR
Zbl
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