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We prove an elimination of imaginaries results for most henselian valued
fields of equicharacteristic zero. To do so, we consider a mix of sorts introduced
in earlier works of the two authors and define a generalized version of the
k-linear imaginaries. For a broad class of value groups containing all subgroups
of Rn for some n, we prove that the imaginaries of such a valued field can be
eliminated in the field, the k-linear imaginaries and the imaginaries of the
value group.
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1 Introduction

In the model theory of valued fields, one of the most striking results is a theorem by Ax,
Kochen and, independently, Ershov which roughly states that the first-order theory of an
unramified henselian valued field is completely determined by the first-order theory of its
residue field k and of its value group Γ. A natural philosophy follows from this theorem:
the model theory of a henselian valued field is controlled by its residue field and its value
group.

In this paper we show that this philosophy also applies to the question of eliminating
imaginaries: the classification of interpretable sets, that is, quotients of definable sets
by definable equivalence relations; or equivalently, the description of moduli spaces for
families of definable sets.

The study of imaginaries in various henselian valued fields has been ongoing in the past 20
years, starting with the case of algebraically closed valued field (ACVF) in the foundational
work by Haskell, Hrushovski and Macpherson [HHM06]. This work laid the groundwork for
a “geometric model theory” of valued fields. They proved that in ACVF, every quotient
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can be described as a subset of products of certain specific quotients, known as the
geometric sorts : the main field K, and, for all n ∈ Z>0, the space Grn ∶= GLn(K)/GLn(O)

of free rank n O-submodules of Kn and the space Linn = ⊔R∈Grn R/mR, where O denotes
the valuation ring and m ⊆ O is the unique maximal ideal. We say that ACVF eliminates
imaginaries down to the geometric sorts. These results were later extended to other
classes of henselian fields, potentially with additional structure [Mel06; HMR18; HKR18;
Rid19].

In the early 2000, Hrushovski asked if such results could be explained by general result
and proposed a classification reminiscent of the Ax-Kochen-Ershov principle. This paper
provides a positive answer to this question for a broad class of henselian valued fields of
equicharacteristic zero.

As can be expected, the natural obstructions to elimination of imaginaries in valued
fields come in two flavors: those coming from the residue field, studied in work of Hils
and the first author [HR21], and those coming from the value group, studied in work of
the second author [Vic23a].

1.1 Obstructions arising from the residue field

In [HR21], Hils and the first author assume the value group to be definably complete —
this only allows divisible ordered abelian groups and groups elementarily equivalent to
Z — and classify the imaginaries that might arise. This includes the imaginaries of the
residue field k, which might be arbitrarily complicated, but also linearly twisted versions.

Given a free rank n O-submodule R ⊆ Kn, the quotient module R/mR is a k-vector
space of dimension n, on which k induces a non-trivial structure. Once we name a basis,
R/mR is definably isomorphic to kn, but without that basis, imaginaries of R/mR cannot
be identified with imaginaries of k.

The structure (k,R/mR) can be seen as a structure in the language Lvect with two
sorts:

• a field sort k with the ring language,
• a vector space sort V with the (additive) group language,
• A function λ ∶ k ×V → V interpreted as scalar multiplication.

Given a set X interpretable (without parameters) in the Lvect-theory of dimension n
vector spaces, the interpretable sets X(k,R/mR) has to be accounted for. To do so, one
introduces

Linn,X = ⊔
R∈Grn

X(k,R/mR)

and the k-linear sorts
kleq = ⊔

n,X

Linn,X .

In fact, it suffices to consider interpretable sets X that are quotients of V (and not some
power of V and k). Note that if X = V then Linn,X = Linn, and if X is the one element
quotient of V then Linn,X ≃ Grn.

One of the main result of [HR21], is that — under some mild hypothesis on k — these
are the only obstructions to elimination of imaginaries in that case:
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Theorem 1.1 ([HR21, Theorem 6.1.1]). Let K be a henselian valued field of equicharac-
teristic zero such that:

• The value group is definably complete;
• The residue field eliminates ∃∞.

Then K has weak elimination of imaginaries down to K ∪ kleq ∪ Γ.

This result can be generalized to finite ramification and certain difference valued fields
and it remains true when considering k-Γ-expansions of K — that is when k is given
additional structure and independently, so is Γ.

1.2 Obstructions arising from the value group

In [Vic23a], the second author studied imaginaries in equicharacteristic zero henselian
valued fields with algebraically closed residue field. The complexity of the value group
directly impacts the complexity of definable O-modules and this needs to be taken in
account.

This can be done by introducing the stabilizer sorts which provide codes for all the
definable O-submodules of Kn, for any n. More precisely, let C = (Cc)c∈Cut⋆ be the (ind)-
definable family of proper cuts in Γ. For every c ∈ Cut⋆, let Ic denote the O-submodule
{x ∈ K ∶ v(x) ∈ Cc}. For every tuple c ∈ Cut⋆, let Λc be the module ∑i Iciei, where (ei)i<n
is the canonical basis of Kn.

The group Bn of upper triangular matrices acts on the set of all definable O-submodules
of Kn, and we define

Modc = Bn/Stab(Λc) and Mod =⊔
c
Modc.

In [Vic23a], the second author proved that, under some hypotheses on the value group,
the stabilizer sorts are the only obstructions to elimination of imaginaries:

Theorem 1.2 ([Vic23a, Theorem 5.12]). Let K be a valued field of equicharacteristic
zero, such that:

• the residue field is algebraically closed;
• the value group has bounded regular rank — i.e. it has countably many definable

convex subgroups.
Then K admits weak elimination of imaginaries down to K ∪Mod ∪ Γeq.

1.3 An imaginary Ax-Kochen-Ershov principle

In this paper, building on those previous works, we provide a common generalization
of both Theorems 1.1 and 1.2, obtaining a general Ax-Kochen-Ershov principle for the
classification of imaginaries, under a mild technical assumption on the value group (we
refer the reader to Section 2.1 for notation related to imaginaries):

Definition 1.3. We say that an ordered group G (potentially with additional structure)
satisfies Property D if for every finite set of formulas ∆(x, y) containing the formula x < y0,
any A = acl(A) ⊆ Geq and any ∆-type p(x) that is A-definable, there is an A-definable
complete type q(x) containing p.
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This is a stronger property than the density of definable types. It holds in ordered
abelian groups of bounded regular rank (see the second half of the proof of [Vic23a,
Theorem 5.3]), and it is an open question whether or not it holds in all ordered abelian
groups.

Dealing with both a complicated value group and a complicated residue field, requires
introducing a version of the k-linear sorts adapted to this generalized setting where more
definable O-modules might be arise. These also required an encoding of the stabilizer sorts
which is more alike the geometric sorts of [HHM06].

Let Cut⋆⋆ = Cut⋆∖{0+}— unless the value group is discrete, in which case Cut⋆⋆ = Cut⋆.
A module R is said to be m-avoiding if it is (coded) in Modc, for some tuple c ∈ Cut⋆⋆.
The dimension of R/mR only depends on c — it is equal to r = ∣{i ∶ Cci = γ

−, for some
γ ∈ Γ}∣.

For every quotient X of V interpretable (without parameters) in the Lvect-theory of
dimension r vector spaces, we define

Linc,X = ⊔
R∈Modc

X(k,R/mR)

and the (generalized) k-linear imaginaries:

kleq = ⊔
c∈Cut⋆⋆,X

Linc,X .

Among those, we denote Gr = ⊔c∈Cut⋆⋆Modc and Lin = ⊔c∈Cut⋆⋆ Linc,V. Along with K,
these form the (generalized) geometric sorts, and they encode all O-definable submodules
of Kn, for any n.

Our main results are the following. Let M be a model of Hen0,0 (potentially with
additional structure on k and, independently Γ) such that the value groups is either :

• dense with property D;
• a pure discrete ordered abelian group of bounded regular rank — in which case, we

add a constant for a uniformizer.

Theorem (Theorem 6.5). Assume that either one of the following conditions holds:
(a) for every n ∈ Z>1 one has [Γ ∶ nΓ] <∞ — in which case, we add constants in RV so

that Γ/nΓ = Γ/nv(RV(acl(∅)));
(b) or, the multiplicative group k× is divisible.

Then M weakly eliminates imaginaries down to K ∪ kleq ∪ Γeq.

This result generalizes all previously known results in equicharacteristic zero (in partic-
ular, [HR21; Vic23a]) and provides a definitive answer for, among others, all equichar-
acteristic zero henselian valued fields with bounded Galois group — in fact a bounded
ramification group suffices.

Note that without condition (a) or (b), the short exact sequence

1→ k⋆ → RV = K⋆/(1 +m)→ Γ→ 0

does not, in general, eliminate imaginaries, creating further obstructions. This is not an
issue in presence of an angular component, i.e. a section of this short exact sequence.
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Theorem (Theorem 6.6). Let Mac be an expansion of M by angular components. Then
Mac weakly eliminates imaginaries down to K ∪ kleq ∪ Γeq.

As a corollary (and an illustration) of these two results, when Γ is dense, we give a
complete classification of (almost) k-internal sets (see Corollary 6.7). In the case of ACVF
this classification is a cornerstone of the study of stable domination and the subsequent
work of Hrushovski and Loeser [HL16] on Berkovich spaces.

The complexity of dealing with both an arbitrary residue field and a very general value
group introduces new issues that were not present in either earlier works of the authors
[HR21; Vic23a]. We give details below on some of the new tools required to deal with
these issues.

1.4 Overview of the paper

Section 2 provides some preliminary reminders on imaginaries and the model theory of
equicharacteristic zero henselian fields.

In Section 3, we introduce the stabilizer sorts, which provide codes for the new definable
O-modules that arise from the value group, and we prove a unary decomposition for the
stabilizer sorts (Proposition 3.9). We also introduce the generalized geometric sorts, and
show that modules are codes in these sorts. The generalized geometric sorts — and the
related notion of m-avoiding module — play a crucial role in classifying k-internal sets
among the stabilizer sorts (Corollary 3.22), assuming that the value group is dense.

In Section 4, we show that definable types in the structure induced from the maximal
unramified algebraic extension are dense, cf. Theorem 4.1. This is the first main step of
the proof. Recent work on elimination of imaginaries relies on density of definable types.
However this does not hold in all (equicharacteristic zero) henselian field K because it
might not hold in the residue field or the value group. In [HR21, Theorem 3.1.3] Hils and
the first author showed that definable types in Ka are dense among definable sets in K,
under the assumption that the residue field eliminates ∃∞. The second author ([Vic23a,
Theorem 5.9]) proved density of definable types in the maximal unramified algebraic
extension Kur, assuming the value group has bounded regular rank. In Section 4, we
generalize both results and unify them by proving that the definable types in Kur are
also dense among the sets definable in K (assuming Property D). This is the unique
step where Property D is required and no further hypothesis on the residue field is
required anymore. A significant new challenge in this construction is to relate the germs
of functions definable in K to those of functions definable in Kur — see Section 4.3.

In Section 5, we show that the partial definable types build in Section 4 have completions
that are invariant over RV and k-vector spaces of the form R/mR, for some definable
O-modules R. This is the second main step of the proof. The bulk of the work (Propo-
sition 5.17) revolves around showing that (generalized) geometric points can be lifted
to the valued field by a sufficiently invariant type. This, in turn, relies heavily on the
technical computation of germs of function taking values in sets of the form R/mR —
cf. Proposition 5.4. We describe such germs in three steps: first we consider the case
of valued fields with algebraically closed residue field (Section 5.1.1), then valued fields
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with dense value group (and arbitrary residue field) (Section 5.2.1) and, lastly, valued
fields with discrete value group (and arbitrary residue field) (Section 5.2.2). This step is
what distinguishes our treatment of the discrete case from the dense one, as it relies on
the characterization of the k-internal sets (Corollary 3.22), which does not hold in the
discrete case. In the discrete case, we circumvented this issue by considering a ramified
extension with dense value group.

Finally, in Section 6, we wrap everything together and show our two main theorems.

Acknowledgments
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2 Preliminaries

2.1 Model theoretic preliminaries

We refer the reader to [TZ12, Section 8.4] for a detailed exposition on elimination of
imaginaries. Let T be an L-theory. Consider the language Leq obtained by adding to L a
new sort SX for every L-definable set X ⊆ Y ×Z, where Y and Z are product of sorts,
and a new symbol fX ∶ Z → SX . The Leq-theory T eq is then obtained as the union of T ,
the fact that the fX are surjective and that their fibers are the classes of the equivalence
relation defined by Xz1 = {y ∈ Y ∶ (y, z1) ∈X} =Xz2 .

Any M ⊧ T has a unique expansion to a model of T eq denoted M eq — whose points are
called the imaginaries. Throughout this paper, when considering types, definable closures
or algebraic closures, we will work in the Leq-structure, unless otherwise specified.

Given M ⊧ T and an L(M)-definable set X, we denote by ⌜X⌝ ⊆M eq the intersection
of all A = dcl(A) ⊆ M eq such that X is Leq(A)-definable. It is the smallest dcl-closed
set of definition for X. Any dcl-generating subset of ⌜X⌝ is called a code of X. More
generally, if A ⊆M eq is a set of parameters, any tuple e such that dcl(Ae) = dcl(A⌜X⌝)
is called a code of X over A.

If D is a collection of sorts of Leq — equivalently, a collection of L-interpretable sets
— and A ⊆ M eq is a set of parameters, we say that X is coded in D over A if it is
Leq(A ∪D(⌜X⌝))-definable — i.e., it admits a code in D over A.

The theory T is said to eliminate imaginaries down to D if, for every M ⊧ T , every
L(M)-definable set X is coded in D — equivalently, for every e ∈ M eq, there is some
d ∈ D(dcl(e)) such that e ∈ dcl(d). Finally, we say that the theory T weakly eliminates
imaginaries down toD if for every e ∈M eq, there is some d ∈ D(acl(e)) such that e ∈ dcl(d).

Lastly, we refer the reader to [Rid17, Appendix A (Definition A.2 and A.5)] for a
detailed presentation of expansions (called enrichments, there) and relative quantifier
elimination. Note that in the present text, expansions do not allow adding new sorts.
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2.2 Equicharacteristic zero henselian fields

Throughout this text, whenever X is a definable set and A is a subset of a structure,
X(A) denotes X ∩A. We change structures too often to not be explicit with the definable
closures at play.

Let Hen0,0 be the theory of residue characteristic zero valued fields (K,v) in some
language L. The exact language we use does not matter much since we really work in
Leq. In this section, we recall some useful results about these structures. We denote by
RV⋆ the group K⋆/(1 +m), where m is the maximal ideal of the valuation ring O ⊆ K
and rv ∶ K → RV = RV⋆ ∪ {0} the canonical projection (extended by rv(0) = 0). Let
M ⊧ Hen0,0 and A ≤ K(M).

Theorem 2.1 ([Bas91, Theorem B]). Every A-definable subset of Kx × RVy is of the
form {(x, y) ∶ (rv(P (x)), y) ∈ X}, for some tuple P ∈ A[x] and some X ⊆ RVn which is
rv(A)-definable in the short exact sequence

1→ k⋆ → RV⋆ → Γ→ 0.

where k = O/m is the residue field and Γ = v(K) is the value group. Moreover, this remains
true in RV-expansions — i.e. when RV comes with additional structure.

From the result above, either by adding a section or proving a quantifier elimination
result for short exact sequences, we can deduce the following:

Proposition 2.2. The sets k and Γ are stably embedded (with respectively the structure
of a field and an ordered group) and they are orthogonal. In other words, any M -definable
subset of kx × Γy is a finite union of products X × Y where X is definable in the field k
and Y is definable in the ordered group Γ.

Moreover, any A-definable X ⊆ Γn is v(A)-definable. In particular,

Γeq
(acl(A)) ⊆ acl(v(A)).

These results remain true in k-Γ-expansions — i.e. when k comes with additional
structure, and, independently so does Γ.

Theorem 2.1 can also be refined for unary sets — showing that Hen0,0 is 0-h-minimal:

Proposition 2.3 ([Fle11, Proposition 3.6]). Let X ⊆ K × RVn be A-definable. There
exists a finite set C ⊆ Aa ∩K(M) such that for every ξ ∈ RVn, Xξ = {x ∈ K ∶ (x, ξ) ∈X} =
rv−1C (rvC(Xξ)) where rvC(x) = (rv(x − c))c∈C .

In other words, for any ball b that does not intersect C, b ∩Xξ = b or b ∩Xξ = ∅.

Definition 2.4. Let a ∈ K(M) and let C be a cut in Γ(M) — that is, an upwards closed
subset. We define the generalized ball bC(a) of cut C around a to be {x ∈ K ∶ v(x−a) ∈ C}.
A generalized ball is open if its cut is not of the form Γ≥γ , for some γ ∈ Γ(M).

Let Bg denote the set of (codes for) generalized balls.
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Note that, for every γ ∈ Γ(M), bΓ>γ(a) is the open ball of radius γ around a, bΓ≥γ(a) is
the closed ball of radius γ around a — bΓ(a) = K is also considered an open ball. Hence,
a generalized ball is either a closed ball, an open ball or an open generalized ball which is
not a ball.

Corollary 2.5. Let b be an A-algebraic generalized ball which is not an open ball. Then
there exists a finite C ⊆ Aa such that C ∩ b(M) ≠ ∅ and the valuation between any two
distinct points of the Gal(A)-orbit of C is smaller than the radius of b.

Here we identify the radius of b with its upwards closure in Γ(Ma).

Proof. Let B be the union of A-conjugates of b. Then, there exists C ⊆ K(acl(A)) ⊆ Aa be
such that, for any ball d avoiding C, either d ⊆ B or d ∩B = ∅. If b ∩C = ∅, then b is the
largest ball around b avoiding C, i.e. the open ball around b with radius minc∈C v(x − c),
for any x ∈ b. This contradicts the fact that b is not an open ball. So b(M) ∩C ≠ ∅.

Let Cb ⊆ Gal(A) ⋅ C be the subset of points that are at a valuation larger than the
radius of b from b(M) ∩C. Since M is henselian, the average c of Cb is in M and, since
we are in equicharacteristic zero, it is in b. By construction, each Gal(A)-conjugates of c
is at a valuation smaller than the radius of b from c.

Finally, when the residue field is algebraically closed, Theorem 2.1 can be further
simplified:

Theorem 2.6 ([Vic23a, Corollary 2.33]). Assume the residue field k(M) is algebraically
closed. Every A-definable subset of Kx is of the form v(P (x)) ∈ X where P ∈ A[x] is a
tuple and X ⊆ Γn is v(A)-definable in the ordered group structure. Moreover, this remains
true in Γ-expansions — i.e. when Γ comes with additional structure.

3 Codes of O-modules

3.1 The stabilizer sorts

Let M be an (enriched) valued field.

Notation 3.1. We fix an (ind-)definable family C = (Cc)c∈Cut of cuts in Γ such that any
M -definable cut is of the of form Cc for some unique c ∈ Cut(M). We will further assume
that c is a canonical parameter for Cc.

For every c ∈ Cut, let Ic denote the O-submodule {x ∈ K ∶ v(x) ∈ Cc}. Note that, by
hypothesis, any L(M)-definable O-submodule of K is of the form aIc for some a ∈ K(M)
and some unique c ∈ Cut(M). We also denote ∆c = {γ ∈ Γ ∶ γ + Cc = Cc} — it is a convex
subgroup of Γ.

The following results are well-established and go back to Bauer’s work on separated
extensions.

Definition 3.2. A definable valuation v on an interpretable K-vector space V is a map
to some interpretable set X with an order preserving action of Γ such that
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• for every a ∈ K and x ∈ V , v(ax) = v(a) + v(x);
• for every x, y ∈ V , v(x + y) ≥min{v(x), v(y)}.

Proposition 3.3. Assume that M is definably spherically complete — that is, the
intersection of any M -definable chain of balls is non empty.

1. For every M -definable valuation v on Kn, there exists a triangular basis (ai)i<n of
Kn such that, for all i, v(ai) ∈ dcl(⌜v⌝) and for every λi ∈ K,

v(∑
i

λiai) =max
i

v(λi) ⋅ v(ai).

2. Any M -definable O-submodule R of Kn is of the form ∑i<n Iciai, where ai is a
triangular basis of Kn(M) and ci ∈ Cut(⌜R⌝).

A basis as in the fist assertion is said to be separated. A module as in the second
assertion is said to be of type c = (ci)i<n.

Proof. If M is (elementarily equivalent to a) maximally complete field, the first assertion
is [Vic23a, Lemma 5.7]. If M is only definably spherically complete, the same proof works
using [HR21, Claim 3.3.9] instead of [Vic23a, Fact 2.55].

Let us now prove the second assertion. For every a ∈ Kn, we define vR(a) = {v(x) ∶
xa ∈ R} a (non-empty) cut of Γ. We order them by inclusion (so Γ = vR(0) is the
maximal element and {∞} is the minimal element). Note that, for every x ∈ K, vR(xa) =
vR(a) − v(x) and for this action of Γ, vR is an M -definable valuation.

By the first assertion, we can find a separated triangular basis (ai)i of Kn(M), such that
vR(ai) ∈ dcl(⌜R⌝). Then ∑i xiai ∈ R if and only if 0 = v(1) ∈ vR(∑i xiai) = mini vR(ai) −
v(xi), i.e. v(xi) ∈ vR(ai) for all i. Let ci ∈ Cut(dcl(⌜R⌝)) be such that vR(ai) = Cci . We
then have R = ∑i Iciai, as required.

Notation 3.4. 1. We write Bn to denote the set of n×n upper triangular and invertible
matrices. We write Dn ≤ Bn for the subgroup of diagonal matrices and Un ≤ Bn for
the subgroup of unipotent matrices, that is upper triangular matrices with ones on
the diagonal.

2. For every n-tuple c ∈ Cut, we define Modc to be the interpretable set of modules of
type c and Λc = ∑ Iciei, the canonical module of type c, where ei is the canonical
basis of Kn. Then ∑i<n Iciai = A ⋅Λc where A ∈ Bn is the upper triangular matrix
of the ai. In other words, Bn acts transitively on Modc and

Modc ≃ Bn/Stab(Λc).

We will now identify Modc with this quotient of Bn and for every s ∈ Modc, we
write Rs for the O-module of type c coded by s. Let µc ∶ Bn → Modc denote the
natural quotient map.

If ∆ ≤ Γ is a (definable) convex subgroup, we write O∆ = {x ∈ K ∶ v(x) ∈ ∆} for the
associated (definable) valuation ring. If I, J ≤ K are two (definable) O-submodules, let
(I ∶ J) denote the (definable) O-submodule {x ∈ K ∶ xJ ⊆ I}.
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Proposition 3.5. Let c ∈ Cut be a tuple. For every a ∈ Bn, we have

a ∈ Stab(Λc) if and only if {
ai,i ∈ O

×
∆ci

for all i < n, and
ai,j ∈ (Ici ∶ Icj) for all i < j < n.

Proof. We proceed by induction on n. Write a as ( a0,0 b
0 e
), with e ∈ Bn−1, and c as (c0, d),

with d ∈ Cutn−1. If aΛc ⊆ Λc, then, considering the action on Ic0 and Λd, we see that
a0,0Ic0 ⊆ Ic0 , bΛd ⊆ Ic0 — so, considering the action on each Icj , for every j > 0, a0,jIcj ⊆ Ic0
— and eΛd ⊆ Λd; and the converse also holds.

Since aΛc = Λc if, moreover, a−1Λc = (
a−10,0 −a

−1
0,0be

−1

0 e−1
)Λc ⊆ Λc, it follows that we must

further have a0,0Ic0 = Ic0 , i.e. v(a0,0) ∈∆c0 and eΛd = Λd. These conditions are sufficient
since, in that case, a−10,0be

−1Λd = a
−1
0,0bΛd ⊆ a0,0Ic0 = Ic0 . The claim now follows by

induction.

Definition 3.6. Let Cut⋆ = Cut ∖ {∅,Γ} and Mod be the collection of all the Modc
where c is a tuple in Cut⋆.

Corollary 3.7. Any M -definable O-submodule R of Kn is coded in K ∪Mod.

Proof. Let V ⊆ Kn be the K-span of R and W = {x ∈ Kn ∶ Kx ⊆ R}. Then V /W is
K(⌜R⌝)-definably isomorphic to some Kr and R is entirely determined by its image in
V /W . So we may assume V = Kr and W = 0 and hence that R is of type c with c ∈ Cut⋆.
By definition, it is coded in Modc.

Remark 3.8. There is a lot of redundancy in Mod. If c and c′ are tuples in Cut of
the same length such that for every i < n, c′i is a translate of ci, then there is a natural
bijection between Modc and Modc′ given by the action of a diagonal matrix.

If there exists an (ind-)definable subset Cut′ ⊆ Cut such that any definable cut is of the
form a + Cc for a unique c ∈ Cut′, it follows that every M -definable O-submodule of Kn is
coded in K ∪⋃c∈Cut′∖{∅,Γ}Modc. Similarly, we can replace Cut by Cut′ in the definition
of the geometric sorts (Definition 3.12).

This is the case, for example, in ordered abelian groups of bounded regular rank (cf.
[Vic23a, Corollary 2.24]).

Let us now describe the structure of Mod. The solvability of the upper triangular
invertible matrices will play a central role in this description.

We go through the elements of an upper triangular matrix diagonal by diagonal starting
at the middle diagonal, and in each diagonal, we proceed from top to bottom. In other
words, we order pairs (i, j) such that i ≤ j < n first by i − j and then by i. We will
identify the set of such pairs with the set of non-negative integers smaller than n(n+ 1)/2,
according to that order.

For every pair (i, j), let pi,j ∶ Bn → K be the projection on coordinate (i, j). Let also
εi,j = 1 if i = j and 0 otherwise. For every pair ℓ, let Gℓ = {a ∈ Bn ∶ pk(a) = εk, ∀k < ℓ}.
Then G0 = Bn, Gn = Un and Gn(n+1)/2 = {id}. By choice of the order, for every ℓ,
Gℓ+1 ◁ Gℓ and pℓ induces an isomorphism from Gℓ/Gℓ+1 to Gm, if ℓ < n, and to Ga
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otherwise. Note also that Hℓ = {a ∈ Gℓ ∶ pk(a) = εk, ∀k > ℓ}, is a section of pℓ restricted
to Gℓ and hence Gℓ = Gℓ−1 ⋊Hℓ.

Furthermore, we have Gn = Un, Bn = Un ⋊Dn and, for every ℓ ≥ n, Gℓ is central in Gn

module Gℓ+1 — actually modulo the next upper triangular group G0,j ,— if ℓ is a pair
(i, i + j − 1). In particular Gℓ ⊴ Un.

We can now prove the following unary decomposition.

Proposition 3.9. Let s ∈ Modc. There exists a finite tuple b = (bℓ)ℓ ∈ M eq (identified
with a subset of some Krℓ) and cb<ℓ-interpretable sets Xℓ such that:

• for every ℓ, bℓ ∈Xℓ;
• dcl(s) = dcl(cb);
• if ℓ < n, then Xℓ = Γ/∆ci , where ℓ = (i, i);
• if ℓ ≥ n, then Xℓ has a cb<ℓ-definable K/Iℓ-torsor structure where Iℓ is a cb<ℓ-definable

multiple of (Ici ∶ Icj) and ℓ = (i, j).
Moreover, for any choice of ak ∈ bk there is a (uniformly) ca<ℓ-definable isomorphism
fℓ ∶Xℓ → K/Iℓ and a ca<ℓ-definable function gℓ ∶ fℓ(bℓ)→ bℓ.

Proof. Let F = Stab(Λc), we identify s with a coset gF for some g ∈ Bn. Let d ∈ Dn and
u ∈ Un be such that g = ud. Note that, by Proposition 3.5, F = FU⋊FD where FU = F ∩Un

and FD = F ∩Dn, so, by (the proof of) [HHM08, Lemma 11.10], dcl(s) = dcl(⌜dFD⌝, ⌜uF
d
U⌝),

where F d
U = dFd

−1 ∩Un. Then, by Proposition 3.5, Dn/FD ≃ ∏ℓ<nK
⋆/O⋆∆ℓ

≃ ∏ℓ<n Γ/∆i

and, for every ℓ < n, we chose bℓ = v∆ℓ
(dℓ) to be the ℓ-th coordinate in this product.

Now, for every ℓ ≥ n, note that F d
UGℓ = GℓF

d
U is a subgroup, since Gℓ is normal in Un

and moreover, F d
UGℓ+1 ⊴ F

d
UGℓ since for every g ∈ Gℓ, (F d

U)
g ⊆ F d

UGℓ+1 by centrality of
the sequence. For every ℓ ≥ n, let Xℓ = uF

d
UGℓ/F

d
UGℓ+1 for the right regular action and

bℓ = uF
d
UGℓ+1 ∈Xℓ. Note that Xℓ is a torsor for the group

F d
UGℓ/F

d
UGℓ+1 ≃ Gℓ/(F

d
U ∩Gℓ)Gℓ+1 ≃ K/pℓ(F

d
U ∩Gℓ) ≃ K/did

−1
j (Ici ∶ Icj),

by Proposition 3.5, if we have ℓ = (i, j). Let Iℓ = did
−1
j (Ici ∶ Icj).

Now, any choice of aℓ−1 ∈ bℓ−1 = GℓF
d
U gives rise to an element of Xℓ and hence to

a cdaℓ−1-definable isomorphism fℓ ∶ Xℓ ≃ K/Iℓ given by left multiplication by a−1ℓ−1. Let
s ∶ K → Hℓ be the section of pℓ. Then for every x ∈ fℓ(bℓ), we have s(x) ∈ a−1ℓ−1uF

d
UGℓ+1

and hence aℓ−1s(x) ∈ bℓ.

Remark 3.10. Looking at the proof, all the operation applied to any upper triangular
matrix representation of s are actually field operations. It follows that Proposition 3.9
can be refined as follows. If A ≤ K(M) is a subfield, and s ∈ µc(Bn(A)), then for every
ℓ, bℓ(A) ≠ ∅. Furthermore, if aℓ ∈ bℓ(A), then fℓ(bℓ)(A) ≠ ∅ and gℓ sends f(bℓ)(A) to
bℓ(A). Conversely, if bℓ(A) ≠ ∅, for all ℓ, then s ∈ µc(Bn(A)).

We conclude this section with one of our main uses for Proposition 3.9: characterizing
parameter sets over which every definable module has a (triangular) basis.

Corollary 3.11. Let A ⊆M eq and assume that:
1. For every L(A)-definable convex subgroup ∆ ≤ Γ, Γ/∆(dcl(A)) ⊆ v∆(K(A)).
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2. For every b ∈ Bg(dcl(A)), b(A) ≠ ∅.
Then, for every tuple c ∈ Cut, Modc(dcl(A)) ⊆ µc(Bn(AK)), where AK is the field
generated by K(A).

Proof. Let s ∈ Modc(dcl(A)) — in particular c ∈ Cut(dcl(A)) — and b = (bℓ)ℓ be as in
Proposition 3.9 applied in M1. By Remark 3.10, it suffices to show that, by induction on
ℓ, bℓ(AK) ≠ ∅. For ℓ < n, since bℓ ∈ Γ/∆ℓ, this follows from the first assumption.

If ℓ ≥ n, by induction, bℓ is L1(cAK)-interdefinable with some b′ℓ ∈ K/Iℓ. By Remark 3.10,
b′ℓ(M) ≠ ∅, so b′ℓ is an L(A)-definable generalized ball in M and hence b′ℓ(A) ≠ ∅ by the
second assumption. By Remark 3.10 again, we also have bℓ(AK) ≠ ∅.

3.2 The geometric sorts

The goal of this section is to further simplify the codes of modules to something more
akin to the geometric sorts of [HHM06]. This will be crucial to classify k-internal sets,
when the value group is non discrete, in Corollary 6.7.

Let M be an (enriched) valued field with non-discrete valued group.

Definition 3.12. 1. Let Cut⋆⋆ denote Cut⋆ ∖ {0+} — unless Γ is discrete, in which
case, Cut⋆⋆ = Cut⋆. Any module of type a tuple c ∈ Cut⋆⋆ is said to be m-avoiding.
Let Gr be the collection codes for all m-avoiding modules; that is Gr = ⊔c∈Cut⋆⋆Modc.

2. For every O-module R, let red(R) denote the k-vector space R/mR and let redR ∶

R → red(R) denote the canonical projection. We also define Lin = ⊔s∈Gr red(Rs).
3. Let G = K ∪Gr ∪ Lin be the (generalized) geometric sorts.

Remark 3.13. For every c ∈ Cut⋆, we have mIc = Ic if and only if Cc ≠ Γ≥0. Indeed, for
every x ∈ Ic, if Cc ≠ Γ≥0, there exists a ∈ Ic such that v(a) < v(x). Then xa−1 ∈ m and
hence x = xa−1a ∈ mIc.

It follows that if c ∈ Cut⋆ is some tuple and R is an O-module of type c. Then red(R)
has dimension ∣{i ∶ Cci = Γ≥0}∣ over k.

Lemma 3.14. Let R ⊆ Kn be an O-module of type c for some tuple c ∈ Cut⋆. Then there
exists an ⌜R⌝-definable m-avoiding module R containing R and such that mR = mR. In
particular, red(R) ⊆ red(R) is a subspace and dcl(⌜R⌝) = dcl(⌜R⌝, ⌜red(R)⌝).

Proof. Let vR be the valuation defined in the proof of Proposition 3.3. Recall that
R = {x ∈ Kn ∶ Γ≥0 ⊆ vR(x)} and let R = {x ∈ Kn ∶ Γ>0 ⊆ vR(x)}. If ei is a (triangular)
basis such that R = ∑i Iciei, then R = ∑i Iciei. Since m = O and Ici = Ici otherwise, then,
by Remark 3.13, mO = mO = m = mm and mIci = Ici = mIci , otherwise. It follows that
mR = mR.

The last assertion follows from the fact that red−1
R
(red(R)) = R.

Let us now recall, following [HHM08, Lemma 2.6.4], how to code definable subspaces
of red(R). The following abstract conditions were isolated in [Hru12].

Proposition 3.15. Let T be some theory, k be some ∅-definable field and ⊔s Vs be a
collection of finite dimensional ∅-definable k-vector spaces which
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1. is closed under tensors: for every s, r, there is an ∅-definable injection from the
interpretable set Vs ⊗ Vs into some Vt;

2. is closed under duals: for every s, there is an ∅-definable injection from the inter-
pretable set V ∨s into some Vt;

3. has flags: For every s, there exists r, t and a ∅-definable exact sequence 0→ Vr →
Vs → Vt → 0, with dim(Vr) = 1.

Then any definable subspace W ⊆ Vs, is coded in ⋃s Vs.

Proof. By (the proof of) [Hru12, Proposition 5.2], W is coded in some projective space
P(Vr). By [Hru12, Lemma 5.6], given that the family has flags, P(Vr) is coded in
⋃s Vs.

We consider once again an (enriched) valued field M .

Definition 3.16. For every A ⊆M eq, let LinA = ⊔s∈Gr(acl(A)) red(Rs).

Before we prove that Proposition 3.15 can be applied to LinA, let us prove the following
useful computation:

Lemma 3.17. Let I, J ≤ K be (M -definable) O-submodule. If (I ∶ J) = m, then I = am
and J = aO, for some a ∈ K.

Proof. We first argue that v(I) ⊊ v(J). If v(J) ⊆ v(I), then J ⊆ I so Stab(J) ⊆ (I ∶ J),
where Stab(J) = {x ∈ K ∶ xJ = J}. Since Stab(J) = O×∆ for some definable convex
subgroup ∆ of the value group, and m does not contain O×∆ then v(I) ⊊ v(J).

We aim to show that v(J) has a minimal element. Otherwise, given γ ∈ v(J)/v(I)
there is some β ∈ v(J) such that β < γ, thus γ = β + δ where δ = γ − β > 0. Take x ∈ m
and y ∈ J such that v(x) = δ and v(y) = β. Consequently, xy ∉ I since v(xy) = γ, so
(I ∶ J) ≠ m. Let γ0 be the minimal element of v(J) and a ∈K such that v(a) = γ0 thus
J = aO. To show that I = am it is sufficient to argue that v(J)/v(I) = {γ0}. If there is
some β ∈ v(J)/v(I) such that β ≠ γ0, then β − γ0 > 0. Take x ∈ m such that v(x) = β − γ0,
then x ∈ m but ax ∉ I, hence (J ∶ I) ≠ m. Thus, I = am, as required.

Proposition 3.18. For every A ⊆M eq, LinA is a collection of finite dimensional k-vector
spaces which is closed under tensors, duals and has flags.

Proof. Let R1 ⊆ K
n and R2 ⊆ K

m be two acl(A)-definable m-avoiding O-modules. Let
f ∶ Kn ⊗Kn → Knm be the ∅-definable isomorphism induced by the canonical basis. By
Lemma 3.14, we find an A-definable m-avoiding O-module R = f(R1 ⊗R2) inducing an
inclusion red(f(R1 ⊗R2)) ⊆ red(R). Since red(R1)⊗ red(R2) is A-definably isomorphic
to red(R1 ⊗R2), we conclude that LinA is closed under tensors.

As for duals, for every O-submodule I ⊆ K, let I∨ = (O ∶ I) = {x ∈ K ∶ xI ⊆ O}.
By Lemma 3.17, I∨ ≠ m. Let g ∶ (Kn)∨ → Kn be the ∅-definable isomorphism in-
duced by the canonical basis. Then, if R = ∑i Iciai for some triangular basis ai, then
g(HomO(R1,O)) = ∑i I

∨
cig(ai), which is m-avoiding. This induces an A-definable iso-

morphism red(HomO(R1,O)) ≃ red(g(HomO(R1,O))) which shows that LinA is closed
under duals.
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Finally, regarding flags, let R = ∑i Iciai ⊂ Kn be an acl(A)-definable m-avoiding O-
module, with a triangular. We find a flag for red(R) by induction on n. Let π be the
projection on the last n − 1 variables. Then, we have an A-definable short exact sequence

0→ Ic0a0 → R → π(R)→ 0

which induces the following A-definable short exact sequence

0→ Ic0a0/mIc0a0 → R/mR → π(R)/mπ(R)→ 0.

If Ic0 = mIc0 , then red(R) ≃ red(π(R)) and we conclude by induction on n. If not,
Ic0a0/mIc0a0 is a dimension one k-vector space, and the above short exact sequence is a
flag for red(R).

Remark 3.19. Fix some A ≤M eq.
1. LinA is stably embedded and its A-induced structure is definable in the structure

with the field on k and the vector space structure on each sort Rs/mRs. In fact,
LinA ∪RV is stably embedded by [HR21, Lemma 2.5.18]. Indeed, once we name
a basis of every vector space in LinA, every definable subset in LinA ∪RV can be
identified with a definable subset in RV, which is stably embedded.

2. Whenever k is algebraically closed, combining [Hru12, Lemma 5.6] with Proposi-
tion 3.18, LinA, with its A-induced structure, eliminates imaginaries.

We can now improve Corollary 3.7:

Corollary 3.20. Any M -definable O-submodule R of type c ∈ Cut⋆ is coded in G.

Conversely, any element a + ms ∈ Lin is coded by the O-submodule generated by
(a +ms) × {1}. So any element of G is coded in K ∪Mod.

Proof. By Lemma 3.14, R is coded by ⌜R⌝ ∈ Gr for some m-avoiding module containing R
and such that mR = mR and ⌜red(R)⌝ which is a subspace of red(R). By Propositions 3.15
and 3.18, red(R) is coded in Lin⌜R⌝ ⊆ Lin.

One of the main reason for isolating the m-avoiding modules is the following result.

Proposition 3.21. Let M be an RV-expansion of a model of Hen0,0 with dense value
group. If X ⊆ Gr is M -definable and orthogonal to Γ, then it is finite.

Proof. Let us first consider the case of some M -definable X ⊆ K/Ic for some c ∈ Cut⋆⋆.
Let Y ⊆ K be the pre-image of X. By Proposition 2.3, there exists a (non-empty) finite set
C ⊆ K(M) such that, any ball b disjoint from C, is either contained in Y or is disjoint from
it. If X is infinite, then there exists some a ∈ Y such that a+I is disjoint from C. Let b be
the maximal ball around a that is disjoint from C — i.e. the ball a + (minc∈C v(a − c))m.
Then b ⊆ Y . Since Ic ≠ m, the function f ∶ x↦ v(x − a) induces a well-defined function on
b/I ⊆X with infinite image, so X is not orthogonal to Γ.

Let us now fix some e ∈ X ⊆ Gr, in some elementary extension of M . Let bℓ be as
in Proposition 3.9 and let us prove, by induction on ℓ, that bℓ ∈M eq. For all ℓ < n, we
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have bℓ ∈ Γ/∆ℓ, for some convex subgroup ∆ℓ. Since e ∈X and X is orthogonal to Γ and
bℓ ∈ dcl(e), we must have bℓ ∈M eq. Let now ℓ ≥ n and let us assume that b<ℓ ∈M . We
have bℓ ∈Xℓ which is an M -definable torsor for some K/Iℓ where, by Lemma 3.17, Iℓ is
not a multiple of m. Since bi ∈ dcl(e), it is contained is an M -definable subset of K/Iℓ
which is orthogonal to Γ, and hence, by the first paragraph, finite. So bℓ ∈M eq.

Since e ∈ dcl(Mb), it follows that e ∈ M eq. As this holds for any e ∈ X is some
elementary extension, X is finite.

Recall that a definable set X is (resp. almost) internal to another definable set Y if,
over a model, X admits a one-to-one (resp. finite-to-one) map to Y eq.

Corollary 3.22. Assume k and Γ are orthogonal. Let A = acl(A) ⊆M eq and let X be an
almost k-internal A-definable subset of G, then X ⊆ K(A) ∪Gr(A) ∪ LinA.

Note that it is necessary to assume that Γ(M) is dense, otherwise this results does not
hold: consider O/mn for any n ≥ 2.

Proof. Any almost k-internal set is orthogonal to Γ. By Proposition 2.3, any infinite
definable subset of K contains a ball and hence is not orthogonal to Γ, so if X ⊆ K, then
X ⊆ K(A). By Proposition 3.21, if X ⊆ Gr, then X ⊆ Gr(A). Finally, if X ⊆ Lin, then
the projection of X to Gr is finite and hence X ⊂ ⊔s∈Gr(A) red(Rs) = LinA.

4 Density of quantifier free definable types

Let M be an RV-expansion of a model of Hen0,0. Let M1 =M
ur be its maximal algebraic

unramified extension (with the full induced structure on Γ) and M0 =M
a be its algebraic

closure (as a pure valued field). In what follows, whenever, we want to refer to the
structure in M0 =M

a (resp. M1 =M
ur, resp. M), we will indicate this by a 0 (resp. 1,

resp. nothing): e.g. acl0, acl1 or acl for the algebraic closure and S0(M) or S1(M) for the
space of types over M . We also assume that the language Li of Mi is morleyized, and we
restrict ourselves to quantifier free Li-formulas when interpreting them in a substructure.

The goal of this section is to prove the following density result:

Theorem 4.1. Assume that Γ(M) satisfies Property D. Let A = acl(A) ⊆M and X ⊆ Kn

be L(A)-definable. Then there exists an L1(G(A) ∪ Γeq(A))-definable type p ∈ S1(M1)

consistent with X — in the pair (M1,M).

This statement was proved in [Vic23a, Theorem 5.9] when M =Mur and Γ is an abelian
ordered group of bounded regular rank. It also generalizes [HR21, Theorem 3.1.3] in two
ways. The first is that it provides a definable type in a stronger reduct (i.e. a type in
Mur and not just in Ma). The second is that there is no hypothesis on the residue field —
it is not required that the residue field eliminates ∃∞.
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4.1 Codes of definable types

We start by proving the following useful fact allowing to compare types in M , M1 =M
ur

and M0 =M
a.

Remark 4.2. Let c = (c1, . . . , cn) be a finite tuple in Cut∗∗. Consider the natural map:

Bn(M)/Stab(Λc)(M)→ Bn(M1)/Stab(Λc)(M1).

Recall that Γ(M1) = Γ(M), so for every c ∈ Cut, Cc(M) is definable in M1. Then
Ic(M1) = O(M1) ⋅ Ic(M).

So the map above identifies the code of the O(M)-module R = ∑i≤n aiIci(M) in M with
the code of the O(M1)-module R = ∑i≤n aiIci(M1) = ∑i≤n aiO(M1) ⋅ Ici(M) generated by
R. Moreover, we have R(M) = R.

Proposition 4.3. Let A = dcl(A) ⊆M eq and p(x) ∈ Sε
K∣x∣(M) be finitely satisfiable in M

and L(A)-definable, for ε = 0 or 1. Then p has a unique extension qε ∈ Sε(Mε). Moreover,
q1 is L1(G(A) ∪ Γeq(A))-definable and q0∣M1 is L1(G(A))-definable (as a partial type in
M1).

We follow the proof of [Vic23a, Theorem 5.9], mutatis mutandis.

Proof. The uniqueness of qε follows from [HR21, Lemma 3.3.7]; note that qε is finitely
satisfiable in M .

For every integer d ≥ 0, let Vd ≃ Kℓ be the space of polynomials in K(M)[x]≤d of degree
less or equal than d (in each xi). It comes with an L(A)-definable valuation defined by
v(P ) ≤ v(Q) if p(x) ⊢ v(P (x)) ≤ v(Q(x)).

By Proposition 3.3 there exists a separated basis (Pi)i≤ℓ ∈ Vd such that, for every i,
γi = v(Pi) ∈ dcl(⌜v⌝) ⊆ A. By [HR21, Claim 3.3.5], (Pi)i is also a separated basis of V 1

d =

K(M1)[x]≤d with the valuation v1 where v1(P ) ≤ v1(Q) if q1(x) ⊢ v(P (x)) ≤ v(Q(x)).
It follows that v1(V 1

d ) = v(Vd) = ⋃i γi + Γ(M), as this description is quantifier free v1 is
L1(M)-definable.

By Corollary 3.7 the definable O-modules R1
i = {P ∈ V

1
d ∶ v1(P ) ≥ γi} are coded by

some tuple e1i ∈Mod1(M). We identify e1i with the code ei ∈Mod(A) of R1
i ∩ Vd via the

map in remark 4.2. Furthermore, the R1
i entirely determine v1 which is therefore coded

in G(A) (cf. Corollary 3.20). Since q0∣M1 is entirely determined by the valuations v1 on
V 1
d , the proposition is proved in that case.
To conclude, let us prove the definability of q1. By Theorem 2.6, any L1-formula ϕ(x, y)

(with variables in K) is equivalent to one of the form ψ(v(P (x, y))), where P ∈ Z[x, y]
is a tuple. Let Xϕ = {v1(P (x, a)) ∈ v1(V

1
d ) ∶ q1(x) ⊢ ϕ(v(P (x, a)))}. Note that if

v1(P (x, b)) = v1(P (x, a)), then q1(x) ⊢ v(P (x, b)) = v(P (x, a)) and hence v1(P (x, b)) ∈
Xϕ if and only if v1(P (x, a)) ∈ Xϕ. So q1 is entirely determined by the Xϕ over G(A).
Moreover, since v1(V 1

d ) = v(Vd) = ⋃i γi + Γ(M) and γi ∈ G(A), this set can be identified,
over G(A), to a disjoint union of copies of Γ(M). It follows that Xϕ is L1(G(A)∪Γ

eq(A))-
definable, and hence so is q1.
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From now on, we will identify L(A)-definable types in S1(M) with their unique
extensions to M1 =M

ur and M0 =M
a.

Coding definable L0-types already allows us to code some imaginaries, namely certain
germs of functions into the space of balls.

Lemma 4.4. Assume that Γ(M) is dense. Let a ∈ K(N), for some N ≻M , be such that
p0(x) = tp0(a/M) is L(M)-definable. Let b(a) be an L0(Ma)-definable open ball. Then
[b]p is coded in G(M) over G(⌜p⌝).

Proof. Let q(x, y) be the L(M)-definable L0(M)-type ∫p(x) ηb(x)(y) whose realizations
are the tuples ac such that a ⊧ p and c is generic in b(a) over Ma (in Na). Note that,
since we are in equicharacteristic zero, b(a) has point in N and, in fact, since b(a) is open
and Γ(N) is dense, the generic of b(a) in Na is finitely satisfiable in N . It follows that
q∣M is finitely satisfiable in M .

By Proposition 4.3, p and q are coded in G(M). Moreover, for every σ ∈ Aut(M/⌜p⌝)
and ac ⊧ q, we have σ(q) = q if and only if b(a) = b(c) = bσ(a). So [b]p is coded by G(⌜q⌝)
over G(⌜p⌝).

4.2 Unary sets

We first consider the case of Theorem 4.1 when X ⊆ K is unary. The proof proceeds as in
[Vic23a, Theorem 5.3] where, in the unary case, the hypothesis that M =Mur is not used.

Lemma 4.5. Let A = acl(A) ⊆ M and X ⊆ K be L(A)-definable. There exists an
L1(Bg(A))-definable type p0 ∈ S0(M1) consistent with X.

This follows from [HR21, Section 3] which states a relative version of that statement.
However, since the machinery set up for the relative version of the statement is rather
heavy, let us sketch a proof. A version of this proof can also be found in [Vic23a, Theorem
5.5].

Proof. Let B(M1) be the set of all open and closed balls (including points and K itself)
in M1. Given b1, b2 ∈ B we write b1 P b2 if b1 ∩X ⊆ b2 ∩X. This is a pre-order with
associated equivalence ≡ and the associated order is a tree T if we remove the class E∅ of
balls that don’t intersect X.

Note that any ≡-class E ≠ E∅, the generalized ball bE = ⋂b∈E b is defined by knowing
a point in bE and the set {v(x − y) ∶ x, y ∈ B} which is definable in Γ(M) = Γ(M1). So
bE is L1(M)-definable. It follows that E is coded in Bg(M) and that the generic type
ηE(x) ∈ S

0(M1) generated by

{x ∈ b ∶ b ∈ E} ∪ {x ∉⋃
i

bi ∶ bi ∈ B and ∀b ∈ E, bi ⊂ b}

is L1(⌜E⌝)-definable. If the type ηE is not consistent with X, by compactness, E has
finitely many direct predecessors for P, each of them in acl(A, ⌜E⌝). So either the lemma
holds or the tree T has an initial discrete finitely branching tree of L1(Bg(A))-definable
≡-classes.
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By Proposition 2.3, there exists a finite set C ⊆ K(M) preparing X and, we can find
an ≡-class E in the initial discrete tree such that bE ∩C = ∅. Then bE ⊆X and hence X
is consistent with the L1(Bg(A))-definable type ηE .

The type p0 = ηE can then be completed to an L1(Bg(A) ∪ Γeq(A))-definable type
p1 ∈ S

1(M1) consistent with X:

Lemma 4.6. Assume that Γ(M) satisfies Property D. Let A = dcl(A) ⊆M eq and b be an
L(A)-definable generalized ball. Then, there exists an L1(Bg(A) ∪ Γeq(acl(A)))-definable
type p ∈ S1(M1) containing ηb.

Proof. For any a ∈ b(M) and c ⊧ ηb, γ = v(c − a) does not depend on a. If γ ∈ Γ(M),
then ηb generates a complete type in S1(M1). If not, let C be the L1(A)-definable cut
of γ over Γ(A) and Ya = v(X − a), for every a ∈ b(M). Note that γ ∈ C ∩ ⋂a∈b(M) Ya.
By property D, there exists an L(acl(A))-definable type q ∈ S(Γ(M)) consistent with
C ∩⋂a∈b(M) Ya. Then, the type p1(x) = ηb(x) ∧ q(v(x − a)) is complete by Theorem 2.6,
and it is L1(Bg(A) ∪ Γeq(A))-definable.

Corollary 4.7. Assume that Γ(M) satisfies Property D. Let A = acl(A) ⊆M eq. Then
any L(A)-definable subset of K is consistent with an L(Bg(A) ∪ Γeq(A))-definable type
p ∈ S1(M).

4.3 Germs of functions

To prove density of definable types in general, we now wish to proceed by transitivity.
However, since we are working with definable L1-types, we first need to address the
potential difference between acl and acl1. For every tuple a ∈M , let aK enumerate K(a).

Proposition 4.8. Assume that Γ has property D. Let A = acl(A) ⊆M eq, let X be pro-
L(A)-definable and p(x) ∈ S1(M) be L(A)-definable and consistent with X. Assume that
for any a ⊧ p, a ⊆ acl1(MaK). Then, for every L(A)-definable one-to-finite correspondence
F into G∪Γeq (defined at realizations of p), there exists an L(A)-definable q(xy) ∈ S1(M)
containing p(x) and ac ⊧ q with a ∈X, c ∈ acl1(MaKcK) and F (a) ∩ dcl1(ac) ≠ ∅.

Proof. We first consider the case where F is almost definable in M1.

Claim 4.8.1. If there exists an L1(M)-definable one-to-finite correspondence G such that
p(x) ∧ x ∈X ⊢ F (x) ⊆ G(x), then the proposition holds.

Proof. Since p ∈ S1(M), ∣G(x)∣ is constant when x varies over realizations of p; and
we may assume that it is minimal. Then for every other such G′, p(x) ∧ x ∈ X ⊢
F (x) ⊆ G(x) ∩ G′(x) and hence p(x) ∧ x ∈ X ⊢ G(x) = G′(x). In other words, for
some (and hence for every) a ⊧ p, G(a) = G′(a). This holds in particular of any
G′ = σ(G), where σ ∈ Aut(M/A) and hence [G]p ∈ dcl(A) = A. Let G0 ⊆ G be minimal
L1(M)-definable such that p(x) ⊢ ∅ ≠ G0(x) ⊆ G(x). Then [G0]p ∈ acl(A) = A. So
the type q(xy) = p(x) ∧ y ∈ G0(x) is L(A)-definable and, by construction, for any
ac ⊧ q, c ∈ G0(a) ⊆ acl1(Aa) ⊆ acl1(MaK). Moreover, if q(xy) is not consistent with
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x ∈X ∧ y ∈ F (x), then p(x)∧ x ∈X ⊢ F (x) ⊆ G(x)∖G0(x), contradicting the minimality
of G. So the type q is as required.

Let us now assume that the co-domain of F is Γeq. By Proposition 2.2, for every a ⊧ p,

Γeq
(acl(Aa)) ⊆ Γeq

(acl(MaK)) ⊆ acl1(v(M(aK)))

and hence, by compactness, there exists an L1(M)-definable one-to-finite correspondence
G such that p(x) ⊢ F (x) ⊆ G(x). We now conclude with Claim 4.8.1. Iterating this case
of the proposition, we may assume that a contains all of Γeq(acl(Aa)).

Claim 4.8.2. Let f ∶ p → Bg be L1-definable. Then, there exists an L(A)-definable
q(xy) ∈ S1(M) containing ∫p(x) ηf(x)(y) — that is, the type of tuples ac such that a ⊧ p
and c ⊧ ηf(a)∣Ma.

Proof. Let a ⊧ p and b = f(a). Since Γeq(acl(b)) ⊆ Γeq(acl(Aa)) ⊆ a, by Lemma 4.6, there
exists an L1(a)-definable type ra(y) containing ηb(y). Then ∫p(x) rx(y) is as required.

Iterating Claim 4.8.2, we can further assume that for every L(Aa)-definable convex
subgroup ∆ ≤ Γ, Γ/∆(acl(Aa)) ⊆ v∆(aK).

If the co-domain of F is k, let ηk(y) ∈ S1(M) be the L-definable generic of k — that
is, the only non-algebraic type concentrating on k. If p(x)⊗ ηk(y) is not consistent with
x ∈ X ∧ y ∈ G(y), then there exists an L1(M)-definable one-to-finite correspondence G
such that p(x)∧x ∈X ⊢ F (x) ⊆ G(x). Once again, we conclude with Claim 4.8.1. On the
other hand, if p(x)⊗ ηk(y) is consistent with x ∈X ∧ y ∈ F (y), let q(xz) = p(x)⊗ ηO(z),
then, by hypothesis, q(xz) is consistent with x ∈X ∧ res(z) ∈ F (y). Applying Claim 4.8.2
and iterating, we can thus assume that k(acl(Aa)) ⊆ res(aK). Then, we also have
RV(acl(Aa)) ⊆ rv(aK).

Let us now assume that the co-domain of F is the set of generalized balls that are
not open balls. For any a ⊧ p and b ∈ F (a) ⊆ acl(Aa) ⊆ acl(MaK), by Corollary 2.5, we
have b(acl1(MaK)) ⊇ b(acl(MaK)) ≠ ∅. Moreover, cut(b) ∈ Γeq(acl(Aa)) ⊆ dcl1(a), by
Proposition 2.2. Hence b ∈ acl1(Ma) and we conclude with Claim 4.8.1. So we may assume
that b ∈ a. Applying Claim 4.8.2 and iterating, we may assume that any generalized ball
b ∈ acl(Aa), which is not an open ball, has a point in a.

Now, if b ∈ acl(Aa) is an open ball, the smallest closed ball around b has a point
c ∈ a and b − c ∈ RV(acl(Aa)) ⊆ rv(aK) also has a point in a, hence so does b. Recall
that we already assumed that, for every acl(Aa)-definable convex subgroup ∆ ≤ Γ,
Γ/∆(acl(Aa)) ⊆ v∆(aK).
By Corollary 3.11, it follows that G(acl(Aa)) ⊆ dcl1(a), concluding the proof of the
proposition.

Enumerating G(acl(Aa)) ∪ Γeq(acl(Aa)) and iterating Proposition 4.8, we get:

Corollary 4.9. There exists a ⊧ p in X such that

tp1(G(acl(Aa)) ∪ Γeq
(acl(Aa))/M)

is L(A)-definable.
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The proof of Theorem 4.1 is now a standard induction.

Proof of Theorem 4.1. Recall that, by Proposition 4.3, we can identify L(A)-definable
types in S1(M), with their unique L(G(A) ∪ Γeq(A))-definable extension to M1.

We may assume that X ⊆ Kn and we proceed by induction on n. Let π ∶ Kn → K be the
projection on the first coordinate. By Corollary 4.7, there exists an L1(G(A) ∪ Γeq(A))-
definable type p ∈ S1(M1) consistent with π(X). Let a ⊧ p(x) ∧ x ∈ X, c enumerate
G(acl(Aa)) ∪ Γeq(acl(Aa)) and Xa = {y ∈ K

n−1 ∶ (a, y) ∈ X}. By Corollary 4.9, we
may assume that q(y) = tp1(c/M1) is L(A)-definable — and hence, by Proposition 4.3,
it is L1(G(A) ∪ Γeq(A))-definable. By induction, there exists an L1(c)-definable rc(z)
consistent with Xa. The type ∫q(y) ry(z) is then as required.

In the case M =Mur, we can deduce a slight generalization of [Vic23a, Theorem 5.12]:

Corollary 4.10. Assume that:
• Γ(M) satisfies Property D;
• k(M) is algebraically closed.

Then M weakly eliminates imaginaries down to G ∪ Γeq.

5 Invariant Extensions

In this section, we will consider the invariance of types over large subsets of our model
(which are points of some stably embedded definable set e.g. RV). This gives rise to
several notions of invariance isolated in [HR21, Section 4.2].

Whenever D = ⋃iDi is an ind-definable, we denote by Deq the ind-definable union of
all interpretable sets X that admit a definable surjection ∏jDij →X.

Definition 5.1. Let M be an L-structure, C ⊆M , D be an (ind-)definable set and p be
a partial type over M . We say that:

1. p is Aut(M/C)-invariant if for every σ ∈ Aut(M/C), p = σ(p);
2. p has Aut(M/C)-invariant D-germs if it is Aut(M/C)-invariant and so is the p-germ

of every M -definable map f ∶ p→Deq;
3. p is Aut(M/D)-invariant if it has Aut(M/D(M))-invariant D-germs.

A nice property of the stronger notion is that it is transitive — cf. [HR21, Lemma 2.4.2]:

Lemma 5.2. Let M ≺ N be L-structures with N saturated and sufficiently large, let C ⊆M
be potentially large, let D be an (ind-)L-definable stably embedded set, let p ∈ S(M) have
Aut(M/C)-invariant D-germs, let a ⊧ p in N and let q ∈ S(N) be Aut(N/CD(N)a)-
invariant. Then q∣M is Aut(M/C)-invariant.

Moreover, if q has Aut(N/CD(N)a)-invariant E-germs, for some (ind-)L-definable
set E, then q∣M has Aut(M/C)-invariant E-germs.

The main goal of this section is to prove the following statement. Recall that LinA =

⊔s∈Gr(acl(A)) red(Rs) (Definition 3.16).
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Theorem 5.3. Let M be sufficiently saturated and homogeneous RV-expansion of a model
of Hen0,0 such that the value group Γ is orthogonal to k and either:

• dense with property D;
• a pure discrete ordered abelian group of bounded regular rank — in that case we also

add a constant for an uniformizer π.
Let M0 = M

a, A = acl(A) ⊆ M eq and a ∈ N ≻ M a tuple such that tp0(a/M) is
Aut(M/G(A))-invariant. Then tp(a/M) is Aut(M/G(A),RV(M),LinA(M))-invariant.

We follow the general strategy of [HR21, Section 4]. The main new challenge is to
prove the equivalent (Proposition 5.17) of [HR21, Corollary 4.4.6] in the present setting
since the geometric sorts are now larger.

5.1 Germs of functions into the linear sorts

One important ingredient of the proof of Proposition 5.17 is a description of the germ of
certain functions into the linear sorts (cf. Lemmas 5.10 and 5.14). We proceed in three
steps. First, we consider the case of valued fields with algebraically closed residue field.
Then we consider valued fields with dense value groups (and arbitrary residue fields).
Finally, we consider valued fields with discrete value groups for which a serious obstruction
arises: the classification of k-internal sets given in Corollary 3.22 does not hold for discrete
value groups. This can be circumvented by considering a ramified extension with dense
value group.

5.1.1 Algebraically closed residue fields

Let M be (a Γ-expansion of) a model of Hen0,0, with algebraically closed residue field
and NIP value group. We first prove that, in that case, germs of functions into the linear
sorts are internal to the residue field:

Proposition 5.4. Let A ⊆M eq. Let p(x) ∈ S(M) be A-definable concentrating on Kn

for some n. Let f be an M -definable function. Assume that for every a ⊧ p, f(a) ∈ LinAa,
then [f]p lies in a k-internal A-definable set.

We follow the ideas underlying the proof of [HHM08, Proposition 6.9]. A key ingredient
of this proof is that there cannot be large dcl-closed chains inside LinA — see Corollary 5.8.
We start by describing the growth of dcl in LinA.

Lemma 5.5. Let a be a finite tuple in M eq and A any base structure. There is some set
Za ⊆ acl(A) such that ∣Za∣ ≤ ∣T ∣ and tp(a/acl(A)) is dcl(A,Za)-invariant.

Proof. The structure M is NIP, e.g. see [JS20, Theorem 3.3]. The statement then follows
immediately from [She90, Chapter III, Theorem 7.5].

Lemma 5.6. Let U be an open Ac-∞-definable generalized ball. Let a be a generic
element of U over Ac. Then LinA(dcl(Aac)) ⊆ acl(Ac).
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Proof. Let f ∶ U → LinA be some Ac-definable function and let cut(U) be the cut of
U . Fix some e ∈ U(M). For now, we work over M , so we can assume that e = 0 and
we can identify the sorts in LinA with some kn. For every γ ∈ cut(U) and d ∈ LinA, let
Xd,γ = {x ∈ U ∶ v(x) = γ and f(x) = d}. Then by Proposition 2.3, there exists a finite set
C ⊆ U(M) which does not depend on γ or d, such that for every ball b, if b ∩C ≠ ∅, then
b ∩Xd,γ ≠ ∅ implies that b ⊆Xd,γ .

If a ∈ U is not in the smallest ball b containing C and 0, then the open ball of radius
v(a) around a — that is rv(a) — is entirely contained in Xf(a),v(a). In other words, f
induces a well-defined function f ∶ rv(U ∖ b)→ kn.

Claim 5.6.1. Let f ∶ RV → k be M -definable. Then there are finitely many γi ∈ Γ(M)
such that f({x ∈ RV ∶ v(x) ≠ γi}) is finite.

Proof. For any choice of α ∈ k and γ ∈ Γ (in some N ≻ M), we find an automorphism
σ ∈ Aut(RV(N)/RV(M),k(N)) such that, if v(x) = γ, then σ(x) = x + α. First, we find
a group morphism f ∶ Γ → k sending γ to α and Γ(M) to 0. Indeed, γ ∉ Q ⊗ Γ(M)
and hence, it suffices to choose images for n−1γ, for every n ∈ Z>0, which we can
do (coherently) because k is algebraically closed. This f induces an automorphism
σ ∈ Aut(RV(N)/RV(M),k(N)) defined by σ(x) = x + f(v(x)).

Let x, y ∈ RV be such that v(x) = v(y) ∉ Γ(M). Then, by the above paragraph, there is
an automorphism σ fixing k and M , and hence f , and such that σ(x) = σ(y). It follows
that f(x) = σ(f(x)) = f(σ(x)) = f(y). By compactness, it follows that there are finitely
many γi ∈ Γ(M) such that f induces a function Γ ∖⋃i γi → k. This function has finite
image by orthogonality of k and Γ.

Thus we have found an M -definable closed ball b ⊂ U such that f(U ∖ b) is finite. Let
us conclude the proof by showing that b can be replaced by a generalized Ac-definable
ball. If there are two such M -definable closed balls with empty intersection, then f(U)
is finite. If not, they form a chain and their intersection is an Ac-definable generalized
sub-ball B of U such that f(U ∖B) is finite. In both cases, if a is generic in U over Ac,
f(a) is in a finite Ac-definable set. In other words, LinA(dcl(Aac)) ⊆ acl(Ac).

Proposition 5.7. Let a ∈ Kn(M) and A = dcl(A) be a set of parameters. Then there is
some set Z ⊆ LinA(dcl(Aa)) such that LinA(dcl(Aa)) ⊆ dcl(A,Z) and ∣Z ∣ ≤ ∣T ∣.

Proof. We adapt the proof of [HHM08, Corollary 9.6] and start by proving the following
claim:

Claim 5.7.1. There is a countable tuple c ∈ LinA(dcl(Aa)) such that LinA(dcl(Aa)) ⊆
acl(Ac).

Proof. By backwards induction, we construct an increasing sequence of tuples dn ⊆ ⋅ ⋅ ⋅ ⊆ d1
in LinA(dcl(Aa)) such that, for every i ≤ n, we have di ∈ LinA(dcl(Aa≤i, d>i)) and
LinA(dcl(Aa≤i, d>i)) ⊆ acl(LinA(a<i, di)). Fix i ≤ n and suppose d>i has been constructed.
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Let W = {B ∶ ai ∈ B and B is a Aa<id>i-definable generalized ball}. Then ai is generic in
the ∞-Aa<id>i-definable generalized ball

U = ⋂
b∈W

b.

If U is open, let di = di+1. Then, by Lemma 5.6,

LinA(dcl(Aa≤i, di>)) = LinA(dcl(Aa≤i, di+1)) ⊆ LinA(acl(a<i, di)).

If U is closed, let y0 = resU(ai) ∈ LinA(dcl(Aa≤i, d>i)). Let U0 be intersection of all
Aa<id>iy0-definable generalized ball containing ai. Either U0 is open, or we set y1 =
resU0(ai) ∈ LinA(dcl(Aa≤i, d>i)). We continue this process unless Ui is open and we set
Uω = ⋂j Uj . Then ai is generic in the Aa<idi>iy≥0-definable open generalized ball Uω.
By Lemma 5.6, LinA(dcl(Aa≤i, di)) ⊆ acl(LinA(dcl(Aa<i, d>i, y≥0))), so we set di = d>iy≥0.
Taking c = d1, we have LinA(dcl(Aa)) ⊆ acl(Ac).

We might replace A by dcl(Ac) and assume that LinA(dcl(Aa)) ⊆ acl(A). By
Lemma 5.5, there is Za ⊆ acl(A) such that ∣Za∣ ≤ ∣T ∣ and tp(a/acl(A)) is dcl(A,Za)-
invariant. In particular,

dcl(Aa) ∩ acl(A) ⊆ dcl(A,Za). (1)

For any tuple z ∈ Za, tp(z/ALinA(dcl(Aa))) is isolated, because z ∈ acl(A). So there is
some z′ ∈ LinA(dcl(Aa)) such that tp(z/A, z′) ⊢ tp(z/A,LinA(dcl(Aa))). Let Z = {z′∣z ∈
Zm
a ,m = 1,2, . . .}. By construction Z ⊆ LinA(dcl(Aa)), ∣Z ∣ ≤ ∣T ∣ and tp(Za/A,Z) ⊢

tp(Za/A,LinA(dcl(Aa))).
Because LinA(dcl(Aa)) ⊆ acl(A), by Eq. (1), LinA(dcl(Aa)) ⊆ dcl(A,Za). Consequently,
LinA(dcl(Aa)) ⊆ dcl(A,Z), as required.

Corollary 5.8. Let dcl(A) = A ⊆ M be a small set of parameters. Let e ∈ M eq, then
there is no strictly ascending chain of length (2∣T ∣)+ of sets B = dcl(B) ∩ LinA between
LinA and LinA(dcl(Ae)).

Proof. The proof follows ideas from [HHM08, Lemma 6.5], replacing StC by LinA and
applying Proposition 5.7. We include details for sake of completeness.

Let a ∈ K be a tuple such that e ∈ dcl(a). By Proposition 5.7 there is some subset
Z ⊆ LinA(dcl(Aa)) such that ∣Z ∣ ≤ ∣T ∣ and LinA(dcl(Aa)) ⊆ dcl(A,Z). Let (Bα ∶ α ∈
(2∣T ∣)+) be an increasing chain of definably closed subsets of LinA(dcl(Ae)) ⊆ dcl(A,Z)
ordered by inclusion with B0 = A. Since the residue field is algebraically closed, LinA
is stable. Thus tp(Z/⋃α∈(2∣T ∣)+ Bα) is definable. By local character, it is definable over
Bµ for some µ. Let c ∈ Bµ+1. Then there is an A-definable function and a tuple z ∈ Z
such that c = f(z). Because tp(Z/ABµ+1) is Bµ-definable then {x ∈ ABµ+1 ∶ f(z) = x}
is Bµ-definable and is a singleton. Since Bµ is definably closed c ∈ Bµ and the chain
stabilizes.

Proof of Proposition 5.4. We work in a sufficiently saturated and homogeneous elementary
extension of M . Let fd be an A-definable family of functions such that, for all d and
a ⊧ p, fd(a) is defined and in LinAa. Let Θ be the A-interpretable set of all [fm]p.
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We first argue that for a given d, there is an n ∈ Z≥0 and A-definable function γ such
that for any realization a<n ⊧ p⊗n−1∣Ad we have γ(a<n, b<n) = [fd]p where bi = fd(ai).

Let I be a linear order without endpoints. Take a Morley sequence in p of order type I
over Ad, i.e. ai ⊧ p∣Ada<i . Let D = A(ai)i∈I and bi = fd(ai), for i ∈ I. If I is sufficiently
large, we can find an increasing strict sequence of initial segments (Iα)α∈(2∣T ∣)+ . For each
α ∈ (2∣T ∣)+ we let Eα = LinD(dcl(D(bi)i∈Iα)) ⊆ LinD(dcl(Dd)). By Corollary 5.8 (applied
to LinD(Dd)) the sequence (Eα)α∈(2∣T ∣)+ is eventually constant, thus there is some ℓ ∈ I
such that bℓ ∈ dcl(Db<ℓ).

Claim 5.8.1. There is some n ∈ Z>0 such that for any i1 < ⋅ ⋅ ⋅ < in in I, we have
bin ∈ dcl(A,ai1 , . . . , ain , bi1 , . . . , bin−1).

Proof. Since the sequence (ai)i∈I is Ad-indiscernible there are n,m ∈ Z>0 such that
i1 < ⋅ ⋅ ⋅ < in < j1 < ⋅ ⋅ ⋅ < jm and:

bin ∈ dcl(Aai1 , . . . , ain , bi1 , . . . , bin−1 , aj1 , . . . , ajm).

To simplify the notation we write I≤s for i1 < ⋅ ⋅ ⋅ < is, and J≤k for j1 < ⋅ ⋅ ⋅ < jk.
Let b′in ≡AaI≤nbI<n bin , we aim to show that b′in ≡AaI≤n ,bI<naJ≤n bin , and therefore bin ∈
dcl(AaI≤nbI<n). For each k ≤ m, we can assume ajk ⊧ p∣AaI≤nbI<nbinb

′
in

aJ≤k−1
. Suppose

that there is a formula ϕ(x, aI≤n , bI≤n−1 , aJ≤m) such that ϕ(bin , aI≤n , bI≤n−1 , aJ≤m) holds
while ¬ϕ(b′in , aI≤n , bI≤n−1 , aJ≤m) holds. Since p is A definable, so it is p⊗n+m thus there
is a A-formula ψ(x, y) such that ψ(bin , bI≤n−1) holds while ψ(b′in , bI≤n−1) does not. This
contradicts that bin and b′in elements have the same type over AaI≤nbI<n .

By indiscernability over Ad, for any a≤n ⊧ p
⊗n∣Ad and bi = fd(ai), it follows that

bn ∈ dcl(Aa≤nb<n). So there is an Aa<nb<n-definable function ha<nb<n sending an to bn.
Note that an ⊧ p∣Ada<nb<n , since an ⊧ p∣Aa<nd and b<n ∈ dcl(Ada<n). Summarizing, we have
that ha<nb<n(an) = bn, fd(an) = bn and an ⊧ p∣Ada<nb<n , consequently [ha<nb<n]p = [fd]p.
Let γ be an A-definable function such that γ(a<n, b<n) = [ha<nb<n]p.

For each fixed realization a<n ⊧ p
<n let Θa<n = {γ(a<n, b

′
<n) ∶ for all choices of b′<n},

which is internal to the residue field as it is LinAa<n-internal. In particular Θa<n is stable.
Given d ∈M , if a<n ⊧ p⊗n−1∣Ad then [fd]p = γ(a<n, b<n) ∈ Θa<n . Then Θ(M) ⊆ Θa<n and
Θ is stable.

Claim 5.8.2. Finitely many Θa cover Θ.

Proof. We proceed by contradiction. By induction we construct ai and ei such that:
• ai+1 ⊧ p

⊗n−1∣Aa≤ie≤i .
• ei ∈ Θ/(Θa0 ∪ ⋅ ⋅ ⋅ ∪Θai).

Then ei ∈ Θaj if and only if j > i, but this contradicts the stability of Θ.

Since each Θaj is internal to the residue field, Θ also is.
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5.2 Coding germs of L0 definable open balls in the linear part

Let M be a sufficiently saturated and homogeneous RV-expansion of a model of Hen0,0,
whose value group Γ has property D and is orthogonal to k. As before, let M0 =M

a and
M1 =M

ur.

We start with a lemma.

Lemma 5.9. We have G(dcl1(M)) = G(M).

Proof. Let A = K(M). Note that Γ(M1) = v(A). Also, any L1(A)-definable ball b
contains a point in a ∈ K(M1) ⊆ A

a. Since A is henselian, the Galois-conjugates of a in
M1 over A are all in the generalized ball b and their mean d is fixed by Gal(M1/A). Since
the extension A ≤ K(M1) is normal, d ∈ A. So we can apply Corollary 3.11 (in M1) to see
that G(dcl1(M)) ⊆ ⋃c∈Cut µc(Bn(A)) = G(M) ⊆ G(dcl1(M)).

5.2.1 Dense value groups

If we further assume that the value group is dense, what we have done so far is enough to
show that germ of L0-definable open balls are coded in the linear part:

Lemma 5.10. Let A ⊆ G(M) and let a ∈ N ≻ M be a tuple of K-points such that
p = tp0(a/M) is L(A)-definable. Let b(a) be an open L0(Ma)-definable ball whose radius
is in Γ(N). Then, in the structure M1, [b]p is coded in G(acl(A)) ∪ LinA(M) over A.

Proof. By Proposition 4.3 and property D, we may assume that tp1(a/M1) is L1(acl1(A))-
definable. We have b(a) ∈ LinAa, so, by Proposition 5.4 applied in M1, [b]p lies in an
L1(A)-definable k-internal set. On the other hand, by Lemma 4.4, it is coded by some
e ∈ G(M1) over A. It now follows from Corollary 3.22 that e ∈ G(acl1(A))∪Linacl1(A)(M1).
Since e ∈ dcl1(M), by Lemma 5.9, we have in fact e ∈ G(acl(A)) ∪ LinA(M), concluding
the proof.

5.2.2 Discrete value groups

We now also assume that Γ(M) is pure, discrete, of finite bounded regular rank and
orthogonal to k. We add a constant π for a uniformizer in M . As before, M0 =M

a, let
M1 =M

ur and we introduce M ′
1 =M1[π

1/∞] be the extension of M1 obtained by adding
n-th roots of π for all n > 0. We assume the language L′i of M ′

1 is Morleyized and we
restrict ourselves to quantifier free Li-formulas when interpreting them in a substructure.
We write acl′1 and dcl′1 to indicate the algebraic and definable closure in M ′

1.

Lemma 5.11. The definable convex subgroups of Γ(M ′
1) are exactly the convex hulls of

definable convex subgroups of Γ(M1) and Γ(M ′
1) has bounded regular rank. Furthermore,

the definable cuts in Γ(M ′
1) are exactly the upward closures of definable cuts in Γ(M1)

and the cuts above or below a point of Γ(M ′
1).
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Proof. Fix some n ∈ ω. Since Γ(M) has bounded regular rank, for each n there is a finite
sequence of convex subgroups 0 <∆1 < ⋅ ⋅ ⋅ <∆k = Γ(M) such that ∆i+1/∆i is n-regular.
Note that Γ(M ′

1) = Qv(π) + Γ(M) and ∆i = Qv(π) +∆i is also a convex subgroup of
Γ(M ′

1). Then ∆1 is n-divisible and ∆i+1/∆i is n-regular as it is isomorphic to ∆i+1/∆i.
Consequently, for each n < ω, Γ(M ′

1) has the same n-regular rank than Γ(M), thus by
[Far17, Proposition 2.3] Γ(M ′

1) is of bounded regular rank and each ∆i is definable in
Γ(M ′

1). Furthermore, the map ∆ to ∆ is a one to one correspondence between the convex
subgroups of Γ(M) and Γ(M ′

1).
Let S ⊆ Γ(M) be a definable cut and ∆S = {γ ∈ Γ(M) ∶ γ + S = S}. By [Vic23b,

Fact 3.2] ∆S is a convex definable subgroup of Γ(M), and it is the maximal convex
subgroup such that S is a union of ∆S-cosets. If ∆S = {0}, then there exists a γ ∈ S
such that γ − v(π) ∉ S. It follows that S is the cut below γ and so is its upwards closure
in Γ(M ′

1). If ∆S ≠ {1}, then S can be identified with a subset of Γ(M)/∆S which is
isomorphic to Γ(M ′

1)/∆S and hence the upwards closure of S in Γ(M ′
1) is definable.

Conversely, let S′ ⊆ Γ(M ′
1) be a definable cut and ∆S′ = {γ ∈ Γ(M

′
1) ∶ γ + S

′ = S′}. If
∆S′ ≠ {0}, then, as above, S′ is the upward closure of S′ ∩ Γ(M) which is definable. If
∆S′ = {0}, then, by [Vic23b, Proposition 3.3], S′ is of the form nx◻β for some β ∈ Γ(M ′

1)

and ◻ ∈ {>,≥}. Growing n, we may assume that β ∈ Γ(M). Moreover, since ∆S′ = {0}, for
some γ ∈ S′, γ − v(π) ∉ S′. As (γ − v(π), γ] ∩ Γ(M) ≠ ∅, we may assume that γ ∈ Γ(M).
Then β = nγ − iv(π), for some i, and S′ is the cut above or below γ − n−1iv(π).

We can therefore identify the sets G(M) in M , in M1 and in M ′
1. We do, however,

have to code the imaginaries of M that M ′
1 believes to be geometric:

Lemma 5.12. Let R ∈ Gr(dcl′1(M1)).
1. There is a Q ∈ Gr(M) such that R ∈ dcl′1(Q) and Q is definable from R in the pair
(M ′

1,M).
2. Moreover, for every e ∈ red(R)(dcl′1(M)), for some choice of such Q, there exists

ε ∈ red(Q)(M) such that e ∈ dcl′1(ε) and ε is definable from e in the pair (M ′
1,M).

Proof. By Lemma 5.9, we may assume that M = M1. Then, for some n ≥ 1, R ∈
µc(Bm(K(M)[ϖ])), where c is a tuple in Cut⋆⋆ and ϖn = π. Let fϖ ∶ K(M)n →
K(M)[ϖ] send a to ∑i<n aiϖ

i. Then for every a ∈ K(M)n, v(fϖ(a)) = mini v(ai) +
n−1iv(π). It follows that the pre-image of R(K(M)[ϖ]) by fϖ is an L(M)-definable
O-submodule Q(M) with Q ∈ Gr(M). If ϖ′ is another n-th root of π, then ϖ′ = σ(ϖ)
for some σ ∈ Aut(M ′

1/M). Then, since σ(R) = R, we have

f−1ϖ′ (R(K(M)[ϖ
′
])) = σ(f−1ϖ (R(K(M)[ϖ]))) = σ(Q(M)) = Q(M).

So Q does not depend on the choice of ϖ′ and it is definable from R in the pair (M ′
1,M).

Also, since fϖ is linear, it induces a surjective map Q(M ′
1)→ R(M ′

1), whose image does
not depend on ϖ. It follows that R ∈ dcl′1(Q).

Let us now consider some e ∈ red(R)(dcl′1(M)). Growing n, we may assume that
e ∈ red(R)(K(M)[ϖ]). Let ε be the pre-image of e under the bijection red(Q)(M) →
red(R)(K(M)ϖ) induced by f . As above, ε does not depend on the choice of ϖ and it
has the required properties.
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Let us now prove this variant of Proposition 4.3:

Lemma 5.13. Let A = dcl(A) ⊆ M eq and let a ∈ N ≻ M be such that tp0(a/M) is
L(A)-definable. Then tp0(a/M

′
1) is uniquely determined and L′1(G(A))-definable.

Proof. The uniqueness follows from Proposition 4.3 — in fact, there is a unique extension
to M0. Let d ≥ 0, Vd = K[x]≤d and v be the valuation on Vd defined by v(P ) ≤ v(Q)
if v(P (a)) ≤ v(Q(a)). By Proposition 3.3, the space Vd(M) admits a separated basis
(Pi)i≤ℓ ∈ Vd(M). By [HR21, Claim 3.3.5], it is also a separated basis of Vd(M ′

1).
For every i, j, let Ci,j = {γ ∈ Γ ∶ v(Pi)+γv(Pj)}. If the stabilizer ∆ of Ci,j is not 0, then,

since Γ/∆(M) = Γ/∆(M ′
1) (by Lemma 5.11), Ci,j(M) is co-initial in Ci,j(M

′
1) which

is indeed definable. If this stabilizer is 0, since Γ(M1) is discrete, Ci,j has a minimal
element γi,j ∈ Γ(M) and v(Pj) = v(Pi) + γi,j . So v is indeed definable in M ′

1. Moreover,
the O′1-module Ri(M

′
1) = {P ∈ Vd(M

′
1) ∶ v(P ) ≥ v(Pi)} is the O′1-module generated by

Ri(M) = {P ∈ Vd(M) ∶ v(P ) ≥ v(Pi)} whose codes we identify as in Proposition 4.3 via
the natural inclusion map.

We can now recover the equivalent of Lemma 5.10 in the case of a discrete value groups:

Lemma 5.14. Let A ⊆ G(M) and let a ∈ N ≻ M be a tuple of K-points such that
p = tp0(a/M) is L(A)-definable. Let b(a) be an open L0(Ma)-definable ball whose radius
is in Γ(N). Then, in the structure M1, [b]p is coded in G(acl(A)) ∪ LinA(M) over A.

Proof. By Proposition 4.3 and Lemma 5.9, we may assume that M =M1. Growing M1,
we may also assume that M1 is sufficiently saturated and homogeneous. By Lemma 5.13,
tp0(a/M

′
1) is L′1(A)-definable. Now, applying Lemma 5.10 in M ′

1, [b]p is coded in
G(acl′1(A))∪Linacl′1(A)(M

′
1) over A. In other words, there are some tuple t ∈ K(acl′1(A))∩

dcl′1(M) = K(acl(A)), some R ∈ Gr(acl′1(A)) ∩ dcl′1(M) and some e ∈ red(R)(dcl′1(M))
which code [f]p over A. Let Q and ε be as in Lemma 5.12. Now, any automorphism
of σ ∈ Aut(M/A) (extended in any way to M ′

1) fixes Q if and only if it fixes R — so
Q ∈ Gr(acl(A)) — and σ fixes [f]p if and only if it fixes t, R and e, if and only if it fixes
t,Q and ε.

5.3 Invariant resolutions

Let M be as in Theorem 5.3. As before, let M0 =M
a. Given a subset A of G, our goal is

now to find a subset C of K, with a definable type, which generates A and “canonical”
generators of rv(M(C)). By the following lemma, this will imply that tp(C/M) is
invariant over some large (stably embedded definable) set:

Lemma 5.15. Let N ≻M , let D ⊆M be potentially large, let a ∈ K(N) be a tuple and
let ρ be a pro-L1(M)-definable map. Assume that rv(M(a)) ⊆ dcl1(Dρ(a)) and that
p1 = tp1(a/M) and [ρ]p1 are Aut(M/D)-invariant. Then p = tp(a/M) has Aut(M/D)-
invariant RV-germs.
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This is essentially [HR21, Lemma 4.2.5] in a slightly different context and the proof is
identical. The main ingredient is elimination of quantifier down to RV — see Theorem 2.1.

Proof. Let N1 be a large saturated elementary extension of M1 containing N . Fix
σ ∈ Aut(M/D). Since p = tp1(a/M) is Aut(M/D) invariant, there is an L1-elementary
embedding τ ∶ M(a) → M(a) extending σ. Because [ρ]p1 is Aut(M/D)-invariant, we
have ρ(a) = σ(ρ)(a). Consequently, since rv(M(a)) ⊆ dcl1(Dρ(a)), τ ∣rv(M(a)) is the
identity map. By Theorem 2.1 in N1, extending τ by the identity on RV(N1) yields an
L1-elementary embedding. Since RV is stably embedded, this embedding further extends
to an element τ of Aut(N1/D,RV(N1), a) — cf. [TZ12, Lemma 10.1.5].

By Theorem 2.1 (in M now), τ ∣M(a)∪RV(N) is L-elementary. Consequently, tp(a,M) =
tp(a, σ(M)) and we conclude that σ(p) = p, as required. Lastly, we argue that tp(a/M)
has Aut(M/C)-invariant RV-germs. Let X ⊆ RVn be L(Ma)-definable. Then, by
Theorem 2.1, it is L(rv(M(a)))-definable and hence X(N) = τ(X(N)) = τ(X)(N).
Equivalently, σ fixes the p-germ of any L(M)-definable function f ∶ p→ RVeq.

Let us now describe how RV grows when adding one field element:

Lemma 5.16. Let A ⊆ G(M) ∪ Γeq(M) contain G(acl(A)) and let a ∈ N ≻ M be
a tuple of K-points such that p = tp1(a/M1) is L(A)-definable. Let B(a) be a finite
set of L1(Aa)-definable generalized ball such that no proper subset is L1(Aa)-definable.
Let c ∈ N realize the generic ηB(a)∣M1a — that is, c is in a ball of B(a) but in no
proper generalized sub-ball b ∈ acl1(M1a). Let q = tp1(ac/M1). Then there is a (pro-
)L1(M)-definable map ρ into some power of RV such that [ρ]q ∈ dcl1(A,LinA(M)) and
rv(M(ac)) ⊆ dcl1(rv(M(a)), ρ(ac)).

In this paper we only need B(a) to be a single ball.

Proof. We proceed by cases. If the balls of B(a) are not closed balls, we can apply
[HR21, Lemma 4.3.10] — in equicharacteristic zero, condition (2) of [HR21, Lemma
4.3.10] is verified as soon as the balls of B(a) are not closed balls. So, there exists a
(pro-)L0(M)-definable map ρ into some power of RV such that [ρ]q ∈ dcl(A) and such
that rv(M(ac)) ⊆ dcl0(rv(M(a)), ρ(ac)). By Lemmas 5.10 and 5.14, [ρ]q ∈ dcl1(A).

Now assume that the balls of B(a) are closed ball. Let b ∈ B(a) be the ball containing
c. By [HR21, Lemma 4.3.4], there exists a tuple ν(ac) ∈ RV(dcl1(Aac)) such that b is
L1(Aaν(ac))-definable. Also, by Corollary 2.5, there is an L0(Ma)-definable finite set
G(a) ∈ K such that G(a) ∩ b = {g} is a singleton. By [HR21, Lemma 4.3.13], we have

rv(M(ac)) ⊆ dcl1(rv(M(a)), ν(ac), rv(c − g)).

Let h(ac) = rv(c − g) ∈ dcl0(Mac) and ρ(ac) = (ν(ac), h(ac)). We have γ = v(c − g) ∈
Γ(acl1(Aa)) as it is the radius of b. So [h]q ∈ dcl1(A,LinA(M)), by Lemmas 5.10 and 5.14.
Then [ρ]q ∈ dcl1(A,LinA(M)) and rv(M(ac)) ⊆ dcl1(rv(M(a)), ρ(ac)), as required.

We can now prove the existence of sufficiently invariant resolutions of geometric points:
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Proposition 5.17. Let A = acl(A) ⊆ M eq. There exists C ⊆ K(N), for some N ≻ M ,
with:

1. G(A) ⊆ dcl1(C,Γ(M));
2. tp1(C/M) is L1(G(A) ∪ Γeq(A))-definable;
3. tp(C/M) has Aut(M/G(A),RV(M),LinA(M))-invariant RV-germs.

Proof. By transfinite induction, we construct a tuple c ∈ N ≻ M and a (pro-)L1(M)-
definable function ρ such that:

• p1 = tp1(c/M) is finitely satisfiable in M and L(A)-definable;
• rv(M(c)) ⊆ dcl1(RV(M), ρ(c));
• [ρ]p1 ∈ dcl1(G(A),RV(M),LinA(M));
• any L1(G(A)c)-definable generalized ball b has a point in C;
• for all L1(G(A)c)-definable convex subgroup ∆ ≤ Γ, Γ/∆(dcl1(Ac)) ⊆ v∆(K(C)).

Note that tp1(acl1(Ac)∩N/M) is definable over G(acl(A))∪Γ(acl(A))eq ⊆ A (cf. Propo-
sition 4.3). Given an L1(G(A)c)-definable generalized ball b(c), by property D, the
generic ηb(c) can be extended to a complete L(acl1(Ac) ∩N)-definable L1-type — and
this type is finitely satisfiable in N . Using Lemma 5.16, we can thus add a generic of b(c)
to c. We then iterate this construction.

Given such a tuple c, by Corollary 3.11 applied in M1, we have G(A) ⊆ dcl1(c,Γ(A)eq) ⊆
dcl1(c,Γ(M)). Moreover, by Lemma 5.15, tp(c/M) has Aut(M/A,RV(M),LinA(M))-
invariant RV-germs.

We now deduce Theorem 5.3 from Proposition 5.17 and the machinery of [HR21, Section
4].

Proof of Theorem 5.3. Fix A = acl(A) ⊆M eq and a in some elementary extension of M
such that p = tp0(a/M) is Aut(M/G(A))-invariant.

• By Proposition 5.17, we find C ⊆ K(N1), for some N ≻M (sufficiently saturated and
homogeneous), such that tp(C/M) has Aut(M/G(A),RV(M),LinA(M))-invariant
RV-germs and G(A) ⊆ dcl1(Cγ) for some (infinite) tuple γ ∈ Γ(M).

• By [HR21, Corollary 4.4.1] and transitivity (Lemma 5.2), growing C, we may assume
that γ ∈ v(C). By [HR21, Corollary 4.4.3] and transitivity, we can further assume
that C ≺ N contains a realization of every type over G(A).

• We may assume that a ⊧ p∣N — cf. [HR21, Claim 4.4.7]. Then tp0(a/N) is
Aut(N/C)-invariant. By [HR21, Corollary 4.3.17], tp(a/N) is Aut(N/C,RV)-
invariant.

By transitivity tp(a/M) is Aut(M/G(A),RV(M),LinA(M))-invariant.

6 Eliminating imaginaries

Following the general strategy of [HR21, Theorem 6.1.1], we can now deduce elimination
of imaginaries. Let M be a sufficiently saturated and homogeneous and as in Theorem 5.3.
Let M0 =M

a and M1 =M
ur.
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Proposition 6.1. Let e ∈M eq and A = acl(e). Then

e ∈ dcl(G(A), (RV ∪ LinA)
eq
(A)).

Proof. We may assume M is sufficiently saturated and homogeneous. There is an L-
definable map f and a tuple m ∈ K(M) such that f(m) = e. Let X = f−1(e). By
Theorem 4.1 we can find a type p ∈ S1(M) such that:

• p ∪X is consistent;
• p is L1(G(A) ∪ Γeq(A))-definable.

Take a ⊧ p ∪ X. Then tp0(a/M) is L(G(A))-definable. By Theorem 5.3, the type
q = tp(a/M) is Aut(M/G(A),RV(M),LinA(M))-invariant. So, for every automorphism
σ ∈ Aut(M/G(A),RV(M),LinA(M)), we have e = σ(e) since q = σ(q) ⊢ σ(e) = f(x) = e.

As RV∪LinA is stably embedded (cf. Remark 3.19), if follows (e.g. [HR21, Lemma 4.2.3])
that

e ∈ dcl(G(A),RV(M),LinA(M)).

So there is a L(G(A))-definable function g and a tuple c ∈ RVm(M) × LinnA(M) such
that g(c) = e. Let Y = g−1(e). This is an A-definable subset of RVm×LinnA. Consequently,
⌜Z⌝ ∈ (RV ∪ LinA)

eq(A) and

e ∈ dcl(G(A), ⌜Z⌝) ⊆ dcl(G(A) ∪ (RV ∪ LinA)
eq
(A)),

as required.

We now want to describe the imaginaries in RV ∪ LinA. This amounts to describing
imaginaries in short exact sequences (with auxiliary sorts) as in [HR21, Proposition 5.2.1].
Let us first proof a version of that result under alternative finiteness assumptions that
focus on the kernel of the sequence.

Proposition 6.2. Let L be a language with sorts A⊔{B,C}. Let R be an integral domain.
Let M be an L-structure (with potentially additional structure on C and, independently
A) of the pure (in the sense of model theory) sequence of R-modules

0→ A→ B
v
Ð→ C→ 0 (2)

where A ∈ A and C ∈ C. Assume that the following properties hold:
1. For any l ∈ R ∖ {0}, A = lA — in particular, A is a pure R-submodule of B (in the

sense of module theory);
2. C is a torsion free R-module.

Let e ∈M eq, E = acl(e) and ∆ = C(E). Then

e ∈ dcl(Ceq
(E) ∪ (A ∪B∆)

eq
(E)),

where B∆ denotes the union of all Bδ for δ ∈∆.
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Proof. We follow the proof of [HR21, Theorem 5.1.5] with slight modifications. Note that
A and C are orthogonal in this structure.

Let X ⊆ Bn be L(M)-definable, E = acl(⌜X⌝) and ∆ = C(E). We proceed by induction
on r = dimR(X), see [HR21, p. 59]. By [HR21, Lemma 5.1.3] we may assume that
there exists an R-linear map L ∶ Br → Bn−r, δ ∈ Cn−r(E) and m ∈ R ∖ {0} such that for
every (x′, x′′) ∈ X, with ∣x′∣ = r, we have mv(x′′) = L(v(x′)) + δ. Let Xm = {(x

′, x′′) ∶
((x′)m, x′′) ∈ X and ∣x′∣ = r}, then ⌜Xm⌝ = ⌜X⌝ and for every (x′, x′′) ∈ Xm with ∣x′∣ = r,
we have v(x′′) = L(v(x′)) + δ/m. So we may assume that m = 1.

We consider the action of Ar on Bn given by a ⋅ (x′, x′′) = (x′ +a, x′′ +L(a)). By [HR21,
Claim 5.1.6], and since lA = A, for every l ∈ R ∖ {0}, we may assume that Ar ⋅X = X.
For every c ∈ Cr and x′ ∈ Br with v(x′) = c, let Yc =Xx′ +L(x

′) = {x′′ −L(x′) ∶ (x′, x′′) ∈
X} ⊆ Bδ. This set Yc does not depend on the choice of x′. Indeed, if v(y′) = c and
(x′, x′′) ∈X, then a = y′ − x′ ∈ Ar and hence a ⋅ (x′, x′′) = (y′, x′′ −L(x′) +L(y′)) ∈X. So
x′′ −L(x′) ∈Xy′ −L(y

′) and hence, by symmetry, Xx′ −L(x
′) =Xy′ −L(y

′). Then X and
Y = {(c, b) ∶ b ∈ Yc} ⊆ C ×Bδ are inter-definable, and we conclude by orthogonality of B∆

and C.
Now, if X ⊆ A′ × Bn where A′ is a product of sorts in A, for every a ∈ A′, the fiber

Xa ⊆ Bn is coded in Ceq ∪ (A ∪ B∆)
eq where ∆ = C(acl(⌜X⌝a)) = C(acl(⌜X⌝)), by

orthogonality. It follows, by orthogonality again, that the graph of the function a↦ ⌜Xa⌝,
and hence X itself, is coded also in Ceq ∪ (A ∪B∆)

eq.

We deduce the following variant of [HR21, Proposition 5.3.1]. This covers new cases
since there are no conditions on Γ when k⋆ is divisible.

Corollary 6.3. Further assume that M is a k-Γ-expansion of Hen0,0 and that either one
of the following conditions holds:

(a) For every n ∈ Z≥2≥0 one has [Γ ∶ nΓ] <∞ and the pre-image in RV of any coset of nΓ
contains a point which is algebraic over ∅,

(b) The group k⋆ is divisible.
Let A ⊆M eq and e ∈ (RV ∪ LinA)

eq(M) and E = acl(e). Then

e ∈ dcl(Γeq
(E) ∪ (LinA ∪RVΓ(E))

eq
(E)).

In particular for A = acl(A) ⊆M eq,

(RV ∪ LinA)
eq
(A) ⊆ dcl(Γeq

(A) ∪ LineqA (A)).

Proof. With hypothesis (a), this is [HR21, Proposition 5.3.1]. With hypothesis (b), it is a
direct consequence of Proposition 6.2 with R = Z. Note that Γ is torsion free, as it is an
ordered abelian group.

Finally, let us relate LineqA to the linear imaginaries kleq:

Lemma 6.4. Let A = dcl(A) ⊆M . Then LineqA (A) ⊆ dcl(k
leq(A)).
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Proof. Recall that LinA is a stably embedded collection of k-vector spaces — see Re-
mark 3.19. Take e ∈ LineqA (A). Then e is the code of a definable set Xa ⊆∏i red(Ri) where
a ∈∏j red(R

′
j) and Ri and R′j are A-definable m-avoiding module. Then R =∏Ri×∏j R

′
j

is an A-definable m-avoiding module, and, adding zero coordinates, we may assume that
we have Xa ⊆ red(R) and a ∈ red(R). Let aEa′ be the equivalence relation defined by
Xa =X

′
a and c be the type of R. Then e ∈ dcl(Linc,V /E).

We can now prove our main results:

Theorem 6.5. Further assume that M is a k-Γ-expansion of Hen0,0 and that either one
of the following conditions holds:

(a) for every n ∈ Z≥2≥0 one has [Γ ∶ nΓ] <∞ and the pre-image in RV of any coset of nΓ
contains a point which is algebraic over ∅;

(b) or, the multiplicative group k× is divisible.
Then M weakly eliminates imaginaries down to K ∪ kleq ∪ Γeq.

Proof. Let e ∈M eq and A = acl(A). By Proposition 6.1, we have

e ∈ dcl(G(A) ∪ (RV ∪ LinA)
eq
(A)).

By Corollary 6.3, we have

(RV ∪ LinA)
eq
(A) ⊆ dcl(Γeq

(A),LineqA (A)) ⊆ dcl(Γ
eq
(A),kleq(A)),

where the last inclusion follows from Lemma 6.4.

Theorem 6.6. Further assume that M admits L-definable angular components. Then M
weakly eliminates imaginaries down to K ∪ kleq ∪ Γeq.

Proof. Let e ∈M eq and A = acl(A). By Proposition 6.1, e ∈ dcl(G(A), (RV ∪ LineqA )(A)).
Since RV is ∅-definably isomorphic to k× × Γ, then (RV ∪ LinA)

eq ⊆ (Γ ∪ LinA)
eq. The

statement now follows from orthogonality of Γ and LinA and Lemma 6.4.

As an illustration, we conclude this paper with the complete classification of (almost)
k-internal sets, when the value group is dense.

Corollary 6.7. Let M be as in Theorem 6.5 or Theorem 6.6 and assume that Γ(M) is
dense. Let A ⊆M eq and X be A-definable. The following statements are equivalent:

1. X is k-internal;
2. X is almost k-internal;
3. X is orthogonal to Γ;
4. X ⊆ dcl(acl(A),LinA).

Proof. The fourth statement is a particular case of the first statement. The second
statement is a particular case of the first, and it implies the third since k and Γ are
orthogonal. There remains to prove that if X is orthogonal to Γ then it is a subset of
acl(A) ∪ LineqA . By Theorems 6.5 and 6.6, any element a ∈X is weakly coded in by some
tuple η ∈ K ∪ kleq ∪ Γeq. Then η also lies on a A-definable set orthogonal to Γ. Since X
is orthogonal to Γ, if η ∈ K ∪ Γeq, then η ∈ acl(A). If η ∈ Gr, then, by Proposition 3.21,
η ∈ acl(A). Finally, if η ∈ red(Rs)

eq, for some s ∈ Gr, then s ∈ acl(A) and hence η ∈ LineqA .
It follows that e is weakly coded in acl(A) ∪ LineqA , as required.

32



References
[Bas91] Ş. A. Basarab. “Relative elimination of quantifiers for Henselian valued fields”. Ann. Pure

Appl. Logic 53.1 (1991), pp. 51–74.
[Far17] R. Farré. Strong ordered Abelian groups and dp-rank. 2017. arXiv: 1706.05471.
[Fle11] J. Flenner. “Relative decidability and definability in Henselian valued fields”. J. Symb. Log.

76.4 (2011), pp. 1240–1260.
[HHM06] D. Haskell, E. Hrushovski, and D. Macpherson. “Definable sets in algebraically closed valued

fields: elimination of imaginaries”. J. Reine Angew. Math. 597 (2006), pp. 175–236.
[HHM08] D. Haskell, E. Hrushovski, and H. D. Macpherson. Stable domination and independence in

algebraically closed valued fields. Assoc. Symbol. Logic. Vol. 30. Lect. Notes Log. Cambridge
Univ. Press, 2008.

[HKR18] M. Hils, M. Kamensky, and S. Rideau. “Imaginaries in separably closed valued fields”. Proc.
Lond. Math. Soc. (3) 116.6 (2018), pp. 1457–1488.

[HR21] M. Hils and S. Rideau-Kikuchi. “Un principe d’Ax-Kochen-Ershov imaginaire” (2021). To
appear in J. Eur. Math. Soc. arXiv: 2109.12189.

[Hru12] E. Hrushovski. “Groupoids, imaginaries and internal covers”. Turkish J. Math. 36.2 (2012),
pp. 173–198.

[HL16] E. Hrushovski and F. Loeser. Non-Archimedean tame topology and stably dominated types.
Vol. 192. Ann. Math. Stud. Princeton, NJ: Princeton University Press, 2016.

[HMR18] E. Hrushovski, B. Martin, and S. Rideau. “Definable equivalence relations and zeta functions
of groups”. J. Eur. Math. Soc. (JEMS) 20.10 (2018). With an appendix by Raf Cluckers,
pp. 2467–2537.

[JS20] F. Jahnke and P. Simon. “NIP Henselian valued fields”. Arch. Math. Logic 59.1-2 (2020),
pp. 167–178.

[Mel06] T. Mellor. “Imaginaries in real closed valued fields”. Ann. Pure Appl. Logic 139 (2006),
pp. 230–279.

[Rid17] S. Rideau. “Some properties of analytic difference valued fields”. Journal of the Institute of
Mathematics of Jussieu 16.3 (2017), pp. 447–499. doi: 10.1017/S1474748015000183.

[Rid19] S. Rideau. “Imaginaries and invariant types in existentially closed valued differential fields”.
J. Reine Angew. Math. 2019.750 (2019), pp. 157–196.

[She90] S. Shelah. Classification theory and the number of non-isomorphic models. 2nd rev. ed. Vol. 92.
Stud. Logic Found. Math. Amsterdam etc.: North-Holland, 1990.

[TZ12] K. Tent and M. Ziegler. A Course in Model Theory. Assoc. Symbol. Logic. Vol. 40. Lect.
Notes Log. Cambridge Univ. Press, 2012.

[Vic23a] M. Vicaría. “Elimination of imaginaries in C((Γ))”. J. Lond. Math. Soc., II. Ser. 108.2 (2023),
pp. 482–544.

[Vic23b] M. Vicaría. “Elimination of imaginaries in ordered abelian groups with bounded regular rank”.
J. Symb. Log. 88.4 (2023), pp. 1639–1654.

33

https://arxiv.org/abs/1706.05471
https://arxiv.org/abs/2109.12189
https://doi.org/10.1017/S1474748015000183

	Introduction
	Obstructions arising from the residue field
	Obstructions arising from the value group
	An imaginary Ax-Kochen-Ershov principle
	Overview of the paper

	Preliminaries
	Model theoretic preliminaries
	Equicharacteristic zero henselian fields

	Codes of O-modules
	The stabilizer sorts
	The geometric sorts

	Density of quantifier free definable types
	Codes of definable types
	Unary sets
	Germs of functions

	Invariant Extensions
	Germs of functions into the linear sorts
	Algebraically closed residue fields

	Coding germs of L0 definable open balls in the linear part
	Dense value groups
	Discrete value groups

	Invariant resolutions

	Eliminating imaginaries

