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Abstract
We introduce a class of theories calledmetastable, including the theory of algebraically
closed valued fields (ACVF) as a motivating example. The key local notion is that of
definable types dominated by their stable part. A theory is metastable (over a sort
�) if every type over a sufficiently rich base structure can be viewed as part of a
�-parametrized family of stably dominated types. We initiate a study of definable
groups in metastable theories of finite rank. Groups with a stably dominated generic
type are shown to have a canonical stable quotient. Abelian groups are shown to be
decomposable into a part coming from�, and a definable direct limit system of groups
with stably dominated generic. In the case of ACVF, among definable subgroups of
affine algebraic groups, we characterize the groups with stably dominated generics in
terms of group schemes over the valuation ring. Finally, we classify all fields definable
in ACVF.

Mathematics Subject Classification 03C45 · 12J25

1 Introduction

Let V be a variety over a valued field (F, val). By a val-constructible set we mean a
finite Boolean combination of sets of the form {x ∈ U : val( f (x)) ≤ val(g(x))}where
U is an open affine, and f , g are regular functions onU . Two such sets can be identified
if they have the same points in any valued field extension of F , or equivalently, by a
theorem of Robinson, in any fixed algebraically closed valued field extension K of F .
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In many ways these are analogous to constructible sets in the sense of the Zariski
topology, and (more closely) to semi-algebraic sets over real fields. However while the
latter two categories are closed under quotients by equivalence relations, the valuative
constructible sets are not. For instance, the valuation ring O = {x : val(x) ≥ 0}, is
constructible, and has constructible ideals αO = {x : val(x) ≥ α} and αM = {x :
val(x) > α}. For any group scheme G overO, one obtains corresponding congruence
subgroups; but the quotients O/αO and G(O/αO) are not constructible. We thus
enlarge the category by formally adding quotients, referred to as the imaginary sorts;
the objects of the larger category will be called the definable sets. It is explained in
[6] that instead of this abstract procedure, it suffices to add sorts for the homogeneous
spaces GLn(K )/GLn(O), for all n, and also GLn(K )/I for a certain subgroup I ; we
will not require detailed knowledge of this here. One such sort that will be explicitly
referred to is the value group � := GL1(K )/GL1(O); this is a divisible ordered
Abelian group, with no additional induced structure. We will refer to stable sorts also.
These include first of all the residue field k = O/M, but also vector spaces over k of
the form L/ML , where L ⊆ Kn is an O-lattice.

The paper [7], continuing earlier work, studied the category of quantifier-free defin-
able sets over valued fields, especially with respect to imaginaries. As usual, the direct
study of a concrete structure of any depth is all but impossible, if it is not aided by a
general theory. We first tried to find a generalization of stability (or simplicity) in a
similar format, capable of dealing with valued fields as stability does with differential
fields, or simplicity with difference fields. To this we encountered resistance; what
we found instead was not a new analogue of stability, but a new method of utilizing
classical stability in certain unstable structures.

Even a very small stable part can have a decisive effect on the behavior of a quite
“large,” unstable type. This is sometimes analogous to the way that the (infinitesimal)
linear approximation to a variety can explain much about the variety; and indeed, in
some cases, casts tangent spaces and Lie algebras in an unexpected model theoretic
role. Two main principles encapsulate the understanding gained:

(1) Certain types are dominated by their stable parts. They behave “generically” as
stable types do.

(2) Uniformly definable families of types make an appearance; they are indexed by
the linear ordering � of the value group, or by other, piecewise-linear structures
definable in �. An arbitrary type can be viewed as a definable limit of stably
dominated types (from principle (1)).

A general study of stably dominated types was initiated in [7]; it is summarized in
Sect. 2. Principle (2) was only implicit in the proofs there. We state a precise version
of the principle, and call a theory satisfying (2) metastable. We concentrate here on
finite rank metastability.

Principle (1) is given a general group-theoretic rendering in Proposition 4.6. Stably
dominated groups are defined, and it is shown that a group homomorphism into a
stable group controls them generically. Theorem 5.16 clarifies the second principle in
the context of Abelian groups. A metastable Abelian group of finite rank is shown to
contain nontrivial stably dominated groups Tα , unless it is internal to �. Moreover,
the groups Tα are shown to form a definable direct limit system, so that the group
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is described by three ingredients: �-groups, stably dominated groups, and definable
direct limits of groups.

We then apply the theory to groups definable in algebraically closed valued fields.
Already the case of Abelian varieties is of considerable interest; all three ingredients
above occur, and the description beginning with a definable map into a piecewise
linear definable group L takes a different aspect than the classical one. The points of
L over a non-Archimedean local field will form a finite group, related to the group
of connected components in the Néron model. On the other hand over R(t) the same
formulas will give tori over R.

Non-commutative groups definable in algebraically closed valued fields include
examples such as GLn(O), GLn(O/aO) and “congruence subgroups” such as the
kernel of GLn(O) → GLn(O/aO), which are all stably dominated. In Corollary
6.4 and Theorem 6.11 we relate stably dominated groups to group schemes over O.
Previous work in this direction used other theories, inspired by topology; see [20],
[11] regarding the p-adics.

We now describe the results in more detail. Our main notion will be that of a stably
dominated group. In a metastable theory, we will try to analyze arbitrary groups, and
to some extent types, using them. In the case of valued fields, this notion is related
to but distinct from compactness (over those fields where topological notions make
sense, i.e. local fields). For groups defined over local fields, stable domination implies
compactness of the group of points over every finite extension. Abelian varieties with
bad reduction show that the converse fails; this failure is explained by another aspect
of the theory, definable homomorphic quotients defined over �.

Let T be a first order theory. It is convenient to view a projective system of definable
sets Di as a single object, a pro-definable set; similarly for a compatible system of
definable maps αi : P → Di . Precise definitions of the terminology and notations
used in the following paragraphs can be found in Sects. 2.2 and 2.3.

Definition 1.1 (Stable domination) A type p overC is stably dominated if there exists,
over C , a pro-definable map α : p → D, D stable and stably embedded, such that for
any a |� p and tuple b, α(a)⫝C D ∩ dcl(b) implies:

tp(b/Cα(a)) |� tp(b/Ca).

Let� be a stably embedded definable set which is orthogonal to the stable part: there
is no definable function with infinite image from a power of � to a stable definable
set. In this paper we will mostly be focusing on the case where � is o-minimal, as
is the case in algebraically closed valued fields. Many of the results presented here
should remain true in Henselian valued fields with algebraically closed residue field
and different value groups, such as Z; where every definable subset of � is still a
Boolean combination of ∅-definable sets and intervals.

Definition 1.2 (Metastability) A theory T is metastable (over �) if:

(B) Any set of parameters C0 is included in a set C , called a metastability basis, such
that for any a, there exists a pro-definable map γ (over C), from p to some power
of � with tp(a/γ (a)) stably dominated.
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(E) Every type over an algebraically closed subset (including imaginaries) of a model
of T has an automorphism-invariant extension to the model.

Themain reasonwe require property (E) is because of descent (Proposition 2.11.(2))
which is not known to hold without the the additional hypothesis that tp(B/C) has a
global C-invariant extension.

Question 1.3 (1) Can descent be proved without the additional hypothesis that
tp(B/C) has a global C-invariant extension?

(2) If we assume � to be o-minimal, does property (E) follow from the existence of
metastability bases?

Remark 1.4 (1) Instead of considering all C-definable stable sets, it is possible, in
the definition of stable domination, to take a proper subfamily SC with reason-
able closure properties. The notion of S-domination is meaningful even for stable
theories.

(2) In the definition of metastability, one can also replace the single sort � with a
family of sorts �i , or with a family of parametrized families of definable sets GA,
with no loss for the results of the present paper.

As in stability theory, a range of finiteness assumptions is possible. Let T be
metastable over �.

Definition 1.5 (cf. Definition 2.17) The theory T has (FD) if:

(1) � is o-minimal.
(2) Morley dimension is uniformly finite and definable in families.
(3) Let D be a definable set. TheMorley dimension of f (D), where f ranges over all

definable functions with parameters such that f (D) is stable, takes a maximum
value.

(4) Similarly, the o-minimal dimension of g(D), where g ranges over all definable
functions with parameters such that g(D) is �-internal, takes a maximum value.

Let A ≤ M |� T . We define StA to be the family of all stable, stably embedded
A-definable sets. Some statements will be simpler if we also assume:

Definition 1.6 (cf. Definition 2.21) The theory T has (FDω) if, in addition to (FD), any
set is contained in a metastability basis M which is also a model. Moreover, for any
acl-finitely generated G ⊆ � and S ⊆ StM∪G over M , isolated types over M ∪ S are
dense.

Remark 1.7 (1) (FD) and (FDω) both hold in ACVF, with all imaginary sorts included
(cf. Proposition 2.33). (FD), at least, is valid for all C-minimal expansions of
ACVF, in particular the rigid analytic expansions (cf. [10,14,15]).

(2) Existentially closed valued fields with a contractive derivative (cf. [26]) and sep-
arably closed valued fields (cf. [8]) are also metastable, but of infinite rank. The
results presented here will only hold in finite rank definable groups.

(3) In practice, the main structural results will use finite weight hypotheses, see Defi-
nition 2.23; this is a weaker consequence of (FD).
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A group is stably dominated if it has a generic type which is stably dominated (See
Definitions 3.1 and 4.1). In this case, the stable domination is witnessed by a group
homomorphism (cf. Proposition 4.6). One cannot expect every group to be stably
dominated. But one can hope to shed light on any definable group by studying the
stably dominated groups inside it. We formulate the notion of a limit stably dominated
group: it is a direct limit of connected metastable groups by a pro-definable direct
limit system (cf. Definition 5.6).

Theorem 1.8 (cf. Theorem 5.16) Let T be a metastable theory with (FDω). Let A be a
definable Abelian group. Then there exists a definable group � ⊂ �n, and a definable
homomorphism λ : A → �, with H := ker(λ) limit stably dominated.

In fact, under these assumptions, H is the union of a definable directed family of
definable groups, each of which is stably dominated. Assuming only bounded weight
(in place of (FDω)), we obtain a similar result but with H ∞-definable.

In the non-Abelian case the question remains open. The optimal conjecture would
be a positive answer to:

Problem 1.9 (FDω) Does any definable group G have a limit stably dominated defin-
able subgroup H with H\G/H internal to �?

Another goal of this paper is to relate definable groups in ACVF to group schemes
overO. We recall the analogous results for the algebraic and real semi-algebraic cases.
Consider a field K of characteristic zero. Then the natural functor from the category of
algebraic groups to the category of constructible groups is an equivalence of categories.
This follows locally from Weil’s group chunk theorem; nevertheless some additional
technique is needed to complete the theorem. It was conjectured by Poizat and proved
in [30] using definable topological manifolds, and in [12] using stability theoretic
notions like definable types and germs. This methods will be explained in Sect. 3. Let
us only remark here that an irreducible algebraic variety has a unique generic behavior,
in that any definable subset has lower dimension or a complement of lower dimension;
this is typical of stable theories.

In ACVF, we certainly cannot hope every definable group to be a subgroup of an
algebraic group or even of the definable homomorphic image of an algebraic group.
We can, however, hope for all definable groups to be towers of such groups:

Problem 1.10 Let G be a definable group in K |� ACVF. Do there exist definable
normal subgroups (1) = G0 ≤ · · · ≤ Gn = G of G and definable homomorphisms
fi , with kernel Gi , from Gi+1 into the definable homomorphic image of an algebraic
group over K?

Call a definable set D boundedly imaginary if there exists no definable map with
parameters from D onto an unbounded subset of �. If D is defined over a local field L ,
then D is boundedly imaginary if and only if D(L ′) is finite for every finite extension
L ′ of L . We prove:

Proposition 1.11 (cf. Corollary 6.4) Let H be a stably dominated connected group
definable in K |� ACVF. Then there exists an algebraic group G over K and a
definable homomorphism f : H → G(K ) with boundedly imaginary kernel.
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Corollary 1.12 Let H be a stably dominated group definable inACVFwith parameters
from a local field L. Then there exists a definable homomorphism f : H(L) → G(L)

with G an algebraic group over L, with finite kernel.

Proposition 1.11 reduces, up to a boundedly imaginary kernel, the study of a sta-
bly dominated groups definable in ACVF to that of stably dominated subgroups of
algebraic groups G. We proceed then to describe these.

There exists an exact sequence 1 → A → G → f L → 1, with A an Abelian
variety and L an affine algebraic group. We show (cf. Lemma 4.3 and Corollary 4.5)
that a definable subgroup H of G is stably dominated if and only if H ∩ A and f (H)

are. For linear groups, we have:

Theorem 1.13 (cf. Theorem 6.11) Let G be an affine algebraic group and let H be a
stably dominated definable subgroup of G. Then H is isomorphic to H(O), H a group
scheme of finite type over O.

If H is Zariski dense in G, H can be taken to be K -isomorphic to G.

Finally, we show that enough of the structure of definable groups in ACVF is known
to be able to classify all the fields: as expected, they are all isomorphic either to the
valued field itself or to its residue field (cf. Theorem 6.23).

Let us conclude this introduction with a series of examples that illustrate some of
the structure results proved in this paper. Since this structure is reflected in the generics
of the groups, we also discuss these generics (cf. Section 3 for definitions).

Example 1.14 (Structure and generics of certain algebraic groups) Let K be an alge-
braically closed valued field.

(1) SLn(O) is stably dominated. Its unique generic is stably dominated via the residue
map.

(2) Gm(K ) has a largest stably dominated subgroup Gm(O) and Gm(K )/Gm(O) 
�. It has two generics: elements of small valuation and elements of large valuation
(i.e. infinitesimals), both generics are attributable to �.

(3) Ga(K ) is a limit stably dominated group, it is the union of the stably dominated
subgroups αO. It has a unique generic: elements of small valuation. Here the
generic types correspond to cofinal definable types in the (partially) ordered set
(�,>) indexing the stably dominated subgroups αO. The fact that the poset has
a unique cofinal definable type is however a phenomenon of dimension one.
The limit stably dominated groupG

2
a(K ), however, has a large family of generics.

For any definable curve E in �2, cofinal in the sense that for any (a, b) there
exists (d, e) ∈ E with d < a and e < b, there exists a generic type of G

2
a(K )

whose projection to �2 concentrates on E .
(4) Let Bn ≤ SLn(K ) be the solvable group of upper diagonal matrices. The valua-

tion of the diagonal coefficients is a group homomorphism into �n−1 with limit
stably dominated kernel Un .

The group Bn has left, right as well as two sided generics. One of the latter
is given as follows. Let (xi, j ) be the matrix coefficients of an element of x ∈
GLn(K ). A two-sided generic of G is determined by: val(xi, j ) << val(xi ′, j ′)
when (i, j) < (i ′, j ′) lexicographically (and i < j).
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(5) For n > 1, SLn(K ) is simple but neither limit stably dominated nor �-internal.
However, the double coset space of Un\SLn(K )/Un is a disjoint union of n!
copies of �n−1. The group SLn(K ) has no generic types.

Parts of this text served as notes for a graduate seminar, given by the first author, in
the Hebrew University in Fall 2003; the participants have the authors’ warm thanks.
The authors are also very grateful to the referee for his two friendly and highly consci-
entious reports, written more than a decade apart. Lastly, the second author would like
to express his profound gratitude to Reid Dale and all the participants in the two Paris
reading groups with whom he spent many hours reading earlier drafts of this paper.

The first author was supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant
Agreement No. 291111/ MODAG. The second author was partially supported by
ValCoMo (ANR-13-BS01-0006).

2 Preliminaries

We recall somematerial from stability, stable domination, o-minimality and the model
theory of algebraically closed valued fields, in a form suitable for our purposes.

We fix a theory T that eliminates imaginaries and a universal modelU (a sufficiently
saturated and homogeneous model). Any model of T that we consider will be an
elementary submodel of U. We write |� φ as a shorthand for U |� φ. By a definable
set or function we mean one defined in TA for some A ⊆ U. If we wish to specify the
base of definition, we say A-definable.

A pro-definable set X is a (small) projective filtered system (Xi )i∈I of definable
sets and definable maps. We think of X as lim←−i

Xi . Pro-definable sets can equivalently
be presented as a collection of formulas in potentially infinitely many variables. If all
themaps in the system describing X are injective, we say that X is∞-definable andwe
can identify X with a subset of any of the Xi . If all the maps in the system describing
X are surjective, we say that X is strict pro-definable; equivalently, the projection of
X to any Xi is definable. A relatively definable subset of X is a definable subset of
one of the Xi ; we identify it as a subset of X by pulling it back to X . Equivalently, if
x = (xi ) is a tuple of variables where each xi ranges over Xi , a relatively definable
subset of X is the set of realizations in X of some formula φ(x).

A pro-definable map f : lim←−i
Xi → Y where Y is definable is a definable map

from some Xi to Y . A pro-definable map f : lim←−i
Xi → lim←− j

Y j is a compatible

collection of maps f j : lim←−i
Xi → Y j . A pro-definable subset of a pro-definable set

X = lim←−i
Xi is a pro-definable set Y with an injective pro-definable map f : Y → X ;

it can be identified with a compatible collection of ∞-definable subsets of the Xi , or
with an intersection of relatively definable subsets of X .

More generally, by a piecewise pro-definable set, we mean a family (Xi )i∈I of
pro-definable sets over a directed order I , with a compatible system of injective pro-
definable maps Xi → X j , for all i ≤ j , viewed as inclusion maps. The direct limit is
thus identified with the union, and denoted X = ⋃

i Xi . A pro-definable subset of X
is a pro-definable subset of one of the Xi .
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2.1 Definable types and filters

A type will mean a complete type in possibly infinitely many variables (equivalently
an ultrafilter on the Boolean algebra of relatively definable sets). We will refer to
possibly incomplete types as filters.

A filter π(x) over U in the (possibly infinite) tuple of variables x is said to be
C-definable if for all formulas φ(x, y), there exists a formula θ(y) =: (dπ x)φ(x, y)
over C , such that π = {φ(x,m) : U |� (dπ x)φ(x,m)}. Note that π is completely
determined by the map φ(x, y) �→ (dπ x)φ(x, y), its definition scheme. If π is a type
over U, then this map is a Boolean homomorphism.

If C is a set of parameters, we define π |C := {φ(x,m) : U |� (dπ x)φ(x,m) and
m ∈ C}. Note that if C is a model, π |C completely determines π .

We say that π concentrates on a pro-definable set D if π(x) � x ∈ D. By a
pro-definable function on π , we mean a pro-definable map f : D → X such that π

concentrates on D.

Definition 2.1 If f is a pro-definable function on a C-definable filter π , we define the
push-forward f�π by:

(d f�πu)φ(u, v) = (dπ x)φ( f (x), v).

So that if a |� π |C then f (a) |� f�π |C .

Definition 2.2 Let π(x), μ(y) be C-definable filters. Define ρ(x, y) =: π(x) ⊗ μ(y)
by:

(dρxy)φ(x, y, z) = (dπ x)(dμy)φ(x, y, z).

Then, if a |� π |C and b |� μ|Ca, ab |� (π ⊗ μ)|C . If π and μ are types, then f�π
and π ⊗ μ are types.

Wewill occasionally use amore general construction.Assume p(x) is aC-definable
type. Let a |� p and let qa(y) be a Ca-definable type of the theory TCa .

Lemma 2.3 There exists a unique definable type r(xy) such that for any B ⊇ C, if
ab |� r |B then a |� p|B and b |� qa |Ba.
Proof Given a formula φ(xy, z), let ψ(x, z) be a formula such that ψ(a, z) =
(dqa y)φ(a, y, z). The formula ψ is not uniquely defined, but if ψ and ψ ′ are two
possibilities then (dpx)(ψ ↔ ψ ′). Therefore we can define:

(dr xy)φ(xy, z) = (dpx)ψ(x, y, z).

It is easy to check that this definition scheme works.

In fact, over C = acl(C), it suffices that qa be definable over acl(Ca). This follows
from:
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Lemma 2.4 Let M be a model and let C = acl(C) ⊆ M. Let tp(a/M) be C-definable.
Let c ∈ acl(Ca). Then tp(ac/M) is C-definable. Indeed, tp(a/M) ∪ tp(ac/C) �
tp(ac/M).

Proof Let φ(x, y) be a formula over C such that φ(a, c) holds, and such that
φ(a, y) has k solutions. Let ψ(x, y, z) be any formula. Then the equivalence rela-
tion z1Ez2 defined by (dpx)(∀y)φ(x, y) �⇒ (ψ(x, y, z1) ⇔ ψ(x, y, z2)) where
p := tp(a/M) is C-definable and has at most 2k classes. It follows that each of these
classes, denote Zi , are C-definable. Finally, for all m, |� ψ(a, c,m) if and only if
m ∈ Zi for some i such that (∀z ∈ Zi )ψ(x, y, z) ∈ tp(ac/C). ��

See Proposition 2.10.(4) for a stronger statement in the stably dominated case.

Definition 2.5 (Germs of definable functions) Let p be a definable type. Two definable
functions f (x, b) and g(x, b′) are said to have the same p-germ if

|� (dpx) f (x, b) = g(x, b′).

We say that the p-germ of f (x, b) is defined over C if whenever tp(b/C) =
tp(b′/C), f (x, b) and f (x, b′) have the same p-germ. Note that the equivalence rela-
tion b ∼ b′ defined by “ f (x, b), f (x, b′) have the same p-germ” is definable; the
p-germ of f (x, b) is defined over C if and only if b/∼ ∈ dcl(C).

2.2 Stable domination

Definition 2.6 Let D be a C-definable set.

(1) D is said to be stably embedded if any definable X ⊆ Dn , for some n, is C ∪ D-
definable.

(2) D is said to be stable if every formula φ(x; y) with parameters in C , implying
x ∈ Dn for some n, is a stable formula.

Since being stable implies being stably embedded, the later is often referred to as
being stable, stably embedded in the literature. See e.g. [18] for a treatment of basic
stability and [1, Appendix] for the properties of stably embedded and stable sets.

For all C , let (Di )i enumerate all C-definable stable sets and StC := ∏
i Di . It is

a strict pro-definable set. We often consider StC as a (stable) structure, whose sorts
are the Di , with the full induced structure. By a pro-definable map into StC , we mean
(somewhat abusively) a collection of maps f = ( f j ) j where the range of each f j is
stable. For all b, let StC (b) denote dcl(Cb) ∩ StC .

Notation 2.7 For all a, b, C , we write a⫝Cb if there exists an acl(C)-definable type
p such that a |� p|acl(Cb).

Note that ifa,b,C ∈ StD for some D ⊆ C thena⫝Cb if andonly if they are (forking)
independent in StD over C . Let us now recall the definition of stable domination:

Definition 2.8 Let p = tp(a/C) and α : p → StC be a pro-C-definable map. The
type p is said to be stably dominated via α = (αi )i if for any tuple b, if StC (b)⫝Cα(a),
then tp(b/Cα(a)) � tp(b/Ca).
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A type p over C is said to be stably dominated if it stably dominated via some
C-definable map α : p → StC . For a |� p, let θC (a) enumerate StC (a), then p is
stably dominated if and only if it is stably dominated via θC .

Let us now recall some of the result from [7] regarding stable domination.

Proposition 2.9 [7, Corollary 3.31.(iii) and Proposition 3.13] For all a and C,

(1) tp(a/C) is stably dominated if and only if tp(a/acl(C)) is.
(2) If C = acl(C) and tp(a/C) is stably dominated via f , then tp(a/C) has a unique

C-definable extension p. Moreover, for all B ⊇ C, a |� p|B if and only if
StC (B)⫝C f (a).

Proposition 2.10 Assume tp(a/C) is stably dominated.

(1) If q is a global acl(C)-definable type and b |� q|acl(C), then a⫝Cb implies b⫝Ca.
In particular, if tp(b/C) is stably dominated, a⫝Cb if and only if b⫝Ca.

(2) a⫝Cbd if and only if a⫝Cb and a⫝Cbd.
(3) If tp(b/Ca) is stably dominated, then so is tp(ab/C).
(4) If b ∈ acl(Ca), then tp(b/C) is stably dominated.

Proof (1) and (2) are easy to check. (3) is [7, Proposition 6.11] and (4) is [7, Corol-
lary 6.12].

Let p be a global C-invariant type. We say that p is stably dominated over C is
p|C is stably dominated.

Proposition 2.11 [7, Proposition 4.1 and Theorem 4.9] Let B ⊇ C and p be a global
C-invariant type.

(1) Let f be a pro-C-definable function. If p is stably dominated over C via f , then
it is also stably dominated over B via f .

(2) If p is stably dominated over B and tp(B/C) has a global C-invariant extension,
then p is stably dominated over C.

Proposition 2.12 (Strong germs, [7, Theorem 6.3]) Let C = acl(C), p be a global
C-invariant type stably dominated over C and f be a definable function defined at p.

(1) The p-germ of f is strong; i.e. there exists a [ f ]pC-definable function g with the
same p-germ as f .

(2) If f (a) ∈ StC for a |� p, then [ f ]p ∈ StC .

Let us now recall the definition of metastability. Let � be an ∅-definable stably
embedded set. We will also assume that � is orthogonal to the stable part: no infinite
definable subset of�eq is stable. For anyC and a, let�C (a) denote (C∪�eq)∩dcl(Ca).

Definition 2.13 The theory T is metastable (over �) if, for any C :

(1) (Metastability bases) There exists D ⊇ C such that for any tuple a, tp(a/�D(a))

is stably dominated.
(2) (Invariant extension property) If C = acl(C), then, for all tuple a, there exists a

global C-invariant type p such that a |� p|C .
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A D such as in (1) is called a metastability basis.

Remark 2.14 Since � is orthogonal to the stable part, if tp(a/C) is stably dominated,
so is tp(a/Cγ ) for any tuple γ ∈ �. It follows that if C is a metastability basis, so is
Cγ .

Proposition 2.15 (Orthogonality to �, [7, Corollary 10.8]) Assume that the theory T
is metastable over �. A global type C-invariant type p is stably dominated if and only
if for any definable map g : p → �eq, the p-germ of g is constant (equivalently, g� p
is a realized type).

Write g(p) for the constant value of the p-germ. The property of p in the proposition
above is referred to as orthogonality of p to �.

2.3 Ranks and weights

Let us now recall our “finite rank” assumptions. But, first let us recall the definition
of internality.

Definition 2.16 A definable set X is �-internal if X ⊆ dcl(F�) for some finite set F ;
equivalently for any M ≺ M ′ |� T , X(M ′) ⊆ dcl(M�(M ′)).

The same condition with acl replacing dcl is called almost internality.

Thus a definable X is almost �-internal if over some finite set F of parameters
and for some finite m, X admits a definable m-to-one function f : X → Y/E for
some definable Y ⊆ dcl(�n) and definable equivalence relation E . When� eliminates
imaginaries, E does not need to be mentioned. Note that X is �-internal whenever we
can choose m = 1.

A definable set D is called o-minimal if there exists a definable linear ordering on
D such that every definable subset of D (with parameters) is a finite union of intervals
and points. There is a natural notion of dimension for definable subsets of Dm , such
that D is dimension one (see [31]).

Definition 2.17 T has (FD) if:

(1) � is o-minimal.
(2) Morley rank (in the stable part, denoted MR) is uniformly finite and definable in

families: if (Dt )t is a definable family of definable sets, then, when Dt is stable,
the Morley rank of Dt is finite and bounded uniformly in t and for all m ∈ Z≥0,
{t : MR(Dt ) = m} is definable.

(3) For all definable D, the Morley rank of f (D), where f ranges over all func-
tions definable with parameters whose range is stable, takes a maximum value
dimst(D) ∈ Z≥0.

(4) For all definable D, the o-minimal dimension of f (D), where f ranges over all
functions definable with parameters whose range is�-internal, takes a maximum
value dimo(D) ∈ Z≥0.

Note that if � is an o-minimal group, it eliminates imaginaries. So, in (4), we could
equally well ask that f (D) ⊆ �n for some n.
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Definition 2.18 If X = lim←−i
Xi is pro-definable, we define dimst(X) =

max{dimst(Xi ) : i} ∈ Z≥0 ∪ {∞} and dimo(X) = max{dimo(Xi ) : i} ∈ Z≥0 ∪ {∞}.
We define dimst(a/B) := min{dimst(D) : a ∈ D and D is B-definable} and

dimo(a/B) := min{dimo(D) : a ∈ D and D is B-definable}.
Note that if D is a stable definable set then dimst(D) = MR(D) and, similarly,

for all tuples a ∈ StC , dimst(a/C) = MR(a/C). Note that, in general, we may have
dimst(d/B) > dimst(StB(d)/B). Similar statements hold for dimo.

A set A is acl-finitely generated over B ⊆ A if A ⊆ acl(Ba) for some finite
tuple a from A. If c ∈ acl(Ba) is a finite tuple, then dimst(ca/B) = dimst(a/B). In
particular, it makes sense to speak of the stable dimension (respectively the o-minimal
dimension) over B of any set finitely acl-generated over B.

Lemma 2.19 (FD) Let C be a set of parameters and a be a finite tuple. Then �C (a)

and StC (a) are acl-finitely generated over C.

Proof Any tuple d ∈ StC (a) can be written d = h(a) for some C-definable function
h. By the dimension bound in (FD), dimst(d/C) ≤ dimst(a/C). It follows that if
di ∈ StC (a) then for sufficiently large n, dn ∈ acl(Cd1, . . . , dn−1). So StC (a) is
finitely acl-generated. The proof for �C (a) is the same.

Lemma 2.20 (FD) Let f : P → Q be a definable map between definable sets P and
Q. Let Pa = f −1(a). Then there exists m such that if Pa is finite, then |Pa | ≤ m.

Proof Say f , P, Q are ∅-definable. By compactness, it suffices to show that if Pa
is infinite then there exists a ∅-definable set Q′ with a ∈ Q′ and Pb infinite for all
b ∈ Q′. ��
Claim 2.20.1 If Pa is infinite then either dimst(Pa) > 0 or dimo(Pa) > 0.

Proof Let M be a metastability base, with a ∈ M . Let c ∈ Pa \ M . If �M (c) �= �(M)

then dimo(Pa) > 0. Otherwise, by metastability, tp(c/M) is stably dominated, say
via f . If f (c) ∈ M , then tp(b/M) � tp(b/Mc) for all b, and taking b = c it follows
that c ∈ M . Thus f (c) ∈ StM \ M . It follows that dimst(Pa) > 0. ��

If dimst(Pa) > 0, then there exists a definable family of stable definable sets Dt

with dimst(Dt ) = k > 0, and a definable function f (x, u) such that for some b and
t , f (Pa, b) = Dt . Then the formula (∃u)(∃t) f (Py, u) = Dt is true of y = a, and
implies that Py is infinite. The case dimo(Pa) > 0 is similar.

Definition 2.21 T has (FDω) if, in addition to (FD), any C is contained in a metasta-
bility basis M such that M is a model and such that for any finitely acl-generated
G ⊆ � and S ⊆ StM∪G over M , isolated types over M ∪ S are dense.

Say tp(a/C) is strongly stably dominated if there exists φ(x, c) ∈ tp(a/StC (a))

such that for any tuple b with StC (b)⫝CStC (a), tp(a/StC (a)b) is isolated via φ. In
particular, tp(a/StC (a)) is isolated via φ. Moreover, tp(a/C) is stably dominated,
since tp(a/StC (a)) implies φ which implies tp(a/StC (a)b) for any b as above.
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When tp(a/C) is strongly stably dominated, the parameters c of φ may be written
as c0h(a) for some C-definable function h into StC and tuple c0 ∈ C . In this situation
we say that tp(a/C) is strongly stably dominated via h. Conversely, if tp(a/C) is
stably dominated via h and tp(a/Ch(a)) is isolated, then tp(a/C) is strongly stably
dominated via h.

Lemma 2.22 (FDω) Let D be C0-definable and h : D → S a definable map to a
stable definable set of maximal possible dimension dimst(S) = dimst(D). Then there
exists M containing C0 and a ∈ D such that, with C := �M (a), we have dimst(D) =
dimst(h(a)/C) = dimst(StC (a)/C), and tp(a/C) is strongly stably dominated via h.

Proof We may assume that h is defined over C0. Let a0 ∈ D be such that dimst(D) =
dimst(h(a0)/C0). Extend C0 to a metastability basis M as in (FDω), with h(a0) inde-
pendent from M over C0. Then dimst(D) = dimst(h(a0)/M) = dimst(StM (a0)/M).
Choose a0 such that dimo(�M (a0)/M) is as large as possible—given the other con-
straints. Let C := �M (a0) and B := StC (a0); then, by Lemma 2.19, C and B are
finitely generated over M . Moreover, dimst(h(a0)/C) = dimst(D) ≥ dimst(B/C) so
B ⊆ acl(Ch(a0)). Let D′ be B-definable set contained in D, containing a0, and such
that for any a ∈ D′, B ⊆ acl(Ch(a)). By (FDω), there exists a ∈ D′ such that tp(a/B)

is isolated. By choice of D′ we have B ⊆ acl(Ch(a)). So tp(B/Ch(a)) is atomic and,
therefore, tp(a/Ch(a)) is isolated.

Similarly, by maximality of dimo(�M (a0)/M) and the fact that �M (a0) ⊆ B ∩
� ⊆ acl(Ca) ∩ � ⊆ �M (a), we have �M (a) = �M (a0) = C . By metastability,
tp(a/C) is stably dominated. But dimst(StC (a)/C) ≤ dimst(D) = dimst(B/C) and
B ⊆ acl(Ch(a)) ⊆ acl(StC (a)), so StC (a) ⊆ acl(B) ⊆ acl(Ch(a)) and tp(a/C) is
stably dominated via h. It follows that tp(a/C) is strongly stably dominated via h. ��

Finally, let us introduce weight.

Definition 2.23 Let p be a definable type and X be a pro-definable set. We say that X
has p-weight smaller or equal to n if whenever b ∈ X , (a1, . . . , an) |� p⊗n , we have
ai |� p|b for some i . The set X has bounded weight if for some n, for every stably
dominated type p concentrating on X , X has p-weight smaller or equal to n.

For all definable D and stably dominated types p concentrating on D, the p-weight
of D is bounded by dimst(D). It follows that if (FD) holds, every definable set has
bounded weight. In ACVF, for example, the weight of any definable subset of a variety
V is bounded by the dimension of V .

2.4 Some o-minimal lemmas

This subsection contains some lemmas on o-minimal partial orders and groups. The
former will yield a generic type of limit stably dominated groups. The latter will be
used to improve some statements from “almost internal” to “internal”.

Let (P,≤) be a definable partial ordering, and p a definable type concentrating
on P . We say p is cofinal if for any c ∈ P , |� (dpx)x ≥ c. Equivalently, for every
non-cofinal definable Q ⊆ P , |� ¬(dpx)Q(x). The following result can also be found
in [9, Lemma 4.2.18].
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Lemma 2.24 Let P be a definable directed partial ordering in an o-minimal structure
�. Then there exists a definable type p cofinal in P.

Proof We assume P is ∅-definable, and work with ∅-definable sets; we will find an
∅-definable type with this property.

Note first that we may replace P with any ∅-definable cofinal subset. Also if Q1
and Q2 are non-cofinal subsets of P , there exist a1 and a2 such that no element of Qi

lies above ai ; but by directedness there exists a ≥ a1, a2; so no element of Q1 ∪ Q2
lies above a, i.e. Q1 ∪ Q2 is not cofinal. In particular if P = P ′ ∪ P ′′, at least one of
P ′, P ′′ is cofinal in P (hence also directed).

If dimo(P) = 0 then P is finite, so according to the above remarks we may assume
it has one point; in which case the lemma is trivial. We use here the fact that in an
o-minimal theory, any point of a finite ∅-definable set is definable.

If dimo(P) = n > 0, we can divide P into finitely many ∅-definable sets Pi ,
each admitting a map fi : Pi → � with fibers of dimension strictly smaller than
n. We may thus assume that there exists an ∅-definable f : P → � with fibers
of dimension strictly smaller than n. For all a < b ∈ �, let P(a) = f −1(a), and
P(a, b) = f −1(a, b).

Claim 2.24.1 One of the following holds:

(1) For any a ∈ �, P(a,∞) is cofinal in P.
(2) For some ∅-definable a ∈ �, for all b > a, P(a, b) is cofinal.
(3) For some ∅-definable a ∈ �, P(a) is cofinal.
(4) For some ∅-definable a ∈ �, for all b < a, P(b, a) is cofinal.
(5) For any a ∈ �, P(−∞, a) is cofinal.

Proof Suppose (1) and (5) fail. Then P(a,∞) is not cofinal in P for some a; so
P(−∞, b) must be cofinal, for any b > a. Since (5) fails, {b : P(−∞, b) is cofinal}
is a non-empty proper definable subset of�, closed upwards, hence of the form [A,∞)

or (A,∞) for some ∅-definable A ∈ �. In the former case, P(−∞, A) is cofinal, but
P(−∞, b) is not cofinal for b < A, so P(b, A) is cofinal for any b < A; thus (4)
holds.

In the latter case, (−∞, b) is cofinal for any b > A, while (−∞, A) is not; so
P([A, b)) is cofinal for any b > A. Thus either (2) or (3) hold.

Let p1 be an ∅-definable type of �, concentrating on sets X with f −1(X) cofinal;
for instance in case (1), p1 concentrates on intervals (a,∞).

Claim 2.24.2 For any c ∈ P, if a |� p1|c then there exists d ∈ P(a) with d ≥ c.

Proof Let Y (c) = {x : (∃y ∈ P(x))y ≥ c}. Then P−1(� � Y (c)) is not cofinal in P ,
so it cannot be in the definable type p1. Hence Y (c) ∈ p1|{c}.

Now let M |� T . Let a |� p1|M . By induction on n, let qa be an a-definable type,
cofinal in P(a), and let b |� qa |Ma. Then tp(ab/M), and hence tp(b/M) is definable
(see Lemma 2.3). If c ∈ M with c ∈ P , then by Claim 2.24.2, there exists d ∈ P(a)

with d ≥ c. So {y ∈ P(a) : ¬(y ≥ c)} is not cofinal in P(a). Therefore this set is not
in qa . Since b |� qa |Ma, we have b ≥ c. This shows that tp(b/M) is cofinal in P . ��
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Discussion If there exists a definable weakly order preserving map j : � → P with
cofinal image, then we can use the definable type at ∞ of �, r∞, to obtain a cofinal
definable type of P , namely j�r∞.

When� admits a field structure, perhaps such amap j always exists. In general, it is
not always possible to find a one-dimensional cofinal subset of P . For instance, when
� is a divisible ordered Abelian group, consider the product of two closed intervals of
incommensurable sizes; or the subdiagonal part of a square.

Lemma 2.25 Let G be a definable group. Assume G is almost internal to a stably
embedded definable set �. Then there exists a finite normal subgroup N of G with
G/N internal to �.

Proof The assumption implies the existence of a definable finite-to-one function f :
G → Y , where Y ⊆ dcl(�). Given a definable Y ′ ⊆ Y , let m(Y ′) be the least integer
m such that (possibly over some more parameters), there exists a definable m-to-one
map f −1(Y ′) → Z , for some definable Z ⊆ dcl(�). We may assume that f is m(Y )-
to-one. Let I be the family of all definable subsets Y ′ of Y with (Y ′ = ∅ or) m(Y ′) <

m(Y ). This is clearly an ideal (closed under finite unions, and definable subsets). Let
F := {Y �Y ′ : Y ′ ∈ I } be the dual filter. For g ∈ G, let D(g) be the set of y ∈ Y such
that for some (necessarily unique) y′, g · f −1(y) = f −1(y′); and define g�(y) = y′.
The function x �→ ( f (x), f (g · x)) shows that {y : | f (g · f −1(y))| > 1} ∈ I . Since
X := {y : | f −1(y)| = m} ∈ F and (Y � I ) ∩ X ⊆ D(g), it follows that D(g) ∈ F .

For any definable Z ⊆ Y , let F |Z = {W ∩ Z : W ∈ F}. Let G0 be the set of
bijections φ : Y ′ → Y ′′ with Y ′,Y ′′ ∈ F , carrying the filter F |Y ′ to F |Y ′′. Note that
g� : D(g) → D(g−1) lies in G0. Write φ ∼ φ′ if φ and φ′ agree on some common
subset of their domains, lying in F ; and let G ′ = G0/ ∼. Composition induces a
group structure on G ′ and we obtain a homomorphism G → G ′, g �→ g�/ ∼. Let
N be the kernel of this homomorphism. Let us prove that |N | ≤ m(Y ). For suppose
n0, . . . , nm are elements of N . Then for some y ∈ ∩D(ni ) we have (ni )�(y) = y. It
follows that ni ( f −1(y)) = f −1(y). Fix any g ∈ f −1(y) and since | f −1(y)| = m, for
some i �= j we have ni · g = n j · g and hence ni = n j .

Let σ be an automorphism fixing �. Then for any g ∈ G, since g� is a function
between �-internal sets, σ(g)� = σ(g�) = g� and hence g · N = σ(g) · N . As � is
stably embedded, it follows that G/N is �-internal.

Lemma 2.26 Let G be a definable group. Assume G is almost internal to an o-minimal
definable set �. Then G is �-internal.

Proof By Lemma 2.25, there exists a definable surjective homomorphism f : G → B
with B a group definable over �, and N = ker( f ) a group of finite size n. Let B0 be
the connected component of the identity in B; then B/B0 is finite, and it suffices to
prove the lemma for f −1(B0). Assume therefore that B is connected.

If G has a proper definable subgroup G1 of finite index, then f (G1) = B by
connectedness of B. It follows that N is not contained in G1, so N1 = N ∩ G1 has
smaller size than N . Hence using induction on the size of the kernel, G1 is �-internal;
hence so is G. Thus we may assume G has no proper definable subgroups of finite
index. Since the action of G on N by conjugation has kernel of finite index, N must
be central.
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Let Y = {gn : g ∈ B}. By [3, Theorem 7.2], there exists a definable function
α : Y → B with α(b)n = b for all b ∈ B. Define β : Y → G by β(b) = an

where f (a) = α(b); this does not depend on the choice of a, and we have f (β(b)) =
f (a)n = α(b)n = b. It follows that f −1(Y ) = Nβ(Y ) ⊆ dcl(N , �) is �-internal.
Similarly, let [B, B] = {[g, h] : g, h ∈ B}. As above, there exists a definable

α1 : [B, B] → B such that (∃y)[α1(b), y] = b, and α2 : [B, B] → B such that
[α1(b), α2(b)] = b. Define β ′ : [B, B] → G by β ′(b) = [a1, a2] where f (ai ) =
αi (b). Again β ′ is definable and well-defined, and shows that f −1([B, B]) is �-
internal.

Hence for any k, letting X (k) = {x1 . . . xk : x1, . . . , xk ∈ X}, ( f −1(Y ∪
[B, B]))(k) = f −1((Y ∪ [B, B])(k)) is �-internal. So we are done once we show:

Claim 2.26.1 Let B be any definably connected group definable in an o-minimal struc-
ture. Let Y = Yn(B) = {gn : g ∈ B}. Then for some k ∈ Z≥0, (Y ∪ [B, B])(k) = B.

Proof If the Claim holds for a normal subgroup H of B with bound k′, and also for
B/H (with bound k′′), then it is easily seen to hold for B (with bound k′ + k′′.)

We use induction on dimo(B). If B has a non-trivial proper connected definable
normal subgroup H , then the statement holds for H and for B/H .Wemay thus assume
B has no such subgroups H . Thus any definable normal subgroup of B is finite and
by connectedness, central.

If B is centerless, it is definably simple. By [23], B is elementarily equivalent to a
simple Lie group. In this case it is easy to see that every element is the product of a
bounded number of commutators, by considering root subgroups.

Since the center Z of B is finite, then B/Z is definably simple and so the claim
holds (say with kB/Z ). LetWl = (Y ∪[B, B])(l), and let π : B → B/Z be the quotient
homomorphism. Then π(Wl) = B/Z for l ≥ kB/Z . For such l, W5l ∩ Z = Wl ∩ Z
implies that W4l = W2l . Thus W2k is a subgroup of B mapping onto B/Z , for some
k ≤ kB/Z5|Z |. By connectedness W2k = B. ��

This concludes the proof. ��
We conclude this section with a quick discussion of definable compactness. First,

one can define the limit of a function along a definable type, generalizing the limit
along a one-dimensional curve. Let X be a definable space over an o-minimal structure
�.

Definition 2.27 Given a definable set D, a definable type p on D, and a definable
function g : D → X , we define lim p g = x ∈ X if for any definable neighborhoodU
of x , g� p concentrates on U .

When X is�∪{−∞,+∞}, the limit always exists. Consider the definable type g� p.
It must be of the form r∞, r−∞, ra := (x = a), r+

a the type of elements infinitesimally
bigger than a, or r−

a . By definition lim p g is ∞,−∞, a, a, a in the respective cases.
The following definition is equivalent to the one in [24].

Definition 2.28 The definable set X is definably compact if for any definable type p
on � and any definable function f : � → X , lim p f exists.
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Definition 2.29 Let A be a definable Abelian group.

• A definable set is called generic if finitely many translates of that set cover the
group.

• Say A has the property (NG) if the non-generic definable sets form an ideal.

Proposition 2.30 [22, Corollary 3.9] Any definably compact definable Abelian group
A in an o-minimal theory has (NG).

Moreover any definable subsemigroup of A is a group (cf. [22, Theorem 5.1]). We
include the deduction of the latter fact in a case we will need.

Lemma 2.31 Let A be an Abelian group with (NG). Let Y be a definable semi-group
of A, such that Y − Y = A. Then Y = A.

Proof Notefirst that A�Y is not generic.Otherwise, somefinite intersection
⋂n

i=1(ci+
Y ) = ∅. By assumption, there exist bi ∈ Y with bi + ci ∈ Y . If b := ∑

bi then
b + ci ∈ Y ; so by translating we may assume each ci ∈ Y . But then

∑
ci ∈ ci + Y

for each i , a contradiction.
As A is generic, Y cannot be in the non-generic ideal, so Y is generic and

⋃n
i=1 di +

Y = G for some di ∈ G. Again we find e ∈ Y with e + di ∈ Y . We have ∪n
i=1(e +

di ) + Y = G. But e + di + Y ⊆ Y . So Y = G.

2.5 Valued fields: imaginaries and resolution

Let K be an algebraically closed valued field, with valuation ringO, maximal idealM
and value group �. The geometric language for valued fields has a sort for the valued
field itself, and certain other sorts. In particular, there is a sort Sn such that Sn(K ) is
the space of free O-modules in Kn , equivalently Sn(K ) = GLn(K )/GLn(O). Until
the end of Section 2.5, we work in a model M of the theory ACVF of algebraically
closed fields in the geometric language.

By a substructure, wemean a subset ofM , closed under definable functions. For any
geometric sort S and substructure A ⊆ M , S(A) denotes S ∩ A; in particular K (A) is
the set of field points of A. A substructure A ⊆ M is called resolved if A ⊆ dcl(K (A)).
When�(A) �= 0 and A is algebraically closed this just amounts to saying that A ≺ M .
Recall that, in any first order theory, if A is a substructure of a model M , M is prime
over A if any elementary map A → N into another model, extends to an elementary
map M → N ; and M is minimal over A if there is no M ′ ≺ M with A ⊂ M ′. If a
minimal model over A and a prime one exist, then any two minimal or prime models
over A are isomorphic.

Proposition 2.32 Let A be a substructure of M, finitely generated over a subfield L of
K , and assume �(A) �= 0. Then there exists a minimal prime model Ã over A which
enjoys the following properties.

(1) Ã is a minimal resolution of A. Moreover it is the unique minimal resolution, up
to isomorphism over A. It is atomic over A.

(2) StL( Ã) = StL(A).
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(3) Let A ≤ A′, with A′ finitely generated over A. Then Ã embeds into Ã′ over A. If
A ≤ A′ ≤ Ã, then Ã is the prime resolution of A′.

(4) For a valued field extension L ′ of L, let L ′(A) be the structure generated by
L ′ ∪ A. Then L ′( Ã)alg is a prime resolution of L ′(A).

(5) If tp(A/L) is stably dominated, then tp( Ã/L) is stably dominated.
(6) If tp(A′/A) is stably dominated, and A′⫝A Ã, then there exists a prime resolution

Ã′ of A′ such that tp( Ã′/ Ã) is stably dominated.

Proof The existence, uniqueness andminimality of Ã are shown in [7, Theorem11.14].
It is also shown there that k( Ã) = k(acl(A)) and �( Ã) = �(acl(A)), where k is the
residue field; and that Ã/A is atomic, i.e. tp(c/A) is isolated for any tuple c from A.

(2) Since L is a field, for any B = acl(B) with L ⊂ B, StL(B) = dcl(B, k(B)).
(3) This is immediate from the definition of prime resolution: since Ã′ is a resolution

of A, Ã embeds into Ã′. If A ≤ A′ ≤ Ã, then Ã is clearly a minimal resolution
of A′; hence by (1) it is the prime resolution.

(4) Let B be the prime resolution of L ′(A). Then Ã embeds into B. Within B,
L ′( Ã)alg is a resolution of L ′(A); by minimality of B, B = L ′( Ã)alg.

(5) We may assume L = Lalg. Let p be an L-invariant extension of tp( Ã/L). Let L
be a maximal immediate extension of L . Choose it in such a way that Ã |� p|L .
Since A/L is stably dominated, �(L(A)alg) = �(L). According to (4), L( Ã)alg

is the prime resolution of L(A)alg, and so �(L( Ã)alg) = �(L). Since L is a
metastability basis, tp( Ã/L) is stably dominated. Using descent (cf. Proposition
2.11.(2)), tp( Ã/L) is stably dominated.

(6) Since A′⫝A Ã and tp(A′/A) is stably dominated, tp(A′/ Ã) is stably dominated.
By (5), tp(B/ Ã) is stably dominated, where B is a resolution of Ã(A′). But B
contains a resolution of A′ whose type over Ã is therefore stably dominated.

��
Proposition 2.33 The theory ACVF is metastable, with (FD) and (FDω).

Proof The fact that, in ACVF, maximally complete submodels are metastability bases
is proved in [7, Theorem 12.18.(ii)] and the existence of invariant extensions is shown
in [7, Corollary 8.16]. The fact that (FD) holds follows from the fact that the value
group � is a divisible ordered Abelian group, that the stable part, being internal to
an algebraically closed field, has finite Morley rank and that, for any definable subset
D of the field, dimst(D) and dimo(D) are bounded by the dimension of the Zariski
closure of D.

To see that (FDω) holds, let M |� ACVF and C be finitely generated over M—C
might contain imaginaries. By Proposition 2.32, the resolution N of C is a model of
ACVF which is atomic over M . Hence isolated types over C are dense.

Definition 2.34 (1) The (imaginary) element e ∈ M is said to be purely imaginary
over C ⊆ M if acl(Ce) contains no field elements other than those in acl(C).

(2) An pro-definable set D is purely imaginary if there exists no pro-C-definable map
(with parameters) from D onto an infinite subset of the field K .
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Note that D is purely imaginary if and only if, for all C such that D is C-definable,
any e ∈ D is purely imaginary over C . For every α ∈ �, let αO := {x ∈ K : val(x) ≥
α}, and αM := {x ∈ K : val(x) > α}.
Lemma 2.35 The following are equivalent:

(1) e is purely imaginary over C.
(2) dcl(Ce) ∩ K ⊆ acl(C).
(3) For some β0 ≤ 0 ≤ β1 ∈ �C (e) and d ∈ (β0O/β1M)n, e ∈ dcl(acl(C)β0β1d).

Proof Note that (1) implies (2) trivially. Let us now prove that (2) implies (1). Let
d ∈ acl(Ce) be a field element. The finite set of conjugates of d over Ce is coded by
a tuple d ′ of field elements and d ′ ∈ dcl(Ce). By (2), d ′ ∈ acl(C). Since d ∈ acl(d ′)
we have d ∈ acl(C).

Let us now assume (3) and prove (2). Let a = g(e) ∈ K for some C-definable map
g. By (3), there exists an acl(Cβ0β1)-definable map f with domain (β0O/β1M)n and
whose range contains e. Then g ◦ f : (β0O/β1M)n → K is definable. However, its
image cannot contain a ball since in some models of ACVF, β0O/β1M is countable
while every ball is uncountable. Hence, the image of g ◦ f is finite and a ∈ acl(C).

Finally, let us prove that (2) implies (3): By [6, Theorem 1.0.2], and using (2), there
exists an e-definable O-submodule � of Km (for some m), such that e is a canonical
parameter for�, over acl(C). The K -vector spaceV = K⊗O� is coded by an element
w of some Grassmanian Gm,l . Note that w ∈ dcl(Ce) ∩ K = acl(C) ∩ K =: K0.
Since K0 is an algebraically closed field, V is K0-isomorphic to Kl , so wemay assume
V = Kl . Dually, let V ′ = {v ∈ V : K · v ⊆ �}. Then V ′ is a K0-definable K -vector
subspace of V . Replacing � by the image in V /V ′, we may assume V ′ = (0). It
follows, by [6, Lemma 2.2.4], that V ′ ⊆ β0Ol for some β0 < 0. The set of all such β0
is acl(C)e-definable. Since o-minimal groups have Skolem functions, we may choose
β0 in �C (e).

Let v1, . . . , vl be a standard basis for V = Kl . Since vi ∈ K ⊗O �, we have civi ∈
� for some ci ∈ O. So

∑
ri civi ∈ � for all r1, . . . , rl ∈ O. Let �′(β) = {∑ rivi :

val(ri ) > β}. Then �′(β) ⊆ � for sufficiently large β; namely for β ≥ maxi val(ci ).
The set {β : �′(β) ⊆ �} is definable, hence it contains {β : β > β1} for some
Ce-definable β1. It follows that � is determined by its image D in (β0O/β1M)l . Pick
c ∈ β0O/β1M; then r �→ r · c is an isomorphism O/(β1 − β0)M → b0O/b1M. By
[13],O/(β1−β0)M is stably embedded; hence so isβ0O/β1M. Letd ∈ (β0O/β1M)n

be such that D is β0β1d-definable. Then e ∈ dcl(acl(C)β0β1d), as required.

Remark 2.36 As we can see from the proof above, every geometric sort other than K
is purely imaginary.

Definition 2.37 (1) An element e ∈ M is said to be boundedly imaginary over C ⊆
M if for any γ ∈ �C (e), tp(γ /C) is bounded, i.e. it is neither the type at +∞
nor the one at −∞.

(2) An ∞-definable set D is boundedly imaginary if there exists no definable map
(with parameters) from D onto an unbounded subset of �.

Note that D is boundedly imaginary if and only if any e ∈ D is boundedly imaginary
over any C over which D is defined.
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Lemma 2.38 Any definable function f : (αO/βM)n → � is bounded.

Proof Suppose first n = 1. Since parameters are allowed, we may assume α = 0, and
consider f : O/βM → �, defined over C . Let q be the type of elements of � greater
than any element of �(C). For γ |� q, let X(γ ) be the pullback to O of f −1(γ ).
This is a finite Boolean combination of balls of valuative radii δ1(γ ), . . . , δm(γ ),
with 0 ≤ δi (γ ) ≤ β. But any C-definable function into a bounded interval in �

is constant on q. Thus X(γ ) is a finite Boolean combination of balls of constant
valuative radii δ1, . . . , δm . However, it is shown in [6, Proposition 2.4.4] that any
definable function on a finite cover of � into balls of constant radius has finite image.
Hence X(γ ) is constant on q. But if X(γ ) = X(γ ′) �= ∅ then for any x ∈ X(γ ),
γ = f (x + βM) = γ ′. It follows that X(γ ) = ∅ for γ |� q, i.e. f is bounded. Now,
given f : (αO/βM)2 → �, let F(x) = sup{ f (x, y) : y ∈ αO/βM}. Then F is
bounded, so f is bounded. This shows the case n = 2, and the general case is similar.

Corollary 2.39 Let D be aC-definable set inACVF. Then the following are equivalent:

(1) D is boundedly imaginary.
(2) There exists a definable surjective map g : (O/βM)n → D.
(3) There is an acl(C)-definable surjective map g : (β0O/β1M)n → D, where

β0 ≤ 0 ≤ β1 ∈ �(C).

Note that infinite definable subsets of K contain balls and that balls are not bound-
edly imaginary: given any point a in a ball b, the set {val(x − a) : x ∈ b} is not
bounded. It follows that boundedly imaginary definable sets are purely imaginary.

Proof By Lemma 2.38, (1) follows from (2) and (3) implies (2) easily. To prove that
(1) implies (3), by compactness it suffices to fix e ∈ D and find β0 ≤ 0 ≤ β1 ∈ �(C)

and an acl(C)-definable map g : (β0O/β1M)n → D whose range contains e. Since e
is purely imaginary over C , by Lemma 2.35.(3), this does hold with β0, β1 ∈ �C (e).
But βi = fi (e) for some C-definable functions fi ; by (1), fi is bounded on D, and
the upper and lower bounds are C-definable. ��

It follows, by compactness, that any ∞-definable boundedly imaginary D is con-
tained in a definable boundedly imaginary D′.

Let us conclude this section with a characterization of independence of stably
dominated types of field elements in ACVF in terms of amaximummodulus principle.

Proposition 2.40 (Maximum Modulus, [7, Theorem 14.12]) Let p be a stably domi-
nated C-definable type concentrating on an affine variety V defined over K ∩ C. Let
P = p|C and F be a regular function on V over L ⊇ C. Then val(F) has an infimum
γ F
min ∈ �(L) on P. Moreover for a |� P, a |� p|L if and only if val(F(a)) = γ F

min
for all such F.

Corollary 2.41 [7, Theorem 14.13] Let U and V be varieties over the algebraically
closed valued field C. Let p and q be stably dominated types over C of elements of U
and V respectively. Let F be a regular function on U × V . Then there exists γF ∈ �

such that:
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(1) If (a, b) |� p ⊗ q then val(F(a, b)) = γF .
(2) For any a |� p, b |� q, we have val(F(a, b)) ≥ γF .
(3) Assume U and V are affine. If a |� p and b |� q and val(F(a, b)) = γF for all

regular F on U × V , then (a, b) |� p ⊗ q.

Proof Since V admits a finite cover by open affines, and q concentrates on one of
these affines, we may assume V is affine. Let a |� p. Then the statement follows from
Proposition 2.40 applied to q over Ca. As p is stably dominated, the value of γF does
not depend on a.

3 Groups with definable generics

A pro-definable group is a pro-definable set with a pro-definable group law. We will,
in a few cases, need to consider a larger class of groups. A piecewise pro-definable
group is a piecewise pro-definable set G = lim←−i

Gi together with pro-definable maps
mi : Gi × Gi → G j , for some j ≥ i , compatible with the inclusions, and inducing
a group structure m : G × G → G. By a pro-definable subgroup H of G we mean a
pro-definable subset H ⊂ Gi for some definable pieceGi ofG, such thatm(H2) ⊂ H
and (H ,m) is a subgroup of (G,m).

Let us now fix G a pro-definable group.

3.1 Definable generics

For all filters π concentrating on G and g ∈ G, let gπ := {φ(x, a) : π(x) � φ(g ·
x, a)}. Similarly, we define π g := {φ(x, a) : π(x) � φ(x · g, a)}. Note that if π is
C-definable, then gπ and π g are Cg-definable.

Definition 3.1 Let π be a filter concentrating on G. We say that π is right generic1 in
G over C if, for all g ∈ G gπ is C-definable. We say that it is left generic over C if,
for all g ∈ G, π g is C-definable.

We say that G admits a generic filter if there exists a filter π concentrating on G
which is left or right generic in G (over some small set of parameters).

Lemma 3.2 Let π be a definable filter concentrating on G then π is right generic if
and only ifπ has boundedly many left translations by G.Moreover ifπ is right generic
then for every formula φ, the set { (gπ)|φ : g ∈ G} is finite.
Proof If π is right generic, then its orbit must be bounded since there are only bound-
edly many C-definable filters. Conversely, if the orbit of π is bounded we can find a
small C such that every translate is C-definable.

Let us now assume that π is right generic and φ be some formula. Then the equiva-
lence relation g1 ∼ g2 if (g1π)|φ = (g2π)|φ is definable by (∀y)(dπ x)φ(g1 · x, y) ↔
(dπ x)φ(g2 · x, y). Since this equivalence relation has boundedly many classes, it must
have finitely many. ��
1 When π is a complete type, this notion is usually referred to as a definable f-generic in the literature.
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Remark 3.3 Let π be a right generic filter of G. Then it follows easily from the above
that μ := ⋂

g∈G gπ is a definable filter concentrating on G. It is obviously invariant
under left translation by G.

Proposition 3.4 Assume G is pro-C-definable and admits a (right) generic filter over
C. Then G is pro-C-definably isomorphic to a pro-limit of C-definable groups. In
particular, if G is ∞-C-definable, G is C-definably isomorphic to

⋂
i Gi where the

Gi are all C-definable subgroups of some C-definable group H.

Proof By Remark 3.3, there is a C-definable G-invariant filter π concentrating on G.
Let us first assume that G = ⋂

i Xi is ∞-definable. By compactness, there exists
i0 ∈ I such that if x , y and z ∈ Xi0 then (x · y) · z = x · (y · z) and x · 1 = 1 · x = x .
Because I is filtered, we may assume that i0 is the smallest element of I . Let Yi =
{a ∈ Xi0 : π(x) � a · x ∈ Xi }, which is C-definable.

Claim 3.4.1 G = ⋂
i∈I Yi .

Proof Let a ∈ G and c |� π . Then a · c ∈ G ⊆ Xi and a ∈ Yi . Conversely, let
a ∈ ⋂

i Yi . Then π(x) � a · x ∈ ⋂
i Xi = G. Let c |� π , we have b := a · c ∈ G and

hence a = bc−1 ∈ G. ��
Let i1 be such that Yi1 · Yi1 ⊆ Xi0 and Si := {a ∈ Yi : Yi · a ⊆ Yi }, which is

C-definable.

Claim 3.4.2 For all i ≥ i1, (Si , ·) is a monoid containing G.

Proof Pick any a and c ∈ Si . For all x ∈ Yi , x ·a ∈ Yi and x ·c ∈ Yi , hence x ·a ·c ∈ Yi
and, since a ∈ Yi , a · c ∈ Yi , so a · c ∈ Si . Since we obviously have 1 ∈ Si , Si is a
monoid. Now, let a ∈ G ⊆ Yi1 and c ∈ Yi ⊆ Yi1 . We have c · a ∈ Xi0 . Moreover,
π(x) � c · x ∈ Xi and, therefore, by G-invariance of π , aπ = π � c · a · x ∈ Xi . It
follows that c · a ∈ Yi and a ∈ Si . ��

Then G = ⋂
i≥i1 Hi , where Hi is the group of invertible elements in Si .

Let us now assume that G = lim←−i∈I Xi . For all i ∈ I , let Gi = {a ∈ G :
π⊗2(x, y) � ρi (x−1 · a · y) = ρi (x−1 · y) = ρi (x−1 · a−1 · y)}, where ρi : G → Xi

is the projection.

Claim 3.4.3 Gi � G.

Proof By definition, if a ∈ Gi , then a−1 ∈ Gi . Let now a, c ∈ Gi . For all (x, y) |�
π⊗2|Cac, c · y |� cπ |Cacx = π |Cacx . It follows that (x−1 · a · (c · y))i = (x−1 · (c ·
y))i = (x ·y)i . Similarly (x−1 ·(a ·c)−1 ·y)i = ((c ·x)−1 ·a−1 ·y)i = (x ·y)i . Finally, if
a ∈ Gi , c ∈ G and (x, y) |� π⊗2|Cac, then (c · x, c · y) |� (cπ)⊗2|Cac = π⊗2|Cac.
It follows that (x−1 ·c−1 ·a ·c·y)i = ((c·x)−1 ·a ·(c·y))i = ((c·x)−1 ·(c·y))i = (x ·y)i .

Since Gi is relatively C-definable, Hi := G/Gi is an ∞-C-definable group.

Claim 3.4.4 The natural map G → H := lim←− Hi is a group isomorphism.
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Proof Let a ∈ ⋂
i Gi and (x, y) |� π⊗2|Ca. Then for all i ∈ I , (x−1 · a · y)i =

(x−1 · y)i and thus x−1 · a · y = x−1 · y. It follows that a = 1. Surjectivity follows,
by compactness, from the fact that each map G → Hi is surjective. ��

The image of π in Hi is generic, so we can conclude by the ∞-definable case. ��
Similar results hold for rings:

Proposition 3.5 Let R be an pro-C-definable ring. Assume that (R,+) admits a
generic filter over C and that there exists a C-definable filter π concentrating on
R� such that the stabilizer of π under (left) multiplication generates R. Then R is
pro-C-definably isomorphic to a pro-limit of C-definable rings. In particular, if R is
∞-C-definable, R is C-definably isomorphic to an intersection of C-definable sub-
rings of some C-definable ring.

The above hypothesis on R hold in particular if both the additive group and the
units of R admit a generic filter over C and that the units generate R.

Proof Let us first assume R = ⋂
i∈I Pi is ∞-definable. By Proposition 3.4, we may

assume that the Pi are subgroups of some group (P,+) and by compactness we may
assume that multiplication is an associative bilinear map on P and that 1 is the identity.
For all i ∈ I , let Qi = {a ∈ P : π(x) � a · x ∈ Pi } which is C-definable. It is easily
checked that Qi is a subgroup of P . Moreover, the multiplicative stabilizer of π is
a subset of Qi which therefore contains R. Conversely, if a ∈ ⋂

i Qi , then for any
c |� π |Ca, a · c ∈ ⋂

i Pi = R and hence a ∈ Rc−1 = R. By compactness, there
exists i0 such that Qi0 · Qi0 ⊆ P . Let Ri = {a ∈ Qi : Qi · a ⊆ Qi }. One can check
that, for all i ≥ i0, Ri is a ring, and proceeding as in Claim 3.4.2, we can show that
if a stabilizes π multiplicatively, and c ∈ Qi , then c · a ∈ Qi . So Ri contains R and
R = ⋂

i≥i0 Ri .
Now, let R = lim←−i∈I Pi . By, Proposition 3.4, we may assume that each Pi is an

additive group. For all i ∈ I , let Ji := {a ∈ R : π⊗2(x, y) � (x−1 · a · y)i = 0i },
which is relativelyC-definable. It is clear that Ji is an additive subgroup. Now pick any
a ∈ Ji and let Sa := {c ∈ R : c ·a ∈ Ji }. Then Sa is an additive subgroup.Moreover, if
c stabilizes π , then so does c−1 and hence for any (x, y) |� π⊗2, (c−1 · x, y) |� π⊗2.
Since a ∈ Ji , it follows that (x−1 · c · a · y)i = ((c−1 · x)−1 · a · y)i = 0i , so c ∈ Sa
and hence Sa = R. Similarly, we show that Ji is a two sided ideal. Bijectivity of the
ring homomorphism R → lim←−i

R/Ji follows as in the group case and, since R/Ji is
an ∞-C-definable ring, we conclude by the ∞-definable case.

3.2 Stabilizers

The stabilizer of a definable filter can be viewed as an adjoint notion for the generic
of a group. In this section, we will assume that G is a pro-∅-definable group.

Let �(x) be a set of formulas φ(x, y) where x ranges over G, which is preserved
by G (on the left): for all φ(x,m) instance of � and g ∈ G, φ(g · x,m) is equivalent
to an instance of �.
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Definition 3.6 Let π be a definable filter concentrating on G. We define

Stab�(π) := {g ∈ G : gπ
∣
∣
�

= π |�}.

If � is the set of all formulas, we write Stab(π) for Stab�(π).

Note that since � is preserved by G, G acts on restrictions of filters to instances of
�. It follows that Stab�(π) is a pro-definable subgroup of G.

Remark 3.7 Assume G is a pro-limit of ∅-definable groups. If φ(x, y) is any formula
where x ranges over G, then φ′(x, y, t) = φ(t · x, y) where t also ranges over G is
preserved by G. It follows that any finite set of formulas is contained in a finite set �
preserved by G. For such a �, Stab�(π) is a relatively definable subgroup of G.

For infinite �, it follows that Stab�(π) = ⋂
φ∈� Stabφ′(π) is an intersection of

relatively definable subgroups of G, i.e. a pro-limit of definable groups.

Remark 3.8 If π concentrates on Stab(π), then π is generic in Stab(π).

Lemma 3.9 Assume G admits a (right) generic type, then there is a smallest pro-
definable subgroup G0 ≤ G of bounded index and G/G0 is pro-finite. In fact, G0 is
the left stabilizer of any right generic of G (and the right stabilizer of any left generic).

Proof Let p be a right generic type of G and H ≤ G be a pro-definable subgroup of
bounded index. Then H = ⋂

i Xi is an intersection of relatively definable subsets and
for each i , finitely many translates of Xi cover G. It follows that p concentrates on
a coset of H and hence that Stab(p) ≤ H . Since p has boundedly many translates,
Stab(p) is itself a pro-definable subgroup of bonded index and it is therefore the
smallest one. In particular G0 = Stab(p) does not depend on the choice of p.

Furthermore, for every formula φ preserved by G—which exist since G is a pro-
limit of definable groups—G0

φ has finite index in G and G/G0 = lim←−φ
G/G0

φ is

pro-finite.

Any generic type of G has a (unique) translate that concentrates on G0. It is called
a principal generic of G. If G = G0, we say that G is connected.

If π and μ are definable filters, we also define Stab(π, μ) := {g ∈ G : gπ = μ}.
It might be empty, but when it is non-empty, it is a left torsor of Stab(μ) and a right
torsor of Stab(π). In particular, these two groups are then conjugate (by any element
in Stab(π, μ)).

We will also consider the following more general variant of the stabilizer.

Definition 3.10 Let π be a definable filter. Let F(π) be the semigroup under compo-
sition of U-definable functions h such that h�π = π . This semigroup has a quotient
consisting of the π -germs of elements of F(π). The invertible germs form a group,
denoted G(p).

Note that given an ∅-definable family (ha)a of functions defined on π , the set of
a such that (ha)�π = π is a ∞-definable set. It follows that F(π) and G(π) are
piecewise pro-definable. If π is a filter concentrating on a pro-definable group G,
then the stabilizer Stab(π) embeds naturally into G(p): c maps to the germ of left
translation by c.
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3.3 Symmetric generics

Let p be a definable type. We say that p is symmetric if for all definable type q and
C such that p and q are defined over C , a |� p|acl(C) and b |� q|acl(Ca), then
a |� p|acl(Cb). Proposition 2.10.(1) exactly states that stably dominated types are
symmetric.

Lemma 3.11 Assume G admits a symmetric right generic type, then left and right
generics coincide, they are all symmetric and there is a unique left (respectively right)
orbit of generics. In particular, there are only boundedly many generics in G.

Proof Let p be a symmetric right generic. Then p−1 is a symmetric left generic. Let
q be any left generic and C be a model over which p and q are defined, a |� p|C and
b |� q|acl(Ca). Bydefinitionba |� qa |acl(Ca). Since p is symmetric,a |� p|acl(Cb)
and hence ba |� b p|acl(Cb). So qa and b p agree on C but, since both are C-definable
and C is a model, qa = b p. Since right and left translation commute, it follows that
p is left generic. Moreover if q1 and q2 are both left generic, then, by the previous
argument, we find b1 and b2 and a such that qa1 = b1 p and qa2 = b2 p. It follows

that b2b
−1
1 q1 = q2 and all left generics are left translates of one another. Since p is a

symmetric left generic, all left generics are symmetric.
By a similar argument starting with any (symmetric) left generic, we get that all

left generics are right generic, that all right generics are right translates of each other
and that all right generics are symmetric (and hence left generic). We have proved that
left and right genericity coincide and that they are all left and right translates of each
other. ��
Lemma 3.12 Assume G admits a symmetric generic type p. Then the following are
equivalent:

(1) p is the unique generic type of G.
(2) For all g ∈ G, g p = p.
(3) G is connected.

Proof Assume (1). By definition of genericity, for any g ∈ G, g p is right generic.
Hence by uniqueness, g p = p. Conversely given (2), let q be generic. Then by Lemma
3.11, q = g p for some g. By (2), p = q. The equivalence with (3) is immediate, given
that G0 is the left stabilizer of any generic. ��

In particular, if G admits a symmetric generic type, then there is a unique principal
generic.

Lemma 3.13 AssumeG is pro-C-definable and admits a symmetric generic type . Then
G0 is pro-C0-definable for some C0 ⊆ C of size at most |L|+ |x | where x ranges over
G.

Proof Let p be the principal generic of G. Since p is fixed by every automor-
phism fixing G globally, it is C-definable. Moreover, it is determined by the function
φ(x, y) �→ (dpx)φ(x, y) and there are at most |L|+|x | formulasφ to consider. So p is
C0-definable for someC0 ⊆ C of size at most |L|+|x | and hence so isG0 = Stab(p).

��
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3.4 Group chunks

This idea, in the context of algebraic groups, is due to Weil. Let G be a definable
group, and π a left G-invariant definable filter concentrating on G. The π ⊗ π -germ
of multiplication is called the group chunk corresponding to (G, π).

Definition 3.14 An abstract group chunk over C is a C-definable filter π and a pro-
C-definable map F defined on π⊗2 (or π ⊗ π -germ of such a function) such that:

(1) For all a |� π |C , (Fa)�π = π , where Fa(x) = F(a, x).
(2) For all a, b |� π⊗2|C , a ∈ dcl(C, b, F(a, b)) and b ∈ dcl(C, a, F(a, b)).
(3) π⊗3(x, y, z) � F(x, F(y, z)) = F(F(x, y), z).

Proposition 3.15 Let (π, F) be an abstract group chunk over C. Then (π, F) is pro-
C-definably isomorphic to the group chunk of a pro-C-definable group G: there exists
an injective pro-C-definable map f : π → G such that π⊗2(x, y) � f (F(x, y)) =
f (x) · f (y) and G = Stab( f�π).

Proof Let P = π |C . For any a ∈ P , by (2), the π -germ f (a) of F(a, x) is invertible.
It is therefore an element of the groupG(π) (cf. Definition 3.10). By (2) also, the map
f is injective. Let G be the subgroup of G(π) generated by the elements ( f (a))a∈P

and their inverses. Let I enumerate all finite sets of the variables of π . For all i ∈ I ,
and g ∈ G(π), let gi denote the π -germ of ρi ◦ h, where h is any map whose π -germ
is g and ρi is the projection to the variables in i .

To show that G can be identified with a pro-definable group, it suffices to check
that:

• Any element of G is a product f (a) · f (b)−1 for some a, b ∈ P .
• The set {(a1, . . . , a6) ∈ P6 : ( f (a1) · f (a2)−1 · f (a3) · f (a4)−1)i = ( f (a5) ·

f (a6)−1)i } is relatively definable.

The second point is immediate from the definability of π . As for the first point, it
suffices to show that a product f (a) · f (b)−1 · f (c) · f (d)−1 has the required form.
Note that, by (1), when a ∈ P and b |� π |Da for any D ⊇ C , F(a, b) |� π |Da and
there exists c |� π |Da such that F(a, c) = b and, by (3), f (a)−1 · f (b) = f (c). Thus
given any a, b, c, d ∈ P , let e0 |� π |Cabcd; then f (d)−1 · f (e0) = f (e1) for some
e1 |� π |Cabcd; so f (c)· f (e1) = f (e2) for some e2 |� π |Cabd; continuing this way,
we obtain that f (a) · f (b)−1 · f (c) · f (d)−1 · f (e0) = f (e4), for some e4 |� π |Cabd.
Therefore, f (a) · f (b)−1 · f (c) · f (d)−1 = f (e4) · f (e0)−1 as required.

Finally, if a ∈ P and b |� π |Da for some D ⊇ C , f (a) · f (b) = f (F(a, b))
where F(a, b) |� π |Da so f (a) f�π = f�π and we do have G = Stab( f�π). This
concludes the construction of G and the proof of its various properties. ��

The uniqueness of G in Proposition 3.15 is guaranteed by the following:

Proposition 3.16 Let G1 and G2 be pro-C-definable groups, π be a left G1-invariant
C-definable filter concentrating on G1 and f : π → G2 be a pro-C-definable map
such that π⊗2(x, y) � f (x · y) = f (x) · f (y). Then there exists a unique pro-C-
definable homomorphism g : G1 → G2 such that π(x) � f (x) = g(x).
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Proof Uniqueness of g is clear, since π |C generates G: if g ∈ G, a |� π |Cg, then
g · a |� π |Cg and g = (g · a) · a−1.

Existence is also clear, provided we show that, for all a, b, c, d |� π |C such
that a · b−1 = c · d−1, f (a) · f (b)−1 = f (c) · f (d)−1. It suffices to show that
f (a) · f (b)−1 · f (e) = f (c) · f (d)−1 · f (e) for any e |� π |Cabcd. But it follows from
our hypothesis on f that f (b)−1 · f (e) = f (b−1 · e) and f (d)−1 · f (e) = f (d−1 · e).
Moreover, b−1 · e |� p|Cabcd, so f (a) · f (b−1 · e) = f (a · b−1 · e). Similarly,
f (c) · f (d−1 · e) = f (c · d−1 · e). Since a · b−1 · e = c · d−1 · e, the equality holds.
Since g(a) = b if and only if (dpx) f (a · x) = b · f (x), g is pro-C-definable. ��
Analogous statements for group actions exist.

3.5 Products of types in groups

LetG be a piecewise pro-definable group, let p1, . . . , pn be definable types of elements
of G, and letw be an element of the free group F on generators {1, . . . , n}. The words
of the free group will be denoted by expressions such as 123; 2 is the inverse of the
generator 2.

Weconstruct a definable type pw = w�(p1, . . . , pn). Letai |� pi |acl(Ca1 . . . ai−1).
Let aw = w(a1, . . . , an) be the image of w under the homomorphism F → G with
i �→ ai . Let pw|C = tp(aw/C).

Ifw is the product of the generators 1, 2, we write p1�p2 for pw. We denote p123...n
as⊛

n
i=1 pi . Note that ifG is Abelian and p is symmetric, then the order of enumeration

does not actually matter. If a single type p is given, rather than a sequence pw will
refer to the sequence (p, p, . . . , p). Let p�n denote p123···n , p±2n = p1234···(2n) and

p±2n+1 = p1234···(2n)(2n+1).

4 Stably dominated groups

In this section, T is assumed to be metastable.

Definition 4.1 A pro-definable group G is stably dominated if G has a stably domi-
nated generic type.

Since stably dominated types are symmetric, it follows from Lemma 3.11 that all
generics of G are both left and right generics and they are all stably dominated.

Remark 4.2 The class of stably dominated pro-definable groups is closed under Carte-
sian products and image under a definable group homomorphism. If G and H are
stably dominated pro-definable groups and p (respectively q) is a stably dominated
generic of G (respectively H ), then p ⊗ q is a stably dominated generic of G × H . If
f : G → H is a pro-definable surjective group homomorphism, then f� p is a stably
dominated generic of H .

Lemma 4.3 Let G be a pro-definable group and N ≤ G be a stably dominated pro-
definable subgroup. Assume that there exists a stably dominated type concentrating
on G/N whose orbit under G-translations is bounded. Then G is stably dominated.
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In particular, if N � G and N, G/N are stably dominated, then so is G.

Proof Let p be the generic type of N 0 and q be a stably dominated type of G/N , with
bounded orbit under G-translations. Let C be such that G, N are defined over C and
p, q are stably dominated over C .

Assume first that N = N 0. For all n ∈ N , n p = p. Thus, if c = dn for some
d ∈ G and n ∈ N , then c p = dn p = d p. So the type c p depends only on the coset
s = cN . We denote it ps . Let us now define the type r as follows: a realization of r
over B ⊇ C is a realization of ps |Bs where s |� q|B. Note that, for any c ∈ G, a
realization of cr |Bc is a realization of ps |Bcs where s |� cq|Bc. It follows that r has
at most as many G-translates as q.

Since p is stably dominated over C , for any c ∈ s, ps is stably dominated over Cc.
By descent (Proposition 2.11.(2)), is, in fact, stably dominated over Cs. It follows, by
transitivity (Proposition 2.10.(3)), that r is stably dominated over C . That concludes
the proof in the case N = N 0.

In general, the map π : G/N 0 → G/N has pro-finite fibers and hence for any
s ∈ G/N 0, s ∈ acl(Cπ(s)). It follows, by Proposition 2.10.(4), that any q0 such that
π�q0 = q is stably dominated over C . Fix such a q0, then q0 has bounded orbit under
G-translations and, by the above, G is stably dominated. ��
Lemma 4.4 Let G be a stably dominated pro-definable group and N ≤ G be a pro-
definable subgroup. Let η : G → G/N be the map η(g) = g · N. Assume that there
exists a pro-definable Y ⊂ G such that η|Y is surjective, bounded to one. Then N is
stably dominated.

Proof Let p be the principal generic of G, C be such that G, N , Y , p are C-definable.
Let Q be the set of types tp(h−1 · g/C) where g |� p|C , h ∈ Y and h · N = g · N .
Because there are boundedly many choices for h, the set Q is bounded. Moreover, for
all g |� p|C , h−1 · g ∈ acl(Cg) and hence, by Proposition 2.10.(4), the types in Q
are all stably dominated types concentrating on N .

Let us now show that Q is N ∩ G0-invariant. Pick n ∈ N ∩ G0, g |� p|Cn, h ∈ Y
such that h ·N = g ·N and q := tp(h−1 ·g/C) ∈ Q. We have that h−1 ·g ·n |� qn|Cn,
but since g ·n |� pn = p and g ·n ·N = g ·N = h ·N , qn|C = tp(h−1 ·g ·n/C) ∈ Q.

It follows that the size of the orbits of the types in Q is bounded by |Q|·|N/N∩G0|.
Recall that Q is bounded and that N/N ∩ G0 can be embedded in G/G0 whose size
is bounded. So all the types in Q are generic. ��
Corollary 4.5 Let G be an algebraic group, N ≤ G an algebraic subgroup. Let H ≤ G
be definable in ACVF and stably dominated. Then H ∩ N is stably dominated.

Proof By elimination of imaginaries in algebraically closed fields, the coset space
X := G/N can be identified with a subset of some Cartesian power of the field
sort. Let η be the projection G → X . Let M0 |� ACVF be such that G, N and H
are defined over M0. For all h ∈ H , M = M0(η(h))alg |� ACVF, so there exists
y ∈ H(M)∩ h · N . By compactness, we find a definable subset Z of the graph of η|H
with finite projection to X . Let Y ⊆ H be the projection of Z on H . Then, applying
Lemma 4.4 to H , H ∩ N and Y , we get that H ∩ N is stably dominated. ��
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4.1 Domination via a group homomorphism

Proposition 4.6 Let G be a stably dominated pro-definable group. There exists a pro-
definable stable group g, and a pro-definable homomorphism θ : G → g, such that
the generics of G are stably dominated via θ .

If (FD) holds and G is definable then g can be taken to be definable.

We say that such a G is stably dominated via θ .

Proof Let p be generic in G, C be such that G and p are C-definable. Let θ(a)

enumerate StC (a), and, for all a, b ∈ G, let fa(b) = θ(a · b). Fix g ∈ G. Since
g p is stably dominated, by Proposition 2.12, the g p-germ of fa is strong and is in
StC (a) = θ(a). It follows that for all b |� g p|Ca, fa(b) = hθ(a)(b) for some
C-definable map h. Since StC is stably embedded, h factors through θ(b). Indeed,
let c = fa(b) = hθa(b). Since c ∈ StC , tp(θ(a)c/Cθ(b)) � tp(θ(a)c/Cb). Thus
c ∈ dcl(θ(a)θ(b)). We have proved that, for all g1, g2 ∈ G, there exists a C-definable
map Fg1,g2 such that, for all a |� g1 p|C , b |� g2 p|Ca, θ(ab) = Fg1,g2(θ(a), θ(b)).
By compactness, we may assume that F = Fg1,g2 does not depend on g1 or g2.

Recall that for all g ∈ G, g p is stably dominated over C . It follows that, for all g1,
g2 ∈ G, a |� g1 p|C , b |� g2 p|Ca and c = a · b, tp(θ(b)θ(c)/Cθ(a)) � tp(bc/Ca)

and hence θ(b) ∈ dcl(θ(a), θ(c)) = dcl(θ(a), F(θ(a), θ(b))). Symmetrically, we
have θ(a) ∈ dcl(θ(b), F(θ(a), θ(b))).

Thus, F is a group chunk on π := ⋂
g∈G θ�

g p and, by Proposition 3.15, F is
the restriction of the multiplication map of some pro-definable group g in StC . By
Proposition 3.16, θ extends to a pro-definable group homomorphism from G to g.

Let us now assume (FD). By Proposition 3.4, g := lim←−i∈I gi where the gi form
a (filtered) projective system of definable groups. Let θi : G → gi be the canonical
projection. Since there are no descending chains of definable subgroups of gi , every∞-
definable subgroup is definable, in particular θi (G) is definable. Theng = lim←−i∈I θi (G)

and we may assume that every θi is surjective.
Let a realize the principal generic of G over C . By Lemma 2.19, StC (a) is acl-

finitely generated over C ; say StC (a) ⊆ acl(Cd) for some tuple d ∈ StC . Since
dimst(d/C(θi (a)) decreases as i increases, it stabilizes at some i0 (Note that, if C is
sufficiently large, i0 does not depend on C). But all θi (a) are in acl(Cd), and hence
θi (a) ∈ acl(C(θi0(a))) for all i ≥ i0. It follows tp(a/C) is dominated via θi0 and so
are all of its left translates.

Remark 4.7 If (FD) holds, we have also proved the following. If θ : H → g = lim←−i
gi

is a pro-definable surjective group homomorphism and that dimst(g) = n < ∞, then
there exists i0 such that dimst(gi0) = n. Moreover, since there are no descending
chains of definable subgroups of gi0 , θi0(G) is definable. So we can actually find a
pro-definable surjective group homomorphism onto a definable stable group ofMorley
rank n.

In such a situation, we say that H has stable homomorphic image of Morley rank
n.
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The homomorphism θ of Proposition 4.6 is not uniquely determined by G; even if
G is stable, there may be a non-trivial homomorphism of this kind. We do however
have a maximal one.

Remark 4.8 There exists a pro-C-definable stable group g, and a pro-C-definable
homomorphism θ : G → g, maximal in the sense that any pro-C-definable homo-
morphism θ ′ : G → g′ into a pro-C-definable stable group factors through θ .

The kernel of this maximal θ is uniquely determined. If G is stably dominated it
will be stably dominated via this maximal homomorphism.

Lemma 4.9 Let G be a pro-C-definable group stably dominated via some pro-C-
definable surjective group homomorphism θ : G → g. Then tp(a/C) is generic in G
(i.e. a |� r |acl(C) for some generic r of G) if and only if tp(θ(a)/C) is generic in g.

Proof Assume tp(θ(a)/C) is generic in g, then so is tp(θ(a)/acl(C)). So we may
assume C = acl(C). Let p be a generic type of G, stably dominated via θ : G → g.
Then q = a p is a generic in G and hence stably dominated via θ . Let b |� p|Ca. Note
that a · b |� q|Ca. Since θ(a) is generic in g, we have θ(a · b) = θ(a) · θ(b)⫝Cθ(b).
Since θ |C is stably dominated via θ , b |� p|Cθ(a · b) and hence StC (b)⫝Cθ(a · b).
Since q|C is stably dominated via θ , a ·b |� q|Cb. So a |� qb

−1 |Cb, and in particular
a |� qb

−1 |C , where qb
−1

is generic in G.
The converse is obvious since for any generic r of G, θ(x)θ�r = θ�(

xr). ��
Corollary 4.10 Let G be a pro-definable group stably dominated via some pro-
definable group homomorphism θ : G → g. Let H ≤ G be a relatively definable. If
θ(H) = g, then H has finite index in G.

Proof Work over some C over which G and H are definable. Let b ∈ H be such that
θ(b) is generic in g over C . By Lemma 4.9, tp(b/C) is generic in G. Thus a generic
of G lies in H , so H has finite index in G.

Corollary 4.11 (FDω) Let G be a C-definable group stably dominated via some C-
definable group homomorphism θ : G → g. Then G0 is definable, i.e. [G : G0] is
finite.

Proof We may assume θ surjective. Note that θ−1(g0) is a definable subgroup of G
with finite index, so we may assume that g is connected. Since [G : G0] is bounded,
we can find C such that every coset of G0 in G contains a point from C . We can also
assume that C is a metastability basis as in the definition of (FDω). Let a0 be such that
θ(a0) is generic in g over C . By (FDω), there exists a ∈ G such that θ(a) = θ(a0) and
tp(a/Cθ(a)) is isolated. Since θ(a) is generic in g over C , by Lemma 4.9, tp(a/C) is
generic in G. Let p be the principal generic of G. Then there exists c ∈ G(C) such
that b := c · a |� p|C . It follows that tp(c · a/Cθ(a)) = tp(b/Cθ(b)) is isolated.

On the other hand, letG0 = ⋂
i Gi where {(Gi )i∈I } is a bounded family of definable

subgroups of finite index, closed under intersections. Note that by Lemma 4.9, {x ∈
Gi : i ∈ I } ∪ {θ(x) = θ(b)} generates tp(b/Cθ(b)). This type being isolated, there
exists i0 ∈ I such that it is generated by θ(x) = θ(b) and x ∈ Gi0 . Since g is
connected, any generic of Gi has a realization d such that θ(d) = θ(b) and hence is
equal to p. So Gi = G0, and G0 is definable. ��
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Here is a characterization of generics that does not explicitly mention θ and g.

Corollary 4.12 Let G be a stably dominated pro-C-definable group, dimst(G) < ∞.
Then the generic types of G over C are precisely the types tp(c/C) such that for h
generic in G over Cc, dimst(StC (h · c)/Ch) = dimst(G).

Proof Let θ and g be as in Proposition 4.6. Since h ·c is generic inG overC , acl(StC (h ·
c)) = acl(Cθ(h · c)) = acl(Cθ(h)θ(c)). So dimst(G) = dimst(StC (h · c)/Ch) =
dimst(θ(h) · θ(c)/Ch) = dimst(θ(c)/Ch) ≤ dimst(θ(c)/C). It follows that θ(c) is
generic in g over C and, by Lemma 4.9, c is generic in G over C .

Conversely, if c |� p|acl(C) for some stably dominated generic p, by symmetry,
c |� p|acl(Ch) and hence h · c is generic in G over Ch. Thus θ(h · c) is generic in g
and dimst(StC (h · c)/Ch) ≥ dimst(g) = dimst(G). ��

Note that the proof uses, rather than proves, the existence of a generic.

Remark 4.13 If G is piecewise-definable, in a superstable theory, and p is a type of
maximal rank in G, then p is a translate of a generic of Stab(p), a definable subgroup
of G.

For stably dominated types, the analog need not hold. In ACVF, consider G =
Ga(O)2, fix γ a positive element of the value group and let p be the stably dominated
type of elements such that x is generic inO and y is generic (over x) in the closed ball
of radius γ centered at x2. Then dimst(G) = 2 and the stable part of p has dimension
2. But, although p has maximal rank, it is not a generic type. However, we do have
that p�2 is a stably dominated generic of G.

Let us now prove a certain converse to Proposition 4.6:

Proposition 4.14 Let G be a pro-definable group. Assume G admits a surjective pro-
definable homomorphism θ : G → g, with g stable and with dimst(g) = dimst(G) =
n < ∞. Then, there exists a pro-definable subgroup T of G with:

(1) T connected stably dominated;
(2) T normal and G/T almost internal to �;
(3) θ(T ) = g0;

and T is uniquely determined by (1,2) or by (1,3). Moreover, T is stably dominated
via θ |T .
Proof Let Z be the collection of types q of elements of G, definable over some set of
parameters, with θ�q generic in g, and q stably dominated.

Claim 4.14.1 Z �= ∅.

Proof Let C = acl(C) be a metastability basis over which G and θ are pro-definable.
Let a ∈ G be such that θ(a) generic in g over acl(C). Let γ := �C (a). Any relatively
acl(Cγ )-definable subset of g is already relatively C-definable, so θ(a) is generic in
g over acl(Cγ ). By metastability, tp(a/acl(Cγ )) is stably dominated and extends to
a unique acl(Cγ )-definable type which is in Z . ��



47 Page 32 of 58 E. Hrushovski, S. Rideau-Kikuchi

Claim 4.14.2 Any two elements of Z are left and right translates of each other.

Proof Pick any q, r ∈ Z ; say both are B-definable for some B = acl(B) over whichG
and θ are also defined. Let a |� q|B, b |� r |Ba and let c = a ·b−1. Then θ(a) and θ(b)
are B-independent generic elements of g. Hence so are θ(a) and θ(a) ·θ(b)−1 = θ(c).
Since dimst(θ(a)/B) = n = dimst(G) ≥ dimst(StB(a)/B) ≥ dimst(θ(a)/B), we
have StB(a) ⊆ acl(Bθ(a)). Similarly StB(c) ⊆ acl(Bθ(c)). Thus StB(c)⫝BStB(a).
By stable domination, a |� q|Bc. Similarly b |� r |Bc. It follows that q = cr . By the
symmetric argument, q = rd where d = b−1a. ��

It follows that the pro-definable subgroup T := Stab(q) = Stab(qc) does not
depend on the choice of q ∈ Z . Also, since one can easily check that Z is closed under
left translation, T is normal. Moreover if a and b are independent realizations of q
over B and c = a · b−1, then the proof of Claim 4.14.2 shows that cq = q and hence
r := qb

−1
is the unique generic type of T . Thus T is connected stably dominated.

Since θ(T ) contains a generic of g and is connected, we have θ(T ) = g0. Also, as in
the above claim, we have that StC (c) ⊆ acl(θ(c)). It follows that tp(c/C), and hence
r , is stably dominated via θ |T .

Since T = Stab(q), it is the intersection of a family of relatively definable subgroups
(Ti )i∈I of G.

Claim 4.14.3 For all i ∈ I , G/Ti is almost �-internal.

Proof Pick any a ∈ G and let C be a metastability basis over which G, T and θ are
defined. If c |� r |Ca, then a · c ∈ a · T and θ(a · c) = θ(a) · θ(c) is generic in g over
acl(C). So we may assume that θ(a) is generic in g over acl(C) without changing
the coset a · T . By the proof of Claim 4.14.1, there exists a generic q, acl(�C (a))-
definable, such that a |� q|�C (a). By the proof of Claim 4.14.2, q concentrates on
a · T . It follows that for all i ∈ I , a · Ti ∈ acl(�C (a)) and hence G/Ti is almost
�-internal. ��

Let us now prove the uniqueness of T . Let T ′ be a connected stably dominated
pro-definable subgroup of G. Then T ′/(T ∩T ′)  T ·T ′/T ≤ G/T is both almost �-
internal and connected stably dominated, hence trivial. So T ′ ≤ T . If G/T ′ is almost
�-internal, the symmetric proof shows that T ≤ T ′. So T is indeed characterized by
(1,2). Now assume that θ(T ′) = g0 and let T ′ = ⋂

j T
′
j where the T ′

j are relatively
definable. By Corollary 4.10, [T : T ′

j ∩ T ] is finite and therefore T ≤ T ′
j . It follows

that T ≤ T ′ and T is also characterized by (1,3). ��

4.2 Stably dominated subgroups of maximal rank

While not all stably dominated subgroups are definable, we will show that subgroups
whose residual rank is dimst(G) are.

Lemma 4.15 Let T be an ∞-C-definable connected and stably dominated normal
subgroup of some definable group G with G/T almost internal to �.

(FD) There exists a C-definable subgroup stably dominated S of G with S0 = T .
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(FDω) T itself is definable.

Proof Let us assume (FD). Let p be the principal generic of T , then T = Stab(p) is
an intersection of C-definable subgroups Si of G; and G/Si is almost �-internal. By
Proposition 4.6, there exists a definable homomorphism θ : T → g, with g stable, and
T stably dominated via θ . By compactness, θ extends to a definable homomorphism
on some Si ; replacing G by this Si , we may assume θ : G → g.

By Lemma 2.25, some quotient of G/Si by a finite normal subgroup is �-internal.
Define dimo(G/Si ) to be the o-minimal dimension of any such quotient. By (FD),
for any a ∈ G and any B, dimo(�B(a)/B) is finite, so dimo(G/Si ) is bounded
independently of i . Thus for some i , for all j ≥ i , dimo(G/S j ) = dimo(G/Si ). It
follows that the natural map G/S j → G/Si has zero-dimensional fibers, hence it has
finite kernel. This shows that for some i , for all j ≥ i , Si/S j is finite. Thus [Si : T ] is
bounded, Si is stably dominated, S0i = T , and (1) holds.

If we assume (FDω), definability of T follows from Corollary 4.11. ��
Corollary 4.16 Let G be a definable group, H be a connected ∞-C-definable stably
dominated subgroup of G, with a stable homomorphic image of Morley rank n :=
dimst(G).

(FD) There exists a C-definable stably dominated subgroup S of G with S0 = H.
(FDω) H itself is definable.

Note that the group S is stably dominated and has a stable homomorphic image of
Morley rank n := dimst(G).

Proof Assume (FD). Let θ : H → g be a definable surjective homomorphism with g
definable stable and dimst(g) = n. Since H is the stabilizer of its principal generic,
H = ⋂

i Hi for some definable subgroups Hi of G. By compactness, θ extends to
a definable surjective group homomorphism Hi0 → g. Note that n = dimst(g) ≤
dimst(Hi0) ≤ dimst(G) = n so we may assume that θ extends to G. Note also that
θ(H) = g = Stab(θ� p) = g0. By the uniqueness in Proposition 4.14, H is normal in
G and G/H is almost �-internal. We can now conclude using Lemma 4.15. ��

5 Abelian groups

We will use the notation of Sects. 3.2 and 3.5.

Lemma 5.1 Let A be a piecewise pro-definable Abelian group and p a symmetric
definable type concentrating on A. Assume that A has p-weight strictly smaller than
2n. Then there exists a pro-definable connected H ≤ A with generic p±2n such that
p concentrates on a coset of H.

Proof Let (a1, a2, . . . , a2n) |� p⊗2n|C , where C is such that A is pro-C-definable
and p is C-definable. Let b = a−1

1 · a2 · . . . · a2n |� p±2n|C . By the weight assump-
tion, ai |� p|Cb for some i . Say i is odd. Since p is symmetric and A is Abelian,
tp(a1, a2, . . . , a2n/b) is Sym(n)-invariant (for the action by permutation on the pairs
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a2i−1, a2i ), so a1 |� p|Cb and hence b |� p±2n|Ca1. Since a1 · b |� a1 p±2n|Ca1 and
a1 · b = a2 · . . . a2n |� p±2n−1|Ca1, it follows that a1 ∈ X := Stab(p±2n, p±2n−1).
If i is even, then a2n |� p|Cb−1 and hence a2n ∈ X .

In both cases, p concentrates on X , a coset of H := Stab(p±2n). It follows that
p±2 and therefore p±2n , concentrate on H = Stab(p±2n). So p±2n is the generic of
H . ��
Remark 5.2 If p is stably dominated, so is p±2n and H is connected stably dominated.

For the rest of this section, we assume T metastable.

Proposition 5.3 Let A be apro-definableAbelian groupof boundedweight. Let (Bi )i∈I
be connected stably dominated pro-definable subgroups of A. Then there exists a stably
dominated connected pro-definable subgroup B containing all the Bi .

Proof Let C be a metastability basis such that A and all the Bi are defined over C . Let
F be the collection of all C-definable functions on A into �, seen as a pro-definable
function. Then, for any c ∈ A: tp(c/C,F(c)) is stably dominated.

Let pi be the principal generic of Bi . Consider the partial type:

q0 = {(dpi y) f (x) = f (y · x) : i ∈ I , f ∈ F}

Claim 5.3.1 q0 is consistent.

Proof It suffices to show that any finite number of formulas, concerning the types
(pi )i∈I0 for some finite I0 ⊆ I , can be satisfied. Let B = ∑

i∈I0 Bi . Note that p :=
⊛i∈I0 pi is the unique stably dominated generic of B.

If (a, c) |� pi ⊗ p|C , then by genericity of p, a · c |� p|Ca. By symmetry, a |�
pi |Cc. Now, for any f ∈ F, as p is stably dominated, and thus orthogonal to �, there
exists γ f such that for any c′ |� p|C , f (c′) = γ f . In particular, f (c) = γ f = f (a ·c).
Thus |� (dpi y) f (c) = f (y · c). Since this is true for each i ∈ I0 and f ∈ F, q0 is
consistent. ��

Let c |� q0, C ′ = C ∪ F(c) and C ′′ = acl(C ′). Recall that tp(c/C ′) is stably
dominated. Let p be the unique C ′′-definable extension of tp(c/C ′′).

Claim 5.3.2 For all a |� pi , a p|C ′ = p|C ′.

Proof Let a |� pi |acl(Cc) and X ⊆ A be some C-definable subset. Let fX ∈ F
be the function sending x to 0 ∈ � if x ∈ X and x to ∞ ∈ � if x /∈ X . Since
c |� q0, fX (a · c) = fX (c). It follows that tp(a · c/C) = tp(c/C) and thus tp(a ·
c,F(a · c)/C) = tp(c,F(c)/C). But, for all f ∈ F, f (a · c) = f (c), so tp(a ·
c,F(c)/C) = tp(c,F(c)/C). Since, by symmetry, c |� p|acl(C ′a), this shows that
p|C ′ = tp(c/C ′) = tp(a · c/C ′) = a p|C ′. ��

Note also that since p and pi are invariant over C ′′, so is a p. It is therefore one of
the boundedly many C ′′-definable extensions of tp(c/C ′).
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Moreover, byLemma5.1, there exist a stably dominated pro-definable group B with
generic p±2n , for some n, such that p concentrates on a coset of B. Since the orbit of
p±2n under left translation by Bi B is bounded, it follows that Bi/(B∩Bi )  (Bi B)/B
is bounded and, as Bi is connected, Bi ≤ B.

In the previous proof, the subgroup B we constructed is, a priori, pro-C ′′-definable,
but we can assume it is pro-C ′-definable:

Lemma 5.4 Let A be a pro-limit of C-definable Abelian groups and B ≤ A be a
stably dominated connected pro-acl(C)-definable group. Then, there exists a stably
dominated pro-C-definable B ′ ≤ A containing B.

Proof Let p be the principal generic of B and (pi )i∈I be its conjugates over C . For
all finite sets � of formulas (with parameters in C) preserved by left translation by A,
the set of codes for the defining schemes of the types pi |�, for i ∈ I , is equal to the
set of C-conjugates of p|�. It is therefore finite. Let I� ⊆ I be a finite set such that
for any i ∈ I , there exists j ∈ I� with pi |� = p j

∣
∣
�
. Let q� =⊛i∈I� pi . Note that,

since A is a pro-limit of definable groups, any formula is contained in such a �.

Claim 5.4.1 For any i0 ∈ I , pi0 concentrates on Stab�(q�).

Proof Let c |� pi0 |M for some model M containing C and (ai )i |� (⊗i∈I� pi )|Mc.
Also, pick i1 ∈ I� such that pi0

∣
∣
�

= pi1
∣
∣
�
. For every φ(x, y) ∈ � and m ∈ M ,

we have that φ(x,m) ∈ q� if and only if |� φ(
∑

i ai ,m), which is equivalent to
φ(

∑
i �=i1 ai + x,m) ∈ pi1 , by symmetry of stably dominated types. Recall that � is

preserved by left translation by elements of A, so that last formula is also an instance of
� and hence φ(

∑
i �=i1 ai + x,m) ∈ pi1 if and only if φ(

∑
i �=i1 ai + x,m) ∈ pi0 . Since

pi0 concentrates of Stab�(pi0), this is equivalent to φ(
∑

i �=i1 ai + c + x,m) ∈ pi0
and hence to |� φ(c + ∑

i ai ,m), i.e. φ(x,m) ∈ cq�. ��
It immediately follows that q� concentrates on Stab�(q�) and that, for any J ⊇ I�,

(⊛i∈J pi )
∣
∣
�

= q�|�. Let q be the unique type such that for all �, q|� = q�|�. For
all i ∈ I , pi concentrates on Stab�(q) = Stab�(q�) and hence so does q�.

Note that for all finite set �, Stab�(q) is relatively C-definable and thus B ′ =
Stab(q) is pro-C-definable. There remains to show that q concentrates on B ′. For all
�, let �′ ⊇ � be a finite set of formulas preserved by left translation by A such that
Stab�(q) is defined by an instance of �′. Since q�′ concentrates on Stab�′(q�′) ≤
Stab�(q�′) = Stab�(q), so does q.

Lemma 5.5 (FD) Let C be a metastability basis and A be a pro-limit of C-definable
Abelian groups with dimst(A) = n < ∞. Then A contains a stably dominated pro-
C�-definable subgroup S with stable homomorphic image of dimension n.

Proof Let g ∈ A with dimst(StC (g)/C) = n, C ′ = �C (g), C ′′ = acl(C ′) and
p = tp(g/C ′′). So p is stably dominated. Moreover, for all B ⊇ C ′′ and a |� p|B,
dimst(StB(a)/B) = n.

Claim 5.5.1 For all C, a, b, dimst(StC (a, b)/C) ≤ dimst(StCa(b)/Ca)

+ dimst(StC (a)/C).
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Proof Wehave that dimst(StC (a, b)/C) = dimst(StC (a, b)/StC (a))+dimst(StC (a)/C)

and that dimst(StC (a, b)/StC (a)) = dimst(StC (a, b)/Ca) ≤ dimst(StCa(b)/Ca).

Claim 5.5.2 If p and q are stably dominated over C concentrating on A, a |� p|C,
b |� q|Ca, c = a · b and dimst(StC (a)/C) = dimst(StC (b/C)) = n, then
dimst(StC (c)/C) = n.

Proof Since tp(a, b/C) is stably dominated, so is tp(c/C). Since StC (a)⫝CStC (b),

dimst(StC (a, b)/C) ≥ dimst(StC (a)StC (b)/C) = 2n.

Moreover, dimst(StC (a, b)/C) = dimst(StC (b, c)/C) ≤ dimst(StCc(b)/Cc) +
dimst(StC (c)/C) = n+ dimst(StC (c)/C). So dimst(StC (c)/C) ≥ n. But dimst(A) =
n, so dimst(StC (c)/C) = n.

By Lemma 5.1, A contains a pro-C ′′-definable stably dominated group R,
with generic type p±2m for some m. By Claim 5.5.2, for any a |� p±2m |C ′′,
dimst(StC ′′(a)/C ′′) = n. By Lemma 5.4, we find S ≥ R pro-C ′-definable with sta-
bly dominated type q—we can check that, by construction and Claim 5.5.2, for all
a |� q|C ′, dimst(StC ′(a)/C ′) = n. We can now conclude with Proposition 4.6.

5.1 Limit stably dominated groups

Definition 5.6 Let G be a pro-C-definable group and q be a (potentially infinitary)
type of � overC . For all t |� q, let St be a pro-Ct-definable subgroup ofG (uniformly
in t). We call (St )t |�q a limit stably dominated family for G if:

(1) St is a connected stably dominated subgroup of G.
(2) If W ≤ G is connected and stably dominated, pro-C-definable, then W ≤ St for

some t |� q.
(3) The family (St )t |�q is directed: any small set of realizations of q has an upper

bound in the order defined by t1 ≤ t2 if St1 ≤ St2 .

The group H = ⋃
t |�q St is called the limit stably dominated subgroup ofG. IfG = H ,

we say that G is limit stably dominated.

We view H as the limit of a �-internal directed system of stably dominated groups.
It is clearly independent of the particular choice of limit stably dominated family
(St )t |�q .

Lemma 5.7 Let G be a pro-definable group and H ≤ G be its limit stably dominated
subgroup, if it exists. Then H is pro-definable.

Proof Since the St are pro-definable, there exists a directed family of relatively defin-
able sets Sit ⊆ G such that St = ⋂

i S
i
t . By compactness, we have that a ∈ H if and

only if, for all i and all finite q0 ⊆ q, there exists t such that t |� q0 and a ∈ Sit . So
H is an intersection of relatively definable subsets of G, i.e. a pro-definable subset. ��
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Lemma 5.8 Let G be a definable group and (St )t |�q a limit stably dominated family
for G. Assume that St is the connected component of some definable group Rt , then
the order t1 ≤ t2 is relatively definable.

Proof If St1 ≤ Rt2 , then St1 ≤ St2 . It follows that t1 ≤ t2 if and only if St1 ≤ Rt2 ,
equivalently (dpt1 x)x ∈ Rt2 where, pt denotes the principal generic of St . ��

Two different behaviors are possible, according to whether or not the direct limit
system has a maximal element. The latter is equivalent to the existence of a maximal
connected stably dominated subgroup of G.

Proposition 5.9 Let A be a pro-limit of definable Abelian groups. Assume A has
bounded weight. Then, the limit stably dominated subgroup of A exists.

Proof LetC1 be an sufficiently saturatedmodel overwhich A is defined and letC ⊇ C1
be a metastability basis. Let F be the family of all C-definable functions into �. Let
(Ai )i∈I be the family of all connected stably dominated pro-C-definable subgroups
of A. Let S be as in Proposition 5.3. Note that, by Lemma 5.4, we may assume S = St
to be pro-Ct-definable for some tuple t in �. By Lemma 3.13, we can take t to be a
small tuple and we can find a small C0 ⊂ C such that St is pro-C0t-definable. Let
q = tp(t/C0).

If W ≤ A is a connected stably dominated group, we must show that W ≤ St ′ ,
for some t ′ |� q. For this purpose we can replace W by a conjugate, under the
group of automorphisms of the universal domain over C0. Thus we may assume W
is defined over C . In this case, W ≤ St . This proves (2) of the definition of a limit
stably dominated family. Directness of the family (St )t |�q follows from Proposition
5.3, together with (2). ��
Lemma 5.10 Let C be a metastability basis. Let A be a C-definable Abelian group
and let H be a connected stably dominated ∞-C-definable subgroup of A.

(FD) H is contained in a C�-definable stably dominated subgroup.
(FDω) H is contained in a C�-definable connected stably dominated subgroup.

Proof Assume (FD). Since H is the stabilizer of its principal generic, H = ⋂
i Hi

for some directed system of C-definable subgroups Hi of A. Then dimst(A/Hi )

is non-decreasing with i , and eventually stabilizes; we may assume it is constant,
dimst(A/Hi ) = n. Clearly dimst(A/H) = n. By Lemma 5.5, A/H contains a stably
dominated pro-C�-definable subgroup S with stable homomorphic image of dimen-
sion n. Let Si be the image of S in A/Hi . Then Si is stably dominated and S = lim←−i

Si .
The stable homomorphic image of dimension n of S factorizes through Si for large
enough i , so we may assume that, for all i , Si has stable homomorphic image of
dimension n = dimst(A/Hi ). By Corollary 4.16, there exists a C�-definable stably
dominated subgroup Ri ≤ A such that Si = (Ri/Hi )

0. Note that for any j ≥ i , Ri/Hj

has a stable homomorphic image of dimension n = dimst(A/Hj ) = dimst(Ri/Hj ).
So replacing A by any of the Ri , we may assume that for all i , A/Hi has a stable
homomorphic image of dimension n = dimst(A/Hi ).

By Proposition 4.14 there exists a unique∞-definable group Ti with Hi ≤ Ti ≤ A,
A/Ti is almost �-internal and Ti/Hi is connected stably dominated. Note that, since it
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is unique, Ti is∞-C�-definable. By Lemma 4.15, there existsWi ≤ A,C�-definable,
such that Ti/Hi = (Wi/Hi )

0.
Let i ≤ j . Since Tj/Hj is connected stably dominated, so is is homomorphic

image Tj/(Ti ∩Tj ) and, since A/Ti is almost �-internal, so is its subgroup Ti Tj/Ti 
Tj/(Ti ∩ Tj ). It is therefore trivial and Tj ≤ Ti . Since A/Tj is (almost) �-internal,
the argument of Lemma 4.15 shows that for large enough i0, for all i ≥ i0, [Ti0 : Ti ]
is bounded. Let T = ⋂

i Ti . Then [Ti0 : T ] is bounded. Moreover, T /T ∩ Hi is
(isomorphic to) a bounded index subgroup of Ti/Hi , it is therefore stably dominated.
It follows that T /H = lim←−i

T /T ∩ Hi is also stably dominated. By Lemma 4.3, so is
T and hence so are the Ti . Since [Wi : Ti ] is bounded, any of the Wi is C�-definable
and stably dominated.

If (FDω) holds, since H ≤ T 0, the second statement follows from Corollary 4.11.
��

Definition 5.11 A definable family Ht of subgroups of some definable group G is said
to be certifiably stably dominated if for all t , Ht is stably dominated and there exists
t ′ such that Ht ≤ Ht ′ and Ht ′ is connected.

Proposition 5.12 (FDω) Let A be a definable Abelian group. Then for some C, there
exist C-definable families H ν of definable subgroups H ν

t of A, where t is a �-tuple,
such that:

(1) Any H ν
t is stably dominated.

(2) Any connected stably dominated ∞-definable subgroup of A (over any set of
parameters) is contained in some H ν

t .

Proof Let (St )t∈q be a limit stably dominated family for A; it exists by Proposition 5.9.
LetC be ametastability basis such that A and the family St are defined overC . To prove
(2), it suffices to consider the groups St , in particular, it suffices to consider ∞-C�-
definable connected stably dominated subgroups of A. By Lemma 5.10 (and Remark
2.14), it suffices to considerC�-definable connected stably dominated subgroups of A.

For a C�-definable Abelian group B, define invariants n and k as follows: n =
dimst(B). Let Z(B) be the collection of C�-definable subgroups S ≤ B with stable
homomorphic images of dimension n; by Lemma 5.5 and Corollary 4.16, Z(B) �=
∅. Let Z2(B) = {(S, T ) : S ∈ Z(B), T ≤ S C�-definable, S/T�-internal}. Let
k = max{dimo(S/T ) : (S, T ) ∈ Z2(B)}; by (FD), such a maximum exists. The pairs
(n, k) are ordered lexicographically.

Pick any definable connected stably dominated C�-definable B ≤ A. If
(S/B, T /B) attains the maximum for A/B, then the pullbacks to A show that
(n, k)(A) ≥ (n, k)(A/B). Thus increasing B has the effect of decreasing (n, k)(A/B).
Let B0 be such that (n, k)(A/B0) isminimal. For any stably dominated H ≤ A, H+B0
is also stably dominated and if St is a family of stably dominated subsets of A/B0, its
lifting to A is a family of stably dominated subsets of A; so it suffices to find families
{Sν

t } for A/B0. Thus, we may assume (n, k)(A/B) = (n, k)(A) for any connected
stably dominated C�-definable B ≤ A. Let (n, k) = (n, k)(A).

Claim 5.12.1 Let S be aC�-definable subgroup of A admitting aC�-definable surjec-
tive homomorphism θ : S → g to a C�-definable stable group of Morley rank n and
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a C�-definable surjective homomorphism ξ : S → W to a C�-definable �-internal
group of o-minimal dimension k. Then there exists a C-definable family Ht of stably
dominated subgroups of A, with t a �-tuple, such that ker(ξ) = Ht for some t.

Proof Clearly S, ξ, g, θ,W lie in a family (St , ξt , gt , θt ,Wt ) such that gt is stable,
dimst(gt ) = n, Wt is a �-internal, dimo(Wt ) = k, θt : St → g is a surjective
homomorphism, ξt : St → Wt is a surjective homomorphism. Let Ht = ker(ξt ). Let
Tt ≤ St be as in Proposition 4.14. By Lemma 4.15, Tt is Ct-definable. By Lemma
2.26, St/Tt is �-internal. The group Tt/Ht ∩ Tt is �-internal and stably dominated, it
is therefore finite and hence trivial, since Tt is connected. So Tt ≤ Ht . By maximality
of k, Ht/Tt is �-internal of o-minimal dimension 0 so it is finite. It follows that Ht is
stably dominated.

Let B be anyC�-definable stably dominated connected subgroup of A. Let (S, T ) ∈
Z2(A/B) be such that S has a stable homomorphic image of dimension n and S/T
is �-internal of o-minimal dimension k. Let (S′, T ′) be the pullbacks of (S, T ) to A.
Then B ≤ T ′. Clearly S′ admits a stable homomorphic image of dimension n and
S′/T ′ is �-internal of o-minimal dimension k. By the Claim 5.12.1, there exists a C-
definable family Ht of stably dominated groups, with t a �-tuple, such that T ′ = Ht

for some t . ��
Corollary 5.13 (FDω) Let A be a definable Abelian group. There exists a definable
certifiably stably dominated family Ht , where t is a �-tuple, such that any connected
stably dominated ∞-definable subgroup of A is contained in some Ht .

Proof Let C and H ν
t be as in Proposition 5.12.

Claim 5.13.1 There exists a type p overC and a ν such that any∞-definable connected
stably dominated subgroup of A is contained in some H ν

t , with t |� p.

Proof Assume not, then for any ν and p, there exists a ∞-definable stably dominated
Bp,ν ≤ A which is not contained in

⋃
t |�p H

ν
t . By Proposition 5.3, there exists an

∞-definable stably dominated B ≤ A containing all the Bp,ν . This B is contained in
some H ν

t for some t and ν. Let p = tp(t/C). Then Bp,ν ≤ H ν
t , a contradiction. ��

Fix p and ν as in the Claim and γ |� p. Then (H ν
γ )0 is definable and has finite

index, say l, in H ν
γ . Let Lt be a C-definable family of subgroups of Ht such that

[Ht : Lt ] ≤ l and whenever t |� p, Lt = H ν,0
t . Then every Lt is stably dominated

and any ∞-definable connected stably dominated subgroup of A is contained in some
Lt with t |� p, which is connected by construction. ��

Before we can state the next theorem, we need to give an explicit definition of
�-internality for certain hyperimaginaries.

Definition 5.14 Let D be a pro-definable set and E be a pro-definable equivalence
relation on D. We say that D/E is almost �-internal if there exists a a pro-definable
map f : D → X such that:

(1) X is a pro-definable set in �eq.
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(2) Each fiber of f intersects only boundedly many classes of E .

Remark 5.15 Note that if E is the intersection of relatively definable equivalence rela-
tions on D, then D/E is a pro-definable set and the above definition is equivalent to
the usual notion of almost �-internality.

In particular, if G is a pro-definable group and H is a pro-definable subgroup
admitting a generic and G/H is almost �-internal, then G/H is a pro-limit of almost
�-internal definable groups. If, moreover, � is o-minimal, then, by Lemma 2.26, each
of these almost �-internal definable groups is in fact �-internal and is therefore (iso-
morphic to) a group definable in �. It follows that G/H is (pro-definably isomorphic
to) a group pro-definable in �.

Theorem 5.16 Let A beapro-limit of definableAbeliangroups.Assume A has bounded
weight. Then the limit stably dominated subgroup H exists and A/H is almost internal
to �.

If (FDω) holds and A is definable, then H is definable, admits a generic type p, is
connected and A/H is �-internal.

Proof The existence of H is proved in Proposition 5.9. Let C be a metastability basis
over which A and H are defined. Let f be a pro-definable function enumerating all
C-definable maps from A into �.

Claim 5.16.1 For all c, d ∈ A, if tp(c/acl(C f (c))) = tp(d/acl(C f (c))), then c ·d−1 ∈
H.

Proof By definition of a metastability basis, tp(c/C f (c)) is stably dominated. Let p
be the unique acl(C f (c))-definable extension of tp(c/acl(C f (c))). By Lemma 5.1,
there exists a stably dominated pro-acl(C f (c))-definable connected stably dominated
subgroup S ≤ A such that p concentrates on a coset of S. Note that, by definition of
H , S ≤ H . Since p is acl(C f (c))-definable, it follows that p|acl(C f (c)) concentrates
on a coset of S; i.e. c · d−1 ∈ S ≤ H . ��

It immediately follows that each fiber of f intersects boundedly many cosets of H
and, since the image of f is a pro-definable set in �, A/H is almost �-internal.

Let us now assume (FDω). Let (St )t |�q be a limit stably dominated family for H . By
Corollary 5.13 we can also find a certifiably stably dominated family (Ht ′)t ′∈Q where
Q ≤ �n for some n, such that any ∞-definable connected stably dominated subgroup
of A is contained in some Ht ′ . It is easy to see that

⋃
t |�q St = H = ⋃

t ′∈Q Ht ′ and
hence that H is definable.

Define a partial order on Q by t ′1 ≤ t ′2 if Ht ′1 ≤ Ht ′2 . Note that this order is directed.
By Lemma 2.24, Q has a cofinal definable type q ′. For any t ′ |� q ′, let pt ′ be the
principal generic of H0

t ′ . Let r be the type such that, for all D ⊇ C over which q is
defined, a |� r |D if and only if a |� pt ′ |Dt ′ for some t ′ |� q ′|D. By Lemma 2.3,
r is definable. Let D be such that A, H and r are D-definable and pick any g ∈ H .
Then there exists t |� q and t ′ |� q ′|Dg such that g ∈ St ≤ H0

t ′ . Let a |� pt ′ |Dgt ′,
then g · a |� pt ′ |Dgt ′ and hence g · a |� r |Dg. It follows that g p = p and thus that
H = Stab(p) is connected.

The fact that A/H is�-internal now follows from the fact that it is almost�-internal
and Lemma 2.26 (cf. Remark 5.15).
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Remark 5.17 The only use of (FDω) in the proof above is to apply Corollary 5.13. It
follows that, to get the second part of the statement in Theorem 5.16, it suffices to
assume that there exists a certifiably stably dominated family Ht , where t is a �-tuple,
such that any∞-definable connected stably dominated subgroup is contained in some
Ht .

Corollary 5.18 (FDω) Let A be a definable Abelian group. There exists a universal
pair ( f , B) with B a �-internal definable group, and f : A → B a definable homo-
morphism. In other words for any ( f ′, B ′) of this kind there exists a unique definable
homomorphism h : B → B ′ with f ′ = h ◦ g.

Equivalently, there is a smallest definable subgroup H with A/H �-internal.

Proof Let H be the limit stably dominated subgroup of A. Then H is definable. For
any pair ( f ′, B ′) as above, f ′ vanishes on any definable connected stably dominated
group. Since H is a union of such groups, f ′ vanishes on H . But A/H is �-internal,
so the canonical homomorphism A → A/H clearly solves the universal problem. ��
Corollary 5.19 (FDω) Let A be a definable Abelian group. There exists a smallest
definable subgroup A0 of A of finite index.

Proof Let H be the limit stably dominated subgroup of A and B ≤ A be any subgroup
of finite index. Since H/H ∩ B is finite and H is connected, it follows that H ≤ B.
The question thus reduces to the o-minimal group A/H , where it is known (cf. [19,
Proposition 2.12]). ��
Question 5.20 In ACVF, is G/G0 always finite, where G is any definable group and
G0 denotes the intersection of all definable finite index subgroups of G?

The answer to this question is presumably yes (cf. Problem 1.9 and the proof of
Corollary 5.19) and it is already known to be true of stably dominated groups (cf.
Corollary 4.11).

Corollary 5.21 (FDω) Let A be a definable Abelian group. There exists a universal pair
( f , B) with B a stable definable group, and f : A → B a definable homomorphism.
Equivalently, there exists a smallest definable subgroup H with A/H stable.

Proof Clearly if A/H and A/H ′ are stable, so is A/(H ∩ H ′). It suffices to show that
there are no strictly descending chains A ⊃ H1 ⊃ H2 . . . of such subgroups. By (FD),
dimst(A/Hn) is bounded; so we may assume it is constant, dimst(A/Hn) = d. Then
Hn/Hn+1 is finite. By Corollary 5.19, the chain stabilizes.

As one can see, Corollary 5.21 follows formally from the existence of a smallest
definable subgroup of finite index and does not actually depend on the existence of
the limit metastable subgroup. Using the fact that in a metastable theory, extensions
of �-internal groups are �-internal, Corollary 5.18 can similarly be deduced formally
from the existence of a smallest definable subgroup of finite index. In particular, a
positive answer to Question 5.20 would imply that Corollaries 5.18 and 5.21 hold of
every definable group in ACVF.
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Remark 5.22 (FDω) Since a pro-definable stable group always has a generic and hence,
by Proposition 3.4 is a prolimit of groups, any ∞-definable normal subgroup of a
definable group A such that A/H is stable is the intersection of definable subgroups
Hi such that A/Hi is stable. It follows that if A is Abelian, the smallest ∞-definable
subgroup H with A/H stable exists and is definable.

It is then straightforward to prove that any pro-limit A of Abelian groups—in par-
ticular, any pro-definable Abelian group with a generic—has a smallest pro-definable
subgroup H such that A/H is stable.

Corollary 5.23 (FDω) Let A be a connected definable Abelian group. Then for almost
all primes p, p · A = A.

Proof Let H be the limit stably dominated subgroup of A.Wehave H = ∪t |�q St where
q is a complete type over some C and St is a definable connected stably dominated
group. Let At be the maximal stable quotient of St and m = dimst(At ). Let At (p) =
{x ∈ At : p · x = 0}. Then At (p) can be infinite for at most m values of p. For any
other p, At (p) is finite and hence p · At = At . It follows that p · St has finite index
in St (Corollary 4.10); so p · St = St . Thus pH = H .

On the other hand, A/H is an o-minimally definable group. So its p-torsion is
finite (eg. [29, Proposition 6.1]) and hence dimo((A/H)/p(A/H)) = 0. Since A/H
is connected, p(A/H) = A/H . So p · A = A. ��

5.2 Metastable fields

By a rng we mean an Abelian group with a commutative, associative, distributive
multiplication (but possibly without a multiplicative unit element.) If a rng has no
zero-divisors, the usual construction of a field of fractions makes sense.

Proposition 5.24 Let F be a definable field with 0 < dimst(F) = n < ∞. Then
there exists an ∞-definable subrng D of F, with (D,+) connected stably dominated.
Moreover F is the field of fractions of D.

Proof Using Lemma 5.5, we find a connected ∞-definable subgroup M of F� with a
stably dominated generic type p of stable dimension n.

Recall that the p-weight of F is bounded by dimst(F). We can therefore apply
Lemma 5.1 additively to find D a connected subgroup of (F,+)with principal generic
type p±2n and such that p concentrates on an additive coset of D. As in Lemma 5.5,
we see that dimst(D) ≥ n. Let C be such that F , M , D and p are C-definable. If
(a, b1, b2, . . . , b2n) |� p⊗2n+1|C , then a · (∑i −b2i + b2i+1) = ∑

i −(a · b2i ) + (a ·
b2i+1) |� p±2n|Ca, i.e. if a |� p|C and b |� p±2n|Ca, a · b = p±2n|Ca. Let now
a |� p|C andd ∈ D. Since p±2n is the principal generic of D, wefindb, c |� p±2n|Ca
such that d = b−c. So a ·d = a ·b−a ·c ∈ −p±2n|C+ p±2n|C ⊆ D. Similarly, since
M is multiplicatively generated by p|C , M · D ⊆ D. Finally, since D is generated by
M − M , D · D ⊆ D; so D is a subrng of F .

Let F ′ ⊆ F be the fraction field of D. If a ∈ F�F ′, then themap (x, y) �→ x+a ·y
takes D2 → F injectively—if x +a · y = x ′ +a · y′ and (x, y) �= (x ′, y′) then y �= y′
and a = (x ′ − x)/(y − y′). Thus D + a · D ⊆ F is definably isomorphic to D2. But
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dimst(D2) ≥ 2n > n = dimst(F), a contradiction. We have proved that F = F ′ is
the field of fractions of D. ��
Remark 5.25 Assuming (FDω), in the previous proposition, if D is a ring, i.e. 1 ∈ D,
then the generic type of (D,+) is also generic in (D�, ·).
Proof Note first that by construction, the generic type q of (D,+) has stable dimension
n = dimst(F), so, by Corollary 4.16, D is definable. Let N be the smallest definable
subgroup of (D,+)with D/N stable (cf. Corollary 5.21). Clearly N ismultiplicatively
invariant under the units of D. Thus N is an ideal of D and D/N is a definable stable
ring. Then D/N has only finitely many maximal ideals which are all definable (cf.
[2, Theorem 2.6]). It follows that the generic of D/N avoids all these maximal ideals
and therefore concentrates on (D/N )�.

Let a |� q. The image in D/N of the ideal a · D contains the generic a + N which
is invertible. So that image equals D/N . By Corollary 4.10, a · D = D—recall that
D is connected—and a is invertible. So the additive generic of D concentrates on D�

and since, for any c ∈ D�, the map x �→ c · x is a definable isomorphism, it must
preserve q. ��
Remark 5.26 If F is a definable field of finite weight, then the limit stably dominated
subgroup H of (F,+) is an ideal so it is either trivial—inwhich case F is�-internal—
or coincides with F . If (F,+) is stably dominated then its minimal definable subgroup
N with F/N stable is a proper ideal and hence is trivial—in which case F is stable.

So, unless F is stable or �-internal, (F,+) is properly limit stably dominated.

Proposition 5.27 (FDω) Let F be an infinite definable field which is neither stable
nor internal to �. Then F� has a definable homomorphic �-internal non definably
compact image.

Proof Let H be a stably dominated ∞-definable subgroup of F� with generic p.
As in the proof of Proposition 5.24, we find a subrng R, additively generated by
p±2, invariant under multiplication by H , whose additive group is connected stably
dominated and such that p concentrates on an additive coset of R. Recall that, since
we built p±2 by looking at the additive structure, realizations of p±2 are of the form
−a + b for some (a, b) |� p⊗2.

If H1 ≤ H2 are two ∞-definable stably dominated subgroups of F�, let pi be their
generics and Ri the corresponding subrng. Assume that everything is defined over
some C . If a, b ∈ H1 and e |� p2|Cab, then both a · e and b · e realize p2|Cab. It
follows that a − b = e−1(a · e − b · e) ∈ R2. In particular, the set of realizations of
p±2
1 is contained in R2. Since R1 is additively generated by p±2

1 , R1 ⊆ R2.
Let M = ⋃

t |�q Mt be the limit stably dominated subgroup of F� and Rt the
subrng corresponding to Mt . Note that, since Mt can be—and is—chosen definable
and that Mt − Mt generates Rt in boundedly many steps, Rt is definable. Note that
if dimst(F) = 0, working over a metastability basis C , for any a ∈ F , tp(a/�C (a))

has a unique realization and F is internal to �. So dimst(F) > 0. Let R′ (and M ′) be
as in Proposition 5.24. In particular, F is the fraction field of R′. By definition, there
exists t |� q such that M ′ ≤ Mt . By the previous paragraph, R′ ⊆ Rt . It follows that
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for any t |� q, F is the fraction field of Rt . Let Nt be the minimal quotient of (Rt ,+)

such that Rt/Nt is stable (cf. Corollary 5.21). Since Nt is characteristic, it is invariant
under multiplication by elements of Mt . It is therefore an ideal of Rt . By Proposition
4.6, the principal generic of Rt is dominated by a group morphism, so if Nt = Rt ,
Rt = {0}. On the other hand, if Nt = (0), Rt , and hence F is stable. It follows that
Nt is a proper non-trivial ideal. If t ≤ s, Rt/Ns ∩ Rt is stable as it embeds in Rs/Ns .
So Nt ⊆ Ns . If a ∈ Nt is not 0, then a−1 /∈ Rs for any s > t and it follows that
R := ⋃

t Rt �= F .
Let V := F�/M . It is �-internal. Let V+ := (Rt � {0})/M for some choice of t .

It is a definable subsemigroup of V . Since R is stabilized by M , MRt ⊆ R �= F , so
V+ �= V . Also, since F is the fraction field of Rt , V = V+ − V+. By Lemma 2.31,
V does not have (NG). By Proposition 2.30, it is not definably compact.

6 Valued fields: stably dominated groups and algebraic groups

In this section, we work in ACVF. Let K be an algebraically closed valued field; O
denotes the valuation ring. Occasionally we will assume K to be sufficiently saturated.

Recall that a definable set is purely imaginary if there are no definable functions
(with parameters) from that set onto an infinite subset of K , cf. Definition 2.34.

Proposition 6.1 Let C = acl(C) and H be a connected ∞-C-definable group with a
(right) generic. Then there exists an algebraic group G over C ∩ K and a C-definable
homomorphism f : H → G, with purely imaginary kernel.

Proof Let F = C ∩K . Let p be the principal generic type of H ; let (a1, a2) |� p⊗2|C
and a3 = a1 · a2. Let τ = {a1, a2, a3, a12 = a1 · a2, a23 = a2 · a3, a123 = a1 · a2 ·
a3}. We view this six-element set as a matroid, given by specifying the collection of
algebraically dependent subsets of τ . This data is called a group configuration.

For c ∈ τ , let A(c) = acl(Cc) ∩ K ; this is the set of field elements in the algebraic
closure of c over C . Pick a tuple α(c) ∈ A(c) such that A(c) = F(α(c))alg. We view
c �→ α(c) as a map on τ into the matroid of algebraic dependence in the algebraically
closed field K over F . Then α preserves both dependence and independence. For
independence this is clear. Preservation of dependence follows from:

Claim 6.1.1 Let E1 and E2 be two algebraically closed substructures of a model of
ACVF, all sorts allowed. Let Li be the set of field elements of Ei . If c ∈ acl(E1 ∪
E2) ∩ K, then c ∈ (L1L2)

alg.

Proof This follows immediately from the fact that there are no definable maps with
infinite range from a geometric sort other than K to K (cf. Remark 2.36).

According to the group configuration theorem for stable theories, applied to the the-
ory ACF over the model F , there exists a group G, ACF-definable over F , such that
a(τ ) is a group configuration for G; in particular there exist b1, b2 ∈ G, b12 = b1b2
such that A(ai ) = F(bi )alg. Since ACF-definable groups are (definably isomorphic
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to) algebraic groups, we can take G to be an algebraic group over F (cf. [11, Propo-
sition 3.1]).

We work in the group H × G. Let ci = (ai , bi ). Since ai |� p|C , p is C-definable
and C = acl(C), tp(ci/C) has a C-definable extension qi . Let Z = Stab(q2, q3). This

is a coset of S := Stab(q2) and q := c−1
1 q1 is a generic type of S. Let J = {h ∈ H :

(h, 1) ∈ S}.
Claim 6.1.2 J is purely imaginary.

Proof Pick any h ∈ J , D ⊇ C and (a, b) |� q2|acl(Dh). Then (h · a, b) |� q2|Dh.
Since all geometric sorts but K are purely imaginary and a ∩ K ⊆ acl(b), we have
acl(Da) ∩ K ⊆ acl(Db) and hence acl(D, h · a) ∩ K ⊆ acl(Db). So acl(Dh) ∩ K ⊆
acl(D, a, h · a) ∩ K ⊆ acl(Db). This inclusion holds for any (a, b) |� q2|acl(Dh).
Sinceq2 is D-definable, in particular D-invariant, it follows that acl(Dh)∩K ⊆ acl(D)

and h is purely imaginary over any D ⊇ C . Therefore J is purely imaginary.

Note that S projects onto H ; this is because the projection contains a realization of
p1|C and p1 generates H . Similarly, S projects dominantly ontoG. Let J ′ = {g ∈ G :
(1, g) ∈ S}. By an argument similar to the proof of the above claim, for all h ∈ J ′ and
(a, b) |� q2|Ch, since b ∈ acl(a), we have that h ∈ acl(Ca). Since q2 is C-invariant,
it follows that h ∈ acl(C) and hence J ′ is finite. Note also that J ′ is normal in the
projection of S to G and hence is a normal subgroup of G.

Now S can be viewed as the graph of a homomorphism f : H → G/J ′ with kernel
J . Since G/J ′ is isomorphic to an algebraic group defined over F , replacing G by
G/J ′ wemay assume that f : H → G. Since S ⊆ H×G is the∞-C-definable graph
of a function, it is relatively definable—we have (a, b) /∈ S if and only if (a, b′) ∈ S
for some b′ �= b—and f is a C-definable function.

Remark 6.2 Assume that H is a connected ∞-definable Abelian group with a (right)
generic, then there is a universal map f into an algebraic group; i.e. for any algebraic
group G ′ and any definable homomorphism f ′ : H → G ′, there exists a unique
definable homomorphism g : f (H) → G ′ with f ′ = g ◦ f .

Instead of H being Abelian, it suffices to assume that Question 5.20 has a positive
answer for all definable subgroups of H .

Proof Let f be as in Proposition 6.1, then, since J := ker( f ) is purely imaginary,
f ′(J ) is finite. Thus ker( f ′)∩ J is a finite index subgroup of J . If we choose ker( f ) to
be as small as possible, i.e. ker( f )/ ker( f )0 to be least possible, then J ≤ ker( f ′). ��

The following example shows that the assumption that the group has a generic
cannot be eliminated. Without it, it seems likely that one can find an isogeny between
a quotient of H by a purely imaginary group and a quotient of an ind-algebraic group.

Example 6.3 (Versions of tori) The value group � of an algebraically closed valued
field is a divisible ordered Abelian group. So every group definable in � is locally
definably isomorphic to the group V := �n . Nevertheless, interesting variants of V
are known. If � is a finitely generated subgroup of V , the convex hull C(�) of �
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(with respect to the product partial ordering of V ) is an ind-definable subgroup (a
direct limit of definable sets) which is itself not definable. But the quotient C(�)/�

is canonically isomorphic to a group definable in � (cf. [25]). One example of such a
group is, given any τ ∈ �>0, the group �(τ) = [0, τ ) with the law x�y = x + y if it
stays in �(τ) and x�y = x + y − τ otherwise.

Note that a non realized definable type concentrating on �(τ) corresponds to a
definable cut and hence has a trivial stabilizer. It follows that �(τ) does not have
generics.

These examples lift to the tori T = G
n
m over algebraically closed valued fields.

Let r : T → V be the homomorphism induced by the valuation map. Let � be
a finitely generated subgroup of T . Then C(�) := r−1(C(r(�))) is ind-definable,
and C(�)/� is definable in ACVF. For example, fix t ∈ K with val(t) = τ > 0,
and define a group structure on A(t) := {x : 0 ≤ val(x) < τ } by: x�y = x · y if
x · y ∈ A(t), x�y = x · y/t otherwise. This group admits a homomorphism onto the
definably compact �-internal group �(τ), with stably dominated kernel. Since �(τ)

does not have generics, neither does A(t).
Note that A(t) contains no infinite purely imaginary subgroup. Moreover, if, for

some finite group J , A(t)/J is a Zariski-dense subgroup of an algebraic group G,
then the group configuration of G is inter-algebraic with that of Gm. It follows that G
is isogenous to Gm. But A(t) has too many torsion points for this to be possible.

Corollary 6.4 Let C = acl(C) and H be a connected ∞-C-definable stably domi-
nated group. Then, there exists an algebraic group G over C ∩ K and a C-definable
homomorphism f : H → G, with boundedly imaginary kernel.

Proof We follow the notation and proof of Proposition 6.1. Note that, by Proposition
2.10.(4) andProposition 2.9,qi is stably dominated overC . There only remains to show
that J is boundedly imaginary. So pick an h ∈ J . Then for any (a, b) |� q2|Ch, (h ·
a, b) |� q2|Ch. Now a is purely imaginary overCb. By Lemma 2.35, there existsβ0 ≤
0 ≤ β1 ∈ �C (a, b) and a tuple d ∈ β0O/β1M such that a ∈ dcl(C, b, β0, β1, d).
Since tp(ab/C) is stably dominated, we have β0, β1 ∈ �(C), and a ∈ dcl(C, b, d).
Since tp(h · a, b/C) = tp(a, b/C), we also have h · a ∈ dcl(C, b, d ′), for some tuple
d ′ ∈ β0O/β1M. Thus h ∈ dcl(a, h · a,C) ⊆ dcl(C, b, d, d ′). Since q2 is C-invariant
and β0O/β1M is stably embedded C-definable, it follows that h ∈ dcl(C, d ′′) for
some tuple d ′′ ∈ β0O/β1M. By compactness and Corollary 2.39, J is boundedly
imaginary. ��

A very similar proof yields the following:

Remark 6.5 Let H be a purely imaginary stably dominated definable group. Then H
is boundedly imaginary.

Proof Let p be the principal generic type of H ; with H and p defined overC = acl(C).
Then, for any a |� p|C , �C (a) ⊆ C . Since a is purely imaginary over C , it follows
from Lemma 2.35, stable domination of p|C and Corollary 2.39 that a is boundedly
imaginary over C . Any element of H0 is a product of two realizations of p|C , so
H0 is boundedly imaginary. It follows that some definable set H ′ containing H0 is
boundedly imaginary. Finitely many translates of H ′ cover H , so H is also boundedly
imaginary. ��
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6.1 Stably dominated subgroups of algebraic groups

Our goal in this section is to relate stably dominated subgroups of affine algebraic
groups to algebraic geometric objects. To do so, we consider schemes over O. Note
that schemes only appear this section and that this section is independent from the rest
of the paper. Note also that the technical hypotheses are meant to insure that every
thing works as one would expect. All of the required definitions regarding schemes
can be found in [17].

All the schemes over O that we consider will be assumed to be flat and reduced
over O. By an O-variety (or variety over O), we mean a (flat and reduced)
scheme of finite over O; it admits a finite open covering by schemes isomorphic
to Spec(O[X1, . . . , Xn]/I ). In particular, an affine variety over O is of the form
Spec(O[X1, . . . , Xn]/I ). Note that we do not require varieties to be irreducible. Since
O is a valuation ring, an affine scheme Spec(R) is flat over Spec(O) if and only if no
non-zero element of O is a 0-divisor in R. So Spec(O[X1, . . . , Xn]/I ) is flat if and
only if I = I K [X1, . . . , Xn]∩O[X1, . . . , Xn]. Hence there are no infinite descending
chains of O-subvarieties.

For any scheme V over O, we write V (O) for the set of its O-points; the set of
morphisms Spec(O) → V over Spec(O). When V = Spec(O[X1, . . . , Xn]/I ) is an
affine variety over O, V (O) = {x ∈ On : ∀ f ∈ I , f (x) = 0}. Conversely, for any
set Z ⊆ On , let I := { f ∈ O[X1, . . . , Xn] : f (Z) = 0} and R = O[X1, . . . , Xn]/I .
Then V = Spec(R) is flat over Spec(O) and if Z = W (K ) ∩ On for some affine
varietyW over K , then V (O) = Z . Note that the set V (O) is pro-definable in ACVF.
When V is of finite type, V (O) is definable.

If V is a scheme over O, we write VK := V ×O K for the generic fiber and
Vk := V ×O k for the special fiber. Note that if V is of finite type, both the generic
fiber and the special fibers are, non necessarily reduced, varieties over, respectively,
K and k. Let ρ : V (O) → Vk(k) be the natural (pro-)definable map. When V is an
affine variety overO it simply consists in coefficient-wise reduction moduloM. IfW ′
is a subvariety of VK , there exists a uniqueO-subvarietyW of V such thatWK = W ′,
and W (O) = W ′(K ) ∩ V (O). For example, if V ′ ⊂ A

n is an affine variety over K ,
defined by a radical ideal P ⊂ K [X ], we let V = Spec(O[X ]/P ∩ O[X ]). Then
VK = V ′ and Vk is the zero set of the image of P ∩ O[X ] in k[X ]. In this case, we
denote the affine coordinate ring K [X ]/P by K [V ], andO[V ] = O[X ]/(P ∩O[X ]).

Lemma 6.6 Let V be an irreducible affine O-variety and assume V (O) �= ∅. Then
V (O) is Zariski dense in VK .

Proof Let L be a sufficiently saturated algebraically closed field extending K . Let
a ∈ VK (L) be a K -generic point. Thus for any b ∈ V (K ) there exists a K -algebra
homomorphism h : K [a] → K with h(a) = b. In particular, there exists such an h
with h(a) ∈ V (O). It follows that the maximal idealM of K generates a proper ideal
ofO[a]: otherwise, for some m ∈ M and f ∈ O[X ], m · f (a) = 1; but then applying
h, we would have m · f (h(a)) = 1. Thus M extends to a maximal idealM′ of O[a],
and thence to a maximal idealM′′ of some valuation ringOL of L , withO[a] ⊂ OL .
Thus the valuation on K can be extended to L in such a way that a ∈ O(L). By model
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completeness of ACVF, there exists a′ ∈ VK (K ), with coordinates in O, outside any
given proper K -subvariety of V . ��

We denote the Krull dimension of schemes by dim. Note that when V is a variety
over k, dim(V ) = MR(V ) = dimst(V ).

Lemma 6.7 Let V be a scheme over O, with dim(VK ) = n. Let q be a K -definable
type of elements of V (O)with dimst(ρ�q) = n. Assume V is defined over B = acl(B);
then q is stably dominated over B.

Proof Say q is defined over B ′ = acl(B ′) ⊃ B. Let a |� q|B ′. Since
trdeg(k(B ′)(ρ(a))/k(B ′)) ≥ n, we have trdeg(k(B)(ρ(a))/k(B)) ≥ n. It follows
that B(a) is an extension of B of transcendence degree n and residual transcendence
degree n. The type tp(a/B) is therefore stably dominated via ρ. Indeed, a is in the
algebraic closure over B of n independent generics of O. Since ρ(a)⫝B B ′, q is its
unique B-definable extension. ��

Recall that a group scheme G over O is a scheme G over O with three morphisms
of schemes overO: the multplication μ : G ×O G → G, the inverse map ι : G → G
and the identity ε : Spec(O) → G, such that the obvious diagrams commute. When
G = Spec(R) is affine, thesemaps correspond to three operations: the comultiplication
R → R ⊗O R, the coinversion R → R, and the counit R → O, making R into a
Hopf algebra. In fact, Spec induces a correspondance between affine group schemes
and Hopf algebras.

Let G be a group scheme over O, with generic fiber GK and special fiber Gk .
Then G(O) is a (pro-)definable subgroup of the (pro-)definable group GK (K ), and
the previously defined map ρ : G(O) → Gk(k) is a group homomorphism. Note that,
when G is not a scheme of finite type, dim(Gk) might be smaller than dim(GK ); cf.
Example 6.12.

Proposition 6.8 Let p be a definable type concentrating on G(O). Assume that ρ� p
is a generic type of Gk and that dim(GK ) = dim(Gk) < ∞. Then p is a stably
dominated generic type of G(O). When G is a scheme of finite type, G(O) has finitely
many generic types.

Proof Consider translates q = g p of p, for some g ∈ G(O). Clearly ρ�q = ρ(g)(ρ� p).
By Lemma 6.7, q is stably dominated over acl(B), where B is a base of definition of
G. So p itself is stably dominated and since all of its translates are defined over B,
which is small, p is generic.

When G is of finite type, by Corollary 4.11, G0 is definable and hence, the orbit of
generic types is finite. ��

6.1.1 Linear groups

Our goal is to show that all stably dominated∞-definable subgroups of affine algebraic
groups, may be obtained as theO-points of a group scheme G overO. This result has
since been generalized in [5] to the non-affine setting. Note that Example 6.12 shows
that we cannot always assume G to be of finite type.
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We start with a version of the maximum modulus principle for generics of sub-
groups:

Proposition 6.9 Let G be an affine algebraic group over K , H be a Zariski dense
definable subgroup of G(K ) and p be a definable type of elements of H. Then the
following are equivalent:

(1) p is the unique stably dominated generic of H.
(2) For any regular function f on G, p attains the highest modulus of f on H; i.e

for some γ f , for any x ∈ H, val f (x) ≥ γ f and

|� (dpx)(val f (x) = γ f ).

Note that, because any function constant on connected components of G is regular,
connectedness of G follows from these assumptions.

Proof Let us first prove that (1) implies (2). Since p is stably dominated, for any regular
f there exists γ f with (dpx)(val( f (x)) = γ f ). If (a, b) |� p ⊗ p then a · b |� p; so
val( f (a · b)) = γ f . By Corollary 2.41, for any a, b |� p we have val( f (a · b)) ≥ γ f .
But since p is the unique generic, any element c of H is a product of two realizations
of p. Thus val( f (c)) ≥ γ f .

Let us nowprove that (2) implies (1).Note that, using quantifier elimination for alge-
braically valued fields, (2) characterizes p uniquely. Also, since γ f does not depend
on x , p is orthogonal to �, hence stably dominated, by Proposition 2.15. On the other
hand, for any h ∈ H , replacing f by f (h · x), we see that (2) is invariant under
H -translations. Thus if (2) holds of p, it holds of every translate, so every translate of
p equals p. By Remark 3.12, p is the unique generic type of H .

Proposition 6.10 Let G be an affine group scheme overO. Let p be a stably dominated
type of elements of G(O). Assume:

(�) if f ∈ K [G] and val( f (x)) ≥ 0 for x |� p, then f ∈ O[G].
Then p is the unique generic of H := G(O) if and only if ρ� p is the unique generic

type of ρ(H).

Proof Let us assume that p is the unique generic of H . In an algebraic group, to show
that a type is the unique generic is to show that any regular function f vanishing
on the type, vanishes on the whole group. Let f ∈ k[ρ(H)] vanish on ρ� p. Lifting
to O, we have F ∈ O[G] with val(F(a)) > 0 for a |� p. By Proposition 6.9.(2),
val(F(a′)) > 0 for all a′ ∈ H . So f vanishes on ρ(H).

The converse uses (�). Assume that ρ� p is generic in ρ(H). We want to show that
Proposition 6.9.(2) holds to be able to conclude. Let F ∈ K [G]. Since p is stably
dominated, for some γ , for any a |� p, val(F(a)) = γ . If γ = ∞, then, by (�), any
K -multiple of F lies in O[G], so F = 0. Otherwise, we may assume γ = 0. By
(�), it follows that F ∈ O[G]. Suppose there exists a′ ∈ G(O) with val(F(a′)) =
val(c) < 0—we may take a′ ∈ G(O0), a fixed submodel. Then c−1F ∈ O[G], and
val(c−1F(a)) > 0 for a |� p, i.e. res(c−1F(a)) = 0. By genericity of ρ� p, res(c−1F)

vanishes on ρ(H); so val(c−1F(a′)) > 0 for all a′ ∈ G(O); a contradiction. ��
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Theorem 6.11 Let G be an affine pro-algebraic group over K . Let H be a Zariski
dense pro-definable connected stably dominated subgroup of G(K ). Then there exists
a prolimit H of affine group schemes of finite type over O and an isomorphism φ :
G → HK , such that φ(H) = H(O).

If G is an affine algebraic group and H is definable, H can be chosen to be an
affine group scheme of finite type over O.

In the proof below, the duality between affine schemes and algebras, which induces
a duality between affine group schemes and Hopf algebras, is used to rewrite the above
statement as a purely algebraic result on HopfO-subalgebras of K [G]. We then prove
this purely algebraic result.

Proof Let K0 = K alg
0 be some subfield of K over which G, H are defined, O0 =

O ∩ K0 its valuation ring, R0 := K0[G] be the affine coordinate ring of G and p be
the stably dominated generic of H . Note that since p generates H , p is Zariski dense
in G. It follows that equalities in R0 = K0[G] can be determined by evaluating at any
realization of p|K0. We define S0 = {r ∈ K0[G] : (dpx)val(r(x)) ≥ 0}. This is an
O0-subalgebra of R0.

Claim 6.11.1 S0 ⊗O0 K0 = R0.

Proof Pick any 0 �= r ∈ R0. Since p is stably dominated, it is orthogonal to �. Thus
for some c ∈ K0, for a |� p|K0, val(r(a)) = val(c). If c = 0, then r vanishes on
p and hence on G, i.e. r = 0 ∈ R0, contradicting the choice of r . So c �= 0, and
c−1r ∈ S0. This shows that the natural map S0 ⊗O0 K0 → R0 is surjective. Injectivity
is clear since S0 has no O0-torsion.

Let H = Spec(S0). We have HK := H×O0 Spec(K )  Spec(S0⊗O0 K ) = G. We
identify HK with G. So p is the type of elements of G(K ) and in fact, by definition
of S0, of G(O) = H(O).

The morphisms x �→ x−1 : G → G and (x, y) �→ x · y : G2 → G correspond to
two operations:

i : R0 → R0, i(r)(a) = r(a−1)

and

c : R0 → R0 ⊗K0 R0, c(r) =
n∑

i=1

ri ⊗ s j , r(a · b) =
n∑

i=1

ri (a)si (b).

Note that any O0-subalgebra S′
0 of R0 is O0-torsion-free, hence a flat O0-module.

Thus the maps S′
0 ⊗O0 S′

0 → S′
0 ⊗O0 S0 → S0 ⊗O0 S0 are injective. We identify

S′
0 ⊗O0 S′

0 with its image in S0 ⊗O0 S0. Let us say that an O0-subalgebra S′
0 of R0

is Hopf if i(S′
0) ⊆ S′

0 and c(S′
0) ⊆ S′

0 ⊗O0 S
′
0. Note that Hopf O0-subalgebras of R0

correspond, via Spec, to affine group schemes whose base change to K is a quotient
of G.

Claim 6.11.2 S0 is Hopf
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Proof Let us first consider co-inversion. Let s = i(r) for some r ∈ S0. Clearly
val(s(x)) = val(r(x−1)) ≥ 0 for any x |� p. Hence s ∈ S0.

Let us now consider co-multiplication. Pick any (a, b) |� p⊗2 and r ∈ S0. Write
c(r) = ∑

j r j ⊗s j for finitely many r j , s j ∈ R0. By [7, Lemma 12.4], and definability
of p, we may assume that val(r(a ·b)) = min j (val(r j (a))+val(s j (b))). We may also
assume that no r j (a) is zero. As inClaim 6.11.1, we renormalize so that val(r j (a)) = 0
for all j . Since a ·b |� p, it follows thatmin j val(s j (b)) = val(r(a ·b)) ≥ 0. Since both
a and b realize p|K0, for any c |� p|K0 we have val(r j (c)) = 0 and val(s j (c)) ≥ 0,
i.e. r j , s j ∈ S0. ��

It follows thatH = Spec(S0) is an affine group scheme overO0 whose base change
to K is G.

Claim 6.11.3 The type p is the unique generic of H(O).

Proof Note that, by definition, for all x ∈ H(O) and r ∈ S0, val(r(x)) ≥ 0. Pick any
r ∈ S0. As in Claim 6.11.1, we find c ∈ K0 such that (dpx)val(r(x)) = val(c) and
c−1r ∈ S0. Thus, for all x ∈ H(O), val(r(x)) ≥ val(c). The claim now follows by
Proposition 6.9.

Since they have the same generic, it follows that H(O) = H .
Let us now prove that H is a prolimit of affine group schemes of finite type. Let

F be the family of finitely generated O0-subalgebras of S0 that are Hopf. If S′
0 ∈ F

then Spec(S′
0) is an affine group scheme of finite type overO0, which is a quotient of

H. So, to prove that H is the prolimit of its quotients of finite type, it suffices, dually,
to show that F is filtered and that S0 is the direct limit of the S′

0F . Note that if S is
generated by S′

0 and S′′
0 as an O0-algebra, then S is closed under c if S′

0 and S′′
0 are.

Indeed c : S0 → S0 ⊗O S0 is anO0-algebra homomorphism, so {r : c(r) ∈ S⊗O0 S}
is an O0-subalgebra of S, hence equal to S since it contains S′

0 and S′′
0 . Moreover, by

the commutativity rules between c and i , the O0-algebra i(S′
0) is also closed under c

and hence, since the O0-algebra generated by S′
0 ∪ i(S′

0) is closed under i , it is Hopf.
It follows that it suffices, given r ∈ S0, to find a finitely generated O0-subalgebra S′

0
of S0 closed under c with r ∈ S′

0.
Fix r ∈ S0 and write c(r) = ∑n

i=1 ri ⊗ si , with n least possible, and
r1, . . . , rn, s1, . . . , sn ∈ S0.

Claim 6.11.4 Let (a1, . . . , an) |� p⊗n|K0. The matrix s = (si (a j ))1≤i, j≤n is invert-
ible over K .

Proof If not, there exists a non-zero vector α = (α1, . . . , αn) in K with α · s = 0. We
may assume αn = 1. Since the ai are independent and α has weight at most n − 1,
some a j must be independent (in the underlying algebraically closed field) from α.
Therefore, for any a |� p|K0α,

∑
i αi si (a) = 0 and hence

∑
i αi si = 0. Since p

is K0-definable and the si are in R0 = K0[G], we may assume that αi ∈ K0. Thus
s1, . . . , sn are K0-linearly dependent, contradicting the minimality of n.

The expression r(x ·y) = ∑n
i=1 ri (x)·si (y) shows that {r(g·y) : g ∈ G(K0)} spans

a finite-dimensional K0-subspace of K [G]. Similarly {r(g · y · h) : g, h ∈ G(K0)}
spans a finite-dimensional K0-subspace V0 of R0. Let S′

0 be theO0-algebra generated
by V0 ∩ S0. ��
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Claim 6.11.5 c(V0) ⊆ V0 ⊗O0 V0.

Proof Let (g1, . . . , gn, x) |� p⊗n+1|K0. The r(x · g j ) = ∑
i ai (x)bi (g j ) are in

V0 by definition. By Claim 6.11.4, ai ∈ V0. By the symmetric argument, we also
have bi ∈ V0 and hence r ∈ A0 := {r ∈ V0 : c(r) ∈ V0 ⊗O0 V0}. Note that, by
definition, A0 is closed by left and right multiplication by G(K0), so V0 ⊆ A0 and
thus c(V0) ⊆ V0 ⊗O0 V0. ��

By the renormalization argument of Claim 6.11.1, V0 ⊗O0 V0 ⊆ V0 ⊗O0 S0 =
S0 ⊗O0 V0 and hence c(V0 ∩ S0) ⊆ (V0 ⊗O0 V0) ∩ (S0 ⊗O0 V0) ∩ (S0 ⊗O0 V0) ∩
(S0 ⊗ S0) = (S0 ∩ V0) ⊗O0 (S0 ∩ V0). It immediately follows that c(S′

0) ⊆ S′
0 ⊗ S′

0.
Since r ∈ S′

0, we are done.
The finite type statement follows by compactness. ��
In Theorem 6.11, we cannot always assume G to be finite type:

Example 6.12 Let K0 = C(t)alg, with val(t) > 0. Let Hn := {(x, y) ∈ (Ga ×
Gm)(O) : val(y − ∑n

i=1 1/i !(t · x)i ) ≥ val(tn+1)}, a definable subgroup of
(Ga × Gm)(O), isomorphic to (Ga × Gm)(O). The group H := ∩Hn is connected
stably dominated; but its generic is dominated via the map (x, y) �→ res(x). The
Zariski closure of H has dimension 2, but the generic type of H has a residual part of
transcendence degree one.

It follows that H cannot be the O points of a group scheme of finite type, nor can
it be the connected component of a definable group.

Lemma 6.13 Let G be a group scheme over O. For each n, let φn(g) := gn, and
assume φn : G → G is a finite morphism. Then G(O) is connected.

Proof By properness, φn : G(O) → G(O) is surjective. So any finite quotient has
order prime to n. This holds for all n, so G(O) has no finite quotients.

6.2 Abelian varieties

Definition 6.14 Let V be an affine variety over K . A definable subset W is bounded
if for any regular function f on V , {val( f (x)) : x ∈ W } has a lower bound. For a
general K -variety V , a definable subset W is bounded if there exists an open affine
covering V = ⋃m

i=1Ui , and a bounded Wi ⊆ Ui , with W = ⋃
i Wi .

This definition is due to [27, §6.1]. The assumption there that the valuation is
discrete is inessential.

If V ′ is a closed subvariety of V and W is bounded in V , then clearly W ∩ V ′ is
bounded in V ′. In the affine case, if V has coordinate ring K [ f1, . . . , fn], for V to be
bounded (as a subset of itself), it suffices that the fi have bounded valuation. In the
case of projective space P

n , a standard covering by bounded sets is given in projective
coordinates by: Ui = {(x0 : · · · : xn) : xi = 1 and (∀ j �= i)val(x j ) ≥ 0}. Complete
varieties are bounded as subsets of themselves.

Let C |� ACVF, so C = dcl(F) where F = C ∩ K ; F is an algebraically closed
valued field. Let F be the family of all C-definable functions on V into �. Recall (see
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Proposition 2.15) that a C-definable type r concentrating on V is stably dominated if
and only if for any f ∈ F there exists f (r) := γ ∈ �(M) such that if c |� r |C then
f (c) = γ .

Definition 6.15 Let q be a C-definable type extending a type q0 over C , let (pt : t |�
q0) be a family of stably dominated Ct-definable types concentrating on some variety
V over F and U be an open affine of V . We say that the family (pt )t |�q0 is uniformly
bounded at q (on U) if for any regular function f on U defined over D ⊇ C , there
exists α ∈ � such that if t |� q|Dα and c |� pt |Dtα then c ∈ U and val( f (c)) ≥ α.

Lemma 6.16 Let pt and q be as above. Assume pt concentrates on a bounded W ⊆ V .
Then (pt )t |�q0 is uniformly bounded at q.

Proof The types pt (when t |� q0) concentrate on one of the bounded affine sets Wi

in Definition 6.14. Let U be the corresponding affine Ui . Any regular function on Ui

is bounded on all of Wi , hence in particular on realizations of the pt . ��
Recall Definition 2.27.

Lemma 6.17 Let pt and q be as above. Assume (pt )t |�q0 is uniformly bounded at q
on U. Then there exists a unique C-definable type p∞ := limq pt such that for any
regular function f on U, if a |� p∞ then val( f (a)) = limq val( f (pt )).

Moreover, p∞ is stably dominated and if h : V → W is an isomorphismof varieties,
then limq h� pt = h� limq pt .

Proof By assumption, we cannot have limq val( f (pt )) = −∞. The set { f :
limq val( f (pt )) = +∞} is a prime ideal I ; part of the condition on p∞ is that
( f = 0) ∈ p∞ if and only if f ∈ I . Let V ′ ⊆ U be the zero set of I . The affine
coordinate ring of V ′ is OV (U )/I . An element of F(V ′) can, therefore, be written
g/h with g, h ∈ OV (U ) and h /∈ I ; equivalently limq pt (h) �= ±∞. Hence we
can define a valuation val on F(V ′) by val(g/h) = limq g(pt ) − limq h(pt ). This
determines a valued field extension F+ of F and hence gives a complete type p∞ of
elements of V ′. It is clear that p∞ is definable; and that that �(F+) = �(F), so p∞
is orthogonal to �, and hence, by Proposition 2.15, it is stably dominated. Note that
val( f (p∞)) = limq val(pt ( f )) for any f ∈ F(V ′). In particular the choice of U is
immaterial. The functoriality is evident. ��

Recall Definition 2.28.

Lemma 6.18 Let G be a bounded C-definable subgroup of an algebraic group G̃ over
F. Let (Ht )t be a certifiably stably dominated C-definable family of subgroups of G,
where t is a �-tuple, forming a directed system under inclusion and let H := ⋃

t Ht .
Assume G/H is �-internal. Then H is stably dominated. Moreover G/H is definably
compact.

Proof Let q(t) be aC-definable type cofinal in the partial ordering Ht ⊆ Ht ′ , given by
Lemma 2.24. Let pt be the principal generic type of Ht . Note that H = ⋃

t |�q|C H0
t .

By Lemma 6.16, using the boundedness of G, the family (pt ) is uniformly bounded
at q, so p∞ = limq pt exists.
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Claim 6.18.1 Let H and H ′ be connected stably dominated definable subgroups of G.
Let p and p′ be their generic types. Then H ⊆ H ′ if and only if p�p′ = p′.
Proof If H ⊆ H ′, then p�p′ = p′ by definition of genericity for p. Conversely if
p�p′ = p′ then a generic of H is a product of two realizations of p′; in particular it
lies in H ′. But any element of H is a product of two generics, hence any element of
H lies in H ′. ��

By the functoriality of Lemma 6.17, we have limq
a pt = a(limq pt ) for any a ∈ G.

Let s |� q|C and t |� q|Cs. If a |� ps |Cs, then a pt = pt , and hence a p∞ = p∞.
Thus H0

s ⊆ Stab(p∞) and thus H ⊆ Stab(p∞). On the other hand, as p∞ is stably
dominated and G/H is �-internal, the function x �→ x · H is constant on p∞, so p∞
lies in a single coset x · H . It follows that p∞�p−1∞ is generic in H , so H is stably
dominated.

Now let r be a definable type on �, and let h : � → G/H be a definable function.
For any t ∈ �, let p′

t be the generic type of h(t), viewed as a coset of H ; this is a
translate of the generic type of H . Let p′∞ = limr p′

t . Then p′∞ is stably dominated,
so it concentrates on a unique coset of H , corresponding to an element e ∈ G/H .
Tracing through the definitions we see that e = limr h. Since r and h are arbitrary,
G/H is definably compact.

The following is an immediate consequence of Theorem 5.16 and Lemma 6.18.
Recall that Abelian varieties are complete and hence bounded.

Corollary 6.19 Let A be an Abelian variety over K . Then there is a definably compact
group C defined over �, and a definable homomorphism φ : A → C with stably dom-
inated kernel H. In particular A has a unique maximal stably dominated connected
∞-definable subgroup—which is definable.

If A has good reduction, i.e A = AK where A is some Abelian scheme over
O, then, since A is the zero locus of homegeneous polynomials in some projective
space, A(K ) = A(O). By Proposition 6.8, AK (K ) is stably dominated. Since AK (K )

is divisible, it is connected. Thus, in this case, the definably compact quotient C is
trivial.

In general, if F is locally compact, then the set C(F) of points of C lifting to F-
points will be a finite subgroup of the definably compact group C . On the other hand
if F = Qp((t)), C(F) can be a finite extension of Z.

The stably dominated group H is dominated via a grouphomomorphism h : H → h
to a stable—i.e. a k-internal—group h. After base change to a finite extension, h
becomes isomorphic to an algebraic group over k. It would be interesting to compare
this with the classical theory of semi-stable reduction.

6.3 Definable fields

Before we prove the classification of fields definable in algebraically closed valued
fields, let us recall a result of Zilber, cf. [32]. Note that we are not only finding a
K ′-vector space structure on A for some definable field K ′, but we are also identifying
K ′ with the field K from which we started. As far as we know, the latter only appears
in later work of Poizat, cf. [21].
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Lemma 6.20 Let (G, ·) and (A,+) be infinite Abelian groups definable in an alge-
braically closed field K . Assume that G acts definably on A by group automorphisms
and that the action is irreducible: i.e. there are no proper non-trivial G-invariant
subgroups. Then A has a definable K -vector space structure and G acts linearly on
A.

Proof Quotienting by the kernel of the action, wemay assume thatG acts faithfully. By
Schur’s lemma R := EndG(A) is a division ring. Since G is Abelian, we can identify
G with a multiplicative subgroup of R�. As in the proof of [16, Theorem 7.8.9], we
can show that the ring generated by G—which is a field—is definable and hence by
[21] it is definably isomorphic to K . So we have obtained a definable action of K � on
A by group automorphisms—a definable K -vector space structure— and the action
of G factorizes through the action of K �.

We will also need an notion of dimension than generalizes Krull dimension to all
definable subsets of the field:

Definition 6.21 Let D be a definable subset of Kn . We write dimK(D) for the Krull
dimension of the Zariski closure of D (inside A

n).

Remark 6.22 (1) For any K0 = K alg
0 ⊆ K , dimK(D) = max{trdeg(a/K0) : a ∈ D}.

(2) dimK is preserved under definable bijection.
(3) Let f : D → X be some definable map with X purely imaginary. One can easily

show from the above that dimK(D) = max{dimK( f −1(a)) : a ∈ X}.
(4) Any definable set D has non empty interior in its Zariski closure. It follows that

if D1 ⊆ D2 are definable and dimK(D1) = dimK(D2), then D1 has non empty
interior in the Zariski closure of D2.

(5) In fact, dimK(D) is exactly the C-minimal dimension of D.

Theorem 6.23 Let F be an infinite field definable in ACVF. Then F is definably
isomorphic to the residue field or the valued field.

Proof If F is stable, then by [6, Lemma 2.6.2], it is definable in the residue field (over
some new parameters), which is a pure algebraically closed field. Hence, by [21], it
is definably isomorphic to the residue field. There are no infinite fields definable over
�, since � is a pure ordered divisible Abelian groups.

Let us assume that F is unstable. By Proposition 5.27, there exists a non-definably
compact �-internal definable homorphic image V of F�. By [24, Theorem 1.2], V
contains a definable one-dimensional torsion-free group. Since � is a pure ordered
divisible Abelian group, such V contains a group isomorphic to (�,+)—see [4, The-
orem 1.5] for a more general statement. Hence F is not boundedly imaginary.

Let D be a subrng of F , with (D,+) connected stably dominated, and such that F
is the field of fractions of D (cf. Proposition 5.24). There exists a surjective definable
map D× D → F—namely (x, y) �→ x/y for non-zero y, (x, 0) �→ 0. Since F is not
boundedly imaginary, neither is D. Let f be the universal homomorphism of Remark
6.2 from (F,+) into an algebraic group. Let I be the purely imaginary kernel. For
any c ∈ F , d �→ f (c · d) is another homomorphism into an algebraic group, so it
must factor through f ; thus if f (d) = 0 then f (c · d) = 0, i.e. I is an ideal of F . If
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I = F , then (D,+) is a purely imaginary stably dominated and by Remark 6.5, D is
boundedly imaginary, a contradiction. It follows that I �= F , so I = (0). Hence f is
an isomorphism onto a subgroup of an algebraic group G.

Let L be the limit stably dominated subgroup of (F�, ·) and let H := L � (F,+).
Let h : H → G be the homomorphism of Proposition 6.1. The kernel is a purely
imaginary subset of H ⊆ F2 so it is finite. But H has no finite non-trivial normal
subgroups, so h is an embedding and we identify H with its image in G.

We now proceed as in [20], with some local changes of reasoning. The Zariski
closure F of F is a (connected) commutative algebraic group and the Zariski closure
L acts on F by conjugation. Let B ≤ F be an L-invariant subgroup of F . If a ∈ B∩F ,
let Z be the L-orbit of a, which is in definable bijection with L . Since F�/L is �-
internal, we have dimK(Z) = dimK(L) = dimK(F�) = dimK(F). So the Zariski
closure of K , which is contained in B, is equal to F ; and B = Z . If B ∩ F = ∅ and
B is not trivial, quotienting by B, we would be able to embed F in a variety of strictly
lower dimension than F , a contradiction, so B is trivial.

Applying Lemma 6.20, we see that F is a vector space over the valued field K and
that the action of L is linear. We also denote this action by · since it extends the action
of L on F by multiplication. If ri ∈ L and

∑
ri = 0, then

∑
ri · y = (

∑
ri ) · y = 0

for any y ∈ F , and by Zariski density of F , for y ∈ F . Thus the action may be
extended to an action of the ring R generated by L on F , again extending the action by
multiplication of R on F . Note that R contains the subrng D constructed in Proposition
5.24 and hence its fraction field is F . Finally, if 0 �= r ∈ R then r acts on F as an
invertible linear transformation, since the image contains r · F = F and hence, by
Zariski density, F . Thus we can extend the action to a K -linear action of F on F
which extends the action by multiplication. We also denote that action by ·.

Let Z be some non-zero orbit of L on F . Then Z is definably isomorphic to L ,
and, since F�/L is �-internal, it has the same C-minimal dimension as F . So Z
contains a non-empty open subset U of F . Pick any c ∈ U , then for any α ∈ O
with val(α − 1) sufficiently large, αc ∈ U and thus there exists h ∈ L such that
h · c = αc. Since F is a field, h is uniquely defined. For any b ∈ L , we have
α(b · c) = b · (αc) = b · (h · c) = h · (b · c) so the action by h and scalar multiplication
by α agree on Z . Since Z has the same C-minimal dimension as F , the linear span of
Z is F and those two linear functions actually agree on F .

Let E = {α ∈ K : (∃b ∈ F)(∀x ∈ F)αx = b · x}. This is clearly a subfield of
K , and it contains a neighborhood of 1. Hence it contains a neighborhood N of 0. If
0 �= x ∈ K then x−1N ∩ N is open and contains some non-zero u, so x · u ∈ N and
x = (x · u)/u ∈ E . It follows that E = K . Moreover, the map sending any α ∈ K
to b ∈ F , such that the action by b coincides with scalar multiplication by α, is an
embedding of rings. Since F has bounded dimension, for some m no definable subset
of F admits a definable map onto Km ; so dimK F < m. Since K is algebraically
closed we have K  F . ��

We naturally expect any infinite non-Abelian definably simple group definable
in ACVF to be isomorphic to an algebraic group defined over the residue field or
the valued field. A proof along the above lines may be possible assuming a positive
solution to Problem 1.9 for ACVF, along with an interpretation of an ordered proper
semi-group structure on H\G/H .
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The existing metastable technology yields a proof of the Abelian case:

Proposition 6.24 Let A be an non-trivial Abelian group definable in ACVF. Then
there exist definable subgroups B < C ≤ A with C/B definably isomorphic (with
parameters) to an algebraic group over the residue field or a definable group over the
value group.

Proof Let H be the limit stably dominated subgroup of A, cf. Theorem 5.16. If H <

A �= 0 we can take C = A and B = H . If A = H , then A is limit stably dominated.
In particular, A contains a non-zero stably dominated definable Abelian group C and,
by Proposition 4.6, C has a non trivial stable quotient. Since all stable definable sets
in ACVF are internal to k and k is a pure algebraically closed field, it follows that this
quotient is (isomorphic to) an algebraic group over k. ��

6.4 Residually Abelian groups

Example 6.25 In ACVF, there exists connected stably dominated non-Abelian groups,
with Abelian stable part:

(1) Let A = G
2
a , and let β : A2 → Ga be a non-symmetric bilinear map defined

over the prime field, e.g. β((a1, a2), (b1, b2)) = a1b2 −a2b1. Let t be an element
with val(t) > 0 and consider the following group law on A2: (a, b)�(a′, b′) =
(a + a′, b + b′ + tβ(a, a′)).

(2) If we work in Ga(O/t2O) where val(t) > 0, we can also just take a�b = a+b+
tβ(a, b). This dimension 1 example is due to Simonetta [28]. This group does not
lift to an algebraic group over O.

However,wemay ask if any connected stably dominated groupofweight 1 definable
is nilpotent.
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