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We prove an elimination of imaginaries results for most henselian valued
fields of equicharacteristic zero. To do so, we consider a mix of sorts introduced
in earlier works of the two authors and define a generalized version of the
k-linear imaginaries. For a broad class of value groups containing all subgroups
of R"™ for some n, we prove that the imaginaries of such a valued field can be
eliminated in the field, the k-linear imaginaries and the imaginaries of the
value group.
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1 Introduction

In the model theory of valued fields, one of the most striking results is a theorem by Ax,
Kochen and, independently, Ershov which roughly states that the first-order theory of an
unramified henselian valued field is completely determined by the first-order theory of its
residue field k and of its value group I'. A natural philosophy follows from this theorem:
the model theory of a henselian valued field is controlled by its residue field and its value
group.

In this paper we show that this philosophy also applies to the question of eliminating
imaginaries: the classification of interpretable sets, that is, quotients of definable sets
by definable equivalence relations; or equivalently, the description of moduli spaces for
families of definable sets.

The study of imaginaries in various henselian valued fields has been ongoing in the past 20
years, starting with the case of algebraically closed valued field (ACVF) in the foundational
work by Haskell, Hrushovski and Macpherson [HHMO06|. This work laid the groundwork for
a “geometric model theory” of valued fields. They proved that in ACVF, every quotient
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can be described as a subset of products of certain specific quotients, known as the
geometric sorts : the main field K, and, for all n € Z, the space Gr,, := GL, (K)/GL,(O)
of free rank n O-submodules of K™ and the space Lin, = Ugcqr, R/mR, where O denotes
the valuation ring and m ¢ O is the unique maximal ideal. We say that ACVF eliminates
imaginaries down to the geometric sorts. These results were later extended to other
classes of henselian fields, potentially with additional structure [Mel06; HMR18; HKR1S;
Rid19].

In the early 2000, Hrushovski asked if such results could be explained by general result
and proposed a classification reminiscent of the Ax-Kochen-Ershov principle. This paper
provides a positive answer to this question for a broad class of henselian valued fields of
equicharacteristic zero.

As can be expected, the natural obstructions to elimination of imaginaries in valued
fields come in two flavors: those coming from the residue field, studied in work of Hils
and the first author [HR21], and those coming from the value group, studied in work of
the second author [Vic23a].

1.1 Obstructions arising from the residue field

In [HR21|, Hils and the first author assume the value group to be definably complete —
this only allows divisible ordered abelian groups and groups elementarily equivalent to
7Z — and classify the imaginaries that might arise. This includes the imaginaries of the
residue field k, which might be arbitrarily complicated, but also linearly twisted versions.
Given a free rank n O-submodule R ¢ K", the quotient module R/mR is a k-vector
space of dimension n, on which k induces a non-trivial structure. Once we name a basis,
R/mR is definably isomorphic to k™, but without that basis, imaginaries of R/mR cannot
be identified with imaginaries of k.
The structure (k, R/mR) can be seen as a structure in the language Lyeet with two
sorts:
e a field sort k with the ring language,
e a vector space sort V with the (additive) group language,
e A function X\ :k x V — V interpreted as scalar multiplication.
Given a set X interpretable (without parameters) in the Lyect-theory of dimension n
vector spaces, the interpretable sets X (R/mE) has to be accounted for. To do so, one

introduces
Lin, x = || X®EMmE)
’ ReGry,

and the k-linear sorts
k' = | | Lin, x.
n,X

In fact, it suffices to consider interpretable sets X that are quotients of V (and not some
power of V and k). Note that if X =V then Lin, x = Lin,, and if X is the one element
quotient of V' then Lin,, x ~ Gry,.

One of the main result of [HR21|, is that — under some mild hypothesis on k — these
are the only obstructions to elimination of imaginaries in that case:



Theorem 1.1 (|[HR21, Theorem 6.1.1]). Let K be a henselian valued field of equicharac-
teristic zero such that:

o The value group is definably complete;

o The residue field eliminates 3°°.

Then K has weak elimination of imaginaries down to KUuk®duT.

This result can be generalized to finite ramification and certain difference valued fields
and it remains true when considering k-I'-expansions of K — that is when k is given
additional structure and independently, so is T

1.2 Obstructions arising from the value group

In |Vic23al, the second author studied imaginaries in equicharacteristic zero henselian
valued fields with algebraically closed residue field. The complexity of the value group
directly impacts the complexity of definable O-modules and this needs to be taken in
account.

This can be done by introducing the stabilizer sorts which provide codes for all the
definable O-submodules of K", for any n. More precisely, let C = (C;) eyt be the (ind)-
definable family of proper cuts in I'. For every c € Cut”, let I, denote the O-submodule
{reK:v(z)eC.}. For every tuple c e Cut”, let A, be the module ¥, I,e;, where (e;)i<n
is the canonical basis of K".

The group B, of upper triangular matrices acts on the set of all definable O-submodules
of K", and we define

Mod, = B,/ Stab(A.) and Mod =| _|Mod,.

In [Vic23a|, the second author proved that, under some hypotheses on the value group,
the stabilizer sorts are the only obstructions to elimination of imaginaries:

Theorem 1.2 ([Vic23a, Theorem 5.12|). Let K be a valued field of equicharacteristic
zero, such that:
o the residue field is algebraically closed;
e the value group has bounded regular rank — i.e. it has countably many definable
convex subgroups.
Then K admits weak elimination of imaginaries down to K uMod uI*9,

1.3 An imaginary Ax-Kochen-Ershov principle

In this paper, building on those previous works, we provide a common generalization
of both Theorems 1.1 and 1.2, obtaining a general Ax-Kochen-Ershov principle for the
classification of imaginaries, under a mild technical assumption on the value group (we
refer the reader to Section 2.1 for notation related to imaginaries):

Definition 1.3. We say that an ordered group G (potentially with additional structure)
satisfies Property D if for every finite set of formulas A(x,y) containing the formula x < yo,
any A =acl(A4) ¢ G°Y and any A-type p(z) that is A-definable, there is an A-definable
complete type ¢(x) containing p.



This is a stronger property than the density of definable types. It holds in ordered
abelian groups of bounded regular rank (see the second half of the proof of [Vic23a,
Theorem 5.3|), and it is an open question whether or not it holds in all ordered abelian
groups.

Dealing with both a complicated value group and a complicated residue field, requires
wntroducing a version of the k-linear sorts adapted to this generalized setting where more
definable O-modules might be arise. These also required an encoding of the stabilizer sorts
which is more alike the geometric sorts of [HHMO06].

Let Cut™™ = Cut*~{0*} — unless the value group is discrete, in which case Cut** = Cut”.
A module R is said to be m-avoiding if it is (coded) in Mod,, for some tuple ¢ € Cut™*.
The dimension of R/mR only depends on ¢ — it is equal to r = {i:C., =y, for some
vel}l.

For every quotient X of V interpretable (without parameters) in the £yect-theory of
dimension r vector spaces, we define

Lingx = || XUeR/mA)
ReMod.

and the (generalized) k-linear imaginaries:

K= | ] Linx.
ceCut**, X

Among those, we denote Gr = |.cyi++ Mod. and Lin = [ .cye+ Lin.v. Along with K,
these form the (generalized) geometric sorts, and they encode all O-definable submodules
of K", for any n.
Our main results are the following. Let M be a model of Heng (potentially with

additional structure on k and, independently I') such that the value groups is either:

e dense with property D;

e a pure discrete ordered abelian group of bounded regular rank — in which case, we

add a constant for a uniformizer.

Theorem (Theorem 6.5). Assume that either one of the following conditions holds:
(a) for every n € Zsy one has [T : nl'] < co — in which case, we add constants in RV so
that T'/nT" = T'/nv(RV (acl(@)));
(b) or, the multiplicative group k™ is divisible.
Then M weakly eliminates imaginaries down to K ukeduTed,

This result generalizes all previously known results in equicharacteristic zero (in partic-
ular, [HR21; Vic23a|) and provides a definitive answer for, among others, all equichar-
acteristic zero henselian valued fields with bounded Galois group — in fact a bounded
ramification group suffices.

Note that without condition (a) or (b), the short exact sequence

1-k">RV=K"/(1+m)—>T->0

does not, in general, eliminate imaginaries, creating further obstructions. This is not an
issue in presence of an angular component, i.e. a section of this short exact sequence.



Theorem (Theorem 6.6). Let My be an expansion of M by angular components. Then
M, weakly eliminates imaginaries down to K uk'*duTed,

As a corollary (and an illustration) of these two results, when I' is dense, we give a
complete classification of (almost) k-internal sets (see Corollary 6.7). In the case of ACVF
this classification is a cornerstone of the study of stable domination and the subsequent
work of Hrushovski and Loeser [HL16] on Berkovich spaces.

The complexity of dealing with both an arbitrary residue field and a very general value
group introduces new issues that were not present in either earlier works of the authors
[HR21; Vic23a|. We give details below on some of the new tools required to deal with
these issues.

1.4 Overview of the paper

Section 2 provides some preliminary reminders on imaginaries and the model theory of
equicharacteristic zero henselian fields.

In Section 3, we introduce the stabilizer sorts, which provide codes for the new definable
O-modules that arise from the value group, and we prove a unary decomposition for the
stabilizer sorts (Proposition 3.9). We also introduce the generalized geometric sorts, and
show that modules are codes in these sorts. The generalized geometric sorts — and the
related notion of m-avoiding module — play a crucial role in classifying k-internal sets
among the stabilizer sorts (Corollary 3.22), assuming that the value group is dense.

In Section 4, we show that definable types in the structure induced from the maximal
unramified algebraic extension are dense, cf. Theorem 4.1. This is the first main step of
the proof. Recent work on elimination of imaginaries relies on density of definable types.
However this does not hold in all (equicharacteristic zero) henselian field K because it
might not hold in the residue field or the value group. In [HR21, Theorem 3.1.3] Hils and
the first author showed that definable types in K are dense among definable sets in K,
under the assumption that the residue field eliminates 3°°. The second author (|Vic23a,
Theorem 5.9]) proved density of definable types in the maximal unramified algebraic
extension K", assuming the value group has bounded regular rank. In Section 4, we
generalize both results and unify them by proving that the definable types in K™ are
also dense among the sets definable in K (assuming Property D). This is the unique
step where Property D is required and no further hypothesis on the residue field is
required anymore. A significant new challenge in this construction is to relate the germs
of functions definable in K to those of functions definable in K™ — see Section 4.3.

In Section 5, we show that the partial definable types build in Section 4 have completions
that are invariant over RV and k-vector spaces of the form R/mR, for some definable
O-modules R. This is the second main step of the proof. The bulk of the work (Propo-
sition 5.17) revolves around showing that (generalized) geometric points can be lifted
to the valued field by a sufficiently invariant type. This, in turn, relies heavily on the
technical computation of germs of function taking values in sets of the form R/mR —
cf. Proposition 5.4. We describe such germs in three steps: first we consider the case
of valued fields with algebraically closed residue field (Section 5.1.1), then valued fields



with dense value group (and arbitrary residue field) (Section 5.2.1) and, lastly, valued
fields with discrete value group (and arbitrary residue field) (Section 5.2.2). This step is
what distinguishes our treatment of the discrete case from the dense one, as it relies on
the characterization of the k-internal sets (Corollary 3.22), which does not hold in the
discrete case. In the discrete case, we circumvented this issue by considering a ramified
extension with dense value group.

Finally, in Section 6, we wrap everything together and show our two main theorems.
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2 Preliminaries

2.1 Model theoretic preliminaries

We refer the reader to [TZ12, Section 8.4] for a detailed exposition on elimination of
imaginaries. Let T be an L-theory. Consider the language £°? obtained by adding to £ a
new sort Sx for every L-definable set X ¢ Y x Z, where Y and Z are product of sorts,
and a new symbol fx :Z — Sx. The £L%-theory T°Y is then obtained as the union of T’
the fact that the fx are surjective and that their fibers are the classes of the equivalence
relation defined by X,, ={yeY : (y,21) € X} = X,,.

Any M £ T has a unique expansion to a model of 7% denoted M1 — whose points are
called the imaginaries. Throughout this paper, when considering types, definable closures
or algebraic closures, we will work in the £%-structure, unless otherwise specified.

Given M E T and an L(M)-definable set X, we denote by "X ' ¢ MY the intersection
of all A =dcl(A) ¢ M such that X is L°9(A)-definable. It is the smallest dcl-closed
set of definition for X. Any dcl-generating subset of "X is called a code of X. More
generally, if A< M is a set of parameters, any tuple e such that dcl(Ae) = decl(A"X")
is called a code of X over A.

If D is a collection of sorts of £°9 — equivalently, a collection of L-interpretable sets

— and A € M®! is a set of parameters, we say that X is coded in D over A if it is
LYAUD("X"))-definable — i.e., it admits a code in D over A.

The theory T is said to eliminate imaginaries down to D if, for every M = T, every
L(M)-definable set X is coded in D — equivalently, for every e € M, there is some
d € D(dcl(e)) such that e € dcl(d). Finally, we say that the theory T weakly eliminates
imaginaries down to D if for every e € MY, there is some d € D(acl(e)) such that e € dcl(d).

Lastly, we refer the reader to [Rid17, Appendix A (Definition A.2 and A.5)| for a
detailed presentation of expansions (called enrichments, there) and relative quantifier
elimination. Note that in the present text, expansions do not allow adding new sorts.



2.2 Equicharacteristic zero henselian fields

Throughout this text, whenever X is a definable set and A is a subset of a structure,
X (A) denotes X nA. We change structures too often to not be explicit with the definable
closures at play.

Let Hengo be the theory of residue characteristic zero valued fields (K,v) in some
language £. The exact language we use does not matter much since we really work in
£°4, In this section, we recall some useful results about these structures. We denote by
RV™ the group K*/(1 +m), where m is the maximal ideal of the valuation ring O ¢ K
and rv : K - RV = RV* U {0} the canonical projection (extended by rv(0) = 0). Let
M e Hengo and A <K(M).

Theorem 2.1 (|Bas91, Theorem B|). Every A-definable subset of K* x RVY is of the
form {(z,y) : (rv(P(x)),y) € X}, for some tuple P € A[x] and some X € RV" which is
rv(A)-definable in the short exact sequence

1-k* >RV ->T-0.

where k = O/m is the residue field and T' = v(K) is the value group. Moreover, this remains
true in RV -expansions — i.e. when RV comes with additional structure.

From the result above, either by adding a section or proving a quantifier elimination
result for short exact sequences, we can deduce the following:

Proposition 2.2. The sets k and T are stably embedded (with respectively the structure
of a field and an ordered group) and they are orthogonal. In other words, any M -definable
subset of k¥ xI'Y is a finite union of products X xY where X is definable in the field k
and Y 1is definable in the ordered group T'.

Moreover, any A-definable X c T is v(A)-definable. In particular,

T (acl(A)) € acl(v(A)).

These results remain true in k-I'-expansions — i.e. when k comes with additional
structure, and, independently so does I'.
Theorem 2.1 can also be refined for unary sets — showing that Heng o is O-h-minimal:

Proposition 2.3 (|Flell, Proposition 3.6]). Let X < K x RV" be A-definable. There
exists a finite set C € A*nK(M) such that for every £ e RV", X¢e ={zeK:(2,§) e X} =
v (rve(Xe)) where 1ve(z) = (rv(z = ¢))cec-

In other words, for any ball b that does not intersect C', bn X¢ =b or bn X¢ = @.

Definition 2.4. Let a € K(M) and let C be a cut in I'(M) — that is, an upwards closed
subset. We define the generalized ball b (a) of cut C around a to be {x e K:v(z-a) € C}.
A generalized ball is open if its cut is not of the form I's, for some v e I'(M).

Let By denote the set of (codes for) generalized balls.



Note that, for every v € I'(M), br,_ (a) is the open ball of radius vy around a, br, (a) is
the closed ball of radius v around a — bp(a) = K is also considered an open ball. Hence,
a generalized ball is either a closed ball, an open ball or an open generalized ball which is
not a ball.

Corollary 2.5. Let b be an A-algebraic generalized ball which is not an open ball. Then
there exists a finite C € A* such that Cnb(M) # @ and the valuation between any two
distinct points of the Gal(A)-orbit of C' is smaller than the radius of b.

Here we identify the radius of b with its upwards closure in T'(M?).

Proof. Let B be the union of A-conjugates of b. Then, there exists C' € K(acl(A)) € A* be
such that, for any ball d avoiding C, either d€ B ordn B=@. If bnC = &, then b is the
largest ball around b avoiding C, i.e. the open ball around b with radius min..c v(z - ¢),
for any x € b. This contradicts the fact that b is not an open ball. So (M) nC # @.

Let Cp € Gal(A) - C be the subset of points that are at a valuation larger than the
radius of b from b(M) nC. Since M is henselian, the average ¢ of Cj, is in M and, since
we are in equicharacteristic zero, it is in b. By construction, each Gal(A)-conjugates of ¢
is at a valuation smaller than the radius of b from c. O

Finally, when the residue field is algebraically closed, Theorem 2.1 can be further
simplified:

Theorem 2.6 ([Vic23a, Corollary 2.33]). Assume the residue field k(M) is algebraically
closed. Every A-definable subset of K* is of the form v(P(x)) € X where P € A[z] is a
tuple and X cT™ is v(A)-definable in the ordered group structure. Moreover, this remains
true in I'-expansions — i.e. when I' comes with additional structure.

3 Codes of O-modules

3.1 The stabilizer sorts
Let M be an (enriched) valued field.

Notation 3.1. We fix an (ind-)definable family C = (C¢)cecut of cuts in I' such that any
M-definable cut is of the of form C. for some unique ¢ € Cut(M). We will further assume
that ¢ is a canonical parameter for C..

For every c € Cut, let 1. denote the O-submodule {x € K: v(x) € C.}. Note that, by
hypothesis, any £(M )-definable O-submodule of K is of the form al,. for some a € K(M)
and some unique ¢ € Cut(M). We also denote A, ={yeI':v+C.=C.} — it is a convex
subgroup of T'.

The following results are well-established and go back to Bauer’s work on separated
extensions.

Definition 3.2. A definable valuation v on an interpretable K-vector space V is a map
to some interpretable set X with an order preserving action of I' such that



e for every ae K and x € V, v(ax) = v(a) + v(x);
e for every z,y e V, v(z +y) > min{v(z),v(y)}.

Proposition 3.3. Assume that M is definably spherically complete — that is, the
intersection of any M -definable chain of balls is non empty.
1. For every M-definable valuation v on K", there exists a triangular basis (a;)i<n of
K" such that, for all i, v(a;) € dcl("v") and for every A\; € K,

U(Z Aia;) = mlaxv()\i) ~v(ay).

2. Any M-definable O-submodule R of K" is of the form Y., 1., a;, where a; is a
triangular basis of K"(M) and c¢; e Cut("R").

A basis as in the fist assertion is said to be separated. A module as in the second
assertion is said to be of type ¢ = (¢;)i<n-

Proof. If M is (elementarily equivalent to a) maximally complete field, the first assertion
is [Vic23a, Lemma 5.7]. If M is only definably spherically complete, the same proof works
using [HR21, Claim 3.3.9] instead of [Vic23a, Fact 2.55].

Let us now prove the second assertion. For every a € K", we define vg(a) = {v(x) :
za € R} a (non-empty) cut of I We order them by inclusion (so I' = vg(0) is the
maximal element and {oo} is the minimal element). Note that, for every x € K, vg(za) =
vgr(a) - v(z) and for this action of T', vg is an M-definable valuation.

By the first assertion, we can find a separated triangular basis (a;); of K™ (M), such that
vgr(a;) edcl("R"). Then ¥, z;a; € R if and only if 0 = v(1) € vp(¥; x;a;) = min; vr(a;) -
v(x;), i.e. v(x;) € vg(a;) for all i. Let ¢; € Cut(dcl("R")) be such that vg(a;) =C.,. We
then have R = }; 1., a;, as required. ]

Notation 3.4. 1. We write B, to denote the set of nxn upper triangular and invertible
matrices. We write D,, < B,, for the subgroup of diagonal matrices and U,, < B,, for
the subgroup of unipotent matrices, that is upper triangular matrices with ones on
the diagonal.

2. For every n-tuple ¢ € Cut, we define Mod, to be the interpretable set of modules of
type c and A, = ) I, e;, the canonical module of type ¢, where e; is the canonical
basis of K". Then };.,I.,a; = A- A, where A € B, is the upper triangular matrix
of the a;. In other words, B,, acts transitively on Mod,. and

Mod, ~ B,,/ Stab(A.).

We will now identify Mod, with this quotient of B,, and for every s € Mod,., we
write Rs for the O-module of type ¢ coded by s. Let u.: B, - Mod, denote the
natural quotient map.

If A <T is a (definable) convex subgroup, we write Oa = {z € K: v(z) € A} for the
associated (definable) valuation ring. If I, J < K are two (definable) O-submodules, let
(I:J) denote the (definable) O-submodule {z e K:xJ c I'}.



Proposition 3.5. Let c e Cut be a tuple. For every a € B, we have

ii€OX lli<n, and
a € Stab(A.) if and only if a’ Acy for a 1 n. o
a;j € (I :ch) forall i < j < n.

Proof. We proceed by induction on n. Write a as (a%o Ie’), with e € B,,_1, and ¢ as (¢, d),
with d € Cut"™!. If aA, ¢ A., then, considering the action on I, and Ay, we see that
ao0le, € Iey, bAg €1,y — s0, considering the action on each L, for every j > 0, ap,jle; € leg
— and eAy € Ay; and the converse also holds.

-1 _ -1 -1
Since aA. = A, if, moreover, a 'A, = (aO’O ao’ﬂfe )AC c A, it follows that we must
e
further have agole, =1, t-e. v(ao,0) € Ay, and eAg = Ag. These conditions are sufficient
since, in that case, a{)ylobe_lAd = ag}obAd € ap,0le, = I,- The claim now follows by

induction. O

Definition 3.6. Let Cut® = Cut \ {@,T'} and Mod be the collection of all the Mod,
where ¢ is a tuple in Cut”.

Corollary 3.7. Any M-definable O-submodule R of K" is coded in K uMod.

Proof. Let V ¢ K" be the K-span of R and W = {z € K" : Kz ¢ R}. Then V/W is
K("R")-definably isomorphic to some K" and R is entirely determined by its image in
V/W. So we may assume V = K" and W =0 and hence that R is of type ¢ with ¢ € Cut”.
By definition, it is coded in Mod.. O

Remark 3.8. There is a lot of redundancy in Mod. If ¢ and ¢’ are tuples in Cut of
the same length such that for every i <n, ¢} is a translate of ¢;, then there is a natural
bijection between Mod,. and Mod. given by the action of a diagonal matrix.

If there exists an (ind-)definable subset Cut’ € Cut such that any definable cut is of the
form a + C.. for a unique c € Cut’, it follows that every M-definable O-submodule of K" is
coded in KUUcecu'«{g,ry Mod.. Similarly, we can replace Cut by Cut’ in the definition
of the geometric sorts (Definition 3.12).

This is the case, for example, in ordered abelian groups of bounded regular rank (cf.
[Vic23a, Corollary 2.24|).

Let us now describe the structure of Mod. The solvability of the upper triangular
invertible matrices will play a central role in this description.

We go through the elements of an upper triangular matrix diagonal by diagonal starting
at the middle diagonal, and in each diagonal, we proceed from top to bottom. In other
words, we order pairs (i,7) such that ¢ < j < n first by i — j and then by i. We will
identify the set of such pairs with the set of non-negative integers smaller than n(n+1)/2,
according to that order.

For every pair (i, ), let p; ; : B, > K be the projection on coordinate (7,7). Let also
gi; =1if i = j and 0 otherwise. For every pair ¢, let Gy = {a € B,, : pi(a) = ¢, Vk < {}.
Then Go = By, Gn = U, and Gy (ni1)/2 = {id}. By choice of the order, for every /,
Gpi1 < Gy and py induces an isomorphism from Gy/Gyy1 to Gy, if £ < n, and to G,
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otherwise. Note also that Hy = {a € Gy: pi(a) = e, Yk > {}, is a section of py restricted
to Gy and hence Gy = Gy_1 x Hy.

Furthermore, we have G, = U,, B, = U, x D,, and, for every £ > n, GG is central in G,
module Gy,; — actually modulo the next upper triangular group Gy ;,— if £ is a pair
(i,i+7—1). In particular G, 4 U,,.

We can now prove the following unary decomposition.

Proposition 3.9. Let s € Mod,.. There exists a finite tuple b = (bg)y € MY (identified
with a subset of some K™ ) and cbog-interpretable sets X, such that:

o for every {, by e Xy;

e dcl(s) =dcl(cb);

o if { <n, then Xy =T|A.,, where { = (i,i);

e if{>n, then X; has a cbep-definable K/I;-torsor structure where Iy is a cbog-definable

multiple of (I, :1¢;) and £ = (i, 7).

Moreover, for any choice of ay € by, there is a (uniformly) ca<p-definable isomorphism
fo: X = K/Iy and a cac-definable function gy : fo(be) — by.

Proof. Let F = Stab(A.), we identify s with a coset gF for some g € B,,. Let d € D,, and
u € U, be such that g = ud. Note that, by Proposition 3.5, F' = Fyy x Fp where Fy = FnU,
and Fp = FnD,, so, by (the proof of) [HHMO08, Lemma 11.10], dcl(s) = dcl("dFp’, "uF{"),
where Fi¢ = dFd™' nU,. Then, by Proposition 3.5, D,,/Fp =~ [Tycp K*/OR, = Tean T/A
and, for every £ <n, we chose by = va,(dy) to be the ¢-th coordinate in this product.

Now, for every ¢ > n, note that Fﬁng = GgFg is a subgroup, since Gy is normal in U,
and moreover, FgGeH < F{Jng since for every g € Gy, (Fg)g c F5G4+1 by centrality of
the sequence. For every ¢ > n, let X, = quGg/FgGg+1 for the right regular action and
by = uF{JngH € Xy. Note that Xp is a torsor for the group

FUGo/FEGor = Go/(FE 1 Go) Gy = K/pe(FE n Gy) ~ K/did; ' (I, : 1,),

by Proposition 3.5, if we have ¢ = (i,7). Let I = cl,-d;1 (Ig; : 1)

Now, any choice of ap_q1 € by_1 = GgFg gives rise to an element of X, and hence to
a cday_1-definable isomorphism f; : Xy ~ K/I; given by left multiplication by ag_ll. Let
s: K — Hy be the section of p;. Then for every x € fy(by), we have s(z) € az_llquGgH
and hence ap_1s(x) € by. d

Remark 3.10. Looking at the proof, all the operation applied to any upper triangular
matrix representation of s are actually field operations. It follows that Proposition 3.9
can be refined as follows. If A <K (M) is a subfield, and s € p.(By,(A)), then for every
0, by(A) + @. Furthermore, if ap € by(A), then fy(by)(A) + @ and gy sends f(by)(A) to
be(A). Conversely, if by(A) # @, for all £, then s € (B, (A4)).

We conclude this section with one of our main uses for Proposition 3.9: characterizing
parameter sets over which every definable module has a (triangular) basis.

Corollary 3.11. Let A< M®Y and assume that:
1. For every £(A)-definable convex subgroup A <T', I'/A(dcl(A)) cva(K(A)).
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2. For every b e Bg(dcl(A)), b(A) + @.
Then, for every tuple ¢ € Cut, Mod.(dcl(A4)) € u.(Bn(Ak)), where Ak is the field
generated by K(A).

Proof. Let s € Mod.(dcl(A)) — in particular ¢ € Cut(dcl(A)) — and b = (by), be as in
Proposition 3.9 applied in M;. By Remark 3.10, it suffices to show that, by induction on
0, by(Ak) + @. For £ <n, since by € '/ Ay, this follows from the first assumption.

If £ > n, by induction, by is £1(cAk )-interdefinable with some b} € K/I;. By Remark 3.10,
by(M) # @, so by is an £(A)-definable generalized ball in M and hence by(A) # @ by the
second assumption. By Remark 3.10 again, we also have by(Ak) # @. O

3.2 The geometric sorts

The goal of this section is to further simplify the codes of modules to something more
akin to the geometric sorts of [HHMO6]. This will be crucial to classify k-internal sets,
when the value group is non discrete, in Corollary 6.7.

Let M be an (enriched) valued field with non-discrete valued group.

Definition 3.12. 1. Let Cut™™ denote Cut* \ {0} — unless I is discrete, in which
case, Cut™ = Cut”. Any module of type a tuple ¢ € Cut™* is said to be m-avoiding.
Let Gr be the collection codes for all m-avoiding modules; that is Gr = | ey Mode.
2. For every O-module R, let red(R) denote the k-vector space R/mR and let redp :
R - red(R) denote the canonical projection. We also define Lin = | Jseq, red(Rs).
3. Let G = KuGru Lin be the (generalized) geometric sorts.

Remark 3.13. For every c € Cut*, we have ml. = I, if and only if C. # I'sg. Indeed, for
every z €I, if C. # I'sq, there exists a € I. such that v(a) < v(z). Then za™! € m and
hence z = zata € ml,.

It follows that if ¢ € Cut” is some tuple and R is an O-module of type ¢. Then red(R)
has dimension |{i: C,, = I'so}| over k.

Lemma 3.14. Let R< K" be an O-module of type ¢ for some tuple c € Cut*. Then there

exists an "R’ -definable m-avoiding module R containing R and such that mR = mR. In
particular, red(R) € red(R) is a subspace and dcl("R") = dcl("R", red(R)").

Proof. Let vgp be the valuation defined in the proof of Proposition 3.3. Recall that
R={xeK": Ty cvgr(z)} and let R = {x e K" : s C vr(x)}. If ¢; is a (triangular)
basis such that R =} ;1.e;, then R=Y,; Tcl. e;. Since m = O and Tci =1, otherwise, then,
by Remark 3.13, mO = mO = m = mm and ml,, = I, = ml.,, otherwise. It follows that
mR = mR.

The last assertion follows from the fact that redﬁl(red(R)) =R. O

Let us now recall, following [HHMO08, Lemma 2.6.4], how to code definable subspaces
of red(R). The following abstract conditions were isolated in [Hrul2].

Proposition 3.15. Let T' be some theory, k be some @-definable field and |15 Vs be a
collection of finite dimensional @-definable k-vector spaces which
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1. is closed under tensors: for every s,r, there is an @-definable injection from the
interpretable set Vs ® Vs into some Vi,
2. is closed under duals: for every s, there is an @-definable injection from the inter-
pretable set V) into some Vi;
3. has flags: For every s, there exists r,t and a @-definable exact sequence 0 -V, —
Vs = Vi = 0, with dim(V;.) = 1.
Then any definable subspace W € Vg, is coded in Ug V.

Proof. By (the proof of) [Hrul2, Proposition 5.2], W is coded in some projective space
P(V;). By [Hrul2, Lemma 5.6], given that the family has flags, P(V;) is coded in
Us Vs. O

We consider once again an (enriched) valued field M.
Definition 3.16. For every A ¢ M4, let Ling = Lseqr(aci(a)) Ted(Rs).

Before we prove that Proposition 3.15 can be applied to Lin 4, let us prove the following
useful computation:

Lemma 3.17. Let I,J <K be (M-definable) O-submodule. If (I:J) =m, then I = am
and J = aQ, for some a € K.

Proof. We first argue that v(I) ¢ v(J). If v(J) c v(I), then J c I so Stab(J) c (I :J),
where Stab(J) = {z € K : J = J}. Since Stab(J) = O} for some definable convex
subgroup A of the value group, and m does not contain O} then v(I) ¢ v(J).

We aim to show that v(J) has a minimal element. Otherwise, given v € v(J)\v(I)
there is some (3 € v(J) such that 5 < ~, thus v =+ where § =y - (3>0. Take x em
and y € J such that v(z) = § and v(y) = 8. Consequently, zy ¢ I since v(zy) =7, so
(I:J)#m. Let 7y be the minimal element of v(J) and a € K such that v(a) = 79 thus
J =a0. To show that I = am it is sufficient to argue that v(J)\v(I) = {vo}. If there is
some € v(J)\v(]) such that § # o, then 5 -9 > 0. Take € m such that v(x) = 8 -0,
then 2 € m but az ¢ I, hence (J: 1) #m. Thus, I = am, as required. ]

Proposition 3.18. For every A < M®Y, Linyg is a collection of finite dimensional k-vector
spaces which is closed under tensors, duals and has flags.

Proof. Let Ry € K™ and Ry € K™ be two acl(A)-definable m-avoiding O-modules. Let
f:K*"® K" - K" be the @-definable isomorphism induced by the canonical basis. By
Lemma 3.14, we find an A-definable m-avoiding O-module R = f(R; ® R») inducing an
inclusion red(f(R; ® R2)) S red(R). Since red(R;) ® red(Rz) is A-definably isomorphic
to red(R; ® Rs), we conclude that Ling is closed under tensors.

As for duals, for every O-submodule I ¢ K, let IV = (O : 1) ={z e K:zl c O}.
By Lemma 3.17, IV # m. Let g : (K")" - K" be the @-definable isomorphism in-
duced by the canonical basis. Then, if R = ) ;1.a; for some triangular basis a;, then
g(Homp(R1,0)) = ¥, 11 g(a;), which is m-avoiding. This induces an A-definable iso-
morphism red(Homp (R, 0)) ~ red(g(Homp (R, O))) which shows that Ling is closed

under duals.
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Finally, regarding flags, let R = };1.,a; ¢ K" be an acl(A)-definable m-avoiding O-
module, with a triangular. We find a flag for red(R) by induction on n. Let 7 be the
projection on the last n — 1 variables. Then, we have an A-definable short exact sequence

0-I,a0>R—->7n(R)—>0
which induces the following A-definable short exact sequence
0 - I ap/ml a9 > R/mR - n(R)/mn(R) - 0.

If I, = ml,,, then red(R) ~ red(w(R)) and we conclude by induction on n. If not,
Icyao/mIc a0 is a dimension one k-vector space, and the above short exact sequence is a
flag for red(R). O

Remark 3.19. Fix some A < M®4.

1. Ling is stably embedded and its A-induced structure is definable in the structure
with the field on k and the vector space structure on each sort Rs/mRs. In fact,
Ling URV is stably embedded by [HR21, Lemma 2.5.18|. Indeed, once we name
a basis of every vector space in Liny, every definable subset in Ling U RV can be
identified with a definable subset in RV, which is stably embedded.

2. Whenever k is algebraically closed, combining [Hrul2, Lemma 5.6 with Proposi-
tion 3.18, Lin 4, with its A-induced structure, eliminates imaginaries.

We can now improve Corollary 3.7:
Corollary 3.20. Any M-definable O-submodule R of type ¢ € Cut™ is coded in G.

Conversely, any element a + ms € Lin is coded by the O-submodule generated by
(a+ms) x {1}. So any element of G is coded in K uMod.

Proof. By Lemma 3.14, R is coded by "R’ € Gr for some m-avoiding module containing R
and such that mR = mR and 'red(R)" which is a subspace of red(R). By Propositions 3.15
and 3.18, red(R) is coded in Lin-g» € Lin. O

One of the main reason for isolating the m-avoiding modules is the following result.

Proposition 3.21. Let M be an RV-expansion of a model of Heng o with dense value
group. If X € Gr is M -definable and orthogonal to I, then it is finite.

Proof. Let us first consider the case of some M-definable X ¢ K/I. for some ¢ € Cut**.
Let Y ¢ K be the pre-image of X. By Proposition 2.3, there exists a (non-empty) finite set
C < K(M) such that, any ball b disjoint from C, is either contained in Y or is disjoint from
it. If X is infinite, then there exists some a € Y such that a+ I is disjoint from C. Let b be
the maximal ball around a that is disjoint from C' — i.e. the ball a + (min.c v(a - ¢))m.
Then b c Y. Since I. # m, the function f:z ~ v(x —a) induces a well-defined function on
b/I ¢ X with infinite image, so X is not orthogonal to T".

Let us now fix some e € X € Gr, in some elementary extension of M. Let by be as
in Proposition 3.9 and let us prove, by induction on ¢, that by € M°4. For all £ < n, we
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have by € '/ Ay, for some convex subgroup Ay. Since e € X and X is orthogonal to I' and
be € dcl(e), we must have by € M. Let now £ > n and let us assume that by € M. We
have by € X, which is an M-definable torsor for some K/I, where, by Lemma 3.17, I, is
not a multiple of m. Since b; € dcl(e), it is contained is an M-definable subset of K/I,
which is orthogonal to I', and hence, by the first paragraph, finite. So b, € M 9.

Since e € dcl(Mb), it follows that e € M1 As this holds for any e € X is some
elementary extension, X is finite. O

Recall that a definable set X is (resp. almost) internal to another definable set Y if,
over a model, X admits a one-to-one (resp. finite-to-one) map to Y4,

Corollary 3.22. Assume k and T' are orthogonal. Let A = acl(A) € MY and let X be an
almost k-internal A-definable subset of G, then X € K(A) uGr(A) uLing.

Note that it is necessary to assume that I'(M) is dense, otherwise this results does not
hold: consider O/m™ for any n > 2.

Proof. Any almost k-internal set is orthogonal to I'. By Proposition 2.3, any infinite
definable subset of K contains a ball and hence is not orthogonal to I, so if X ¢ K, then
X ¢ K(A). By Proposition 3.21, if X ¢ Gr, then X ¢ Gr(A4). Finally, if X ¢ Lin, then
the projection of X to Gr is finite and hence X c [ sqr(a) red(Rs) = Ling. O

4 Density of quantifier free definable types

Let M be an RV-expansion of a model of Hengg. Let M; = M be its maximal algebraic
unramified extension (with the full induced structure on I') and My = M?* be its algebraic
closure (as a pure valued field). In what follows, whenever, we want to refer to the
structure in My = M?® (resp. My = M"™, resp. M), we will indicate this by a 0 (resp. 1,
resp. nothing): e.g. aclg, acly or acl for the algebraic closure and S°(M) or S*(M) for the
space of types over M. We also assume that the language £; of M; is morleyized, and we
restrict ourselves to quantifier free £;-formulas when interpreting them in a substructure.
The goal of this section is to prove the following density result:

Theorem 4.1. Assume that T'(M) satisfies Property D. Let A = acl(A) ¢ M and X c K"
be £(A)-definable. Then there exists an £1(G(A) uTI(A))-definable type p € SL(M;)
consistent with X — in the pair (My, M).

This statement was proved in [Vic23a, Theorem 5.9] when M = M™ and T is an abelian
ordered group of bounded regular rank. It also generalizes [HR21, Theorem 3.1.3| in two
ways. The first is that it provides a definable type in a stronger reduct (i.e. a type in
M™ and not just in M?). The second is that there is no hypothesis on the residue field —
it is not required that the residue field eliminates 3°°.
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4.1 Codes of definable types

We start by proving the following useful fact allowing to compare types in M, My = M™
and MO = M?.

Remark 4.2. Let ¢=(c¢q,...,¢,) be a finite tuple in Cut**. Consider the natural map:
B, (M)/Stab(A:)(M) - B, (My)/ Stab(A.)(My).

Recall that I'(M;) = I'(M), so for every c € Cut, C.(M) is definable in M;. Then
I.(My) =O(My) - I.(M).

So the map above identifies the code of the O(M )-module R = ¥, @;l.,(M) in M with
the code of the O(M;)-module R = ¥, @il (M1) = ¥ @;O(My) - I, (M) generated by
R. Moreover, we have R(M) = R.

Proposition 4.3. Let A =dcl(A) € M and p(x) € Sg,) (M) be finitely satisfiable in M
and £(A)-definable, fore =0 or 1. Then p has a unique extension q. € S°(M.). Moreover,
q1 is £1(G(A) uT*(A))-definable and qo|nr, is £1(G(A))-definable (as a partial type in
M).

We follow the proof of [Vic23a, Theorem 5.9, mutatis mutandsis.

Proof. The uniqueness of ¢. follows from [HR21, Lemma 3.3.7]; note that g is finitely
satisfiable in M.

For every integer d > 0, let V; ~ K¢ be the space of polynomials in K(M)[x]<q of degree
less or equal than d (in each z;). It comes with an £(A)-definable valuation defined by
v(P) <0(Q) if p(z) - v(P(x)) < v(Q(2)).

By Proposition 3.3 there exists a separated basis (P;);<¢ € Vy such that, for every 1,
vi =v(P;) edel("v") ¢ A. By [HR21, Claim 3.3.5], (P); is also a separated basis of V] =
K(Mj)[x]<q with the valuation v; where vy (P) < v1(Q) if ¢1(z) - v(P(z)) < v(Q(x)).
It follows that vy (V}) = v(Vy) = U;vi + T(M), as this description is quantifier free vy is
£1(M)-definable.

By Corollary 3.7 the definable O-modules R} = {P € V} : v1(P) 2 v;} are coded by
some tuple e} € Mod'(M). We identify e} with the code e; € Mod(A) of R} NV via the
map in remark 4.2. Furthermore, the R} entirely determine v; which is therefore coded
in G(A) (cf. Corollary 3.20). Since qo|ps, is entirely determined by the valuations v; on
le, the proposition is proved in that case.

To conclude, let us prove the definability of ¢;. By Theorem 2.6, any £1-formula ¢(x,y)
(with variables in K) is equivalent to one of the form ¢ (v(P(x,y))), where P € Z[x,y]
is a tuple. Let X4 = {vi(P(z,a)) € v1(V}) : qi(z) + ¢(v(P(x,a)))}. Note that if
v1(P(x,b)) =v1(P(x,a)), then ¢1(z) + v(P(z,b)) = v(P(z,a)) and hence vi(P(z,b)) €
X if and only if v1(P(z,a)) € Xy. So ¢ is entirely determined by the X, over G(A).
Moreover, since v1(V,}) = v(Vy) = U;v; + T'(M) and v; € G(A), this set can be identified,
over G(A), to a disjoint union of copies of I'(A/). It follows that Xy is £,(G(A)uT*1(A))-
definable, and hence so is ¢;. O
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From now on, we will identify £(A)-definable types in S'(M) with their unique
extensions to M7 = M™ and My = M?.

Coding definable £g-types already allows us to code some imaginaries, namely certain
germs of functions into the space of balls.

Lemma 4.4. Assume that I'(M) is dense. Let a €e K(N), for some N > M, be such that
po(z) =tpo(a/M) is L(M)-definable. Let b(a) be an Lo(Ma)-definable open ball. Then
[b]p is coded in G(M) over G("p").

Proof. Let q(x,y) be the £(M)-definable £y(M)-type fp(x) N(z)(y) whose realizations
are the tuples ac such that a E p and ¢ is generic in b(a) over Ma (in N?*). Note that,
since we are in equicharacteristic zero, b(a) has point in N and, in fact, since b(a) is open
and I'(IV) is dense, the generic of b(a) in N*® is finitely satisfiable in N. It follows that
q|ar is finitely satisfiable in M.

By Proposition 4.3, p and ¢ are coded in G(M). Moreover, for every o € Aut(M/"p")
and ac £ ¢, we have 0(q) = ¢ if and only if b(a) = b(c) = b7(a). So [b], is coded by G("¢q")
over G("p"). O

4.2 Unary sets

We first consider the case of Theorem 4.1 when X ¢ K is unary. The proof proceeds as in
[Vic23a, Theorem 5.3| where, in the unary case, the hypothesis that M = M"" is not used.

Lemma 4.5. Let A = acl(A) ¢ M and X < K be £(A)-definable. There exists an
£1(Bg(A))-definable type po € S°(My) consistent with X .

This follows from [HR21, Section 3| which states a relative version of that statement.
However, since the machinery set up for the relative version of the statement is rather
heavy, let us sketch a proof. A version of this proof can also be found in [Vic23a, Theorem
5.5].

Proof. Let B(Mj7) be the set of all open and closed balls (including points and K itself)
in My. Given by,by € B we write by < by if by n X € by n X. This is a pre-order with
associated equivalence = and the associated order is a tree 7 if we remove the class FEy of
balls that don’t intersect X.

Note that any =-class F # Fy, the generalized ball bg = Nycg b is defined by knowing
a point in by and the set {v(z —y) : z,y € B} which is definable in I'(M) =T'(M;). So
be is £1(M)-definable. It follows that E is coded in Bg(M) and that the generic type
ne(x) € S°(M;) generated by

{web:be Eyu{z¢|Jbi:beBand Vbe E, b; c b}
i
is £1("E")-definable. If the type ng is not consistent with X, by compactness, E has
finitely many direct predecessors for <, each of them in acl(A, "E"). So either the lemma

holds or the tree 7 has an initial discrete finitely branching tree of £1(Bg(A))-definable
=-classes.
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By Proposition 2.3, there exists a finite set C'¢ K(M) preparing X and, we can find
an =-class F in the initial discrete tree such that by N C' = @. Then bg € X and hence X
is consistent with the £;(Bg(A))-definable type ng. O

The type po = ng can then be completed to an £1(Bg(A) uT°I(A))-definable type
p1 € SY(My) consistent with X:

Lemma 4.6. Assume that T'(M) satisfies Property D. Let A = dcl(A) € MY and b be an
L£(A)-definable generalized ball. Then, there exists an £1(Bg(A) uI'*(acl(A)))-definable
type p € SY(M1) containing ny,.

Proof. For any a € b(M) and ¢ & ny, 7 = v(c— a) does not depend on a. If v e I'(M),
then 7, generates a complete type in S'(M;). If not, let C be the £;(A)-definable cut
of v over I'(A) and Y, = v(X - a), for every a € b(M). Note that v € C'nNyep(ar) Ya-
By property D, there exists an £(acl(A))-definable type ¢ € S(T'(M)) consistent with
C N Naep(ary Ya- Then, the type p1(z) = my(z) A q(v(7 - a)) is complete by Theorem 2.6,
and it is £1(Bg(A) uT'*4(A))-definable. O

Corollary 4.7. Assume that I'(M) satisfies Property D. Let A = acl(A) € M®Y. Then
any L£(A)-definable subset of K is consistent with an £(Bg(A) uI'*i(A))-definable type
peSH(M).

4.3 Germs of functions

To prove density of definable types in general, we now wish to proceed by transitivity.
However, since we are working with definable £1-types, we first need to address the
potential difference between acl and acly. For every tuple a € M, let ax enumerate K(a).

Proposition 4.8. Assume that T' has property D. Let A =acl(A) € M®, let X be pro-
£(A)-definable and p(x) € SY(M) be £(A)-definable and consistent with X. Assume that
for any a = p, a € acliy(Mag). Then, for every £(A)-definable one-to-finite correspondence
F into GUT®d (defined at realizations of p), there exists an £(A)-definable q(zy) € S'(M)
containing p(x) and ac = q with a € X, c € acly(Magkck) and F(a)ndcly(ac) + @.

Proof. We first consider the case where F' is almost definable in Mj.

Claim 4.8.1. If there exists an £1(M)-definable one-to-finite correspondence G such that
p(x) Az e X + F(x) € G(x), then the proposition holds.

Proof. Since p € SY(M), |G(x)| is constant when x varies over realizations of p; and
we may assume that it is minimal. Then for every other such G', p(z) Az € X +
F(z) € G(z) n G'(x) and hence p(z) Az € X + G(z) = G'(x). In other words, for
some (and hence for every) a £ p, G(a) = G'(a). This holds in particular of any
G’ = 0(G), where 0 € Aut(M/A) and hence [G], € dcl(A) = A. Let Gy € G be minimal
£1(M)-definable such that p(z) - @ # Go(x) € G(x). Then [Go], € acl(A) = A. So
the type q(xy) = p(x) Ay € Go(x) is £(A)-definable and, by construction, for any
ac = q, ¢ € Go(a) ¢ acly(Aa) € acli(Mag). Moreover, if g(xy) is not consistent with
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xe X AyeF(x), then p(x) Az e X - F(x) € G(x) N\ Go(x), contradicting the minimality
of G. So the type ¢ is as required. O

Let us now assume that the co-domain of F' is I'*Y. By Proposition 2.2, for every a k& p,
I(acl(Aa)) c T acl(Mak)) € acly (v(M(ak)))

and hence, by compactness, there exists an £1(M )-definable one-to-finite correspondence
G such that p(z) - F(z) € G(z). We now conclude with Claim 4.8.1. Iterating this case
of the proposition, we may assume that a contains all of I'*U(acl(Aa)).

Claim 4.8.2. Let f : p - By be £i-definable. Then, there exists an £(A)-definable
q(zy) e SL(M) containing fp(x) Nf2)(y) — that is, the type of tuples ac such that a = p

and ¢ & N¢q)lMa-

Proof. Let a =pand b= f(a). Since I'*U(acl(b)) c I'"*Y(acl(Aa)) < a, by Lemma 4.6, there
exists an £;(a)-definable type r,(y) containing n,(y). Then fp(m) rz(y) is as required. [J

Iterating Claim 4.8.2, we can further assume that for every £(Aa)-definable convex
subgroup A <T', T'/A(acl(Aa)) € va(ak).

If the co-domain of F' is k, let nx(y) € SY(M) be the £-definable generic of k — that
is, the only non-algebraic type concentrating on k. If p(z) ® nx(y) is not consistent with
x € X Ay eG(y), then there exists an £;(M )-definable one-to-finite correspondence G
such that p(z) Ax € X + F(z) € G(z). Once again, we conclude with Claim 4.8.1. On the
other hand, if p(x) ® nx(y) is consistent with z € X Ay € F(y), let g(zz) = p(z) ® no(z),
then, by hypothesis, ¢(xz) is consistent with x € X Ares(z) € F(y). Applying Claim 4.8.2
and iterating, we can thus assume that k(acl(Aa)) ¢ res(akx). Then, we also have
RV (acl(Aa)) crv(ak).

Let us now assume that the co-domain of F' is the set of generalized balls that are
not open balls. For any a =p and be F(a) € acl(Aa) ¢ acl(Mak), by Corollary 2.5, we
have b(acl;(Mak)) 2 b(acl(Mak)) # @. Moreover, cut(b) € I'*U(acl(Aa)) < dcli(a), by
Proposition 2.2. Hence b € acl; (Ma) and we conclude with Claim 4.8.1. So we may assume
that b € a. Applying Claim 4.8.2 and iterating, we may assume that any generalized ball
b € acl(Aa), which is not an open ball, has a point in a.

Now, if b € acl(Aa) is an open ball, the smallest closed ball around b has a point
cea and b—c e RV(acl(Aa)) ¢ rv(ak) also has a point in a, hence so does b. Recall
that we already assumed that, for every acl(Aa)-definable convex subgroup A < T,
I'/A(acl(Aa)) cva(ak).

By Corollary 3.11, it follows that G(acl(Aa)) ¢ dcly(a), concluding the proof of the
proposition. L]

Enumerating G(acl(Aa)) uT*Y(acl(Aa)) and iterating Proposition 4.8, we get:
Corollary 4.9. There exists a £ p in X such that

tp; (G(acl(Aa)) uT*(acl(Aa))/M)
is £(A)-definable.
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The proof of Theorem 4.1 is now a standard induction.

Proof of Theorem 4.1. Recall that, by Proposition 4.3, we can identify £(A)-definable
types in SY(M), with their unique £(G(A) uT°(A))-definable extension to Mj.

We may assume that X € K" and we proceed by induction on n. Let 7 : K — K be the
projection on the first coordinate. By Corollary 4.7, there exists an £1(G(A) uT*I(A))-
definable type p € S1(M;) consistent with 7(X). Let a E p(z) Ax € X, ¢ enumerate
G(acl(Aa)) uT*(acl(Aa)) and X, = {y € K" : (a,y) € X}. By Corollary 4.9, we
may assume that ¢(y) = tp,(c¢/M1) is £(A)-definable — and hence, by Proposition 4.3,
it is £1(G(A) uT*Y(A))-definable. By induction, there exists an £;(c)-definable r.(z)

consistent with X,. The type fq(y) ry(2) is then as required. O

In the case M = M™, we can deduce a slight generalization of [Vic23a, Theorem 5.12]:

Corollary 4.10. Assume that:
o I'(M) satisfies Property D;
o k(M) is algebraically closed.
Then M weakly eliminates imaginaries down to G uI'®4.

5 Invariant Extensions

In this section, we will consider the invariance of types over large subsets of our model
(which are points of some stably embedded definable set e.g. RV). This gives rise to
several notions of invariance isolated in [HR21, Section 4.2].

Whenever D = J; D; is an ind-definable, we denote by D®? the ind-definable union of
all interpretable sets X that admit a definable surjection []; D;; - X.

Definition 5.1. Let M be an £-structure, C' € M, D be an (ind-)definable set and p be
a partial type over M. We say that:
1. pis Aut(M/C)-invariant if for every o € Aut(M/C), p = o(p);
2. p has Aut(M /C)-invariant D-germs if it is Aut(M /C)-invariant and so is the p-germ
of every M-definable map f:p — D4,
3. pis Aut(M/D)-invariant if it has Aut(M/D(M))-invariant D-germs.

A nice property of the stronger notion is that it is transitive — ¢f. [HR21, Lemma 2.4.2]:

Lemma 5.2. Let M < N be £-structures with N saturated and sufficiently large, let C € M
be potentially large, let D be an (ind-)L-definable stably embedded set, let p e S(M) have
Aut(M/C)-invariant D-germs, let a & p in N and let g € S(N) be Aut(N/CD(N)a)-
invariant. Then q|pr is Aut(M /C)-invariant.

Moreover, if ¢ has Aut(N/CD(N)a)-invariant E-germs, for some (ind-)L-definable
set E, then q|pr has Aut(M[C)-invariant E-germs.

The main goal of this section is to prove the following statement. Recall that Ling =
Usear(aci(A)) red(Rs) (Definition 3.16).
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Theorem 5.3. Let M be sufficiently saturated and homogeneous RV -expansion of a model
of Heng o such that the value group I' is orthogonal to k and either:
o dense with property D;
e a pure discrete ordered abelian group of bounded reqular rank — in that case we also
add a constant for an uniformizer .
Let My = M?*, A = acl(A) € M*! and a € N > M a tuple such that tpy(a/M) is
Aut(M/G(A))-invariant. Then tp(a/M) is Aut(M/G(A),RV(M),Lin(M))-invariant.

We follow the general strategy of [HR21, Section 4|. The main new challenge is to
prove the equivalent (Proposition 5.17) of [HR21, Corollary 4.4.6] in the present setting
since the geometric sorts are now larger.

5.1 Germs of functions into the linear sorts

One important ingredient of the proof of Proposition 5.17 is a description of the germ of
certain functions into the linear sorts (c¢f. Lemmas 5.10 and 5.14). We proceed in three
steps. First, we consider the case of valued fields with algebraically closed residue field.
Then we consider valued fields with dense value groups (and arbitrary residue fields).
Finally, we consider valued fields with discrete value groups for which a serious obstruction
arises: the classification of k-internal sets given in Corollary 3.22 does not hold for discrete
value groups. This can be circumvented by considering a ramified extension with dense
value group.

5.1.1 Algebraically closed residue fields

Let M be (a I'-expansion of) a model of Heng o, with algebraically closed residue field
and NIP value group. We first prove that, in that case, germs of functions into the linear
sorts are internal to the residue field:

Proposition 5.4. Let Ac M®. Let p(x) € S(M) be A-definable concentrating on K"
for some n. Let f be an M-definable function. Assume that for every a = p, f(a) € Ling,,
then [f], lies in a k-internal A-definable set.

We follow the ideas underlying the proof of [HHMO8, Proposition 6.9]. A key ingredient
of this proof is that there cannot be large dcl-closed chains inside Lin 4 — see Corollary 5.8.
We start by describing the growth of dcl in Lingk.

Lemma 5.5. Let a be a finite tuple in MY and A any base structure. There is some set
Zy Cacl(A) such that |Zy| <|T| and tp(a/acl(A)) is dcl(A, Z,)-invariant.

Proof. The structure M is NIP, e.g. see [JS20, Theorem 3.3]. The statement then follows
immediately from [She90, Chapter III, Theorem 7.5]. O

Lemma 5.6. Let U be an open Ac-co-definable generalized ball. Let a be a generic
element of U over Ac. Then Lin(dcl(Aac)) < acl(Ac).
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Proof. Let f: U — Ling be some Ac-definable function and let cut(U) be the cut of
U. Fix some e € U(M). For now, we work over M, so we can assume that e = 0 and
we can identify the sorts in Ling with some k™. For every « € cut(U) and d € Ling, let
Xda~y={reU:v(x)=vand f(x)=d}. Then by Proposition 2.3, there exists a finite set
C < U(M) which does not depend on v or d, such that for every ball b, if bn C # @, then
bn X4, # @ implies that bc X, .

If a € U is not in the smallest ball b containing C' and 0, then the open ball of radius
v(a) around a — that is rv(a) — is entirely contained in Xy(,) y(q). In other words, f

induces a well-defined function f:rv(U \ b) - k™.

Claim 5.6.1. Let f: RV — k be M-definable. Then there are finitely many ~; € T(M)
such that f({x € RV :v(z) #v;}) is finite.

Proof. For any choice of a € k and 7 € I" (in some N > M), we find an automorphism
o€ Aut(RV(N)/RV(M),k(N)) such that, if v(x) =+, then o(z) =z + a. First, we find
a group morphism f :I' > k sending v to o and I'(M) to 0. Indeed, v ¢ Q@ I'(M)
and hence, it suffices to choose images for n='7, for every n € Zso, which we can
do (coherently) because k is algebraically closed. This f induces an automorphism
o€ Aut(RV(N)/RV(M),k(N)) defined by o(x) =z + f(v(x)).

Let 2,y € RV be such that v(z) = v(y) ¢ ['(M). Then, by the above paragraph, there is
an automorphism o fixing k and M, and hence f, and such that o(z) = o(y). It follows
that f(x) =o(f(z)) = f(o(x)) = f(y). By compactness, it follows that there are finitely
many y; € ['(M) such that f induces a function I \ U;v; — k. This function has finite
image by orthogonality of k and I O

Thus we have found an M-definable closed ball b c U such that f(U \ b) is finite. Let
us conclude the proof by showing that b can be replaced by a generalized Ac-definable
ball. If there are two such M-definable closed balls with empty intersection, then f(U)
is finite. If not, they form a chain and their intersection is an Ac-definable generalized
sub-ball B of U such that f(U \ B) is finite. In both cases, if a is generic in U over Ac,
f(a) is in a finite Ac-definable set. In other words, Lin4(dcl(Aac)) ¢ acl( Ac). O

Proposition 5.7. Let a e K"(M) and A =dcl(A) be a set of parameters. Then there is
some set Z ¢ Lina(dcl(Aa)) such that Ling(dcl(Aa)) € dcl(A, Z) and |Z| < |T).

Proof. We adapt the proof of [HHMO0S8, Corollary 9.6] and start by proving the following
claim:

Claim 5.7.1. There is a countable tuple ¢ € Lina(dcl(Aa)) such that Ling(dcl(Aa)) €
acl(Ac).

Proof. By backwards induction, we construct an increasing sequence of tuples d,, € --- € d;
in Ling(dcl(Aa)) such that, for every i < n, we have d; € Ling(dcl(Aa<;,ds;)) and

Liny (dcl(Aag;, ds;)) € acl(Ling(a<;,d;)). Fix i <n and suppose ds; has been constructed.
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Let W ={B:a; € B and B is a Aac;d;-definable generalized ball}. Then a; is generic in
the co-Aa;ds;-definable generalized ball

U= b

beW

If U is open, let d; = d;y1. Then, by Lemma 5.6,
LinA(dcl(Aag, dz>)) = LiIlA(dCl(Aag, di+1)) c LiHA(aCl(CL<i, dl))

If U is closed, let yo = resy(a;) € Lina(dcl(Aas;,ds;)). Let Uy be intersection of all
Aac;ds;yo-definable generalized ball containing a;. Either Uy is open, or we set y; =
resy, (a;) € Ling (dcl(Aag;, d>;)). We continue this process unless U; is open and we set
U, = N;U;. Then a; is generic in the Aac;d;s;yso-definable open generalized ball U,,.
By Lemma 5.6, Lin 4 (dcl(Aa<;, d;)) € acl(Lina(dcl(Aac, dsi, y>0))), so we set d; = dsiyso-
Taking ¢ = dy, we have Liny(dcl(Aa)) < acl(Ac). O

We might replace A by dcl(Ac) and assume that Ling(dcl(Aa)) < acl(A). By
Lemma 5.5, there is Z, ¢ acl(A) such that |Z,| < |T| and tp(a/acl(A)) is dcl(A, Z,)-
invariant. In particular,

del(Aa) nacl(A) cdcl(A, Z,). (1)

For any tuple z € Z,, tp(z/ALin(dcl(Aa))) is isolated, because z € acl(A). So there is
some 2’ € Ling(dcl(Aa)) such that tp(z/A, 2") + tp(z/A,Ling(dcl(Aa))). Let Z ={z'|z €
Z"m =1,2,...}. By construction Z ¢ Ling(dcl(Aa)), |Z| < |T| and tp(Z,/A,Z) +
tp(Zy/ A, Ling(dcl(Aa))).

Because Ling(dcl(Aa)) c acl(A), by Eq. (1), Ling(dcl(Aa)) € dcl(A4, Z,). Consequently,
Ling(dcl(Aa)) € dcl(A, Z), as required. O

Corollary 5.8. Let dcl(A) = A c M be a small set of parameters. Let e € MY, then
there is no strictly ascending chain of length (2‘T|)+ of sets B = dcl(B) nLing between
Ling and Liny(dcl(Ae)).

Proof. The proof follows ideas from [HHMO0S8, Lemma 6.5|, replacing Sto by Ling and
applying Proposition 5.7. We include details for sake of completeness.

Let a € K be a tuple such that e € dcl(a). By Proposition 5.7 there is some subset
Z ¢ Ling(dcl(Aa)) such that |Z| < |T| and Ling(dcl(Aa)) ¢ del(A,Z). Let (B, : a €
(2'")*) be an increasing chain of definably closed subsets of Liny(dcl(Ae)) € del(A, Z)
ordered by inclusion with By = A. Since the residue field is algebraically closed, Ling
is stable. Thus tp(Z/ Une(airiy+ B, ) is definable. By local character, it is definable over
B, for some pu. Let c € B,,11. Then there is an A-definable function and a tuple z € Z
such that ¢ = f(2). Because tp(Z/AB,41) is Bj-definable then {x € AB,.1: f(z) = x}
is B-definable and is a singleton. Since B, is definably closed ¢ € B, and the chain
stabilizes. O

Proof of Proposition 5.4. We work in a sufficiently saturated and homogeneous elementary
extension of M. Let f; be an A-definable family of functions such that, for all d and
aEp, fa(a) is defined and in Ling,. Let © be the A-interpretable set of all [ fy,]p.
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We first argue that for a given d, there is an n € Zsg and A-definable function v such
that for any realization a, £ p®" |44 we have v(acn,ben) = [fa]p Where b; = fa(a;).

Let I be a linear order without endpoints. Take a Morley sequence in p of order type I
over Ad, i.e. a; E plada.;- Let D = A(a;)ier and b; = fq(a;), for i € I. If I is sufficiently
large, we can find an increasing strict sequence of initial segments (I,,) ae(2mly+- For each
ae (2T we let E, = Linp (del(D(b;)ier, ) € Linp(dcl(Dd)). By Corollary 5.8 (applied
to Linp(Dd)) the sequence (Eq),e(ory+ is eventually constant, thus there is some £ €
such that by € del(Dboy).

Claim 5.8.1. There is some n € Zsg such that for any i1 < --- < iy in I, we have
bin € dCl(A,CLil, .. '7ain7bi17 e 7bin—1)'

Proof. Since the sequence (a;)is is Ad-indiscernible there are n,m € Zsy such that
11 <+ <ty <J1 << Jm and:

bin EdCl(Aail,...,ain,bil,...,bin_l,ajl,...,ajm).

To simplify the notation we write Ics for iy < -+ < i, and Jg for j; < -+ < Jg.
Let bgn =Aay_, br., Di,» We aim to show that bz’-n =Aar,, br.,a;., Vi, and therefore b;, €
dcl(Aay,,br.,). For each k < m, we can assume aj, = p|AaI_§an<nbinb;naJ<k_1 Suppose
that there is a formula ¢(z,ay.,,bs., ,,a,., ) such that ¢(b;,,ar, b, ,,as., ) holds
while ~¢(b; ,ar.,,br.,_,,as.,) holds. Since p is A definable, so it is p*™*" thus there
is a A-formula 1 (z,y) such that ¢ (b;,,br.,_,) holds while 1 (b; ,bzr., ,) does not. This

contradicts that b;, and b; elements have the same type over Aay,,br.,,. O

By indiscernability over Ad, for any a<, & p®"|aq and b; = fy(a;), it follows that
by, € dcl(Aacpbey). So there is an Aac,be,-definable function h,_,p_, sending a, to by.
Note that ay, = p|ada.,b.,,, Sihce ap = plaq.,q and be, € dcl(Adacy,). Summarizing, we have

tha‘t ha<nb<n ((In) = bn) fd(an) = bn and Qp E p|Ada<nb<n’ Consequently [ha<nb<n]p = [fd]P
Let v be an A-definable function such that v(a<n,b<n) = [Ra.yber Ip-

For each fixed realization a<, = p<" let O,_, = {y(a<n,b,) : for all choices of b_,,},
which is internal to the residue field as it is Lin,_, -internal. In particular ©,_, is stable.
Given d € M, if ac, = p®" |44 then [f4]p = ¥(a<n, ben) € Ou,,. Then O(M) € ©,_, and
O is stable.

Q<n

Claim 5.8.2. Finitely many ©, cover ©.

Proof. We proceed by contradiction. By induction we construct a; and e; such that:
X ®n—1
® a1 FD |Aa$iesi~
e ¢, €O\(OyU---UBy,).
Then e; € O, if and only if j >4, but this contradicts the stability of ©.

Since each ©g; is internal to the residue field, © also is.
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5.2 Coding germs of £, definable open balls in the linear part

Let M be a sufficiently saturated and homogeneous RV-expansion of a model of Heng g,
whose value group I' has property D and is orthogonal to k. As before, let My = M? and
My =M™,

We start with a lemma.
Lemma 5.9. We have G(dcl;(M)) =G(M).

Proof. Let A = K(M). Note that I'(M;) = v(A). Also, any £;(A)-definable ball b
contains a point in a € K(Mp) € A?. Since A is henselian, the Galois-conjugates of a in
M, over A are all in the generalized ball b and their mean d is fixed by Gal(M;/A). Since
the extension A < K(Mj) is normal, d € A. So we can apply Corollary 3.11 (in M) to see
that G(dcli(M)) € Ucecut te(Bn(A)) = G(M) € G(dcli (M)). O

5.2.1 Dense value groups

If we further assume that the value group is dense, what we have done so far is enough to
show that germ of £y-definable open balls are coded in the linear part:

Lemma 5.10. Let A € G(M) and let a € N > M be a tuple of K-points such that
p =tpo(a/M) is £(A)-definable. Let b(a) be an open Lo(Ma)-definable ball whose radius
is in '(N). Then, in the structure My, [b], is coded in G(acl(A))uLing (M) over A.

Proof. By Proposition 4.3 and property D, we may assume that tp; (a/M) is £1(acly (A))-
definable. We have b(a) € Ling,, so, by Proposition 5.4 applied in Mj, [b], lies in an
£1(A)-definable k-internal set. On the other hand, by Lemma 4.4, it is coded by some
e € G(My) over A. It now follows from Corollary 3.22 that e € G(acl; (A))ULin,, (4)(M1).
Since e € dcly (M), by Lemma 5.9, we have in fact e € G(acl(A)) uLing (M), concluding
the proof. ]

5.2.2 Discrete value groups

We now also assume that I'(M) is pure, discrete, of finite bounded regular rank and
orthogonal to k. We add a constant 7 for a uniformizer in M. As before, My = M?, let
My = M™ and we introduce M| = M; [771/""] be the extension of M; obtained by adding
n-th roots of 7 for all n > 0. We assume the language £ of M is Morleyized and we
restrict ourselves to quantifier free £;-formulas when interpreting them in a substructure.
We write acl] and dclj to indicate the algebraic and definable closure in M.

Lemma 5.11. The definable convex subgroups of I'(M{) are ezactly the convex hulls of
definable convex subgroups of T'(My) and T'(M{) has bounded regular rank. Furthermore,
the definable cuts in T'(M{) are exactly the upward closures of definable cuts in T'(My)
and the cuts above or below a point of T'(Mj7).
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Proof. Fix some n € w. Since I'(M) has bounded regular rank, for each n there is a finite
sequence of convex subgroups 0 < Ay <--- < Ag =T'(M) such that A;;1/A; is n-regular.
Note that T'(M]) = Qu(r) + T'(M) and A; = Qu(w) + A, is also a convex subgroup of
I'(M{). Then A is n-divisible and A;;1/A; is n-regular as it is isomorphic to A 1/A;.
Consequently, for each n < w, I'(M{) has the same n-regular rank than I'(M), thus by
[Far17, Proposition 2.3] T'(M]) is of bounded regular rank and each A; is definable in
I'(M7). Furthermore, the map A to A is a one to one correspondence between the convex
subgroups of I'(M) and I'(M7).

Let S ¢ I'(M) be a definable cut and Ag = {y e (M) : v+ S = S}. By [Vic23b,
Fact 3.2] Ag is a convex definable subgroup of I'(M), and it is the maximal convex
subgroup such that S is a union of Ag-cosets. If Ag = {0}, then there exists a vy € S
such that v —v(w) ¢ S. It follows that S is the cut below v and so is its upwards closure
in I'(M7{). If Ag # {1}, then S can be identified with a subset of I'(M)/Ag which is
isomorphic to T'(M{)/Ag and hence the upwards closure of S in T'(M/) is definable.

Conversely, let S’ ¢ T'(M]) be a definable cut and Agr = {y e T'(M{) : v+ S’ = S'}. If
Ag # {0}, then, as above, S is the upward closure of S’ nT'(M) which is definable. If
Agr = {0}, then, by [Vic23b, Proposition 3.3], S’ is of the form nz 0 3 for some 8 € I'(M])
and O € {>,>}. Growing n, we may assume that 3 € T'(M). Moreover, since Ag = {0}, for
some yeS' y—v(m) ¢S As (y-v(n),y]nT(M) + @, we may assume that v e T'(M).
Then B = ny —iv(w), for some i, and S’ is the cut above or below v - n~liv(7). O

We can therefore identify the sets G(M) in M, in M; and in M,. We do, however,
have to code the imaginaries of M that M] believes to be geometric:

Lemma 5.12. Let R e Gr(dcl}(M)).
1. There is a Q € Gr(M) such that R € dclij(Q) and Q is definable from R in the pair
(M{,M).
2. Moreover, for every e € red(R)(dcl}(M)), for some choice of such Q, there exists
e ered(Q)(M) such that e € dcli(g) and ¢ is definable from e in the pair (M{, M).

Proof. By Lemma 5.9, we may assume that M = M;. Then, for some n > 1, R €
te(Br(K(M)[w])), where ¢ is a tuple in Cut™ and @w” = 7. Let fp : K(M)" —
K(M)[w] send a to ¥,.,a;w’. Then for every a € K(M)", v(fx(a)) = min; v(a;) +
n~Yiv(m). It follows that the pre-image of R(K(M)[w]) by fw is an £(M)-definable
O-submodule Q(M) with Q € Gr(M). If @’ is another n-th root of 7, then @’ = o(w)
for some o € Aut(M{/M). Then, since o(R) = R, we have

for (REE(M)[@'])) = o (fZ' (RK(M)[w]))) = 0(Q(M)) = Q(M).

So @ does not depend on the choice of @’ and it is definable from R in the pair (M, M).
Also, since f is linear, it induces a surjective map Q(M;) - R(M7), whose image does
not depend on w. It follows that R € dcl}(Q).

Let us now consider some e € red(R)(dclj(M)). Growing n, we may assume that
e ered(R)(K(M)[w]). Let € be the pre-image of e under the bijection red(Q)(M) —
red(R)(K(M)w) induced by f. As above, ¢ does not depend on the choice of w and it
has the required properties. O
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Let us now prove this variant of Proposition 4.3:

Lemma 5.13. Let A = dcl(A) € MY and let a € N > M be such that tpg(a/M) is
L(A)-definable. Then tpg(a/M]) is uniquely determined and £1(G(A))-definable.

Proof. The uniqueness follows from Proposition 4.3 — in fact, there is a unique extension
to My. Let d >0, Vg = K[x]<q and v be the valuation on V; defined by v(P) < v(Q)
if v(P(a)) < v(Q(a)). By Proposition 3.3, the space V(M) admits a separated basis
(P;)i<e € Vg(M). By [HR21, Claim 3.3.5], it is also a separated basis of Vy(Mj).

For every i, j, let C; j = {y eI : v(P;)+~yv(P;)}. If the stabilizer A of C; ; is not 0, then,
since I'/A(M) = T'/A(M]) (by Lemma 5.11), C; j(M) is co-initial in C; ;j(M) which
is indeed definable. If this stabilizer is 0, since I'(M;) is discrete, C;; has a minimal
element ~; ; € ['(M) and v(P;) = v(P;) + i ;. So v is indeed definable in M. Moreover,
the Oj-module R;(M]) = {P € Vg(M7) : v(P) > v(F;)} is the Oj-module generated by
Ri(M)={PeVy(M):v(P)>v(P;)} whose codes we identify as in Proposition 4.3 via
the natural inclusion map.

O
We can now recover the equivalent of Lemma 5.10 in the case of a discrete value groups:

Lemma 5.14. Let A € G(M) and let a € N > M be a tuple of K-points such that
p =tpg(a/M) is L(A)-definable. Let b(a) be an open L£y(Ma)-definable ball whose radius
is in I'(N). Then, in the structure My, [b], is coded in G(acl(A))uLina(M) over A.

Proof. By Proposition 4.3 and Lemma 5.9, we may assume that M = M. Growing M,
we may also assume that M; is sufficiently saturated and homogeneous. By Lemma 5.13,
tpg(a/M7) is £1(A)-definable. Now, applying Lemma 5.10 in M;, [b], is coded in
G(acl}(A))ULin,gy, 4y(Mj) over A. In other words, there are some tuple ¢ € K(aclj(4))n
delj (M) = K(acl(A)), some R € Gr(aclj(A4)) ndcli(M) and some e € red(R)(dcl](M))
which code [f], over A. Let @ and € be as in Lemma 5.12. Now, any automorphism
of o € Aut(M/A) (extended in any way to M) fixes @ if and only if it fixes R — so
Q € Gr(acl(A)) — and o fixes [ f], if and only if it fixes ¢, R and e, if and only if it fixes
t,Q and €. O

5.3 Invariant resolutions

Let M be as in Theorem 5.3. As before, let My = M?. Given a subset A of G, our goal is
now to find a subset C' of K, with a definable type, which generates A and “canonical”
generators of rv(M(C)). By the following lemma, this will imply that tp(C/M) is
invariant over some large (stably embedded definable) set:

Lemma 5.15. Let N > M, let D € M be potentially large, let a €e K(N) be a tuple and
let p be a pro-£1(M)-definable map. Assume that rv(M(a)) € dcli(Dp(a)) and that
p1 =tpy(a/M) and [plp, are Aut(M/D)-invariant. Then p =tp(a/M) has Aut(M/D)-
tmvartant RV-germs.
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This is essentially [HR21, Lemma 4.2.5] in a slightly different context and the proof is
identical. The main ingredient is elimination of quantifier down to RV — see Theorem 2.1.

Proof. Let N7 be a large saturated elementary extension of Mj containing N. Fix
o € Aut(M/D). Since p = tpy(a/M) is Aut(M /D) invariant, there is an £;-elementary
embedding 7 : M(a) - M(a) extending o. Because [p]p, is Aut(M/D)-invariant, we
have p(a) = o(p)(a). Consequently, since rv(M(a)) ¢ dcli(Dp(a)), Tlv(rr(a)) is the
identity map. By Theorem 2.1 in Ny, extending 7 by the identity on RV (V7) yields an
£1-elementary embedding. Since RV is stably embedded, this embedding further extends
to an element 7 of Aut(N1/D,RV(Ny),a) — ¢f. [TZ12, Lemma 10.1.5].

By Theorem 2.1 (in M now), 7|xs(a)urv(n) 18 £-elementary. Consequently, tp(a, M) =
tp(a,o(M)) and we conclude that o(p) = p, as required. Lastly, we argue that tp(a/M)
has Aut(M/C)-invariant RV-germs. Let X < RV" be £(Ma)-definable. Then, by
Theorem 2.1, it is £(rv(M(a)))-definable and hence X(N) = 7(X(N)) = 7(X)(N).
Equivalently, o fixes the p-germ of any £(M )-definable function f :p — RV®d. O

Let us now describe how RV grows when adding one field element;:

Lemma 5.16. Let A € G(M) uT*Y(M) contain G(acl(A)) and let a € N > M be
a tuple of K-points such that p = tpy(a/My) is £(A)-definable. Let B(a) be a finite
set of £1(Aa)-definable generalized ball such that no proper subset is £1(Aa)-definable.
Let ¢ € N realize the generic Npa)|vna — that is, ¢ is in a ball of B(a) but in no
proper generalized sub-ball b € acly(Mya). Let q = tp;(ac/My). Then there is a (pro-
)&1(M)-definable map p into some power of RV such that [plq € dcli (A, Ling(M)) and
rv(M(ac)) € dcly(rv(M(a)), p(ac)).

In this paper we only need B(a) to be a single ball.

Proof. We proceed by cases. If the balls of B(a) are not closed balls, we can apply
[HR21, Lemma 4.3.10] — in equicharacteristic zero, condition (2) of [HR21, Lemma
4.3.10] is verified as soon as the balls of B(a) are not closed balls. So, there exists a
(pro-)£o(M)-definable map p into some power of RV such that [p], € dcl(A) and such
that rv(M(ac)) € delo(rv(M(a)), p(ac)). By Lemmas 5.10 and 5.14, [p], € dcli (A4).
Now assume that the balls of B(a) are closed ball. Let b€ B(a) be the ball containing
c. By [HR21, Lemma 4.3.4], there exists a tuple v(ac) € RV(dcl; (Aac)) such that b is
£1(Aav(ac))-definable. Also, by Corollary 2.5, there is an £9(Ma)-definable finite set
G(a) € K such that G(a) nb={g} is a singleton. By [HR21, Lemma 4.3.13], we have

rv(M(ac)) € dcly (rv(M(a)),v(ac),rv(c—g)).
Let h(ac) =1v(c—g) € dclop(Mac) and p(ac) = (v(ac),h(ac)). We have v =v(c—g) €

I'(acl; (Aa)) as it is the radius of b. So [h], € dcly (A, Lina(M)), by Lemmas 5.10 and 5.14.
Then [p], € deli (A, Ling(M)) and rv(M(ac)) € deli (rv(M (a)), p(ac)), as required. O

We can now prove the existence of sufficiently invariant resolutions of geometric points:
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Proposition 5.17. Let A = acl(A) ¢ M. There exists C € K(N), for some N > M,
with:

1. G(A) € del, (C,T(M));

2. tp1(C/M) is £1(G(A) uT*Y(A))-definable;

3. tp(C/M) has Aut(M/G(A),RV(M),Ling(M))-invariant RV -germs.

Proof. By transfinite induction, we construct a tuple ¢ € N > M and a (pro-)£;(M)-
definable function p such that:
p1 =tp;(¢/M) is finitely satisfiable in M and £(A)-definable;
rv(M(c)) € deli (RV (M), p(c));
(], € dely (G(A), RV (M), Ling (M));
any £1(G(A)c)-definable generalized ball b has a point in C;
for all £1(G(A)c)-definable convex subgroup A <T', I'/A(dcl; (Ac)) < va(K(C)).
Note that tp; (acly (Ac)n N /M) is definable over G(acl(A))uT'(acl(A))®d c A (cf. Propo-
sition 4.3). Given an £1(G(A)c)-definable generalized ball b(c), by property D, the
generic 7.y can be extended to a complete £(acl;(Ac) n V)-definable £1-type — and
this type is finitely satisfiable in N. Using Lemma 5.16, we can thus add a generic of b(c)
to c. We then iterate this construction.

Given such a tuple ¢, by Corollary 3.11 applied in My, we have G(A) ¢ dcly (¢, T'(A)%9) c
dcli (e, T'(M)). Moreover, by Lemma 5.15, tp(¢/M) has Aut(M /A, RV(M),Lina(M))-
invariant RV-germs. ]

We now deduce Theorem 5.3 from Proposition 5.17 and the machinery of [HR21, Section
4].

Proof of Theorem 5.3. Fix A =acl(A) € M®? and a in some elementary extension of M
such that p = tpy(a/M) is Aut(M/G(A))-invariant.

e By Proposition 5.17, we find C' ¢ K(Ny), for some N > M (sufficiently saturated and
homogeneous), such that tp(C/M) has Aut(M/G(A),RV(M),Ling (M ))-invariant
RV-germs and G(A) < dcl; (C) for some (infinite) tuple v € I'(M).

e By [HR21, Corollary 4.4.1] and transitivity (Lemma 5.2), growing C', we may assume
that v € v(C). By [HR21, Corollary 4.4.3] and transitivity, we can further assume
that C' < N contains a realization of every type over G(A).

e We may assume that a £ p|y — ¢f. [HR21, Claim 4.4.7]. Then tpy(a/N) is
Aut(N/C)-invariant. By [HR21, Corollary 4.3.17|, tp(a/N) is Aut(N/C,RV)-
invariant.

By transitivity tp(a/M) is Aut(M/G(A),RV(M),Ling(M))-invariant. O

6 Eliminating imaginaries

Following the general strategy of [HR21, Theorem 6.1.1], we can now deduce elimination
of imaginaries. Let M be a sufficiently saturated and homogeneous and as in Theorem 5.3.
Let M(] = M? and M1 =M™,
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Proposition 6.1. Let e € MY and A = acl(e). Then
eedcl(G(A), (RVuULing)®(A)).

Proof. We may assume M is sufficiently saturated and homogeneous. There is an £-
definable map f and a tuple m € K(M) such that f(m) = e. Let X = f~'(e). By
Theorem 4.1 we can find a type p € S'(M) such that:

e puU X is consistent;

e pis £1(G(A)uT*i(A))-definable.
Take a £ pu X. Then tpy(a/M) is £(G(A))-definable. By Theorem 5.3, the type
g =tp(a/M) is Aut(M/G(A),RV(M),Linyg (M ))-invariant. So, for every automorphism
oeAut(M/G(A),RV(M),Lina(M)), we have e = o(e) since g =0(q) - o(e) = f(z) =e.

As RVULin4 is stably embedded (c¢f. Remark 3.19), if follows (e.g. [HR21, Lemma 4.2.3|)
that
eedcl(G(A),RV(M),Ling(M)).

So there is a £(G(A))-definable function g and a tuple ¢ € RV (M) x Liny (M) such
that g(c) =e. Let Y = g71(e). This is an A-definable subset of RV™ x Lin"y. Consequently,
"Z" e (RVuULing)®(A) and

eedcl(G(A),"Z") cdcl(G(A) u (RV ULiny)®(A)),
as required. O

We now want to describe the imaginaries in RV u Ling. This amounts to describing
imaginaries in short exact sequences (with auxiliary sorts) as in [HR21, Proposition 5.2.1].
Let us first proof a version of that result under alternative finiteness assumptions that
focus on the kernel of the sequence.

Proposition 6.2. Let L be a language with sorts Au{B,C}. Let R be an integral domain.
Let M be an L-structure (with potentially additional structure on C' and, independently
A) of the pure (in the sense of model theory) sequence of R-modules

0-A-B35C-0 (2)

where A € A and C e C. Assume that the following properties hold:
1. For anyle R~{0}, A=1A — in particular, A is a pure R-submodule of B (in the
sense of module theory);
2. C s a torsion free R-module.

Let e e MY, E =acl(e) and A = C(FE). Then
e edcl(CYE)u (AuBA)UE)),

where BA denotes the union of all Bs for § € A.

30



Proof. We follow the proof of [HR21, Theorem 5.1.5] with slight modifications. Note that
A and C are orthogonal in this structure.

Let X € B" be £L(M )-definable, F = acl("X") and A = C(E). We proceed by induction
on r = dimp(X), see [HR21, p. 59]. By [HR21, Lemma 5.1.3] we may assume that
there exists an R-linear map L: B" - B"™ § e C""(F) and m € R~ {0} such that for
every (a',2") € X, with |2'| = r, we have mv(z") = L(v(z")) +§. Let X,,, = {(a’,2") :
()™ 2") e X and |2/ =r}, then "X,,," = "X and for every (a',2") € X,,, with |2/| =7,
we have v(z") = L(v(z")) + /m. So we may assume that m = 1.

We consider the action of A” on B" given by a-(2/,2") = (2’ +a, 2" + L(a)). By [HR21,
Claim 5.1.6], and since [A = A, for every [ € R~ {0}, we may assume that A" - X = X.
For every c € C" and 2’ € B" with v(2') = ¢, let Yo = X + L(2") = {a" - L(2") : (2, 2"") €
X} € Bs. This set Y. does not depend on the choice of x’. Indeed, if v(y") = ¢ and
(2',2") e X, then a=y" — 2’ € A" and hence a- (2',2") = (¢, 2" - L(z") + L(y")) € X. So
z'" - L(z") € X, — L(y") and hence, by symmetry, X,» — L(z") = X,y — L(y"). Then X and
Y ={(c,b) :be Y.} c Cx By are inter-definable, and we conclude by orthogonality of Ba
and C.

Now, if X ¢ A’ x B" where A’ is a product of sorts in A, for every a € A’, the fiber
X, € B" is coded in C*9u (AU BaA)® where A = C(acl("X'a)) = C(acl("X")), by
orthogonality. It follows, by orthogonality again, that the graph of the function a — "X,",
and hence X itself, is coded also in C*1u (A uBa)®. O

We deduce the following variant of [HR21, Proposition 5.3.1|. This covers new cases
since there are no conditions on I' when k* is divisible.

Corollary 6.3. Further assume that M is a k-I'-expansion of Heng o and that either one
of the following conditions holds:
(a) For every n € Zig one has [T :nl'] < oo and the pre-image in RV of any coset of nT’
contains a point which is algebraic over &,
(b) The group k* is divisible.
Let A< M and e € (RVULing)*4(M) and E = acl(e). Then

e e dcl(I"(E) u (Ling URVp(g))*(E)).
In particular for A =acl(A) c M*,
(RV ULing)*(A) ¢ del(I'*I(A) uLin(A)).

Proof. With hypothesis (a), this is [HR21, Proposition 5.3.1|. With hypothesis (b), it is a
direct consequence of Proposition 6.2 with R = Z. Note that I is torsion free, as it is an
ordered abelian group. O

Finally, let us relate LineAOl to the linear imaginaries k'°%:

Lemma 6.4. Let A=dcl(A) c M. Then Lin%!(A) c del(k'*(A)).
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Proof. Recall that Linyg is a stably embedded collection of k-vector spaces — see Re-
mark 3.19. Take e € Lin'(A). Then e is the code of a definable set X, ¢ [; red(R;) where
a €l red(Ré-) and R; and R} are A-definable m-avoiding module. Then R = [T R; x[]; R;»
is an A-definable m-avoiding module, and, adding zero coordinates, we may assume that
we have X, ¢ red(R) and a € red(R). Let aFa’ be the equivalence relation defined by
X, = X, and ¢ be the type of R. Then e € dcl(Lin,y/g). O

We can now prove our main results:

Theorem 6.5. Further assume that M is a k-I'-expansion of Heng o and that either one
of the following conditions holds:

(a) for everyn e Z§S one has [T : nI'] < oo and the pre-image in RV of any coset of nI’

contains a point which is algebraic over &;

(b) or, the multiplicative group k™ is divisible.
Then M weakly eliminates imaginaries down to K uk*duTed,
Proof. Let e e M°®1 and A = acl(A). By Proposition 6.1, we have

e edcl(G(A)u (RV ULiny)®(A)).
By Corollary 6.3, we have
(RV ULing)®(A) ¢ del(T"*I(A), Lin%!(A)) ¢ del(T*U(A), Klea(A)),

where the last inclusion follows from Lemma 6.4. O

Theorem 6.6. Further assume that M admits £-definable angular components. Then M
weakly eliminates imaginaries down to K ukeduTed,

Proof. Let e € M and A = acl(A). By Proposition 6.1, e € dcl(G(A), (RV uLin")(A)).
Since RV is @-definably isomorphic to k* x I'; then (RV uLiny)®? ¢ (I'u Ling )®4. The
statement now follows from orthogonality of I' and Lin4 and Lemma 6.4. O

As an illustration, we conclude this paper with the complete classification of (almost)
k-internal sets, when the value group is dense.

Corollary 6.7. Let M be as in Theorem 6.5 or Theorem 6.6 and assume that T'(M) is
dense. Let A< M® and X be A-definable. The following statements are equivalent:

1. X is k-internal;

2. X is almost k-internal;

3. X 1s orthogonal to T';

4. X cdcl(acl(A), Ling).

Proof. The fourth statement is a particular case of the first statement. The second
statement is a particular case of the first, and it implies the third since k and I" are
orthogonal. There remains to prove that if X is orthogonal to I' then it is a subset of
acl(A) u Lini?. By Theorems 6.5 and 6.6, any element a € X is weakly coded in by some
tuple n e Kuk'®@uT*d. Then n also lies on a A-definable set orthogonal to I'. Since X
is orthogonal to T, if n e Ku T4, then n € acl(A). If n € Gr, then, by Proposition 3.21,
n € acl(A). Finally, if n € red(Ry)®?, for some s € Gr, then s € acl(A) and hence 7 € Lin.
It follows that e is weakly coded in acl(A) U Lini‘q, as required. O
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