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Abstract. We study interpretable sets in henselian and σ-henselian
valued fields with value group elementarily equivalent to Q or Z. Our
first result is an Ax-Kochen-Ershov type principle for weak elimination
of imaginaries in finitely ramified characteristic zero henselian fields —
relative to value group imaginaries and residual linear imaginaries. We
extend this result to the valued difference context and show, in par-
ticular, that existentially closed equicharacteristic zero multiplicative
difference valued fields eliminate imaginaries in the geometric sorts; the
ω-increasing case corresponds to the theory of the non-standard Frobe-
nius automorphism acting on an algebraically closed valued field.

On the way, we establish some auxiliary results on separated pairs of
characteristic zero henselian fields and on imaginaries in linear structures
which are also of independent interest.

1. Introduction

In his seminal work “Une théorie de Galois imaginaire” [Poi83], Poizat in-
troduced the idea that the classification of certain abstract constructions of
model theory — namely interpretable sets or Shelah’s imaginaries — could
play an important role in our comprehension of specific structures. The
classification of definable sets, in the guise of quantifier elimination results,
has historically been used as a central ingredient in many applications of
model theory. But the development of more sophisticated model theoretic
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tools, in particular stability theory, naturally took place in the larger cat-
egory of quotients of definable sets by definable equivalence relations, i.e.,
interpretable sets. Shelah concretised this idea with his eq construction that
formally makes every interpretable set definable.
However, these interpretable sets immediately escape the realm of well un-
derstood and classified objects, complicating the possibility of applying new
tools from stability theory in specific examples, in particular coming from
algebra. Poizat’s idea was that these interpretable sets should also be clas-
sified, and he did so in algebraically closed fields and in differentially closed
fields. In both cases, he showed that they are all definably isomorphic to de-
finable sets, i.e., the categories of definable and interpretable sets are equiv-
alent — we say that these structures eliminate imaginaries. This property
later became an essential feature in model-theoretic applications, e.g., to
diophantine geometry and algebraic dynamics.
The question of elimination of imaginaries also has a very geometric flavour:
given a definable family of sets X ⊆ Y × Z, one wishes to find a definable
function f ∶ Z → W such that for all z1, z2 ∈ Z, Xz1 ∶= {y ∈ Y ∶ (y, z1) ∈
X} = Xz2 if and only if f(z1) = f(z2) — in other words, one wishes to find
a canonical parametrisation of this family where each set appears exactly
once. We refer the reader to Section 2.1 and [TZ12, Section 8.4] for further
details on these notions and constructions.
Elimination of imaginaries results were then established for numerous struc-
tures, but it was not until work of Haskell, Hrushovski and Macpherson
[HHM06] that the first complete classification of interpretable sets in a val-
ued field was proved. However, in this case the situation is more complex.
Indeed, the field itself does not eliminate imaginaries, as both the value
group and the residue field are interpretable but not isomorphic to a defin-
able set. Nevertheless, one can add certain well understood interpretable
sets, the geometric sorts. These sorts consist of the field K and, for all
n ∈ Z>0, of the space Sn ∶= GLn(K)/GLn(O) of free rank n O-submodules of
Kn, where O denotes the valuation ring, and of the space Tn ∶= ⋃s∈Sn s/ms
where m ⊆ O is the unique maximal ideal — cf. Section 2.2 for a precise def-
inition of the geometric language. The main result of [HHM06] states that
the theory ACVF of algebraically closed non-trivially valued fields elimi-
nates imaginaries in the geometric sorts: given a definable family of sets
X ⊆ Y × Z, there exists a definable function f ∶ Z → W , with W a prod-
uct of geometric sorts, such that for all z1, z2 ∈ Z, Xz1 = Xz2 if and only if
f(z1) = f(z2) — equivalently the category of sets interpretable in an alge-
braically closed valued field is equivalent to the category of sets definable
in its geometric sorts. One cannot overstate the impact of this result, as
it opened the way for the development of geometric model theory in the
context of valued fields. A beautiful illustration of the power of these new
methods is the work by Hrushovski and Loeser on topological tameness in
non-archimedean geometry [HL16].
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In this paper we consider imaginaries in more general classes of henselian
valued fields of characteristic 0, and also in certain valued difference fields,
i.e., valued fields endowed with a distinguished automorphism compatible
with the valuation.
In the last 25 years, the model theory of existentially closed difference fields,
largely developed by Chatzidakis and Hrushovski (see [CH99]), has led to
several spectacular applications — among others in algebraic dynamics.
Note that the corresponding theory ACFA does eliminate imaginaries and
this fact plays an essential role in later developments. A very deep result of
Hrushovski [Hru04], which takes the form of a Frobenius-twisted version of
the Lang-Weil estimates, implies that ACFA is in fact the asymptotic theory
of Frobenius automorphisms φq: any non-principal ultraproduct of (Fa

q , φq)
is a model of ACFA. Key properties of algebraic difference varieties may
thus be read off from specializations to the Frobenius automorphisms.
It is also natural to consider the non-standard Frobenius acting on an al-
gebraically closed valued field, i.e., the limit theory of the valued difference
fields (Fp(t)a, vt, φp), as the prime p grows, where vt is an extension of the
t-adic valuation. By results of Hrushovski [Hru02] and Durhan [Azg10], this
limit theory corresponds to the theory of existentially closed valued differ-
ence fields of equicharacteristic zero with ω-increasing automorphism — cf.
Section 2.4 for a detailed discussion. In fact, these structures naturally arise,
as early as in Hrushovski’s proof of the twisted Lang-Weil estimates, in the
study of algebraic difference varieties, by way of transformal specializations.
One may thus expect that the development of a geometric model theory
of valued difference fields will turn out useful in the future in geometric
applications — as it did in the case of ACVF.

Main results. The classification of imaginaries in ACVF by the geomet-
ric sorts was later extended to other valued fields: real closed valued fields
[Mel06], separably closed valued fields of finite imperfection degree [HKR18],
and p-adic fields and their ultraproducts [HMR18] — which allowed to uni-
formise and extend Denef’s result on the rationality of certain zeta functions
to interpretable sets. The question remained whether a general principle
underlined all these results. Such a principle was conjectured in the early
2000’s by Hrushovski. The present paper establishes it for a large class of
henselian fields, which covers most of the examples considered in applica-
tions, and extends it to valued fields with operators.
At this level of generality, one cannot expect elimination in the geometric
sorts. Indeed, the residue field and the value group can be arbitrary and
might not themselves eliminate imaginaries as is the case in all the results
cited above. However, a fundamental idea of the model theory of valued
fields, the so-called Ax-Kochen-Ershov principle, is that the model theory
of a henselian equicharactersitic zero field should be controlled by its value
group and residue field. This principle takes its name from the result of Ax
and Kochen [AK65] and independently Ershov [Ers65] that this is indeed the
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case for elementary equivalence, but this phenomenon has also been observed
with respect to numerous other aspects of valued fields, from model theoretic
tameness (starting with [Del81]) to motivic integration [HK06].
It is thus tempting to conjecture that, beyond the geometric sorts, imag-
inaries in equicharacteristic zero henselian fields only arise from the value
group and the residue field. However, non trivial torsors of the residue field
give rise to serious obstructions to this conjecture. One is thus naturally led
to define the k-linear imaginaries. Consider the two sorted language Lmod
of A-modules V with the ring structure on A, the group structure on V
and scalar multiplication. Given an interpretable set X (more precisely a
definable quotient of the vector space sort V) in the Lmod-theory of dimen-
sion n vector spaces over a field and given some O-lattice s ∈ Sn, we can
consider the interpretation X(k,s/ms) of X in the structure (k, s/ms). We
then define:

Tn,X ∶= ⊔
s∈Sn

X(k,s/ms).

Note that if X = V, Tn,X = Tn and if X is the one element quotient of V,
Tn,X ≅ Sn. In general, the Tn,X are essentially those interpretable sets that
admit definable surjections Tn → Tn,X → Sn. We write kleq ∶= ⊔n,X Tn,X .
Before we state our main results, let us address some technical points. The
first is that we prove a result not only in in equicharacteristic 0, but also
in finitely ramified mixed characteristic. In the latter case one needs to
also consider the higher residue rings R` ∶= O/`m, for ` ∈ Z>0, where `m ∶=
{` ⋅ x ∶ x ∈ m}. These rings often play a crucial role in this situation, and
they also come with their linear imaginaries and hence we define Tn,`,X ∶=
⊔s∈SnX(R`,s/`ms) and Rleq ∶= ⊔n,`,X Tn,`,X , where X is now interpretable
in the Lmod-theory of free rank n modules. Moreover, if the residue field
k comes with additional structure, in the definition of kleq and Rleq, we
need to consider all X interpretable in the corresponding enrichement of the
theory of free rank n modules.
The second point is that eliminating imaginaries often splits in two distinct
problems: describing quotients under the action of finite symmetric groups
(in other words finding canonical parameters for finite sets) and classify-
ing interpretable sets up to one-to-finite correspondences: given a definable
family of sets X ⊆ Y × Z, one wishes to find a one-to-finite definable corre-
spondence F ∶ Z → W such that for all z1, z2 ∈ Z, Xz1 = Xz2 if and only if
F (z1) = F (z2). This latter property is usually referred to as weak elimina-
tion of imaginaries and will be the main focus of this paper.
Our first main result is the following Ax-Kochen-Ershov principle for weak
elimination of imaginaries, where Γeq refers to the collection all sets inter-
pretable in the (enriched) ordered abelian group Γ:

Theorem A (Theorem 6.1.1). Let (K,v) be a characteristic zero henselian
valued field, possibly with angular components and added structure on the
value group Γ and, separately, the residue field k. Assume that:
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(CΓ) The induced structure on Γ is definably complete;
(FR) For every ` ∈ Z>0, the interval [0,v(`)] is finite and k is perfect;
(Ik) The residue field k is infinite;
(E∞

k ) The induced theory on k eliminates ∃∞.
Then K weakly eliminates imaginaries in the sorts K ∪Γeq ∪Rleq.

All the results with angular component, even in the algebraically closed
(equicharacteristic zero) case, are new. Angular components are (compati-
ble) multiplicative morphisms acn ∶ K× →R×

n extending the residue map on
O×. They play a key role in the development of the model theoretic study
of valued fields, in particular in the Cluckers-Loeser treatment of motivic
integration [CL08], by providing uniform cell decomposition results.
Definable completeness of the value group is a necessary hypothesis for the
conclusion to hold, since otherwise additional definable cuts appear, induc-
ing more definable O-submodules and hence more complex imaginaries. It
is worth noting that PRES = Th(Z) and DOAG = Th(Q) are the only com-
plete theories of pure ordered abelian groups which are definably complete.
As both PRES and DOAG eliminate imaginaries, we thus get Γ = Γeq under
the assumptions of Theorem A in case Γ is not enriched.
As a corollary, Theorem A yields that if F is a field of characteristic 0 which
eliminates ∃∞, the theories of the valued fields F ((t)) and F ((tQ)) (with
or without angular components) weakly eliminate imaginaries in the sorts
(K ∪ kleq) — noting that Γ ≅ S1 may be identified with a sort in kleq. In
the particular case that F is (of characteristic 0 and) algebraically closed,
real closed or pseudofinite, using results of Hrushovski on linear imaginaries,
we deduce that F ((t)) and F ((tQ)) (with or without angular components)
eliminate imaginaries in the geometric sorts, after naming some constants
in the pseudofinite and in the real closed case (see Corollary 6.1.7 for the
precise statement), thus obtaining an absolute elimination result in these
cases.
Without angular components, this provides alternate proofs of Mellor’s re-
sult [Mel06] for R((tQ)) and Hrushovski-Martin-Rideau’s result [HMR18]
for F ((t)) where F is pseudofinite of characteristic 0. Independent work of
Vicaria [Vic21] also yields the case of C((t)), although her work also applies
to more general value groups.
In mixed characteristic, the main example covered by Theorem A is W (Fap),
the fraction field of the ring of Witt vectors with coefficients in Fap, and
more generally finite extensions of W (F ) for any perfect infinite field F
of characteristic p which eliminates ∃∞. Thus, Theorem A provides an
important step towards proving that the imaginaries ofW (Fap) are classified
by the geometric sorts as well.
The second main result of this paper concerns valued difference fields. Quan-
tifier elimination (and hence an Ax-Kochen-Ershov principle for elementary
equivalence) has been proved for various classes. First for isometries in
[Sca03; BMS07; AvdD10], then for ω-increasing automorphisms — for every
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x ∈ m, v(σ(x)) > Z ⋅ v(x) — in [Azg10; Hru02]. Both of these contexts were
subsumed in later work of Kushik [Pal12] on multiplicative automorphisms
where the automorphism acts as multiplication by some element of an or-
dered field (cf. Definition 2.4.5 for precise definitions). Finally Durhan and
Onay [DO15] proved that these results hold without any hypothesis on the
automorphism.
Our second result focuses on the multiplicative setting where we prove an ab-
solute elimination of imaginaries result for the respective model-companions:

Theorem B (Theorem 6.2.1). The theory VFAmult
0,0 eliminates imaginaries

in the geometric sorts.

Since the isometric case and the ω-increasing case correspond, respectively,
to the asymptotic theory of Cp with an isometric lifting of the Frobenius
and to Fp(t)a with the Frobenius, an immediate corollary of these results
is a uniform elimination of imaginaries for large p in these structures. By
elimination of imaginaries in ACVF, the result is even uniform for all p in
the latter case.

Overview of the paper. The proofs of both theorems follow the same
general strategy and many technical results are shared between the two.
The proof consists of three largely independent steps (Sections 3 to 5).
In stable theories, every type p — a maximal consistent set of definable sets
— is definable, i.e., for every definable X ⊆ Y ×Z, the set {z ∈ Z ∶Xz ∈ p} is
definable. This was used in many proofs of weak elimination of imaginaries
in the stable context to reduce the problem of finding canonical parameters
for definable sets to finding canonical parameters for types; which, counter-
intuitively maybe, is a simpler problem. In [Hru14], Hrushovski formalised
the idea that even in an unstable context, this reduction could also prove
useful, provided definable types were dense: over any algebraically closed
imaginary set of parameters, any definable set contains a definable type.
The first step of the proof consists in proving such density results. But the
above statement cannot hold in the full generality of henselian equichar-
acteristic zero valued fields since it might already fail in the residue field.
We prove however that, under certain hypotheses, quantifier free definable
types are dense, cf. Theorem 3.1.1. This result does not apply to discrete
valued fields since the family of intervals contains arbitrarily large finite sets.
In Theorem 3.1.3, we do however prove that the density of quantifier free
invariant types holds in this context.
The proof improves on similar results in [Rid19] and the general idea is the
same. In arity one, we look for a minimal finite set of balls covering the
given definable set. The general case proceeds by fibration in relative arity
one and by considering germs of functions into the space of (finite sets of)
balls instead of actual balls. This fibration process is where most of the
technical assumptions of Theorem A are used, in particular the elimination
of ∃∞ in the residue field.
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In contexts with an absolute elimination of quantifiers (as, e.g., in [Rid19;
HKR18]) this first density result (and the implicit computation of canonical
bases) suffices to conclude that weak elimination of imaginaries holds. In
equicharacteristic zero henselian (and σ-henselian) fields, types come with
more information than quantifier free types; an information that mostly
lives in the short exact sequence 1 → k× → RV× ∶= K×/(1 + m) → Γ× →
0. The second step of our proof, Theorem 4.1.1, consists in showing that
quantifier free invariant types have invariant completions over RV (and k-
vector spaces) — this generalises to mixed characteristic by considering the
higher residue rings.
By quantifier elimination relative to RV, this step reduces to, given an
invariant type, computing canonical generators of the structure generated
by (realisations of) the type in RV. Note that in the conclusion of Theo-
rem 4.1.1 the types considered are invariant over definable sets which are
of the same size as the model. We do however show various folklore re-
sults implying that this a well behaved notion when these sets are stably
embedded.
The third step consists in studying imaginaries in RV, which is left as a black
box in the previous steps. We show, in the spirit of [HK06, Section 3.3], that
the imaginaries in the short exact sequence 1 → k× → RV× → Γ× → 0 come
essentially from k and Γ. To establish the results we need, as in [HK06,
Section 3.3], we consider more generally structures given by (enriched) short
exact sequences 0→A→ B→C→ 0 of R-modules for some ring R. But our
result is in a sense orthogonal to the one of Hrushovski and Kazhdan since
we require B to be a pure (in the sense of model theory) extension of A and
C, which can be both arbitrarily enriched, whereas [HK06, Lemma 3.21] has
strong hypotheses on A and C and no hypothesis on B.
Theorem 5.1.4 is the first version of a series of such reductions of increasing
complexity so as to cover the various cases that we require, the ultimate
version, Variant 5.2.2 allowing controlled torsion in Γ, auxiliary sorts on
both the k and Γ sides and considering not one but a projective system of
short exact sequences.
These three steps put together allow us to prove relative results like Theo-
rem A. However, absolute results like Theorem B or Corollary 6.1.7 require
one last ingredient: the classification of imaginaries in collections of vector
spaces — linear structures in the terminology of [Hru12]. Our contribution
consists in a twisted version, cf. Lemma 2.5.9.(4), of Hrushovski’s result on
ACF0-linear structures with flags and roots endowed with an automorphism
(the final step to prove Theorem B) and a version, Proposition 2.5.21, for
real closed fields.
The plan of the paper is as follows. In Section 2, we provide some prelim-
inary results on imaginaries, separated pairs of valued fields (in the sense
of Baur), on valued difference fields and on linear structures. Section 3 is
devoted to the proof of the two density results for definable (resp. invariant)
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types mentioned above. The fact that invariant quantifier free types are in-
variant over RV (and Rn-modules), is established in Section 4. In Section 5,
we prove the results about imaginaries in certain (enriched) short exact se-
quences of modules. Finally, in Section 6, we put everything together and
prove our main results, in particular Theorem A and Theorem B.

Acknowledgement. The authors would like to thank the anonymous ref-
eree for their numerous comments and advice on an earlier version of this
manuscript.

2. Preliminaries

Convention 2.1. Throughout this paper, if M is an L-structure, X is
L(M)-definable and A ⊆M , then X(A) denotes X ∩A.

We adopt this convention, as there are too many structures at play to not
be explicit as to which definable (or algebraic) closures we want to consider.
For this reason, setting X(A) ∶=X ∩ dcl(A) would lead to ambiguities.

2.1. Imaginaries. Let T be an L-structure. The language Leq is the lan-
guage containing L with one additional sort SX for every L-definable set
X ⊆ Y ×Z, where Y and Z are product of sorts, and one additional symbol
fX ∶ Z → SX . The Leq-theory T eq is then obtained as the union of T , the
fact that the fX are surjective and that their fibers are the classes of the
equivalence relation defined by Xz1 = {y ∈ Y ∶ (y, z1) ∈X} =Xz2 .
AnyM ⊧ T has a unique expansion to a model of T eq denotedM eq — whose
points are called the imaginaries. Throughout this paper, notations with
exponent eq — like dcleq or acleq — will refer to the Leq-structure of some
ambient M eq.
Given M ⊧ T and an L(M)-definable set X, we denote by ⌜X⌝ ⊆ M eq the
intersection of all A = dcleq(A) ⊆M eq such that X is Leq(A)-definable. By
construction of T eq, X is L(⌜X⌝)eq-definable, so it is the smallest dcleq-
closed set of definition for X. Any dcleq-generating subset of ⌜X⌝ is called
a code of X.
If D is a collection of sorts of Leq — equivalently, a collection of L-inter-
pretable sets — we say that X is coded in D if it is Leq(D(⌜X⌝))-definable
— i.e., it admits a code in D. The theory T is said to eliminate imaginaries
in D if, for every M ⊧ T , every L(M)-definable set X is coded in D —
equivalently, for every e ∈ M eq, there is some d ∈ D(dcleq(e)) such that
e ∈ dcleq(d). By compactness, this is equivalent to the definition in the
introduction, provided dcl(∅) contains two elements. Finally, we say that
the theory T weakly eliminates imaginaries in D if for every e ∈M eq, there
is some d ∈ D(acleq(e)) such that e ∈ dcleq(d).
We refer the reader to [TZ12, Section 8.4] for a detailed exposition of these
notions.
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2.2. The languages of valued fields. Any valued field (K,v) can be
considered as a structure in the language Ldiv with one sort K for the valued
field, the ring language and a binary relation x∣y interpreted as v(x) ⩽ v(y).
Note that in every language of valued fields that we will consider there is a
sort K for the valued field and hence, wheneverM is a structure representing
a valued field, K(M) will denote the underlying valued field.
The language Ldiv owes its widespread use to the following result, essentially
due to Robinson [Rob77]:

Fact 2.2.1. The Ldiv-theory ACVF of algebraically closed non trivially val-
ued fields eliminates quantifiers.

Notation. We will write L0 ∶= Ldiv and throughout this paper, notations
with an index 0 — like dcl0, acl0 or tp0 — will refer to the quantifier free
L0-structure; or equivalently the structure induced by any model of ACVF
containing the valued field under consideration.

Given a valued field, seen as an L0-structure, we will denote by O ∶= {x ∈
K ∶ v(x) ⩾ 0} its valuation ring, m ∶= {x ∈ K ∶ v(x) > 0} its maximal ideal,
k ∶= O/m its residue field and Γ ∶= K/O× its value monoid; it is the union of
the value group Γ× = K×/O× and the class of 0 that we usually denote ∞.
We also denote res ∶ O → k and v ∶ K → Γ the canonical projections. More
generally, for every n ∈ Z>0, we write Rn ∶= O/nm. Let also resn ∶ O → Rn

be the canonical projection, R∞ the (pro-definable) set lim←ÐnRn and res∞ ∶
O → R∞ the natural map. Note that, working in a sufficiently saturated
model, R∞ ≅ O/m∞, where m∞ ∶= {x ∈ K ∶ v∞(x) > ∆∞} and ∆∞ ⩽ Γ is
the convex subgroup generated by v(char(k)), in mixed characteristic, and
∆∞ = 0, otherwise. It is a valuation ring whose fraction field is naturally
identified with the residue field k∞ associated to the (equicharacteristic)
valuation v∞ ∶ K→ Γ→ Γ/∆∞. We also define R ∶= ⊔n>0 Rn.
Although most of the present paper is rather insensitive to the choice of
language for valued fields — or, rather, we work in Leq

0 — we will at times
need to work in certain languages tailored for specific elimination results.
The first of them is the Haskell-Hrushovski-Macpherson geometric language.
For every n ∈ Z>0, let Sn ≅ GLn(K)/GLn(O) be the (interpretable) set of
rank n free sub-O-modules of Kn, and Tn ∶= ⋃s∈Sn s/ms. Let S ∶= ⋃n Sn,
T ∶= ⋃nTn and G ∶= K ∪ S ∪ T. We also denote by sn ∶ GLn(K) → Sn,
tn ∶ GLn(K) → Tn and τn ∶ Tn → Sn the canonical projections. Note that
GLn(K) naturally acts transitively on Tn and on Sn, and that the map τn
is compatible with these actions.
These interpretable sets (and the so called geometric language of which they
are the sorts, which also contains the maps sn, tn and τn) were introduced
to classify imaginaries in ACVF:

Fact 2.2.2 ([HHM06, Theorem1.0.1]). The theory ACVF eliminates imag-
inaries in the geometric sorts G.
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The second language that we will use allows for a description of definable sets
in certain henselian fields. The exact language that we use was introduced
by Flenner in [Fle11]. For every n ∈ Z>0, let RVn be the multiplicative
monoid K/(1 + nm); it is the union of the group RV⋆

n = K×/(1 + nm) and
the class of 0, also denoted 0. Let rvn ∶ K →RVn and rvn,m ∶ RVn →RVm

denote the canonical projections. The valuation induces a map RVn → Γ
that we also denote v. This map induces a short exact sequence:

1→R×
n →RV×

n → Γ× → 0.

Remark 2.2.3. If v(n) = v(m), then rvn,m ∶ RVn ≅ RVm. In particular,
in equicharacteristic zero all RVn are canonically isomorphic to RV1. We
allow this redundancy in order to have a uniform treatment of characteristic
zero henselian valued fields.
Moreover, in positive characteristic p, if n is prime to p, RVn ≅ RV1 and
othewise RVn ≅ K. In that case, it makes more sense to only consider RV1
— see below.

Moreover, RVn is endowed with the trace of addition which we denote, in
Krasner’s hyperfield manner: ζ ⊕ ξ ∶= {rvn(x + y) ∶ rvn(x) = ζ and rvn(y) =
ξ} ⊆ RVn. We say that ζ ⊕ ξ is well-defined when ζ ⊕ ξ = {χ} is a singleton,
and we often write ζ ⊕ ξ = χ in that case.
Note that for any two disjoint balls b1 and b2, in some valued field (K,v),
and any ai, ci ∈ bi, rv1(a1 − a2) = rv1(c1 − c2). We will denote by rv1(b1 − b2)
this common value. If b1 ∩ b2 ≠ ∅, by convention, rv1(b1 − b2) = 0.
We denote by RV∞ the (pro-definable) set lim←ÐnRVn, and rv∞ ∶ K→RV∞
denotes the natural map. Note that RV∞ ≅ K/(1 +m∞), as pro-definable
sets. We also denote RV ∶= ⊔nRVn.
Let LRV be the language with sorts K, Γ and RVn, for all n ∈ Z>0, the
ring structure on K, ordered (abelian) monoid structure with a constant for
∞ on Γ, multiplication, constants 0, 1 and a ternary predicate ⊕ on each
RVn, the valuation map v ∶ K → Γ and the maps rvn ∶ K → RVn and
rvn,m ∶ RVn → RVm. Let LRV1 be its restriction to the sorts K, Γ and
RV1.

Remark 2.2.4. If the interval [0,v(n)] is finite, then the predicate ⊕ on
RVn is definable (in general with parameters, and without parameters in
case v(n) = 0) using addition on Rn.

Proof. If v(ζ) ⩽ v(ξ), then ζ ⊕ ξ = ζ ⋅ r−1
n (1 + (ζ−1ξ)), where rn is the map

sending rvn(x) to resn(x) whenever x ∈ O. The remaining cases are dealt
with by symmetry. Therefore, it suffices to show that the map rn is definable.
Let π ∈ RVn be an element of minimal positive valuation. Then for every
ξ ∈ RVn, if v(ξ) = `v(π) ∈ [0,v(n)], then rn(ξ) = rn(π)` ⋅ (rvn(π)−`ξ); and
if v(ξ) > v(n), rn(ξ) = 0. So rn is indeed definable (with parameters π and
rn(π), unless v(n) = 0). �

Definition 2.2.5. We say that a valued field (K,v) is:
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● algebraically maximal if it does not admit non trivial immediate
algebraic extensions;

● Kaplansky if Γ×(K) is p-divisible and any finite extension of k(K)
has degree prime to p, where p = char(k(K)) if it is positive and
p = 1 otherwise;

● finitely ramified if for any ` ∈ Z>0 the interval [0,v(`)] in Γ(K) is
finite.

Note that a finitely ramified valued field is algebraically maximal if and only
if it is henselian, cf. [EP05, Theorem 4.1.10].
The following quantifier elimination results are due, respectively, to Basarab
[Bas91, TheoremA] in characteristic zero and Delon [Del82, Théorème 3.1]
in positive characteristic (see also [Kuh94, Corollary 2.2 and Theorem 2.6]):

Fact 2.2.6. ● Let L be an RV-enrichment of LRV and T an L-theory
containing the theory Hen0 of henselian valued fields of characteristic
zero. Then T eliminates field quantifiers.

● Let L be an RV1-enrichment of LRV1 and T an L-theory containing
the theory of equicharacteristic p algebraically maximal Kaplansky
valued fields, for some fixed p > 0. Then T eliminates field quanti-
fiers.

2.3. Separated pairs of valued fields. In this section, we will gather
some results about separated pairs of valued fields, in particular concerning
pure stable embeddedness of the residue field and value group pairs in spe-
cific contexts. In equicharacteristic zero, most of the results below follow
from work of Leloup [Lel90]; and from work of Rioux [Rio17], in unramified
mixed characteristic.
Recall that an extension L/K of valued fields is called separated if ev-
ery finite-dimensional K-vector subspace of L admits a K-valuation basis,
i.e., a K-basis (b1, . . . , bn) which is valuation independent over K: for any
a1, . . . , an ∈ K one has v(∑aibi) = min v(aibi). Also, for field extensions
K ⊆ L ⊆ U and K ⊆ K ′ ⊆ U , we write L ⫝ld

K K ′ if L and K ′ are linearly
disjoint over K.

Definition 2.3.1. LetK ⊆ L ⊆ U andK ⊆K ′ ⊆ U be valued field extensions.
● We say L and K ′ are Γk-independent over K, denoted by L ⫝Γk

K K ′,
if k(L) ⫝ld

k(K) k(K ′) and Γ(L) ∩Γ(K ′) = Γ(K).
● Assume that L/K is separated. Then L is said to be valuatively
disjoint from K ′ over K, denoted by L ⫝vdK K ′, if whenever a tuple
(b1, . . . , bn) from L is valuation independent over K, it is valuation
independent over K ′.

Fact 2.3.2. Let K ⊆ L ⊆ U and K ⊆K ′ ⊆ U be valued field extensions, with
L/K separated and L ⫝Γk

K K ′. Set L′ ∶= LK ′. Then we have the following:
(1) L ⫝vdK K ′ — in particular, L ⫝ld

K K ′;
(2) L′/K ′ is separated;
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(3) k(L′) = k(L)k(K ′) and Γ(L′) = Γ(L) +Γ(K ′);
(4) If L1 ⊆ U and f ∶ L ≅ L1 is an isomorphism over K ∪ k(L) ∪ Γ(L),

then f extends (uniquely) to an isomorphism f ′ ∶ L′ ≅ L1K
′ over K ′.

Proof. This is shown by adapting the proof of the corresponding result for
K maximally valued from [HHM08, Proposition 12.11]. �

2.3.1. Reduction to RV. Most of this paper will be concerned with char-
acteristic zero finitely ramified fields, however, for future reference, we will
state and prove certain results, mostly regarding pairs, in all characteristics,
as the arguments are essentially identical.

Notation. Given a multisorted language L, we let LP be the associated
language of pairs, i.e., for every sort S from L we add a unary predicate PS
of sort S to the language. If N is an L-substructure of M , we will consider
the pair of L-structures M̃ = (M,N) as an LP-structure in the natural way,
i.e., PS(M̃) = S(N) for each sort S. We denote P(M̃) = N the whole
L-substructure singled out by the PS’s. Instead of M̃ = (M,P(M̃)), we
will often write (M,P(M)). Given a quantifier free L-definable set X, we
extend the above notation and write PX for the LP-definable set whose
points in (M,P(M)) are the P(M)-points of X.

In LRV1,P, the class of separated pairs of valued fields may be axiomatized.
For technical reasons, we will consider such pairs in a hybrid language,
adding higher RV sorts for the small valued field. Formally, we let Lhyb

RV,P
be the language consisting of LRV1,P together with additional sorts PRVn

for all n ⩾ 2 and all symbols of LRV, where for n ⩾ 2 we use PRVn instead of
RVn. E.g., in Lhyb

RV,P, for n ⩾ 2 we have a function symbol rvn ∶ K→ PRVn

and a ternary relation symbol ⊕ on PRVn.
Let T ⋆ be a theory of separated pairs (M,P(M)) of henselian valued fields
in the language Lhyb

RV,P. Here,M is the LRV1-structure associated to a valued
field, P(M) the LRV-structure (interpreted on the respective PS’s) of the
corresponding valued subfield. (For n ⩾ 2, we extend rvn from PK(M)
to K(M) trivially, setting rvn(a) ∶= 0 ∈ PRVn(M) for any a ∈ K(M) ∖
PK(M).) We assume thatM eliminates field quantifiers in LRV1 and P(M)
eliminates fields quantifiers in LRV. Note that we do not assume that PRV1
is stably embedded in RV1.

Remark 2.3.3. In positive characteristic p, since RVp ≅ K, eliminat-
ing quantifiers from the sort K in LRV is an empty assumption and it
makes more sense to consider pairs of LRV1,P-structures instead, as in Re-
mark 2.3.13.

By a hybrid RV-structure, we mean a structure (elementarily equivalent to)
(RV1(M),PRV(M)), where M ⊧ T ⋆ — with the restriction of the Lhyb

RV,P-
structure. We also denote RVhyb the set of sorts {RV1,Γ}∪{PRVn ∶ n ⩾ 2}.
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Lemma 2.3.4. LetM0 ≼ N0 be hybrid RV-structures. Then k(M0) ⫝ld
Pk(M0)

Pk(N0) and Γ(M0) ∩PΓ(N0) = PΓ(M0).
Proof. Immediate from the elementarity of the extension. �

Let M0 be a hybrid RV-structure, say (elementarily equivalent to) a struc-
ture of the form (RV1(M),PRV(M)), where M ⊧ T ⋆. We say that M0 is
finitely ramified if P(M) is — i.e, [0, v(`)] ∩PΓ is finite for every ` ∈ Z>0.
In that case, we also assume that Pk(M) is perfect. In mixed character-
istic (0, p), R∞ ∶= lim←ÐnPRn(M0) is then a p-ring with perfect residue field
Pk(M0) — cf. [Ser68, Ch. II §5] — and p is not a divisor of zero. So it is a
complete mixed characteristic discrete valuation ring and a finite extension
of W(Pk(M0)) of degree v(p), where W(k) denotes the ring of Witt vectors
over k. Let π be a uniformizer of R∞ — i.e, a generator of the maximal
ideal — and P its minimal polynomial over W (Pk(M0)).
Definition 2.3.5. Ramification constants refer to the (infinite) tuple, in
Pk(M0), of Witt coordinates of the coefficients of a polynomial P as above.
Lemma 2.3.6. Let M0 be a finitely ramified hybrid RV-structure. Assume
that k×(M0) is divisible, or that PΓ(M0) is a pure subgroup of Γ(M0).
Then, the following hold:

(1) k and Γ are purely stably embedded and orthogonal.
(2) The theory of M is determined by the theories of the k-pair (with a

choice of ramification constants), the Γ-pair and ramification data
— i.e, the theory stating that lim←ÐnPRn has a uniformizer which is
a zero of the polynomial whose Witt coefficients are the ramification
constants.

Moreover, the statements (1) and (2) hold in any k-Γ-enrichment of M0,
i.e, a k-enrichment of a Γ-enrichment of M0.
Proof. We may assume that M0 is of the form (RV1(M),PRV(M)) for
some ℵ1-saturated M ⊧ T ⋆. Then, as ℵ1-saturated modules are pure-
injective, there is a section of the valuation map restricted to the small
valued field P(M), inducing coherent splittings of the sequences

1→ PR×
n(M0) → PRV×

n(M0) → PΓ×(M0) → 0
for all n ⩾ 1. In mixed characteristic, we may assume that the splitting
is normalized: the chosen uniformizer π is in the image of the splitting,
equivalently, acn(π) = 1 if acn is the angular component map induced by
the splitting. Indeed, the group ∆ generated by v(π) is convex, so the
quotient is also ordered and hence torsion free. Since PK×(M)/O×(M)⋅πZ ≅
PΓ(M0)/∆, the extension PO×(M) ⋅ πZ ⩽ PK×(M) is also pure. Pure-
injectivity of PO×(M) (which is an ℵ1-saturated abelian group) then allows
to extend the retraction PO×(M) ⋅ πZ → PO×(M) sending π to 1 to the
whole of PK×(M).
It further follows from the assumptions that the splitting of 1→ Pk×(M0) →
PRV×

1(M0) → PΓ×(M0) → 0 extends to a splitting of the sequence 1 →
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k×(M0) → RV×
1(M0) → Γ×(M0) → 0. To see this, note first that if h ∶

PRV×
1(M0) → Pk×(M0) is a retraction of the inclusion map, i.e., h∣Pk×(M0) =

idPk×(M0), h extends (uniquely) to a homomorphism h̃ ∶ k×(M0)⋅PRV×
1(M0) →

k×(M0) which is the identity on k×(M0), since k×(M0) ∩ PRV×
1(M0) =

Pk×(M0). It is enough to show that h̃ may be extended to a homomor-
phism h′ ∶ RV×

1(M0) → k×(M0). In case k×(M0) is divisible, this is clear,
since divisible abelian groups are injective. In case PΓ(M0) is a pure sub-
group of Γ(M0), we conclude as above.
Note that the additional structure on RVhyb, beyond the abelian structure,
is given by ⊕ and some k-Γ-enrichment. As explained in Remark 2.2.4, ⊕ can
be defined using the ring structure on k and the PRn (using the splitting,
no further constants are required. Moreover, PRn is a finite extension,
generated by the zero of a polynomial with coefficients the ramification
constants, and, as such, is ∅-interpretable in Wn(Pk), which is itself ∅-
interpretable in Pk. So, if we add the splittings, RVhyb is (identified to) a
k-Γ-enrichment of the product of k and Γ. In the product structure, (1) and
(2) are clear, even for k-Γ-enrichments. The result follows, as (1) and (2)
are preserved in any reduct of the product structure that carries the whole
structure on k and Γ. �

We now get back to the Lhyb
RV,P-theory T

⋆ of separated pairs of valued fields.
Let M,N ⊧ T ⋆, where we suppose that N is ∣M ∣+-saturated, and let A ⩽M
and f ∶ A→ N be some embedding.

Definition 2.3.7. We say that:
(1) A is good if PK(A) ⩽ K(A) is a separated extension of valued fields

with
K(A) ⫝Γk

PK(A) PK(M),

(2) f is good if A ⩽M and f(A) ⩽ N are good and fRVhyb is elementary
— for the Lhyb

RV,P∣
RVhyb-structure.

Proposition 2.3.8. Assume f is a good embedding. Then f extends to a
good embedding g ∶M → N .

Proof. We proceed step by step.
Step 1. We may extend f to a good map defined on A∪RVhyb(M) — and
thus assume that RVhyb(A) = RVhyb(M).
Indeed, this follows from saturation, the fact that fRVhyb is elementary and
that the only symbols in the language involving both K and RVhyb are maps
from K to RVhyb.
Step 2. We may extend f to a good map defined on (the substructure
generated by) A ∪P(M) — and thus assume that PK(A) = PK(M).
Indeed, by K-quantifier elimination in the LRV-theory of the small valued
field P(M), the map f ∣P(A) extends to an (elementary) LRV-embedding
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g ∶ P(M) → P(N). As K(A) ⫝Γk
PK(A) PK(M) and RVhyb(A) = RVhyb(M),

by Fact 2.3.2, f ∪ g induces a good embedding of A ∪P(M) into N .
Step 3. We may extend f to a good embedding of M into N .
Indeed, by K-quantifier elimination in the LRV1-theory of the valued field
M , the map f extends to an (elementary) LRV1-embedding f̃ ∶ M → N .
By Lemma 2.3.4, we get f̃(K(M)) ⫝Γk

f(PK(M)) PK(N), so in particular
f̃(K(M)) ⫝ld

f(PK(M)) PK(N) (and thus f̃(K(M))∩PK(N) = f(PK(M)))
by Fact 2.3.2(1), showing that f̃ is an LRV1,P-embedding, with image a
good substructure of N . Thus f̃ is a good embedding, since f was already
defined on the whole of RVhyb(M). �

Corollary 2.3.9. The theory T ⋆ is complete relative to RVhyb, and RVhyb

is purely stably embedded in T ⋆, i.e., the induced structure is that of a hybrid
RV-structure.
This even holds resplendently, for any RVhyb-enrichment of the pair of val-
ued fields.

Proof. Assume that M,N ⊧ T ⋆ are models with RVhyb(M) ≡ RVhyb(N).
The isomorphism between the prime substructures, i.e., the substructures
ofM an N generated by ∅, is easily seen to be a good embedding. It follows
by Proposition 2.3.8, and a back and forth argument, that it is, in fact,
elementary — i.e., M ≡ N .
Similarly, if M ≼ N — in particular a good substructure — and f ∶M → N
is an elementary embedding — in particular a good embedding — inducing
the identity on RVhyb(M), then it remains a good embedding — and hence
an elementary one — when extended by the identity on RVhyb(N). Thus,
tp(M/RVhyb(M)) ⊢ tp(M/RVhyb(N)); in other words, RVhyb is stably
embedded. Finally any Lhyb

RV,P∣
RVhyb-elementary map on RVhyb is good and

hence Lhyb
RV,P-elementary, so RVhyb is pure.

Resplendence of the result follows formally. (This is folklore. See, e.g.,
[Con+22, Proposition 2.7] for a proof.) �

The proof of the corollary, together with the fact that PRV is purely stably
embedded in PK, yields the following observation. (We will not use this in
our paper.)

Remark 2.3.10. If PRV is (purely) stably embedded in RVhyb, then PK
is (purely) stably embedded.

Corollary 2.3.11. Let M ⊧ T ⋆ be such that P(M) is finitely ramified with
perfect residue field. Assume that k×(M) is divisible (which is the case for
example if M ⊧ ACVF) or that PΓ(M) is a pure subgroup of Γ(M). Then
in any k-Γ-enrichment of M , the theory of M is determined by ramification
data and the theories of k (with ramification constants) and Γ. Moreover k
and Γ are purely stably embedded and orthogonal.
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Proof. By Corollary 2.3.9 together with Lemma 2.3.6. �

Similarly to Remark 2.3.10, we get the following.
Remark 2.3.12. If Pk is (purely) stably embedded in k and PΓ is (purely)
stably embedded in Γ, then PK is (purely) stably embedded.
Remark 2.3.13. If we further assume that P(M) eliminates field quanti-
fiers in LRV1 — e.g., if it is algebraically closed or algebraically maximal
Kaplansky of equicharacteristic — then all the above results can easily be
adapted to pairs of LRV1-structures (with no need for the rather exotic
hybrid RV-structures).
2.3.2. Characteristic 0 Laurent series fields. Let F be a field of characteristic
0, and letK ∶= F ((t)). In what follows, we are interested in the pair of valued
fields (Ka,K). Let us first deal with the pair of value groups. Let Log be the
language of ordered groups and DOAG be the theory of non-trivial divisible
ordered abelian groups. Let also LPres be the language Log enriched with a
constant 1 and unary predicates for divisibility by integers. Let PRES be
the LPres-theory of Z.
Notation. Let TQ,Z be the theory of all structures (Γ,∆) with Γ ⊧ DOAG,
∆ ⊧ PRES and such for any γ ∈ Γ there is a largest δ =∶ ⌊γ⌋ ∈ ∆ with δ ⩽ γ,
considered in the language LQ,Z given by Log,P together with LPres on the
predicate P and the function ⌊⋅⌋.
The quantifier elimination result we state in part (3) of the following lemma
has already been obtained by Weispfenning ([Wei99]). (We thank Matthias
Aschenbrenner for having brought this to our attention.) We decided to
include our proof for convenience of the reader.
Lemma 2.3.14.

(1) Let M = (Γ,∆) ⊧ TQ,Z. Then the map γ ↦ (⌊γ⌋, γ − ⌊γ⌋) is an ∅-
definable bijection between Γ and ∆ × [0,1), which identifies the ∅-
definable sets in M with the ∅-definable sets in the product structure
(∆,0,+,⩽) × ([0,1),0, +̃,<), where a+̃b ∶= a + b − ⌊a + b⌋ is the group
law on [0,1) induced by the natural bijection between [0,1) and Γ/∆.

(2) In TQ,Z, the predicate P is stably embedded with induced structure
a pure model of PRES, and [0,1) is stably embedded, with induced
structure given by Log, so in particular o-minimal.

(3) TQ,Z eliminates quantifiers and is complete.
Proof. Let f ∶ Γ → ∆ × [0,1) be the bijection given in (1). Clearly, f is ∅-
definable, and the product structure (∆,0,+,<)×([0,1), +̃,<) is ∅-definable
in M . Conversely, under this identification P corresponds to f−1(0), < on
Γ corresponds to the lexicographic ordering on ∆ × [0,1), and the addition
on Γ may also be recovered, since if f(γ) = (z, a) and f(γ′) = (z′, a′), then

f(γ + δ) =
⎧⎪⎪⎨⎪⎪⎩

(z + z′, a+̃b) if a ⩽ a+̃b
(z + z′ + 1, a+̃b) otherwise.
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This proves (1). Part (2) follows directly from (1).
Let us now show (3). Completeness follows from quantifier elimination, since
(Z,Z) embeds into every model of TQ,Z a a substructure. To prove quantifier
elimination, we first note that the Log-theory of ([0,1),0, +̃,<) has quantifier
elimination. (This is well known, and we leave the easy proof to the reader.)
Moreover, PRES has quantifier elimination in LPres. It is thus enough to
establish the following claim:

Claim 2.3.15. If D ⊆ (∆ × [0,1))n is defined by an atomic formula in
the product structure ∆ × [0,1), with LPres on ∆ and Log on [0,1), then
f−1(D) ⊆Mn is defined by a quantifier free formula (without parameters).

To prove the claim, let us denote the projection onto ∆ by π1, that onto
[0,1) by π2. If ϕ is of the form ψ(π1(x1), . . . , πn(x1)) for some atomic
LPres-formula ψ(y), the statement is clear, as then f−1(D) is defined by
the quantifier free formula ψ(⌊x1⌋, . . . , ⌊xn⌋). Else, ϕ is (equivalent to) a
formula of the form z1π2(x1)+̃⋯+̃znπ2(xn) = 0, with z1, . . . , zn ∈ Z, in which
case f−1(D) is defined by P(∑ni=1 zixi); or ϕ is (equivalent to) a formula of
the form

z1π2(x1)+̃⋯+̃znπ2(xn) < z′1π2(x1)+̃⋯+̃z′nπ2(xn),
with z1, z

′
1, . . . , zn, z

′
n ∈ Z, in which case f−1(D) is defined by the quantifier

free formula ∑ni=1 zixi − ⌊∑ni=1 zixi⌋ < ∑ni=1 z
′
ixi − ⌊∑ni=1 z

′
ixi⌋. �

In fact, the proof of Lemma 2.3.14 yields the following more general result.

Remark 2.3.16. Let L+ ⊇ LPres and T+ ⊇ PRES be a complete L+-theory
with quantifier elimination. Then the corresponding expansion T+Q,Z of TQ,Z
is complete, eliminates quantifiers, and P is purely stably embedded with
induced structure given by L+.
Since TQ,Z admits the complete model (R,Z), it is definably complete. Ac-
tually, this even holds resplendently, as shows the following corollary.

Corollary 2.3.17. Assume that the expansion T + ⊇ PRES is definably com-
plete. Then T+Q,Z is definably complete.

Proof. Let (Γ,∆) ⊧ T+Q,Z and let D ⊆ Γ be a definable subset which is
bounded and non-empty. Then ⌊D⌋ is a definable subset of ∆ which is non-
empty and bounded. By assumption, it admits a supremum s in ∆, which
is then the maximum of ⌊D⌋ as the order on ∆ is discrete.
As the induced structure on [0,1) is o-minimal by Lemma 2.3.14, the induced
structure on [s, s+1] is o-minimal as well, and so sup(D) = sup(D∩[s, s+1])
exists in [s, s + 1], proving definable completeness. �

Let us now consider the residue field. By a classical result of Keisler [Kei64],
if F and F ′ are fields such that F ≡ F ′, then (F a, F ) ≡ (F ′a, F ′). If F = F a

or F a is real closed, then the axiomatization, in Lring,P, of (F a, F ) is clear,
and P is stably embedded with induced structure that of a ring. In case
Tf is a complete theory of fields whose models are neither algebraically
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nor real closed, and F ⊧ Tf , then the models of the Lring,P-theory Tf,a
of (F a, F ) are precisely the pairs (M,P(M)) of fields such that M = Ma

and P(M) ⊧ Tf . By [HKR18, Theorem 4.7], if one definably expands the
theory, adding relation symbols ldn and function symbols `n,i, the theory
Tf,a eliminates quantifiers relative to P, even resplendently on P. This yields
in particular the following.

Fact 2.3.18. For Tf = Th(F ) a complete theory of fields (in arbitrary
characteristic), the predicate P is stably embedded in the Lring,P-theory
Tf,a = Th(F a, F ), with induced structure given by Tf .
This even holds resplendently, for any L ⊇ Lring and any L-expansion of F .

Lemma 2.3.19. Let F be some (enriched) field which eliminates ∃∞. Then
the pair (F a, F ) also eliminates ∃∞.

Proof. We may suppose that F is neither algebraically nor real closed, as
otherwise the result is clear. By the relative quantifier elimination result
[HKR18, Theorem 4.7] already mentioned above, if (M,P(M)) ≡ (F a, F ),
and (M,P(M)) ≼ (U ,P(U)) then for any a, b ∈ U ∖ (MP(U))a we have
tp(a/M) = tp(b/M) =∶ pgen(x), so, assuming that (U ,P(U)) is sufficiently
saturated, any element of U is the sum of two realizations of pgen. By
compactness, for any M -definable set D = ψ(M) ⊆M we then have

D +D =M ⇔ ψ(U) + ψ(U) = U
⇔ ψ(U) /⊆ (MP(U))a ⇔ pgen(x) ⊢ ψ(x).

(2.1)

We will now assume that M is ℵ0-saturated. Let ϕ(x, y) be a formula with
x a single variable. Assume that c is a tuple from M such that ϕ(M,c) is
infinite. By compactness, it is enough to find a formula χ(y) ∈ tp(c) such
that for any c′ fro M satisfying χ the set ϕ(M,c′) is infinite.
If pgen(x) ⊢ x ∈ ϕ(x, c), we may find such a χ(y) using Eq. (2.1). So
assume now that pgen(x) /⊢ x ∈ ϕ(x, c), and choose a /∈ M realizing ϕ(x, c).
Then a ∈ (MP(U))a ∖Ma, so in particular M(a) /⫝ld

P(M) P(U). Set A ∶=
dcl(Ma). If P(A) = P(M), by [HKR18, Lemma 4.1], we have A ⫝ld

P(M)

P(U), contradicting that M(a) /⫝ld
P(M) P(U). It follows that that there is

a′ ∈ P(A) ∖P(M), so we find an M -definable function f ∶ D → P(M) with
infinite image. Using Fact 2.3.18 and the assumption that the theory of
F eliminates ∃∞, we may thus find a formula χ(y) as required, stipulating
explicitly the existence of a definable function with infinite image in P. �

Fix some characteristic zero field F and let T ⋆Laur be the theory of sepa-
rated pairs of valued fields (M,P(M)) with (k(M),Pk(M)) ≡ (F a, F ) and
(Γ(M),PΓ(M)) ⊧ TQ,Z.
Proposition 2.3.20. The theory T ⋆Laur is complete, the definable sets k, Γ,
RV, PK, Pk, PΓ and PRV are all purely stably embedded, and k and Γ
are orthogonal. All these results hold resplendently for Pk-PΓ-enrichments,
and also if one adds an angular component.
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Proof. By Corollary 2.3.9, RV is stably embedded. Combining Fact 2.3.18
and Lemma 2.3.14 with Corollary 2.3.11, we see that T ⋆Laur is complete,
Pk, PΓ, k and Γ are stably embedded and the latter are orthogonal. By
Remark 2.3.12, PK is thus stably embedded, and hence so is PRV. �

2.3.3. Finitely ramified fields. We will now prove analogous statements in
mixed characteristic. Let K be a complete mixed characteristic Z-valued
field with perfect residue field F . We are interested in the pair of valued fields
(Ka,K). Let T ⋆Witt be a theory of separated pairs of henselian valued fields
with fixed ramification data such that (k(M),Pk(M)) ≡ (F a, F ) (with
ramification constants) and (Γ(M),PΓ(M)) ⊧ TQ,Z.

Proposition 2.3.21. The theory T ⋆Witt is complete, the definable sets k, Γ,
RVhyb, PK, PRV, Pk and PΓ are all purely stably embedded, and k and Γ
are orthogonal. All these results hold resplendently for Pk-PΓ-enrichments,
and also if one adds a coherent system of normalized angular components.

Proof. One may argue as in the proof of Proposition 2.3.20. �

2.3.4. Divisible value group. Let F be a field. If char(F) = p > 0, assume
that F does not admit a finite extension of degree divisible by p (in particular
F is perfect). Let K ∶= F ((tQ)). In what follows, we are interested in the
pair of valued fields (Ka,K).
Let T ⋆div be the theory of separated pairs of equicharacteristic algebraically
maximal valued fields (M,P(M)) such that (k(M),Pk(M)) ≡ (F a, F ) and
PΓ(M) = Γ(M) ⊧ DOAG. Note that the Kaplansky conditions (cf. Defini-
tion 2.2.5) are satisfied in this case.

Proposition 2.3.22. The theory T ⋆div is complete. The definable sets k, Γ,
RV, PK, Pk and PRV are all purely stably embedded, and k and Γ are
orthogonal. All these results hold resplendently for Pk-Γ-enrichments, and
also if one adds angular components.

Proof. One may argue as in the proof of Proposition 2.3.20. �

2.4. Valued difference fields. Let (K,v, σ) be a valued field with an au-
tomorphism.

Definition 2.4.1. (1) For every P ∈K[x0, . . . , xn], a ∈K, d ∈Kn+1 and
γ ∈ Γ(K)×, we say that (P,a, d, γ) is in σ-Hensel configuration if

v(P (∇a)) > min
i

v(di) + σi(γ)

and, for all x, y ∈K with v(x − a), v(y − a) > γ,

v(P (∇y) − P (∇x) − d ⋅ ∇(y − x)) > min
i

v(diσi(y − x)).

Here, ∇a ∶= (σi(a))0⩽i⩽n.
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(2) We say that (K,v, σ) is σ-henselian if for every (P,a, d, γ) in σ-
Hensel configuration, there exists c ∈ K(M) such that P (∇c) = 0
and

v(c − a) ⩾ max
i,di≠0

v(σ−i(P (∇a))d−1
i ).

Fact 2.4.2. Assume that for every linear non constant L ∈ k(K)[x0, . . . , xn]
and c ∈ k(K), there exists a ∈ k(K) such that L(∇(a)) = c and either:

● K is maximally complete;
● K is complete (rank one).

Then (K,v, σ) is σ-henselian.

This follows from Newton approximation, cf. [Rid17, Proposition 4.14]. Note
that at each step the approximation to the root of a σ-Hensel configuration
(P,a, d, γ) improves by at least γ, cf. [Rid17, Lemma4.16], and hence, in
rank one, completeness suffices.

Remark 2.4.3. In [Azg10; Pal12; DO15] an a priori weaker notion of σ-
henselian fields is considered. However, both notions hold in maximally
complete fields (with linearly closed residue field) and both allow proving
Fact 2.4.4. So any field satisfying either notion is elementarily equivalent to
any maximal completion verifying both. It follows that the two notions are
equivalent.

Let LσRV be the language LRV with three new unary functions σK ∶ K→K,
σRV ∶ RV → RV and σΓ ∶ Γ → Γ. The expected quantifier elimination
result also holds in characteristic zero σ-henselian fields, by [DO15, Theo-
rem7.3] in equicharacteristic 0, and by [Rid17, p. 41, TheoremA] in mixed
characteristic:

Fact 2.4.4. Let L be an RV-enrichment of LσRV and T an L-theory contain-
ing the theory Henσ0 of characteristic zero σ-henselian valued fields. Then T
eliminates field quantifiers.

Note that it follows from field quantifier elimination that RV is purely sta-
bly embedded. Its induced structure is the expansion of the short exact
sequence of Z[σ]-modules 1 → k× → RV× → Γ× → 0 by ⊕ and < which, by
Remark 2.2.4, can be defined (with parameters) in a Γ-k-enrichment.
In order to obtain model complete theories, one often restricts the behaviour
of the automorphism on the value group, e.g., the class of (existentially
closed) multiplicative difference valued fields introduced in [Pal12]:

Definition 2.4.5. Let VFAmult
0,0 be the theory of σ-henselian non-trivially

valued fields such that:
(1) For every P ∈ Z[σ], either P (Γ>0) = Γ>0, P (Γ<0) = Γ>0 or P (Γ) = 0;
(2) We have (k, σk) ⊧ ACFA0
(3) The embedding of Z[σ]-modules k× →RV is pure.

Remark 2.4.6. Two multiplicative behaviours of σ are of particular inter-
est.
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(1) The ω-increasing case — i.e., for all x ∈ O and n ∈ Z>0, v(σ(x)) ⩾
nv(x) — studied in [Azg10]. One then gets the asymptotic theory
of (Fp(t)a,vt, φp), where φp is the Frobenius automorphism.

(2) The isometric case, studied in [BMS07]. In that case, one gets the
asymptotic theory of (Cp,vp, σp), where σp is an isometric lift of the
Frobenius automorphism on k(Cp) = Fa

p.
Both characterisations follow (see, e.g., [CH14]) from the Ax-Kochen-Ershov
principle for σ-henselian valued fields and Hrushovski’s deep result that
ACFA0 is the asymptotic theory of (Fa

p, φp), cf. [Hru04].

Fact 2.4.7. In VFAmult
0,0 , k is a stably embedded pure difference field and

Γ is a stably embedded o-minimal pure ordered Z[σ]-module, and k and Γ
are orthogonal. These results also hold if one adds a σ-equivariant angular
component.

Proof. Condition (3) in Definition 2.4.5 ensures that in any ℵ1-saturated
model of VFAmult

0,0 there is a σ-equivariant angular component map ac.
[Pal12, Theorem 11.8] yields the results if we add such an ac map to the
language, and they obviously go down to the reduct without ac. �

2.5. Linear structures. Let us now recall the results of [Hru12] on linear
structures. In the case of valued difference fields, we will need “twisted”
versions of these results. As it took us a while to get the arguments clear,
we decided to spell them out in detail.

2.5.1. Independent amalgamation. We will first recall some material from
[Hru12, Section 4]. We fix a complete stable theory T in some language L,
and we assume that T eliminates quantifiers and imaginaries. Let CT be
the category consisting of those L-structures that are algebraically closed
substructures of a model of T , with L-embeddings (which are L-elementary
in T by assumption) as morphisms. Let n = {0,1, . . . , n−1}, and set P(n)− ∶=
P(n)∖{n}. We consider P(n)− and P(n) as categories, with inclusion maps
as morphisms.
Given a functor A ∶ P → CT , where P equals P(n)− or P(n), if ι ∶ w1 → w2
denotes the inclusion map for two sets w1 ⊆ w2 ∈ P , in what follows we will
write A(w1) for the subset A(ι)(A(w1)) of A(w2), thus omitting the map
A(ι) in our notation. This slight abuse of notation should not lead to any
confusion.

Definition 2.5.1. Let P equal P(n)− or P(n).
(1) A functor A ∶ P → CT is called independence preserving if for any

w,w′ ∈ P with w ∪ w′ ∈ P one has A(w) ⫝A(w∩w′) A(w′) (inside
A(w ∪w′)).

(2) A functor A ∶ P → CT is called bounded if for any ∅ ≠ w ∈ P one has
A(w) = acl(⋃i∈wA({i})).
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(3) An n-amalgamation problem in T is a bounded independence pre-
serving functor A− ∶ P(n)− → CT . A solution of A− is a bounded
independence preserving functor A ∶ P(n) → CT extending A−.

Definition 2.5.2. The theory T is said to have
● n-existence if every n amalgamation problem in T has a solution;
● n-uniqueness if whenever A and A′ are solutions of the same n-
amalgamation problem A− in T , then A and A′ are isomorphic over
A−, i.e., there is an L-isomorphism f ∶ A(n) ≅ A′(n) fixing A−(w)
pointwise for every w ∈ P(n)−.

Remark 2.5.3. In the terminology of [Hru12], these notions corresponds
to n-existence / n-uniqueness of T over every parameter set.

Remark 2.5.4. It follows from stability and elimination of imaginaries in
T (as then types over algebraically closed sets are stationary) that T has
2-existence, 2 uniqueness and 3-existence.

Let σ be a new unary function symbol, Lσ ∶= L∪{σ}. Consider the category
C̃T of Lσ-structures of the form (A,σ), where A ∈ CT and σ ∈ AutL(A), with
Lσ-embeddings as morphisms.

Definition 2.5.5. Let P equal P(n)− or P(n).
(1) A functor A ∶ P → C̃T is called independence preserving (bounded,

respectively), if it is so when composed with the forgetful functor
from C̃T to CT .

(2) We say that C̃T has n-existence if every bounded independence pre-
serving functor A− ∶ P(n)− → C̃T extends to a bounded independence
preserving functor A ∶ P(n) → C̃T .

It follows from 2-uniqueness and 2-existence in T that C̃T has 2-existence.
Let Tσ be the Lσ-theory of all (M,σ) ∈ C̃T such that M ⊧ T . Recall that if
Tσ admits a model-companion, it is denoted by TA. If this is the case, we
will say that “TA exists”. (We refer to [CP98] for fundamental facts about
TA.)

Fact 2.5.6 ([Hru12, Proposition 4.7 and Corollary 4.10]). For T as above,
the following are equivalent:

(1) T has 3-uniqueness.
(2) C̃T has 3-existence.

Moreover, assuming in addition that TA exists, the above conditions imply:
(3) TA eliminates imaginaries. �

It is easy to see that if TA exists and it eliminates bounded hyperimag-
inaries (e.g., when T is superstable, by [BPW01] combined with [CP98,
Corollary 3.8]), then (3) is actually equivalent to (1) and (2). We will not
use this in our paper.



UN PRINCIPE D’AX-KOCHEN-ERSHOV IMAGINAIRE 23

2.5.2. Twisted independent amalgamation. Let τ ∶ L ≅ L′ be a bijection
between two first order languages (sending sorts to sorts, function symbols
to function symbols consistently with their arity, similarly for constants and
relations). Then τ extends naturally to a bijection between the set of L-
formulas and the set of L′-formulas. Given an L-formula ϕ, we denote by
ϕτ its image under this map. If T is an L-theory, T τ ∶= {ϕτ ∶ ϕ ∈ T} is an
L′-theory. Of course, up to changing the names of the symbols using τ , T τ
is the “same” theory as T .
If M is an L-structure, we denote by M τ the L′-structure with base set
M and interpretations (Στ)M

τ

= ΣM , for any symbol Σ ∈ L. If N ′ is an
L′-structure, we call an L′-isomorphism σ ∶ M τ ≅ N ′ a τ -twisted isomor-
phism between M and N ′. Similarly, one defines the notion of a τ -twisted
elementary map σ ∶ A → A′, where A ⊆ M and A′ ⊆ N ′, i.e., one requires
that for any L-formula ϕ(x) and any tuple a from A of the right length, one
has M ⊧ ϕ(a) if and only if N ′ ⊧ ϕτ(σ(a)).
Lemma 2.5.7. Let T be a complete stable L-theory eliminating quantifiers
and imaginaries. Assume that T has n-uniqueness. Let A ∶ P(n) → CT and
A′ ∶ P(n) → CTτ be bounded independence preserving functors.
Then for any coherent system (σw)w∈P(n)− of τ -twisted elementary bijections
σw ∶ A(w) → A′(w) there exists a τ -twisted elementary bijection σn ∶ A(n) →
A′(n) extending σw for every w ∈ P(n)−.
Proof. The result follows from n-uniqueness of T τ , since we may consider A
as a functor to CT τ , replacing A(w) by A(w)τ . �

We now consider the special case where L′ = L, τ is a permutation of L and
T is a complete L-theory such that T = T τ . Let C̃(τ)

T be the category of
Lσ-structures (B,σ) with B ∈ CT and σ ∶ B → B a τ -twisted elementary bi-
jection. When T is stable, we use the same terminology as in Definition 2.5.5,
for functors A ∶ P → C̃(τ)T . Lemma 2.5.7 then yields:

Corollary 2.5.8. Let T be a complete stable L-theory eliminating quanti-
fiers and imaginaries, and let τ ∶ L → L be a bijection such that T τ = T . Then
C̃(τ)T has 2-existence. If in addition we assume that T has 3-uniqueness, then
C̃(τ)T has 3-existence.

Proof. Lemma 2.5.7 yields that if T has n-uniqueness and n-existence, then
C̃(τ)T has n-existence. We may thus conclude by Remark 2.5.4 �

Given a complete L-theory T and a permutation τ of L such that T τ = T ,
we let T (τ)

σ be the Lσ-theory whose models are of the form (M,σ), where
M ⊧ T and where σ is a τ -twisted automorphism of M .
Assume now in addition that T is stable and eliminates quantifiers and
imaginaries. It follows from quantifier elimination in T that T (τ)

σ is then a
∀∃-theory, and so it has a model-companion if and only if the e.c. models
of T (τ)

σ form an elementary class. If this is the case, denote by T (τ)A the
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model-companion of T (τ)
σ . Then the models of T (τ)A are precisely the e.c.

models of of T (τ)
σ . The basic results on TA, due to Chatzidakis and Pillay

([CP98]), generalize to this context in a straightforward manner. We will
only state some facts which we will need.

Lemma 2.5.9. Let T and τ be as above, and assume that T (τ)A exists.
Then the following holds:

(1) If (M,σ) ⊧ T (τ)A and B ⊆M then
acl(M,σ)(B) = aclσ(B) ∶= aclM(⋃

z∈Z
σz(B)).

(2) Quantifier reduction: If (Mi, σi) ⊧ T (τ)A and Bi ⊆ Mi for i = 1,2,
then B1 ≡Lσ B2 if and only if there is an Lσ-isomorphism from
aclσ(B1) to aclσ(B2) sending B1 to B2.

(3) T (τ)A is simple and

A ⫝T (τ)AE B if and only if aclσ(EA) ⫝Taclσ(E) aclσ(EB).

If T is superstable, then T (τ)A is supersimple.
(4) Assume that C̃(τ) has 3-existence. (Equivalently, in T (τ)A, the in-

dependence theorem holds over aclσ-closed sets.) Then T (τ)A elimi-
nates imaginaries.

Proof. To prove (2), assume that B = aclσ(B) is a common substructure of
two models (M,σ) and (N,σ) of T (τ)A, such that (N,σ) is ∣M ∣+-saturated.
We need to show that (M,σ) Lσ(B)-embeds into (N,σ). As C̃(τ)T has 2-
existence, there is an amalgam (A,σ) ∈ C̃(τ)T of N and M over B. Enlarging
(A,σ) if necessary, we may assume that (A,σ) ⊧ T (τ)A, hence (A,σ) ≽
(N,σ). In particular, tpLσ(M/B) is finitely satisfiable in (N,σ), so this
type is realized in (N,σ) by saturation, yielding an Lσ(B)-embedding of
(M,σ) into (N,σ).
We now prove (1). Let (M,σ) ⊧ T (τ)A and letB ⊆M . Clearly, acl(M,σ)(B) ⊇
aclσ(B). To prove the other inclusion, it suffices to show that if B = aclσ(B),
then B is algebraically closed in (M,σ). Let a ∈ M ∖ B, and set A ∶=
aclσ(Ba). Then (B,σ) ⊆ (A,σ) is an extension in C̃(τ)T .
For n ∈ Z>0, using 2-existence in C̃(τ)T and induction, we may construct
an extension (B,σ) ⊆ (Cn, σ) ∈ C̃(τ)T such that Cn contains n isomorphic
copies (A1, σ), . . . , (An, σ) of (A,σ) over B, which are L-independent over
B. Replacing (M,σ) by an elementary extension if necessary, using (2) we
may assume that Cn ⊆ M . Since B = aclL(B)L, Ai ∩Aj = B for any i ≠ j,
so (M,σ) contains n distinct realizations of tpLσ(a/B), by part (2). As n
was arbitrary, a /∈ acl(M,σ)(B).
To show (3), we proceed exactly as in the proof of the corresponding result
for TA ([CP98, Corollary 3.8]). If A,B,E are subsets of a model of T (τ)A, we
say that A and B are independent over E if aclσ(EA) ⫝Taclσ(E) aclσ(EB),
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where ⫝T denotes forking independence in T . This relation satisfies the
all abstract properties of an independence notion that guarantee, by the
Theorem of Kim-Pillay (see, e.g., [Wag00, Theorem 2.6.1]), that T (τ)A is
simple and that non-foking is given by the independence notion in ques-
tion. This is clear for all properties except the independence theorem (over
a model). To establish the latter, one shows that every 3-amalgamation
problem A− ∶ P(3)− → C̃(τ)T with A−(∅) ⊧ T (τ)A has a solution; equivalently,
the independence theorem even holds over models of T (τ)

σ . The proof of this
is identical to the proof of [CP98, Theorem 3.7].
The statement about supersimplicity follows as in the proof of [CP98, Corol-
lary 3.8].
Part (4) is the analog of [Hru12, Proposition 4.7]. Weak elimination of imag-
inaries in T (τ)A follows directly from a formalization of Hrushovski’s argu-
ment by Montenegro and the second author (see [MR21, Proposition 1.17]).
But finite sets are coded in models of T , as T eliminates imaginaries by
assumption. so they are also coded in the expansion T (τ)A of T . Hence
T (τ)A eliminates imaginaries. �

2.5.3. Linear imaginaries. Let us now recall some notions from [Hru12, Sec-
tion 5].

Definition 2.5.10. Let t be a theory of fields (possibly with additional
structure). A t-linear structure M is an L-structure with a sort k for a
model of t, and additional sorts Vi (i ∈ I) denoting finite-dimensional k-
vector spaces, such that the family (Vi)i∈I is closed under tensor products
and duals. Each Vi has (at least) the k-vector space structure. One assumes
that k is stably embedded in M with induced structure given by t.
We now fix such a t-linear structure M .

(1) M is said to have flags if for any i with dim(Vi) > 1, for some j, k
with dim(Vj) = dim(Vi)−1, there exists a ∅-definable exact sequence
0Ð→ Vk Ð→ Vi Ð→ Vj Ð→ 0. We will call such a short exact sequence
a flag.

(2) M is said to have roots if for any one-dimensional V = Vi, and any
m ⩾ 2, there exists a (one-dimensional) W = Vj and a ∅-definable
k-linear isomorphism f ∶W⊗m ≅ V .

Let us now mention two results from [Hru12]. The proof of the first one is
rather elementary, whereas that of the second one is quite involved.

Fact 2.5.11 ([Hru12, Lemma 5.6]). The theory of an ACF-linear structure
with flags (in any characteristic) eliminates imaginaries.

The following fact follows from [Hru12, Proposition 5.7] in combination with
[Hru12, Proposition 4.3 and Corollary 4.10].

Fact 2.5.12. Let T be the theory of an ACF0-linear structure with flags and
roots. Then T has 3-uniqueness.
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Our main interest in linear structures stems from the fact that the k-internal
sets in a given model of ACVF give rise to such a structure. For every
M ⊧ ACVF and A ⊆ G(M), we define

LinA ∶= ⊔
s∈S(dcl0(A))

`∈Z>0

s/`ms.

In equicharacteristic zero, this is exactly the stable part ⊔s∈S(dcl0(A)) s/ms
of [HHM08]. In mixed characteristic, however, this is a more complicated
structure since it also consists of (free) R`-modules — and this more compli-
cated structure is actually needed in Section 4. Note that, by Convention 2.1
and our choice of representation of the geometric sorts, LinA(M) is the set
of cosets c + `ms where s ∈ S(dcl0(A)) has a basis in M and c ∈ s(M).

Lemma 2.5.13. Let M ⊧ Hen0,0 and A ⊆ G(M). Then LinA(M), with
its L0(A)-induced structure, is an Th(k(M))-linear structure with flags.
Moreover, if Γ(M) is divisible, then LinA(M) has roots.

Proof. We may assume that dcl0(A) ∩G(M) ⊆ A. The fact that the residue
field k is stably embedded in Hen0,0, with induced structure that of a pure
field, is well known — and follows from the existence of splittings as in
Lemma 2.3.6.
Now let V,W be two sorts from LinA(M), i.e., vector spaces over k of the
form V = a/ma,W = b/mb for some a ∈ Sm(A) and b ∈ Sn(A) —with bases in
M . Then a⊗O b is canonically isomorphic to an element c from Sm⋅n(A), so
we may identify V ⊗kW with c/mc, which is a sort from LinA(M). Similarly,
ǎ = HomO(a,O) can be identified with {z ∈ Kn ∶ ∀v ∈ a, ∑ zivi ∈ O} ∈ Sm(A),
so V̌ = Homk(V,k) ≅ ǎ/mǎ is a sort from LinA as well.
Flags: For a ∈ Sn(A) define a1 ∶= a∩(K×{0}n−1). Then the projection onto
the first coordinate identifies a1 with an element of S1(A). Let π ∶ a→Kn−1

be induced from the projection on the last n − 1 coordinates. Then

0→ ker(π) = a1 → a→ π(a) → 0

is an A-definable exact sequence of free O-modules, and π(a) ∈ Sn−1(A)
— this follows from the fact that π(a) is a finitely generated torsion free
O-submodule of Kn−1 of rank n − 1. Reducing modulo m, we conclude.
Roots: Assume Γ(M) is divisible. Let n ⩾ 1, and let V be a one-dimensional
sort from LinA. Then V = γO/γm for some γ ∈ Γ(dcl0(A)). Consider
Vn ∶= δO/δm, for δ = γ

n . The map

x/γm↦ y/δm⊗ . . .⊗ y/δm ∶ V → V ⊗n
n ,

where yn = x, is well-defined and an A-definable isomorphism of k-vector
spaces defined over A. In particular, LinA has roots. �

The result above actually holds of the stable part ⊔s∈S(dcl0(A)) s/ms in all
characteristic (provided k is stably embedded).
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Corollary 2.5.14. Let M ⊧ ACVF0,0 and A ⊆ G(M). Then LinA satisfies
3-uniqueness. �

2.5.4. Twisted linear imaginaries.
Lemma 2.5.15. Let t be a stable theory of fields, and let T be the theory of a
t-linear structure such that T eliminates quantifiers. Let τ be a permutation
of the language with T = T τ such that τ fixes all the formulas on the sort
k. Suppose tA exists. Then T

(τ)
σ ∪ tA is the model-companion of T (τ)

σ . In
particular, this holds for t = ACF.

Proof. Let (M,σ) ⊧ T (τ)
σ . Then, as M ⊧ T , for any sort V from L there is

an M -definable surjection f ∶ k(M) → V (M). For any N ≽L M , f then also
defines a surjection from k(N) onto V (N), hence N = dclL(Mk(N)). Thus,
any extension of σ to a τ -twisted automorphism onN is uniquely determined
by its restriction to k(N). It follows that (M,σ) is an e.c. model of T (τ)

σ if
and only if (k(M), σ∣k(M)) is an e.c. model of tσ. This yields the statement
of the lemma. �

As a special case of Lemma 2.5.15, we get the following.
Remark 2.5.16. Let t be a stable theory of fields, and let T be the theory
of a t-linear structure, such that T eliminates quantifiers. Suppose tA exists.
Then TA exists and is given by Tσ∪tA. In particular, this holds for t = ACF.
Definition 2.5.17. Let k be a stably embedded sort in a theory T . An
A0-definable set D is said to be internally k-internal (over A0), if there is
a tuple d ∈ D and an A0d-definable surjection f ∶ Y → D, where Y ⊆ kn for
some n.
Lemma 2.5.18. Let k be a stably embedded sort in a theory T , and let D
be A0-definable and internally k-internal (over A0). Then k ∪D is stably
embedded (over A0).
Proof. Set D′ ∶= k ∪ D. It follows from the assumptions that D′ is A0-
definable and internally k-internal over A0. Let f be an A0d-definable sur-
jection as in the definition, with d ∈D′. Taking the preimage under f×⋯×f ,
one sees that any U-definable subset X of D′m is k(U)A0d-definable, by
stable embeddedness of k. In particular, X is A0D

′(U)-definable, proving
stable embeddedness of D′ (over A0). �

Proposition 2.5.19. Let M ⊧ VFAmult
0,0 and A ⊆ G(M). Then LinA is

stably embedded in VFAmult
0,0 and its A-induced structure eliminates imagi-

naries.
Proof. Stable embeddedness follows from stable embeddedness of k — cf.
Fact 2.4.7 — and the fact that LinA is internally k-internal (by naming a
basis for every sort).
Now, let T be the theory of LinA(M), with its L0(A)-induced structure.
By Fact 2.5.11 and Lemma 2.5.13, T eliminates imaginaries. Let τ be the
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permutation of L0(A) induced by σ. Then τ fixes all the formulas on the sort
k, and we have T τ = T . It follows from Corollary 2.5.14 and Lemma 2.5.9(4)
that T (τ)A eliminates imaginaries.
Also, by Fact 2.4.7 (k(M), σk) is a stably embedded pure model of ACFA,
and hence LinA(M) ⊧ T (τ)A by Lemma 2.5.15. Since the A-induced struc-
ture on LinA is a definable expansion of its ACF-linear structure with a
twisted automorphism, elimination of imaginaries follows — e.g., by [Hru12,
Lemma 5.4]. �

2.5.5. Real linear imaginaries. We conclude these preliminaries with a study
of RCF-linear structures.

Definition 2.5.20. An RCF-linear structure with flags is said to be oriented
if for every sort V of dimension one, the two half lines are ∅-definable.

Proposition 2.5.21. Any oriented RCF-linear structure with flags elimi-
nates imaginaries.

Proof. Let us first prove a few preliminary results. Let M be a sufficiently
saturated and homogeneous oriented RCF-linear structure with flags. First,
note that if 0 →W → V → U → 0 is an ∅-definable flag, then any translate
of W in V is ordered by a < b if a − b is in a fixed half line of W .

Claim 2.5.22. M is rigid: for every A ⊆M , acl(A) = dcl(A).

Proof. Let X be a non-empty finite A-definable set such that all elements of
X have the same type over A. We need to show that X is a singleton. Using
tensors, we may assume that X is contained in some sort V . We proceed by
induction on dim(V ). Let 0 → W → V → U → 0 be an ∅-definable flag for
V . By induction, we may assume that X projects to a singleton b ∈ U , i.e.,
X is contained in a translate a +W of W in V and we can conclude since
a +W inherits an ∅-definable total order from the ordered group structure
on W . �

Claim 2.5.23. Let X ⊆ c +W ⊆ V be definable for some ∅-definable flag
0→W → V → U → 0 and some c ∈ V . Then X is coded.

Proof. Since k is o-minimal and there is a definable order preserving bijec-
tion between c +W and k, X is a finite union of points and intervals and
hence it is coded by its (finite) border. �

Let K = k(M)a and K ⊗M be the structure whose sorts are the sorts V of
M interpreted as K⊗k(M)V (M), with the field structure on k, the k-vector
space structure on each V and the tensor, dual and flag structure. Then
K⊗M is an ACF-structure with flags and for every N ≼M , and tuple c ∈M ,
since all of the vector spaces have bases in N , dcl(Nc) ⊆ acl0(Nc) where
acl0 (respectively dcl0) denotes the algebraic (respectively definable) closure
in K ⊗M . Note also that in K ⊗M , we have k(dcl0(M)) = k(M) and since
each of the vector spaces has a basis in M , dcl0(M) ⊆ M . Since K ⊗M
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eliminates imaginaries by Fact 2.5.11, it follows that any M -definable set in
K ⊗M has a code consisting of elements in M .
By [HHM06, Remark 3.2.2], to prove elimination of imaginaries in M , it
suffices to code every definable function f ∶ V → S, where S is a sort. We
will proceed by induction on the dimension of V . Let 0 →W → V → U → 0
be an ∅-definable flag for V . Let F be the Zariski closure of the graph of f
in K ⊗M — any choice of basis induces a Zariski topology on V , but this
topology is independent of the choice of coordinates. For every c ∈ V (M),
since dcl(Nc) ⊆ acl0(Nc), for every N ≼ M , the fiber Fc of F above c is a
finite set containing f(c). As was noted above, F has a code in M . Note
that any σ ∈ Aut(M/⌜f⌝) can be extended to an automorphism of K ⊗M
fixing F . It follows that F (M) is defined over ⌜f⌝ and hence it has a code
in M ∩⌜f⌝. Moreover, by compactness and Claim 2.5.22, in M , we find ⌜F ⌝-
definable maps (hi)i<n such that for all c ∈ V (M), Fc(M) = {hi(a) ∶ i < n}.
Now, fix a ∈ U(M) and c ∈ V above a. Let fa be the restriction of f to
the fiber c +W above a in V . Let Xa,i = {x ∈ c +W ∶ fa(x) = hi(x)}. By
Claim 2.5.23, this set is coded in M . Let g(a) denote the tuple consisting
of codes of the Xi,a. The function g is ⌜f⌝-definable with domain U , so, by
induction, g is coded in M . This concludes the proof since f is (⌜F ⌝, ⌜g⌝)-
definable. �

Proposition 2.5.24. Let (K,<, v) be an ordered field with a non-trivial
convex valuation and A ⊆ G(A). Then LinA(K) is oriented.
In particular, if v is henselian and k(K) ⊧ RCF, then LinA(K) is stably
embedded and its A-induced structure eliminates imaginaries.

Proof. Dimension one sorts in LinA are of the form γO/γm for some γ ∈
Γ(K). But this quotient inherits the order on γO; so it is oriented. The
rest of the proposition follows from Lemma 2.5.18, Proposition 2.5.21 and
Lemma 2.5.13. �

Remark 2.5.25. ● Any K ≡ R((Q)), being real closed, admits a
unique field ordering which is definable (without parameters).

● Any K ≡ R((t)), admits exactly two field orderings, depending on
the sign of a choice of uniformizer π. Both orders are definable
(using an imaginary parameter for a half line in RV1,v(π) ∶= {ξ ∈
RV1 ∶ v(ξ) = v(π)}, in particular any element of RV1,v(π)).

3. C-minimal definable generics

We will now consider generalisations of [Rid19, Theorem 8.7].

Notation. Let L0 = Ldiv and T0 be the L0-theory ACVF. Let L ⊇ L0
and T be a (complete) L-theory of valued fields. Let M ⊧ T be sufficiently
saturated and homogeneous and M0 = Ma ⊧ T0. Note that since ACVF
eliminates quantifiers, we will implicitly assume that every L0-formula is
quantifier free. We will denote by S0

x(M) the set of (quantifier free) L0(M)-
types (in M0) in variables x and whenever Ψ(x; t) is a set of L0-formulas,
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SΨ
x (M) will denote the set of Ψ-types overM — that is, maximal consistent

sets (in M0) of formulas ψ(x;a) and ¬ψ(x, a) with ψ ∈ Ψ and a ∈M t.
3.1. Main results. In this section we prove the following two density re-
sults:
Theorem 3.1.1. Assume

(CB) T is definably spherically complete;
(CΓ) T has definably complete value group;
(E∞

k ) The full induced theory on k eliminates ∃∞: for any M ⊧ T and
L(M)-definable (Yz)z ⊆ k, there exists n ∈ Z⩾0 such that ∣Yz ∣ < ∞
implies ∣Yz ∣ ⩽ n;

(E∞
Γ ) The full induced theory on Γ eliminates ∃∞: for any M ⊧ T and
L(M)-definable (Yz)z ⊆ Γ, there exists n ∈ Z⩾0 such that ∣Yz ∣ < ∞
implies ∣Yz ∣ ⩽ n.

Then, for every strict pro-L(A)-definable X ⊆ Kx, with x countable and
A = acleq(A) ⊆ M eq ⊧ T eq, there exists an L0(G(A))-definable p ∈ S0

x(M)
consistent with X.
In other terms, there exists N ≽ M and a ∈ X(N) such that tp0(a/M)
is L0(G(A))-definable. Recall (see, e.g., [HL16, Section 2.2]) that a set is
strict pro-definable if it is the limit of a small directed system of definable
sets with surjective transition maps. In other terms, it is a ⋆-definable set
whose projection on any finite set of variables is definable.

Proof. This is a particular case of Proposition 3.5.1 �

Remark 3.1.2. ● Any (non zero) definably complete ordered abelian
group Γ is elementarily equivalent to either Z or Q. Indeed, Γ is
necessarily regular as it clearly cannot have a proper non trivial
definable convex subgroup. We may thus assume it is a subgroup of
(R,+,<). If it is not elementarily equivalent to Z or Q, it is a dense
non divisible subgroup of R. For any γ ∈ Γ non divisible by n ∈ Z>0,
the cut at γ/n yields a counter-example.

● Hypotheses (CB) and (CΓ) are necessary for the conclusion to hold.
● Hypothesis (E∞

Γ ) does not allow for discrete value groups. Note
however that the conclusion of the theorem fails in p-adic fields. So
the hypotheses (CB), (CΓ) and (E∞

k ) cannot be sufficient.
● As Theorem 3.1.3 illustrates, by restricting to a mild class of enrich-
ments of ACVF∀, one can trade hypothesis (E∞

Γ ) for purely algebraic
conditions and a weaker conclusion.

Let Hen0 be the L0-theory of characteristic zero henselian valued fields.
Theorem 3.1.3 (cf. Corollary 3.5.6). Let T be a k-Γ-enrichment of Hen0,
such that:

(CΓ) T has definably complete value group;
(FR) For every n ∈ Z>0, the interval [0,v(n)] is finite and k is perfect;
(Ik) The residue field k is infinite;
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(E∞
k ) The full induced theory on k eliminates ∃∞.

Then, for every strict pro-L(A)-definable X ⊆ Kx, with A = acleq(A) ⊆
M eq ⊧ T eq, there exist an Aut(M/G(A))-invariant p ∈ S0

x(M) consistent
with X.

Note that in this setting k is stably embedded so the full induced structure
coincides with the ∅-induced structure.

Remark 3.1.4. ● Contrary to Theorem 3.1.1, Theorem 3.1.3 requires
finite ramification in mixed characteristic. Even if Theorem 3.1.3
does not apply to characteristic zero non-Archimedean local fields
either, cf. the stronger [HMR18, Remark 4.7].

● Under the hypotheses of Theorem 3.1.3, locally, we do find defin-
able types: for any finite set Ψ(x; t) of L0-formulas, we can find
an L0(G(A))-definable p ∈ SΨ

x (M) consistent with X, cf. Proposi-
tion 3.5.4. This local statement does not hold in characteristic zero
non-Archimedean local fields.

● In both theorems, hypothesis (E∞
k ) is an artefact of our proof. It is

necessary to prove certain intermediate results. However, we do not
know if it is necessary to prove either theorems. Moreover, these the-
orems are the only reason hypothesis (E∞

k ) appears in the imaginary
Ax-Kochen-Ershov principle, cf. Theorem 6.1.1.

Given these observations, the following questions are quite natural:

Question 3.1.5. (1) Can the density of either invariant or definable
types — i.e., the conclusion of either theorem — be proved without
assuming (E∞

k )?
(2) Under the hypotheses of Theorem 3.1.3, can we find an L0(G(A))-

definable type p?
(3) Can the hypotheses of Theorem 3.1.3 be weakened to also encompass

characteristic zero non-Archimedean local fields?

3.2. The uniform arity one case. We start by giving a succinct (and
slightly more general) presentation of terminology and results from [Rid19,
Section 6 and 7].
We define B to be the (L0-definable) set of closed and open balls in models
of T0 — the field itself is the open ball of radius −∞ and points are closed
balls of radius +∞. For every r ∈ Z>0, B[r] is the set of finite (potentially
empty) subsets of cardinality at most r of B of the same radius and either
all open or all closed. Let also B[<∞] ∶= ⋃r>0 B[r].
For every finite set of balls B, we define B∪ ∶= ⋃b∈B b and for every finite
sets of balls B1 and B2, we write B1 ⩽ B2 if B∪

1 ⊆ B∪
2 . For every b1, b2 ∈ B,

we also define d(b1, b2) ∶= inf{v(x1 − x2) ∶ xi ∈ bi}. Note that this is not
a metric on the space of balls since d(b1, b1) = rad(b1), the radius of b1.
Finally, for B1,B2 ∈ B[r], we define D(B1,B2) ∶= {d(b1, b2) ∶ bi ∈ Bi}. We fix
an enumeration of D(B1,B2) as follows: for every i ⩾ 0 below the cardinal
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of D(B1,B2), let di(B1,B2) be the i + 1-th element of D(B1,B2), for every
other i < r2, let di(B1,B2) = dr2−1(B1,B2) be the last element of D(B1,B2).
The actual enumeration does not actually matter as long as it is chosen
uniformly.
Let us now fix a set Ψ(x; t) of L0-formulas, an L0-definable set Λ, an integer
r and an L0-definable family F = (Fλ)λ∈Λ of functions Fλ ∶ Kx → B[r].
We now wish to give sufficient conditions on Ψ and F that will allow us to
proceed with certain classical unary constructions in valued fields, uniformly
over realisations of Ψ-types. In particular, it will allow is to describe (local)
types in n + 1-variables as generics of balls parametrized by n-variables.

Definition 3.2.1. Let p ∈ SΨ
x (M).

(1) We say that p is adapted to F if each of the following statement, or
its negation, is implied by p:
● Fλ(x) ◻ ⋃i<r Fµi(x) where λ,µi ∈ Λ(M) and ◻ ∈ {=,⊆,⊂,⩽,<};
● F∪

λ (x) = F∪
µ1(x) ∩ F

∪
µ2(x), where λ,µi ∈ Λ(M);

● Every ball in Fλ(x) is closed;
● rad(Fλ(x))◻di(Fµ1(x), Fµ2(x)), where λ,µi ∈ Λ(M), ◻ ∈ {=,⩽}
and i < r2;

(2) We say that F is closed under intersections over p if for every λ,µ ∈
Λ(M), there exists ε ∈ Λ(M) with p(x) ⊢ F∪

λ (x) ∩ F ∪
µ (x) = F ∪

ε (x)
— and we further assume that there exists η ∈ Λ(M) such that
Fλ(x) = {K}.

(3) We say that F is closed under complement over p if for every λ,µ ∈
Λ(M), with p(x) ⊢ Fµ(x) ⊆ Fλ(x), there exists ε ∈ Λ(M) with
p(x) ⊢ Fε(x) = Fλ(x) ∖ Fµ(x).

Let now (Ψ(x; t), F ) and p ∈ SΨ
x (M) be adapted to F , such that F is closed

under intersections and complement over p.

Definition 3.2.2. Let λ ∈ Λ(M). We say that Fλ is irreducible over p, if for
every µ ∈ Λ(M), p(x) ⊢ Fµ(x) ⊆ Fλ(x) implies p(x) ⊢ Fµ(x) = ∅ ∨ Fµ(x) =
Fλ(x).

We define Λp(M) ∶= {λ ∈ Λ(M) ∶ Fλ irreducible over p}.

Lemma 3.2.3. For every λ ∈ Λ(M), there exists finitely many (µi ∈ Λp(M)
with p(x) ⊢ Fλ(x) = ⋃i Fµi(x).

Proof. Let a ⊧ p. The lemma now follows, by induction on the cardinality
of Fλ(a), from closure under complement. �

Lemma 3.2.4. For every λ,µ ∈ Λp(M), we have
p(x) ⊢ F∪

λ (x) ∩ F ∪
µ (x) = ∅ ∨ Fλ(x) ⩽ Fµ(x) ∨ Fµ(x) ⩽ Fλ(x).

Proof. Let a ⊧ p. We may assume that the balls in Fλ(a) have smaller (or
equal) radius than those in Fµ(a) and if the radii are equal and the balls
in Fλ(a) are open, so are the balls in Fµ(a). By closure under intersection,
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we find ε ∈ Λ(M) such that F ∪
λ (a) ∩ F∪

µ (a) = F∪
ε (a). By hypothesis on

the radii, Fε(a) ⊆ Fλ(a) and hence, by irreducibility, either Fε(a) = ∅ or
Fε(a) = Fλ(a). �

We will later need some further hypotheses (cf. Lemma 3.3.1) on Ψ and F
leading to the following definition:

Definition 3.2.5. Let Ψ(x; t) be a set of L0-formulas, and F = (Fλ)λ∈Λ ∶
Kx → B[r] be a definable family of functions — for some L0-definable Λ and
integer r. We say that (Ψ, F ) is a good presentation if, for any p ∈ SΨ

x (M)
(1) p is adapted to F ;
(2) F is closed under intersection and complement over p;
(3) F has large balls over p, i.e., for every λ,µ ∈ Λ(M) and i ∈ Z⩾0:

● If p(x) ⊢ Fλ(x) ≠ K, there is η ∈ Λ(M) such that p(x) ⊢
rad(Fη(x)) = di(Fλ(x), Fµ(x)) ∧ “Fη(x) is closed” ∧ Fλ(x) ⩽
Fη(x);

● If p(x) ⊢ “Fλ(x) is open”∨ rad(Fλ(x)) < di(Fλ(x), Fµ(x)), there
is η ∈ Λ(M) such that, p(x) ⊢ rad(Fη(x)) = di(Fλ(x), Fµ(x)) ∧
“Fη(x) is open” ∧ Fλ(x) ⩽ Fη(x).

Let ∆(xy; s) with ∣y∣ = 1 be a set of L0-formulas and G ∶= (Gω)ω∈Ω ∶ Kx →
B[`] be an L0-definable family of functions. We say that (Ψ, F ) is a good
presentation for ∆ if (Ψ, F ) is a good presentation and every M -instance of
∆ is a Boolean combination of M -instances of Ψ and formulas y ∈ Fλ(x)∪
with λ ∈ Λ(M). If, moreover, for every ω ∈ Ω(M), there exists λ ∈ Λ(M)
such that Gω = Fλ. we say that (Ψ, F ) is a good presentation for (∆,G).
An important point is that finite good presentations always exist:

Proposition 3.2.6. Let ∆(xy; s) be a finite set of L0-formulas with ∣y∣ = 1
and (Gω)ω∈Ω ∶ Kx → B[`] be L0-definable. Then there exists a finite set of
L0-formulas Ψ(x; t) and an L0-definable F ∶= (Fλ)λ∈Λ ∶ Kx → B[r] such that
(Ψ, F ) is a good presentation for (∆,G).
We only sketch the proof — details of the precise encodings can be found in
[Rid19, Proposition 6.14, 6.15, 6.18 and 7.12].

Proof. The existence of Ψ and F such that any instance of ∆ is an Boolean
combination of instances of Ψ and y ∈ F∪

λ (x) follows by compactness from
the Swiss cheese decomposition. Enlarging F , we may assume it contains G
and that condition (3) hold. At any point, enlarging Ψ, we may assume that
condition (1) holds. Since the intersection of two balls is either empty or one
of these balls, F can be closed under intersection by considering the family of
r + 1-fold intersections of F . Closure under complement can be obtained by
considering the finite Boolean algebra generated by the subsets, appearing
in F , of any given Fλ (over some realisation of p). They are generated in
(uniformly) finitely many steps and hence can be considered as the elements
of one single family. This concludes the proof since the previous two steps
preserve condition (3). �



UN PRINCIPE D’AX-KOCHEN-ERSHOV IMAGINAIRE 34

Remark 3.2.7. A good presentation (Ψ(x; t), F ) remains a good presenta-
tion as Ψ grows. So, given a set Ψ(xy; t) of L0-formulas and an L0-definable
F ∶= (Fλ)λ∈Λ ∶ Kx → B[r], we say that (Ψ(xy; t), F ) is a good presentation
if there exists Φ(x; t) ⊆ Ψ such that (Φ(x; t), F ) is a good presentation.

We now fix a good presentation (Ψ(xy; t), F ), with ∣y∣ = 1, and p ∈ SΨ
xy(M).

Let (Ψ, F ) be the set of L0-formulas Ψ ∪ {y ∈ F ∪
λ (x)} in variables xy and

parameters tλ. Let SΨ,F
xy (M) denote the space of (Ψ, F )-types over M (in

M0).

Definition 3.2.8. Let E ⊆ Λp(M). We define
ηE,p(xy) ∶= p(xy)

∪ {y ∈ F∪
λ (x) ∶ λ ∈ Λ(M) ∧ ∃µ ∈ E p(xy) ⊢ Fµ(x) ⩽ Fλ(x)}

∪ {y ∉ F∪
λ (x) ∶ λ ∈ Λ(M) ∧ ∀µ ∈ Λ(M) F ∪

µ (x) ∩ F ∪
λ (x) ⊂ F∪

µ (x)}.

Note that for any E ⊆ Λp(M), provided ηE,p is consistent, we have ηE,p ∈
SΨ,F
xy (M). Further assuming that p is L(M)-definable (as a Ψ-type), then

Λp(M) is a L(M)-definable set, and if E ⊆ Λp is an L(M)-definable then
the type ηE(M),p is an L(M)-definable (Ψ, F )-type, provided it is consistent.
We denote it ηE,p.

Definition 3.2.9. For every L(M)-definable maps f, g ∶ X → Y and every
partial L(M)-type q concentrating on X, we say that f and g have the same
q-germ, and we write [f]q = [g]q, if q(x) ⊢ f(x) = g(x).
We write λ ⩽p µ whenever p(xy) ⊢ Fλ(x) ⩽ Fµ(x). Note that ⩽p is an
L(M)-definable pre-order whose associated equivalence relation is equality
of p-germs. Moreover, restricted to Λp, by Lemma 3.2.4, there is a largest
element, K, and the ⩽p-upwards closure of any λ ∈ Λp ∖ [∅]p is totally
ordered: (Λp ∖ [∅]p,⩽p) is a tree.

Definition 3.2.10. Let π(x) be a partial L(M)-type and A ⊆M eq. We say
that π is L(A)-quantifiable over L if, for every L-formula ϕ(x; t), there exists
an L(A)-formula θ(t) such that {b ∈M t ∶ π(x) ⊢ ϕ(x; b)} = θ(M). When it
exists, we write ∀πx ϕ(x; t) ∶= θ(t) and ∃πx ϕ(x; t) = ¬(∀px ¬ϕ(x; t)).
Remark 3.2.11. If, for some set of L0-formulas ∆, p is a complete L(A)-
quantifiable ∆-type over M , then it is L(A)-definable, as a ∆-type. As we
will see in Lemma 3.3.1, under certain hypotheses on T and ∆, the converse
also holds.

We can now prove the crucial step in proving Theorems 3.1.1 and 3.1.3:
the relative arity one case. Let us now assume that p is L(A)-quantifiable
over L, where A = acleq(A) ⊆M eq, and consistent with some L(A)-definable
X ⊆ Kxy.

Definition 3.2.12. For every λ,µ ∈ Λp, let λ P µ hold whenever ∀pxy y ∈
(Xx ∩ F∪

λ (x)) → y ∈ F ∪
µ (x).
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The relation P is an L(A)-definable preorder on Λp and we denote ≡ the
associated equivalence relation. Since ⩽p refines P on Θp ∶= Λp ∖ (∅/≡), this
is also a tree with root K/ ≡ and ≡-classes are ⩽p-convex.
Lemma 3.2.13. For every λ ∈ Θp, if ηλ/≡,p is not consistent with X, then
λ/≡ has finitely many P-daughters (µi/≡)0⩽i<n ∈ acleq(A⌜λ/≡⌝) in Θp/≡.
Moreover, n ⩾ 2 and p(xy) ⊢ y ∈Xx ∩ F ∪

λ (x) → ⋁i<n y ∈ F∪
µi(x).

Proof. By compactness, there exist (νi)0⩽i<m ∈ Θp(M) such that νi◁ λ and
p(xy) ⊢ y ∈ Xx ∩ F∪

λ (x) → ⋁i<m y ∈ F∪
νi(x). The existence of the µi now

follows from the facts that any µ P λ is P-comparable to one of the νi and
that since the Fνi are irreducible, the subtree with root λ and leaves (νi)i<m
embeds in the lattice of subsets of {0, . . . ,m− 1}, which is finite — we refer
the reader to [Rid19, Claim 8.4] for details. Finally, if n = 1, we would have
λ P µ0, contradicting that µ0 is a daughter of λ. �

Let Θp ∶= {λ ∈ Θp ∶ ∀pxy “Fµ(x) is closed”} and, for every λ ∈ Λ, let Yλ ∶=
{Fµ ∈ Θp ∶ ∀pxy rad(Fµ(x)) = rad(Fλ(x))}.
Lemma 3.2.14. One of the following holds:

● There exists a λ ∈ Θp such that λ/≡ ∈ A and ηλ/≡,p is consistent with
X.

● For every n ∈ Z⩾0, there exists λ/≡ ∈ A such that [Yλ]p is finite of
cardinality larger than n, where [Yλ]p ∶= {[Fµ]p ∶ µ ∈ Yλ}.

Proof. Assume that X is consistent with no ηλ/≡,p, where λ/≡ ∈ A. Then,
by Lemma 3.2.13, Θp/ ≡ admits an initial finitely strictly branching discrete
tree — that is every, element has at least two daughters — with every branch
infinite. Note that, for every λ ∈ Θp with λ <p K, by the large ball property,
there is µ ∈ Λ with λ ⩽p µ and ∀pxy “Fµ(x) is closed” ∧ rad(Fµ(x)) =
rad(Fλ(x)). We may assume that Fµ is irreducible over p. Then λ = µ or λ
is the unique ⩽p-daugther of µ. Note also that, by the large ball property,
Θp ∩K/≡ ≠ ∅. It follows that Θp/ ≡ also admits an initial finitely branching
discrete tree, denoted Ξp, with every branch infinite.
Note that, for any two µ, ν ∈ Yλ, since ∀pxy rad(Fµ(x)) = rad(Fν(x)), we
have that [Fµ]p = [Fν]p implies µ ≡ ν, which implies that ∀pxy F ∪

µ (x) ∩
F ∪
ν (x) ≠ ∅, which, by irreducibility, implies that [Fµ]p = [Fν]p, so these three

statements are equivalent. In particular, the identity induces a bijection
between [Yλ]p and Yλ/≡.
We now build, by induction, λi ∈ Λ such that Yλi/≡ ⊆ Ξp and ∣Yλi/≡∣ =
∣[Yλi]p∣ is finite and strictly increasing. Start with any λ0 ∈ Θp ∩ K/≡.
Then Yλ0 = [Fλ]p and Yλ0/≡ = λ0/≡ = K/≡. If λi is built, let (µj)j<m
enumerate all the P-daughters — in Ξp — of the elements in Yλi/≡. Let
j0 be such that, for all j, ∀pxy rad(Fµj0 (x)) ⩽ rad(Fµj(x)). For every
ν ∈ Yµj0 , by the large ball property, we find λ ∈ Yλi such that ν ⩽p λ. Since
∀pxy rad(Fν(x)) = rad(Fµj0 (x)) ⩽ rad(Fµj(x)), we cannot have ν ◁ µj and
hence ν/≡ is either in Yλi/≡ or it is one of the µj/≡. So Yµj0 /≡ ⊆ Ξp is finite.
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Furthermore, for every µj , by the large ball property, there exists ν ∈ Yµj0
such that µj ⩽p ν. It follows that, for every element of Yλi/≡, either it or
all of its (more than one) daughters appear in Yµj0 . In particular, all the
sisters of µj0/≡ appear, and hence ∣Yµj0 /≡∣ > ∣Yλi/≡∣. Thus, we can choose
λi+1 = µj0 . �

We can now eliminate the second option in Lemma 3.2.14 by imposing a
uniform bound on the size of finite instances of (Yλ)λ∈Λ:
Corollary 3.2.15. Assume:

(E∞
p,F

) For every L(M)-definable family (Yz)z of subsets of [FΛp]p ∶=
{[Fλ]p ∶ λ ∈ Λp} such that for all z and [Fλ]p, [Fµ]p ∈ Yz, p(xy) ⊢
“Fµ(x) is closed”∧ rad(Fλ(x)) = rad(Fµ(x)), there exists n ∈ Z>0
such that, for all z, ∣Yz ∣ < ∞ implies ∣Yz ∣ ⩽ n.

Then there exists an L(A)-definable E ⊆ Λp such that ηE,p is consistent with
X. �

However the family [YΛ]p is not any definable family in [FΛp]p. It has cer-
tain geometric properties that reflect that of X. In particular, with further
hypotheses on X, we can dispense with (E∞

p,F
) altogether.

We now wish to apply the construction above in the pair (M0,M) which
is naturally an L0,P structure enriched with the L-structure on M . To be
precise and avoid an unnecessary conflict of notation:

Notation. Let L1 be some expansion of L0 and T1 some L1-theory of val-
ued fields. In the following lemma, we apply the above with T the theory of
the pair M ∶= (Ma

1 ,M1), where M1 ⊧ T1 is sufficiently saturated and homo-
geneous, in the language L ∶= LP consisting of L0,P structure enriched with
the L1-structure on P — so M0 =Ma

1 .

Let us now introduce some useful terminology from [CHR19]:

Definition 3.2.16. Fix n ∈ Z>0 ∩K×(M). For any ball b, we define b[n] ∶=
{a + n−1(a − c) ∶ a, c ∈ b}. It is a ball of radius rad(b) − v(n) around b, open
if b is, closed otherwise. For a set of balls B, we set B[n] ∶= {b[n] ∶ b ∈ B}.

(1) An L(M1)-definable set X ⊆ K(M1) is n-prepared by some finite set
C ⊆ K(M0) if for every ball b ∈ B(M0) with b[n] ∩ C = ∅, either
b ∩X(M1) = ∅ or b ∩X(M1) = b(M1).

(2) We say that some L0(M1)-definable G ∶ Kn → K[r] n-prepares X ⊆
Kn+1(M1) if, for every x ∈ K(M1)n, G(x) n-prepares Xx.

(3) We say that X ⊆ Kn+1(M1) is n-prepared by F if there exists λ ∈
Λ(M1) such that Fλ n-prepares X.

Remark 3.2.17. By field quantifier elimination (cf. Fact 2.2.6), if M1 is
a pure henselian field of characteristic zero, any L(M1)-definable X ⊆ K is
p`-prepared, for some `, by the finite set of roots of polynomials that appear
in the (field quantifier free) definition of X, where p is either 1 or the residue
characteristic when it is positive.
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Let also A1 = acleq
1 ⊆ M eq

1 , X ⊆ Kxy(M1) be L1(A1)-definable, A = AP =
acleq(A) and p ∈ SΨ

xy(M0) be LP(AP )-definable and consistent with X.

Lemma 3.2.18. Let Φ(x; t) ⊆ Ψ be such that (Φ, F ) is a good presentation
for Ψ. Assume that there is some n ∈ Z>0 ∩K×(M) such that:

(PF,n
X ) The set X is n-prepared by F ;

(FRn) The interval [0,v(n)] ⊆ Γ(M1) is finite and k(M1) is perfect;
(Ik) The residue field k(M1) is infinite.

Then, there exists an LP(AP )-definable E ⊆ Λp(M0) such that ηE,p∣M0
is

consistent with X.

Proof. Let ρ be such that Fρ(x) n-prepares Xx for all x. By Lemma 3.2.14,
applied in M = (Ma

1 ,M1), either the conclusion of the Lemma holds, or we
can find λ/≡ ∈ A with ∣[Yλ]p∣ > r. Then some element of Yλ, say Fλ, does
not contain any point of Fρ(x). Replacing λ with any µ P λ in Ξp such that
∣[µ,λ]∣ ⩾ ∣[0,v(n)]∣, we may further assume that Fρ(x) ∩ Fλ(x)[n]∪ = ∅ —
where, for any B ∈ B[<∞], B[n] ∶= {b[n] ∶ b ∈ B} — and that λ◁K.
By Lemma 3.2.13, we have p(xy) ⊢ y ∈Xx ∩F∪

λ (x) → ⋁i<n y ∈ F∪
µi(x), where

the (µi/≡)i<n are the daughters of λ/≡. By compactness, there exists some
ψ(xy) ∈ p such that q ∶= p∣Φ ⊢ ∀y ψ(xy) ∧ y ∈Xx ∩ F∪

λ (x) → ⋁i<n y ∈ F ∪
µi(x).

Since (Φ, F ) is a good presentation for Ψ, there are κ and (µi)n⩽i<m ∈ Λp with
⊧ ψ(xy) ↔ y ∈ F∪

κ (x) ∖ (⋃n⩽i<m F ∪
µi(x)). In particular, p(xy) ⊢ y ∈ F ∪

κ (x).
It follows that κ ≡ K and hence λ P κ. So, we have

q ⊢ F ∪
λ (x) ∩Xx ⊆ ⋃

i

F∪
µi(x).

Since λ ≢ ∅, there exists ac ⊧ p in some N1 ≽M1 such that c ∈ Xa ∩ F∪
λ (a).

Let b0 ∈ B(Na
1 ) be the ball of Fλ(a) containing c. Since Fρ(a) ∩ b0[n] = ∅,

we have b0 ∩ Xa(N1) = b0(N1). It follows that b0(N1) ⊆ ⋃i F∪
µi(a). By

construction, b0(N1) is not covered by any single ball in ⋃i Fµi(a). So
{v(x − y) ∶ x, y ∈ b0(N1)} has a minimal element (realised by some x, y
in distinct balls of ⋃i Fµi(a)). Let b ∈ B(N1) be the smallest closed ball
containing b0(N1). Then b(N1) = b0(N1) is covered by finitely many of its
maximal open subballs, contradicting hypothesis (Ik). �

3.3. Quantifiable types. To use the above constructions in an induction,
we need a number of results on quantifiable types. The first one is that ηE,p
is itself quantifiable when p is. For any finite set B of balls, let kB be the
set of maximal open subballs of the balls b ∈ B and resB ∶ B∪ → kB be the
projection.

Lemma 3.3.1 (cf. [Rid19, Corollary 6.9]). Let (Ψ(xy; t), (Fλ(x))λ∈Λ) be
a good presentation. Let p ∈ SΨ

xy(M) be L(A)-quantifiable over L, where
A ⊆M eq. Assume:

(E∞
p,F̊

) For any L(M)-definable (Yz)z ⊆ [FΛ]p and λ ∈ Λ(M) such that,
for all z and [Fµ]p ∈ Yz, p(xy) ⊢ Fµ(x) ⊆ kFλ(x), there exists
n ∈ Z⩾0 such that, for all z, ∣Yz ∣ < ∞ implies ∣Yz ∣ ⩽ n.
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Then, any L(A)-definable q ∈ SΨ,F
xy (M) containing p is L(A)-quantifiable

over L.

Proof. Let E ∶= {λ ∈ Λp ∶ q(xy) ⊢ y ∈ F∪
λ (x)}. Then E is L(A)-definable and

q = ηE,p. If E does not have an ⩽p-minimal element which is closed, for any L-
formula ϕ(xy; s) and e ∈M s, q(xy) ⊢ ϕ(xy; e) if and only if there exists λ ∈
E(M) and µ ∈ Λp(M) with λ <p E and q(xy) ⊢ y ∈ F ∪

λ (x)∖F∪
µ (x) → ϕ(xy; e)

— cf. [Rid19, Proposition 6.4]. So let us assume that E has an ⩽p-minimal
element λ0 which consists of closed balls. If p(xy) ⊢ rad(Fλ0(x)) = +∞,
then q(xy) ⊢ ϕ(xy; e) if and only if p(xy) ⊢ F ∪

λ0
(x) → ϕ(xy; e) — cf. [Rid19,

Proposition 6.6]. If p(xy) ⊢ rad(Fλ0(x)) ≠ +∞, let
Ys ∶= {µ ∈ Λp ∶ ∀pxy Fµ(x) ⊆ kFλ(x) ∧ ∃pxy ϕ(xy; s) ∧ y ∈ F ∪

µ (x)}.
Let n be a uniform bound on the cardinality of finite [Ys]p, as in (E∞

p,F̊
).

Claim 3.3.2. For every e ∈ M s, q is consistent with ϕ(xy; e) if and only
if, for every (µi)i<n ∈ Λp, with ∀pxyFµi(x) ∈ kFλ0(x)

, ∃pxy ϕ(xy; e) ∧ y ∈
F∪
λ0

(x) ∖ ⋃i<n F ∪
µi(x).

Proof. Assume q is not consistent with ϕ(xy; e), then, by compactness, there
exists (µi)i<m ∈ Λp such that µi <p E and ∀pxy ϕ(xy; e) ∧ y ∈ F∪

λ0
(x) →

⋁i<m y ∈ F∪
µi(x). By the large ball property, we may assume ∀pxy Fµi(x) ∈

kFλ0(x)
. Choosing a minimal m, we may also assume that, ∃pxy ϕ(xy; e)∧y ∈

F∪
µi(x). In particular, µi ∈ Ye.

By definition of Ys, for every µ ∈ Ye(M), we find ac ⊧ p such that ϕ(ac; e) and
c ∈ F ∪

µ (a) ⊆ F∪
λ0

(a). So there is an i such that c ∈ F ∪
µi(a). By irreducibility,

Fµ(a) = Fµi(a). It follows that [Ye]p is finite and thus m ⩽ ∣[Ye]p∣ ⩽ n. �

Since q ⊢ ϕ(xy; e) if and only if q is not consistent with ¬ϕ(xy; e), Claim 3.3.2
allows us to conclude. �

We also need a better understanding of the interpretable set [FΛ]p. Note
that it is, a priori, L(M)-interpretable which is exactly the kind of sets
elimination of imaginaries aims at describing. However, if p happens to be
the restriction to M of a global L0(M)-definable type, then [FΛ]p naturally
embeds in an L0(M)-interpretable set. The goal of the following lemmas
is to give (necessary) hypotheses under which any definable p verifies that
condition. Valued vector spaces will play an important role:

Definition 3.3.3. Let (K,v) be a valued field and V be a K-vector space.
A valuation on V is a map v ∶ V → X where X is an ordered set with a
maximal element ∞ and an action + of Γ, respecting the order, such that:

● v(0) = ∞;
● For all x, y ∈ V , v(x + y) ⩾ min{v(x), v(y)};
● For all a ∈K and x ∈ V , v(a ⋅ x) = v(a) + v(x).

We say that a family (xi)i ∈ V is separating if for every almost everywhere
zero (ai)i ∈K, v(∑i aixi) = mini(v(ai) + v(xi)).
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The following lemma owes much to Johnson’s computation of the canonical
basis of definable types in ACVF, cf. [Joh20, Section 5.2]. Let ϕd(x; yz) ∶=
v(∑∣I ∣<d yIx

I) ⩾ v(∑∣I ∣<d zIx
I).

Proposition 3.3.4. Assume:
(CV ) Every L(M)-definable valuation v on Kn has a separating basis;
(CΓ) T has definably complete value group.

Then, for every A = dcleq(A) ⊆ M eq, L(A)-definable p ∈ Sϕd(M) and alge-
braic extension K(M) ⩽ L, any q ∈ Sϕd(L), extending p and finitely satisfi-
able in M, is L0(G(A))-definable.

Proof. For every field F with K = K(M) ⩽ F ⩽ L, we define a valuation v
on the F -vector space Vd(F ) ∶= F [x]⩽d of polynomials in variables x over
F of degree at most d by v(P (x)) ⩽ v(Q(x)) if v(P (x)) ⩽ v(Q(x)) ∈ q.
The valuation v on Vd(K) is L(A)-definable. By hypothesis (CV ), it has a
separating basis (Pi)i ∈ Vd(K).

Claim 3.3.5. (Pi)i is a separating basis of Vd(L) over L.

Proof. We may assume that K ⩽ L is finite. By [Joh21, Remark 2.7],
the valuation on L (interpreted in K) is then L(M)-definable and hence,
by hypothesis (CV ), also has a separating basis (cj)j ∈ L over K. Let
bi = ∑j bi,jcj ∈ L, where bi,j ∈ K. If v(∑j(∑i bi,jPi)cj) > minj v(∑i bi,jPi) +
v(cj), since q is finitely satisfiable in M , we have v(∑j(∑i bi,jPi(a))cj) >
minj v(∑i bi,jPi(a)) + v(cj) for some a ∈M , contradicting that (cj)j is sep-
arating over K. So

v(∑
i

biPi) = v(∑
j

(∑
i

bi,jPi)cj)

= min
j
v(∑

i

bi,jPi) + v(cj)

= min
i,j

v(bi,j) + v(cj) + v(Pi)

⩽ min
i

v(bi) + v(Pi)

⩽ v(∑
i

biPi) �

We now define the L-Archimedean equivalence on v(Vd(L)): v(P ) ∼∞L v(Q)
holds if there exists c ∈ L× such that −v(c)+v(P ) ⩽ v(Q) ⩽ v(c)+v(P ). One
can check that ∣v(Vd(L))/ ∼∞L ∣ ⩽ ∣v(Vd(L))/v(L)∣ ⩽ dimL(Vd(L)) + 1 < ∞.
We also define the L-infinitesimal equivalence on v(Vd(L)): v(P ) ∼0

L v(Q)
holds if for every γ ∈ v(L)>0 we have −γ+v(P ) < v(Q) < γ+v(P ). Note that
two elements of the same v(L)-orbit cannot be ∼0

L-equivalent unless they
are equal. It follows that ∼0

L-classes are finite.
Let C be any K-Archimedean class and C denote its upwards closure. Then
VC ∶= v−1(C) ⩽ Vd(K) is a sub-K-vector space.

Claim 3.3.6 ([Joh20, Observation 4.3]). VC has a basis of elements in A.
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Proof. Some coordinatewise projection VC ⊆ K l → Km restricts to an iso-
morphism on VC . The preimage of the standard basis of Km then has the
required properties. �

Let C0 be the successor of C in Vd(K)/ ∼∞K . Since VC0 ⊂ VC , any basis of VC
has an element outside VC0 . In particular (VC ∖ VC0)(A) ≠ ∅ and we find
γC ∈ C(A) ≠ ∅. Then the whole (finite) K-infinitesimal class of γC is in A.
Let i be such that v(Pi) ∈ C. By (CΓ), the set {γ ∈ v(K) ∶ γ + v(Pi) ⩽ γC}
has a supremum γi. Multiplying Pi by some constant c ∈K with v(c) = −γi,
we may assume that γi = 0 in which case v(Pi) is K-infinitesimally close to
γC ∈ A and hence is itself in A. Since every v(K)-orbit is contained in some
K-Archimedean class, we now have that for any i, v(Pi) ∈ A and for any j,
if v(Pi) ∼∞K v(Pj), then v(Pi) ∼0

K v(Pj).
Note that, since v(L) is in the convex hull of v(K), ∼∞L extends ∼∞K . Also,
if v(K) is dense, then ∼0

L extends ∼0
K . However, if v(K) is discrete then ∼0

K
reduces to equality. In particular, we also have that, if v(Pi) ∼∞L v(Pj), then
v(Pi) ∼0

L v(Pj).
For every i, d, let Mi,d(L) = {P ∈ Vd(L) ∶ v(P ) ⩾ v(Pi)}. Note that, by
Claim 3.3.5, ∑λjPj ∈Mi,d(L) if and only if:

● λj = 0 for every j with v(Pj) < v(Pi) and v(Pj) ≁∞K v(Pi);
● λj ∈ m for j with v(Pj) < v(Pi) and v(Pj) ∼0

K v(Pi);
● λj ∈ O for j with v(Pi) ⩽ v(Pj) and v(Pj) ∼0

K v(Pi).
So Mi,d is (quantifier free) L0(G(A))-definable. Since q is L0(⋃i,d⌜Mi,d⌝)-
definable, it is indeed L0(G(A))-definable. �

Remark 3.3.7. Any definably complete ordered abelian group is elemen-
tarily equivalent to either Q, Z or 0.
If p ∈ S0(M) the existence (and uniqueness) of such a q follows, on general
grounds, from the finite satisfiability of p:
Lemma 3.3.8. Let p ∈ S0(M) be finitely satisfiable in M . Then any two
realisations of p have the same L0(acl0(M))-type. In particular, the unique
extension of p to acl0(M) is finitely satisfiable in M .
Proof. Fix any c ∈ acl0(M), ϕ(xy) an L0-formula and ψ(y) an L0(M)-
formula that algebrises c. Then ∀y [ψ(y) → (ϕ(x1y) ↔ ϕ(x2y))] defines an
L0(M)-definable equivalence relation with finitely many classes. Then the
E-class of any a ∈ N ≽M realising p has an element e ∈M . It follows that
p(x) ⊢ xEe. In particular p(x) ⊢ ϕ(xc) whenever ϕ(ec) holds.
Let q be the unique extension of p to acl0(M). Then p ⊢ q and hence q is
finitely satisfiable in M . �

Following [Bau82], we can prove that (CV ) follows from definable spherical
completeness. Up to definability, this is a standard result. But we include
its proof, on the one hand, for the sake of completeness, and, on the other,
to show that the proof can indeed been done definably.
Lemma 3.3.9. Assume:
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(CB) T is definably spherically complete : any L(M)-definable chain of
balls has a non-empty intersection.

Then any (finite dimensional) L(M)-interpretable valued K-vector space
(V, v) has a separating basis.

Proof. Let us proceed by induction on n + 1 ∶= dim(V ). In particular, we
may assume that we have found a separating family (yi)0⩽i<n ∈ V .

Claim 3.3.10. For every x ∈ V , {v(x−λy) ∶ λ ∈ Kn} has a maximal element.

Proof. For every λ,µ ∈ Kn, we have v(x − µy) ⩾ v(x − λy) =∶ γ if and only if
mini{v(µi − λi) + v(yi)} = v((µ − λ)y) ⩾ γ. For every i < n and λ ∈ Kn, let
Bi,λ ∶= {µ ∈ K ∶ v(x − λ≠iy≠i − µyi) ⩾ v(x − λy)} = {µ ∈ K ∶ v(µ − λi) + v(yi) ⩾
v(x − λy)}. They form a chain for inclusion.
If there is a minimal Bi,λ0 , pick any λi ∈ Bi,λ0 . If there is no minimal Bi,λ,
for every γ ∈ v(K), let bi,γ be the closed ball of radius γ containing some
Bi,λ, if it exists, or K otherwise. Since the chain of Bi,λ does not have a
minimal element, any Bi,λ contains a bi,γ that itself contains a Bi,µ. By
definable spherical completeness, we find λi ∈ ⋂γ bi,γ = ⋂λBi,λ. Then λi has
the property that, for any µ ∈ Kn, v(x−µy) ⩽ v(x−µ≠iy≠i −λiyi). It follows
that v(x − λy) is maximal. �

Let x be linearly independent from the yi. By the Claim 3.3.10, we may
assume that v(x) = max{v(x− λy) ∶ λ ∈ Kn}. Then, for every µ ∈ K and λ ∈
Kn, we have v(µx+λy) ⩽ v(µx) and thus, v(µx+λy) = min{v(µx), v(λy)} =
mini{v(µx), v(λiyi)}. �

3.4. Counting germs. The last ingredient in this section is to reduce the
(seemingly horrendous) hypotheses (E∞

p,F̊
) and (E∞

p,F
) to something more

tractable. We start by generalizing [Rid19, Section 7]. Let M ⊧ T , M0 ∶=
Ma ⊧ T0 and Q be either Γ or k.

Lemma 3.4.1. Let (fλ)λ∈Λ ∶ Kn → Q be an L0-definable family and c ∈
K(N0)n, where N0 ≽M0. There exists an L0(M)-definable family (gρ)ρ∈R ∶
Kn → Q[<∞], with R ⊆ Qm, such that for all λ ∈ Λ(M0), there exists ρ ∈
R(M0) with fλ(c) ∈ gρ(c).
In particular, if p ∈ S0(M0) is L0(M)-definable, there is a L0(M)-definable
finite-to-one map {[fλ]p ∶ λ ∈ Λ(M0)} → Qm, for some m ∈ Z>0.

Proof. We start with the non-uniform version of the result:

Claim 3.4.2. For every N0 ⊧ ACVF, A ⩽ K(N0) and finite tuple c ∈ K(N0),
there exists a finite tuple a ∈ A, such that Q(acl0(Ac)) ⊆ acl0(Q(A)ac).
Proof. If ∣c∣ = 1, we find a0 ∈ acl0(A) with Q(acl0(Ac)) = acl0(Q(A(c))) ⊆
acl0(Q(acl0(A))ca0) = acl0(Q(A)ca0), by the characterization of transcen-
dental 1-types in ACVF. If a ∈ A is such that a0 ∈ acl0(a), we indeed have
Q(acl0(Ac)) ⊆ acl0(Q(A)ac). If c = de with ∣e∣ = 1, we proceed by induction:
Q(acl0(Ade)) ⊆ acl0(Q(acl0(Ad))be) ⊆ acl0(Q(A)acbe), with a, b ∈ A. �
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By Claim 3.4.2, and compactness in a saturated model of the pair (N0,M0),
there exists an L0(M0)-definable g as above. The union of its conjugates
over M has the same properties and is L0(M)-definable.
Now, if p ∈ S0(M0) is L0(M)-definable, then for any λ ∈ Λ(M0), let Yλ ∶=
{ρ ∶ ∀px fλ(x) ∈ gρ(x)} and h([fλ]p) ∶= ⌜Yλ⌝ ∈ Qm. Note that p(x) ⊧ fµ(x) ∈
⋂ρ∈Yµ gρ(x), so h is finite-to-one. �

Lemma 3.4.3. Assume:
(E∞

k ) For any L(M)-definable (Yz)z ⊆ k, there exists n ∈ Z⩾0 such that,
for all z, ∣Yz ∣ < ∞ implies ∣Yz ∣ ⩽ n;

Then, for every L0(M)-definable p ∈ S0
x(M0) and L0-definable (Fλ)λ∈Λ ∶

Kx → B[r], (E∞
p,F̊

) holds, uniformly in λ.

Proof. The core of the proof is the following almost internality result:

Claim 3.4.4. For every λ ∈ Λ(M), there exists an L0(M)-definable finite-
to-one map gλ ∶ Xλ ∶= {[Fµ]p ∶ µ ∈ Λ(M0) and p(x) ⊢ “Fµ(x) are maximal
open balls of Fλ(x)”} → km, for some m ∈ Z>0.

Proof. Let c ⊧ p. Working in M(c)a and then taking unions of Galois con-
jugates, we may find Gi(c) ∈ B[<∞], for i ∶= 1,2, two L0(Mc)-definable
sets picking at least one maximal open balls in each of the ball of Fλ and
such that G1(c) ∩ G2(c) = ∅. For every µ with [Fµ]p ∈ Xλ, let fµ(x) ∶=
{(b − b1)/(b2 − b1) ∶ b ∈ Fµ(x), bi ∈ Gi(x) and b, b1, b2 are in the same ball of
Fλ(x)} ∈ k[<∞]. Note that Fµ(c) ∈ acl0(fµ(c)G1(c)G2(c)). Using symmetric
functions, we identify k[<∞] with some kn.
By Lemma 3.4.1, we find an L0(M)-definable finite to one map h ∶ {[fµ]p ∶
[Fµ]p ∈ Xλ} → km. Then [Fµ]p ∈ acl0([G1]p[G1]p[fµ]p) ⊆ acl0(Mh(µ)) and
h(µ) ∈ dcl0(M[fµ]p) ⊆ dcl0(M[Fµ]p). �

Since k(dcl0(M)) is the perfect closure of k(M), by compactness, com-
posing with a power of the Frobenius automorphism, we may assume that
gλ(Xλ(M)) ⊆ k(M) and that gλ in uniform in λ. The (uniform) bound in
(E∞

p,F̊
) now follows from (E∞

k ). �

Lemma 3.4.5. Assume (E∞
k ) and:

(E∞
Γ ) For any L(M)-definable (Yz)z ⊆ Γ, there exists n ∈ Z⩾0 such that,

for all z, ∣Yz ∣ < ∞ implies ∣Yz ∣ ⩽ n.
Then for every L0(M)-definable p ∈ S0

x(M0), L0-definable (Fλ)λ∈Λ ∶ Kx →
B[r], and L(M)-definable (Yz)z ⊆ [FΛ]p, there exists n ∈ Z>0 such that
∣Yz ∣ < ∞ implies ∣Yz ∣ ⩽ n.
In particular, (E∞

p,F
) holds.

Proof. Let rλ(x) ∶= rad(Fλ(x)). By Lemma 3.4.1, there exists an L0(M)-
definable finite-to-one map g ∶ [rΛ]p → Γm. Composing by division by a fixed
integer, we may assume that g([rΛ]p(M)) ⊆ Γ(M). It now follows that there
is a bound on finite {[rλ]p ∶ [Fλ]p ∈ Yz}. So, cutting each Yz in finitely many
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pieces (and getting rid of the infinite ones), we may assume that [rad(Fλ)]p
is constant and the balls are of the same type, as [Fλ]p ranges through Yz.
Similarly, we may assume that the set of distances between balls in Fλ(x)
and Fµ(x), with [Fλ]p, [Fλ]p ∈ Yz has size bounded by some integer k. We
now proceed by induction on k.
Let γz(x) be the smallest such distance, Gλ,z(x) be the set of closed balls
of radius γz(x) around Fλ(x) and Zz ∶= {[Gλ,z]p ∶ [Fλ]p ∈ Yz}. Then the
set of distances between balls in Zz has size at most k − 1 and we find a
bound by induction. In particular, removing some more infinite Yz, we find
an Hz ∶ Kn → B[<∞] such that every maximal open ball of Hz(x) contains at
most one ball of Fλ(x) as [Fλ]p varies through Yz. The bound now follows
from Lemma 3.4.3. �

3.5. The higher arity case. We can now proceed with the induction:

Proposition 3.5.1. Assume (CV ), (CΓ), (E∞
k ) and (E∞

Γ ). Let X ⊆ Kx

be strict pro-L(A)-definable, where A = acleq(A) ⊆M eq and x is countable.
Let ∆(x; t) be a finite set of L0-formulas, p ∈ S∆

x (M) be L(A)-quantifiable
over L and consistent with X and z ⊆ x. Then, there exists an L0(G(A))-
definable q ∈ S0

z(M0) such that q∣M is consistent with p and X.

Proof. We proceed by induction on ∣z∣. In particular, we may assume that
for any set ∆(x; t) of L0-formulas, p ∈ S∆

x (M) which is L(A)-quantifiable
over L and finite strictly smaller w ⊂ z, p∣w can be extended to an L0(G(A))-
definable q ∈ S0

w(M0).

Claim 3.5.2. Let ∆(x; t) be a finite set of L0-formulas, p ∈ S∆
x (M) be

L(A)-quantifiable over L and consistent with X, finite z ⊆ x and Φ(z; s) be
a finite set of L0-formulas. Then, there exists a finite set Θ(z; t) containing
Φ and q ∈ S∆,Θ

x (M) which is L(A)-quantifiable over L and consistent with
p and X.

Proof. We proceed by induction on ∣z∣. Assume z = wy with ∣y∣ = 1. By
Proposition 3.2.6, we find a finite good presentation (Ψ(w; t), F (w)) for
Φ. By induction, we find Ξ(w;u) ⊇ Ψ and q ∈ S∆,Ξ

x (M) which is L(A)-
quantifiable over L and consistent with p and X. Since w ⊂ z, as stated
in the first paragraph of the proof, q∣w extends to a complete L0(G(A))-
definable L0(M0)-type.
By Corollary 3.2.15 and Lemma 3.4.5, we now find an L(A)-definable r ∈
S∆,Ξ,F
x (M) which is consistent with q and X. By Lemmas 3.3.1 and 3.4.3,
r is L(A)-quantifiable over L. �

Let (ϕi(z; ti))i∈ω enumerate all L0-formulas. By Claim 3.5.2, we find Θi

containing ϕi and qi ∈ S∆,Θ⩽i
z (M), which is L(A)-quantifiable over L and

consistent with p∪⋃j<i qj and X. Then ⋃i qi ∈ S0
z(M) is L(A)-definable and

consistent with p and X. By Proposition 3.3.4 and Lemma 3.3.8, q extends
to a complete L0(G(A))-definable L0(M0)-type. �



UN PRINCIPE D’AX-KOCHEN-ERSHOV IMAGINAIRE 44

This result is already non-trivial when X = Kx and T = ACVF:

Corollary 3.5.3. Let Ψ(x; t) be a set of L0-formulas and A = acl0(A) ⩽M0.
Any L0(A)-quantifiable p ∈ SΨ

x (M0) can be extended to an L0(A)-definable
q ∈ S0

x(M0). �

If we do not assume (E∞
Γ ), and try to replace the use of Corollary 3.2.15

by that of Lemma 3.2.18, the above induction fails. We can, nevertheless,
recover a local version of the result:

Proposition 3.5.4. Let n ∈ Z>0 ∩K×(M) and X ⊆ Kx be L(A)-definable,
where A = acleq(A) ⊆M eq. Assume (CV ) in both M and the pair (M0,M),
(CΓ), (E∞

k ), (Ik), (FRn). Also assume that:
(Pn

π(X)) For every projection Y ⊆ Kzy of X, with ∣y∣ = 1, N ≽ M and
a ∈ Ny, Ya is n-prepared by some finite L0(Ma)-definable set
C ⊆ K.

Then, for every finite set Ψ(x, t) of L0-formulas, there exists an L0(G(A))-
definable p ∈ SΨ

x (M) consistent with X.

Proof. Let AP = acleq
LP

(A). We say that Θ(zy, s), where ∣y∣ = 1, is a hered-
itarily good presentation if Θ is of the form Φ(z, t) ∪ {y ∈ Fλ(z)} for some
good presentation (Φ, F ) where Φ is itself an hereditarily good presentation.

Claim 3.5.5. Let Θ(x, s) be a hereditarily good presentation and q ∈ SΘ
x (M0)

be L0(G(AP ))-definable. Then for L ∈ {L0,LP}, q is L(G(AP ))-quantifiable
over L — in particular it has a complete L0(G(AP ))-definable extension to
S0
x(M0).

Proof. We proceed by induction on ∣x∣. Since (E∞
k ) holds both in M0 and,

by Lemma 2.3.19, in the pair (M0,M), quantifiability follows from Lem-
mas 3.3.1 and 3.4.3 — applied respectively to M0 and to the pair (M0,M).
The existence of a complete definable extension follows by Corollary 3.5.3
applied in M0. �

We now prove, by induction on x = zy, the existence of p ∈ SΨ
x (M0) which

is L0(G(AP ))-definable and consistent with X. By compactness, there ex-
ists (Gω)ω∈Ω ∶ Kz → K[<∞] such that the family (Xz)z is n-prepared by
G. Let d ∈ Z>0 bound the degree of any polynomial appearing in Ψ and
G. By Proposition 3.2.6, and induction, we find a finite hereditarily good
presentation (Θ(z, s), F (z)) for ϕd(x,uv) ∶= v(∑∣I ∣<d uIx

I) ⩾ v(∑∣I ∣<d vIx
I).

By induction, there exists q ∈ SΘ
z (M0) which is L0(G(AP ))-definable and

consistent with X. By Claim 3.5.5, q is LP(G(AP ))-quantifiable over LP.
By Lemma 3.2.18, there exists an LP(AP )-definable p ∈ SΘ,F

x (M0) consis-
tent with X. By hypothesis, (CV ) holds in (M0,M), and so does (CΓ), by
Corollary 2.3.17. By Proposition 3.3.4, it follows that p∣ϕd is L0(G(AP ))-
definable — and hence so is p∣Ψ.
Let a ∈ AP be the canonical basis of p∣ϕd . Since M0 = Ma ⊆ acl0(M), we
have a ∈ acl0(M). Let c ∈ dcl0(M) be a code of the finite L0(M)-orbit



UN PRINCIPE D’AX-KOCHEN-ERSHOV IMAGINAIRE 45

of a — which is included in its finite LP(A)-orbit. Let f be L0-definable
such that c ∈ f(M) and e ∈ M eq be a code of f−1(c). The LP(A)-orbit of
c consists of finite subsets of the LP(A)-orbit of a and is therefore finite.
Hence, so is the L(A)-orbit of e; i.e., e ∈ acleq(A) = A. It follows that
p∣ϕd,M ⊆ ⋂σ∈Aut(M0/M) σ(p∣ϕd) is L(A)-definable. By Proposition 3.3.4, it is
in fact L0(G(A))-definable — and hence so is p∣Ψ,M . �

This local result does imply the existence of a global invariant type:

Corollary 3.5.6. Let n ∈ Z>0 ∩ K×(M) and X ⊆ Kx be strict pro-L(A)-
definable, where A = acleq(A) ⊆M eq. Assume (CV ) in both M and the pair
(M0,M), (CΓ), (E∞

k ), (Ik), (FRn) and:
(Pn

π(X)) For every projection Y ⊆ Kzy of X onto finitely many coordinates,
with ∣y∣ = 1, every N ≽M and every a ∈ Kz(N), Ya is n`-prepared
by some L0(Ma)-definable set C ⊆ K(N), for some ` ∈ Z⩾0.

Then there exists an Aut(M/G(A))-invariant p ∈ S0
x(M) consistent with X.

Note that (FRn) implies (FRn`) for every ` ∈ Z⩾0. Also if M is a finitely
ramified henselian field, (CV ) holds in bothM and (M0,M), since both the-
ories have maximally complete models, and (Pn

π(X)) holds by Remark 3.2.17.

Proof. For every (finite) set Ψ(x, t) of L0-formulas, the set of p ∈ S0
x(M)

which are consistent with X and whose Ψ-type is Aut(M/G(A))-invariant is
closed. It is non-empty, by Proposition 3.5.4. By compactness, the intersec-
tion of all these sets, which coincides with the set of Aut(M/G(A))-invariant
p ∈ S0

x(M) consistent with X, is also non-empty. �

Remark 3.5.7. If T is a k-Γ-enrichment of Hen0, then the pair (M0,M)
is elementarily equivalent to one where both K and PK are maximally
complete. Hence (CB) — and therefore (CV )— holds both in M and in
the pair (M0,M).

4. Invariant completions

Notation. In this section. let T be an RV-enrichment of the theory of
characteristic zero henselian fields.

4.1. Main results. Our goal in this section is to describe the behaviour
of global L-types whose underlying L0-type is invariant. A crucial point
is that Fact 2.2.6 can be reformulated in the following manner: for every
A ⩽M ⊧ T ,

tp0(A) ∪ tp(RV(A)) ⊢ tp(A).
Therefore, the main point of this section is to better understand tp(RV(A))
and then deduce properties of tp(A). In particular, we will show that RV(A)
is generated by a small canonical set. This will allow us to conclude that
a global type whose underlying quantifier free type is invariant is itself in-
variant over RV (cf. Corollary 4.3.17). However, a better control of the
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parameters requires more auxiliary sorts. Recall that

LinA ∶= ⊔
s∈S(dcl0(A))

`∈Z>0

s/`ms.

In this section, we prove:

Theorem 4.1.1. Assume
(Ik) The residue field k is infinite.

Let M ≼ N ⊧ T sufficiently saturated and homogeneous, A ⊆ G(M) and a ∈
K(N) such that tp0(a/M) is Aut(M/A)-invariant. Then the type tp(a/M)
is Aut(M/ARV(M)LinA(M))-invariant.

4.2. Invariance and stably embedded sets. Note that we consider in-
variance over large subsets of our model — that happen to be the points
of some stably embedded definable sets. This gives rise to some subtle is-
sues and two notions of invariance. When D = ⋃iDi is ind-L-definable, we
denote by Deq the ind-L-definable union of all L-interpretable sets X that
admit an L-definable surjection ∏jDij →X.

Definition 4.2.1. Let M be an L-structure, C ⊆ M , D be a (ind-)L-
definable set and p be a partial L(M)-type. We say that p:

● is Aut(M/C)-invariant if for every σ ∈ Aut(M/C), p and σ(p) are
equivalent.

● has Aut(M/C)-invariant D-germs if it is Aut(M/C)-invariant and
so is the p-germ of every L(M)-definable map f ∶ p→Deq;

● is Aut(M/D)-invariant if it has Aut(M/D(M))-invariant D-germs.

We will only apply these notions for M saturated, p a complete ∆-type
for some set of L-formulas ∆ and C equal to the M -points of a stably
embedded (ind-)L-definable set, D stably embedded — an ind-L-definable
set D = ⋃iDi is stably embedded if any definable X ⊆ ∏jDij is definable
with parameters from D.

Remark 4.2.2. (1) A type might be Aut(M/D(M))-invariant but not
Aut(M/D)-invariant. For example, letM ⊧ ACVF and b be a closed
ball of M without any acl(⌜b⌝RV1(M))-definable subballs. Then
any two a1, a2 ∈ b(M) have the same type over acl(⌜b⌝RV1(M)).
However, for every x ∈ b, rv1(x−a1) = rv1(x−a2) implies that the ai
are in the same maximal open subball of b. It follows that the generic
of b overM is Aut(M/⌜b⌝)-invariant but not Aut(M/⌜b⌝RV1)-invariant.

(2) A type p ∈ S(M) is Aut(M/C)-invariant if and only if for every
realization a ⊧ p in a sufficiently homogeneous N ≽ M , any σ ∈
Aut(M/C) extends to an element of Aut(N/Ca).

(3) On the other hand, a type p ∈ S(M) has Aut(M/C) invariant D-
germs, where D is stably embedded, if and only if for every a ⊧ p
in a sufficiently saturated N ≽M , any σ ∈ Aut(M/C) extends to an
element of Aut(N/CD(N)a) — cf. the proof of Lemma 4.2.4.
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(4) The space of types with Aut(M/C)-invariant D-germs is closed: for
any σ ∈ Aut(M/C) and L(M)-definable map f ∶ p → Deq, no types
in the open set “[f]p ≠ [fσ]p” has Aut(M/C)-invariant D-germs.

Let us now recall the following folklore result on stable embeddedness which
states that we can recover the usual characterisation of types and hence
of definable closure (equivalently internality) from invariance over a stably
embedded definable set:

Lemma 4.2.3. Let M be saturated sufficiently large, D be (ind-)L-definable
stably embedded and e ∈M . If e is fixed by every σ ∈ Aut(M/D(M)), then
e ∈ dcl(D(M)).
Proof. Let e′ ∈ M be such that e ≡D(M) e

′. By [TZ12, Lemma 10.1.5]
— more precisely its extension mutatis mutandis to stably embedded ind-
definable sets — we can find σ ∈ Aut(M/D(M)) such that e′ = σ(e) = e.
Since D is stably embedded, there exists a small A ⊆ D(M) such that,
tp(e/A) ⊢ tp(e/D(M)). So both types have a single realisation in M , i.e.,
e ∈ dcl(A) ⊆ dcl(D(M)). �

One advantage of the stronger notion of invariance is transitivity:

Lemma 4.2.4. LetM ≼ N be L-structures with N saturated and sufficiently
large, C ⊆M (potentially large), D be an (ind-)L-definable stably embedded
set, p ∈ S(M) have Aut(M/C)-invariant D-germs, a ⊧ p in N and q ∈ S(N)
be Aut(N/CD(N)a)-invariant. Then q∣M is Aut(M/C)-invariant.
If, moreover, q has Aut(N/CD(N)a)-invariant E-germs, for some (ind-)L-
definable set E, then q∣M has Aut(M/C)-invariant E-germs.

Proof. Fix σ ∈ Aut(M/C) and let τ be the partial L-elementary isomorphism
M(a) → M(a) induced by σ. Since σ fixes the germs of every definable
map from p to Deq, τ induces the identity on Deq(dcl(M(a))). Since D
is stably embedded, cf. [TZ12, Lemma 10.1.5], τ extends to an element of
Aut(N/CD(N)a), also denoted τ , which thus fixes q. It follows that q∣M is
fixed by τ ∣M = σ.
If, moreover, q has Aut(N/CD(N)a)-invariant E-germs, then σ = τ ∣M fixes
the q∣M -germ of any L(M)-definable function into Eeq. �

The core of our proof of Theorem 4.1.1 is the following variation on transi-
tivity:

Lemma 4.2.5. Let M ≼ N ⊧ T , C ⊆ M potentially large, a ∈ Kx(N)
a (potentially infinite) tuple and ρ ∶ Kx → RV be pro-L0(M)-definable.
Assume that rv∞(M(a)) ⊆ dcl0(Cρ(a)) and that p ∶= tp0(a/M) and [ρ]p are
Aut(M/C)-invariant. Then tp(a/M) has Aut(M/C)-invariant RV-germs.

Proof. Pick σ ∈ Aut(M/C). Let N0 ⊧ ACVF containing N be saturated and
sufficiently large. Let τ ∶M(a) →M(a) be the L0-isomorphism induced by
σ. Note that τ(ρ(a)) = ρσ(a) = ρ(a) and hence τ ∣(rv∞(M(a))) is the identity.
We may thus extend τ to a partial elementary map which is the identity on
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RV(N0). So, by stable embeddedness of RV, τ extends to some element of
Aut(N0/CRV(N0)a), also denoted τ . By Fact 2.2.6, tp(Ma) = tp(σ(M)a),
i.e., σ(p) = p. Moreover, any L(Ma)-definable X ⊆ RVn is L(rv∞(M(a)))-
definable and hence X(N) = τ(X(N)) = Xτ(N), equivalently, σ fixes the
p-germ of any L(M)-definable function into RVeq. �

4.3. Computing leading terms. In view of Lemma 4.2.5, given any A-
invariant type tp0(a/M), we want to find a pro-L0(M)-definable map ρ such
that ρ(a) generates rv∞(M(a)) and [ρ]p is Aut(M/A)-invariants. When
A ≼ M and A is sufficiently large, this is done in Corollary 4.3.16. As
previously stated, for general small A, dealing with closed balls forces us
to also consider maps into certain A-definable k-vector spaces. The goal
then becomes to build a “nice” model of T containing A and proceed by
transitivity.
The technical core of the proof consists in a generalisation to relative ar-
ity one of the classical description of 1-types in henselian fields, cf. Lem-
mas 4.3.8, 4.3.10 and 4.3.13.

Let us start with three leading term computations that we will need later.

Lemma 4.3.1. Let M ⊧ ACVF, L ⩽ K = K(M), rv1(L) ⩽ R ⩽ rv1(K),
b ∈ B(K), g ∈ K(dcl0(LR)), c ∈K and P ∶= ∏i<d(x − ei) ∈ K(dcl0(LR))[x].

(1) If c, g ∈ b and ei ∉ b, for all i, then rv1(P (c)) = rv1(P (g)) ∈ dcl0(R).
(2) If c ∉ b and g, ei ∈ b, for all i. then rv1(P (c)) = rv1(c − g)d.
(3) Assume that b is closed, that c, g, ei ∈ b, for all i, and that the maxi-

mal open subball of b around c does not contain g nor any ei. Then

rv1(P (c)) =⊕
i⩽d

rv1(Pi(g))rv1(c − g)i ∈ dcl0(Rrv1(c − g)),

where P (y + x) = ∑i Pi(y)xi. In particular, the sum is well-defined.

In fact, computation (2) is an easy particular case of computation (3) —
consider the smallest closed ball containing c, g and the ei.

Proof. Let us first prove (1). We have rv1(P (c)) = ∏i rv1(c−ei) = ∏i rv1(g−
ei) = rv1(P (g)) ∈ RV1(dcl0(LR)) ⊆ dcl0(rv1(L)R) = dcl0(R), where the
inclusion follows from quantifier elimination for ACVF in LRV. As for (2),
we have rv1(P (c)) = ∏i rv1(c − ei) = rv1(c − g)d. Finally, in the case of (3),
let Q(x) = P ((c− g)x+ g)/(c− g)d. The roots (ei − g)/(c− g) of Q are in O.
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Thus Q ∈ O[x], Qi(0) = Pi(g)(c − g)i−d ∈ O and v(Q(1)) = 0. We have:
rv1(P (c)) = rv1(c − g)dres(Q(1))

= rv1(c − g)d(∑
i

res(Qi(0)))

= rv1(c − g)d(⊕
i

rv1(Qi(0)))

=⊕
i⩽d

rv1(P (i)(g))rv1(c − g)i

∈ RV1(dcl0(LRrv1(c − g)))
⊆ dcl0(Rrv1(c − g)),

where the third equality follows from the fact that v(∑iQi(0)) = v(Q(1)) =
0 ⩽ mini{v(Qi(0))} ⩽ v(∑iQi(0)). �

Remark 4.3.2. In mixed characteristic, we will be applying this result to
the least equicharacteristic zero coarsening, yielding a computation for rv∞
and not just rv1.

Essentially every computation of leading terms reduces to the above cases
by the following lemma.

Lemma 4.3.3. Let M ⊧ ACVF, L ⩽ K = K(M), c ∈ K and rv∞(L) ⩽ R =
RV(dcl0(R)) ⩽ rv∞(K). The following are equivalent:

(1) rv∞(L(c)) ⊆ R;
(2) For every monic irreducible P ∈ K(dcl0(LR)), rv∞(P (c)) ∈ R.

Moreover if P ∈ K(dcl0(LR))[x] is irreducible, then its roots are either all
inside or outside any B ∈ B[<∞](dcl0(LR)).
Proof. By (1), rv∞(P (c)) ∈ RV(dcl0(LRc)) ⊆ RV(dcl0(rv∞(L(c))R)) =
R. The converse is a consequence of the fact that rv∞ is a multiplicative
morphism and any polynomial over L is a product of (an element of L and)
monic irreducible polynomials over K(dcl0(LR)).
As for the moreover statement, let Q = ∏e∈B∪(x−e) ∈ K(dcl0(LR))[x] where
the e range over the roots of P (with multiplicity). If P is irreducible, then
Q = P or Q = 1. �

One last important ingredient — also ubiquitous in the development of mo-
tivic integration (e.g., in [HK06]) — is the fact that, in characteristic zero,
finite sets of points (and of balls in equicharacteristic zero) can be canon-
ically parametrised by RV. Recall the definition of b[n] and B[n] from
Definition 3.2.16.

Lemma 4.3.4. For every r ∈ Z>0, there exists m ∈ Z>0 such that for every
characteristic zero valued field L and B ∈ B[r](L) with ∣B[m]∣ = r, there
exists an L0(⌜B⌝)-definable injection ν ∶ B →RVn.

Proof. We proceed by induction on r. If r = 1, take m = 1 and ν to be
constant equal to 1 ∈ RV1. If ∣B∣ > 1, we may assume that ∣B[m]∣ = r
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for all m, the Lemma will follow by compactness. Also, assuming that
L ⊧ ACVF is sufficiently saturated and homogeneous, it suffices to find
an Aut(L/⌜B⌝)-invariant injection ν ∶ B → (RV∞)n. Indeed, since B is
finite some projection to RVn is already injective and it must be definable.
Finally, let γ ∶= max{v(b1 − b2) ∶ bi ∈ B distinct}. Since ∣B[m]∣ = r for all
m, γ < rad(B) + v(Z) and B can be injected in the set of open v∞-balls of
radius γ/∆∞. So we may assume that the residue characteristic of L is zero.
Let B′ be the set of closed balls of radius γ around the balls of B. By
construction, we have ∣B′∣ < ∣B∣ = r. For every b′ ∈ B′, let Bb′ ∶= {b ∈ B ∶
b ⊆ b′}. Note that, by hypothesis, resb′(b) ∈ Rb′ = {maximal open subballs
of b′} uniquely determines b inside B. Let cb′ ∈ Rb′ denote the average
of the resb′(b) as b ranges over Bb′ . By induction, we find an L0(⌜B⌝)-
definable injection µ ∶ {cb′ ∶ b′ ∈ B′} → RVn. For every b ∈ B, let ν(b) ∶=
(rv1(b − cb′), µ(cb′)) where b ⊆ b′ ∈ B′. Then ν ∶ B → RVn+1 is an L0(⌜B⌝)-
definable injection. �

Lemma 4.3.5. For every r ∈ Z>0 there exists an m ∈ Z>0 such that for every
characteristic zero valued field L and every B ∈ B[r](L) with ∣B[m]∣ = r,
there exists g ∈ K[r](L) with exactly one point inside each ball of B[m].
Proof. Let us start with a weaker version of the result:

Claim 4.3.6. For every b ∈ B(acl0(L)), b(acl0(L)) ≠ ∅.
Proof. We may assume that L is algebraically closed. If v(L) ≠ 0, L ⊧
ACVF and hence, by model completeness, b(L) ≠ ∅. If v(L) = 0, rad(b) ∈
Γ(dcl0(L)) = {0}. If 0 ∈ b, we are done. Otherwise, v(b) = 0 and b ⊆ O. So b
is open and it is (interdefinable with) a residue element. But k(acl0(L)) =
res(L) and thus b(L) ≠ ∅. �

Claim 4.3.7. For every B ∈ B[r](dcl0(L)), there exists m ∈ Z>0 and g ∈
K[r](dcl0(L)) such that, if ∣B[m]∣ = r, there is exactly one point of g inside
each ball of B[m].
Proof. Wemay assume thatB is irreducible over L— i.e., for any non-empty
L0(L)-definable C ⊆ B, C = B. For every b ∈ B, let d ∈ b(acl0(L)). Let D
be L0(L)-definable and irreducible over L containing d and let gb ∈ acl0(L)
be the average of D ∩ b. Then gb ∈ b[m], where m ∶= ∣D ∩ b∣. Let g be finite
L0(L)-definable set irreducible over L containing gb. Since ∣B[m]∣ = r = ∣B∣,
we get g ∩ b[m] = {gb}. By irreducibility, each ball of B[m] contains exactly
one element of g. �

The lemma follows by compactness. �

Let B[r]
x denote the (ind-L0-definable) set of L0-definable maps F ∶ Kx →

B[r] and B[<∞]
x denote the (ind-L0-definable) set ⋃r B[r]

x . Similarly we de-
note K[r]

x the (ind-L0-definable) set of L0-definable maps F ∶ Kx →K[r] and
K[<∞]
x the (ind-L0-definable) set ⋃r K[r]

x .



UN PRINCIPE D’AX-KOCHEN-ERSHOV IMAGINAIRE 51

Notation. We fix M ≼ N ⊧ T , A ⊆ M eq, a ∈ Kx(N) a potentially infinite
tuple and c ∈ K(N) a single element. Assume that p(xy) = tp0(ac/M) is
Aut(M/A)-invariant and let q ∶= tp0(a/M). For every F,G ∈ B[<∞]

x (M), we
write F ⩽q G if q(x) ⊢ F∪(x) ⊆ G∪(x). Finally, let E ∶= {F ∈ B[<∞]

x (M) ∶
p(x, y) ⊢ y ∈ F∪(x)}.
In the following Lemmas 4.3.8, 4.3.10 and 4.3.13, we will describe how
RV(M(ac)) is generated depending on the shape of E.

Lemma 4.3.8 (Finite sets). Assume E has a least element f ∈ K[r]
x for ⩽q.

Then, there exists a pro-L0(M)-definable map ρ ∶ Kxy →RVn, whose p-germ
is Aut(M/A)-invariant such that rv∞(M(ac)) ⊆ dcl0(rv∞(M(a))ρ(ac)).
Proof. Let ρ(ac) = νa(c), where νa ∶ f(a) → RVn is the L0(f(a))-definable
injection of Lemma 4.3.4. By invariance of p, for every σ ∈ Aut(M/A),
c ∈ fσ(a) ∩ f(a). By minimality, we have fσ(a) = f(a) and hence [f]q —
and thus [ρ]p — is Aut(M/A)-invariant. Moreover, since c ∈ dcl0(Maρ(ac)),
we have rv∞(M(ac)) ⊆ RV(dcl0(Maρ(ac))) ⊆ dcl0(rv∞(Ma)ρ(ac)). �

We now assume that E ∩K[<∞]
x = ∅.

Lemma 4.3.9. There exists a pro-L0(M)-definable map ν ∶ Kxy → RVξ,
with ξ potentially infinite, whose p-germ is Aut(M/A)-invariant such that,
for every F ∈ E, for some m ∈ Z>0 uniformly bounded in ∣F (a)∣, the ball
b ∈ F (a)[m] containing c is L0(Maν(ac))-definable, and ν(ac) ∈ acl0(Ma).

Proof. For every r ∈ Z>0, let mr ∈ Z>0 be as in Lemma 4.3.4. Let F ∈ E∩B[r]
x

be irreducible over q and such that ∣F [mr]∣ = r — if such an F does not
exist let νr(x) = 1. By irreducibility, for every G ∈ E ∩ B[r]

x with G ⩽q F ,
every ball in F (a) contains exactly one ball of G(a). In particular, neither
γ = max{v(b1 − b2) ∶ bi ∈ F (a) distinct} nor Br(a), the set of open balls of
radius γ+v(mr) around balls of F (a), depend on the choice of F . It follows
that [Br]q is Aut(M/A)-invariant. By construction, inclusion induces an
injection F (a) → Br(a) and that ∣Br(a)∣ = ∣Br(a)[mr]∣.
Ss in Lemma 4.3.4, let νr ∶ Br(a) →RVn be an L0(⌜Br(a)⌝)-definable injec-
tion. Let νr(ac) = νr(b) where c ∈ b ∈ Br(a). Note that νr(ac) ∈ acl0(Ma).
The element of F (a) containing c is uniquely determined by b, and hence
by νr(ac); and [νr]p is Aut(M/A)-invariant by construction.
Let us now fix any F ∈ E that we can assume irreducible. Let M =
max{ms ∶ s ⩽ ∣F (a)∣}. The sequence ∣F (a)[Mk]∣ ⩾ 1 is decreasing, bounded
by ∣F (a)∣ and hence, there exists k ⩽ ∣F (a)∣ such that ∣F (a)[Mk][M]∣ =
∣F (a)[Mk+1]∣ = ∣F (a)[Mk]∣. Let r ∶= ∣F [Mk]∣. By the previous paragraphs
and the choice of M , the ball b ∈ F (a)[Mk] containing c is L0(Maνr(ac))-
definable. It follows that ν = (νr)r⩾1 has the required properties. �

We now wish to consider the case where, either E induces a strict intersection
in the least equicharacteristic zero coarsening v∞ (case (1)), or c is generic
over Ma in a finite set of open v∞-balls (case (2)):
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Lemma 4.3.10 (Open and strict balls). Assume that one of the following
holds:

(1) For all F ∈ E, there exists G ∈ E with G[m] <q F , for any m ∈ Z>0;
(2) There exists an r ∈ Z>0 such that for every F ∈ E and m ∈ Z>0, there

exists an open G ∈ E ∩B[r]
x with G[m] ⩽q F .

Then, there is a pro-L0(M)-definable map ρ ∶ Kxy → RVξ whose p-germ is
Aut(M/A)-invariant and such that rv∞(M(ac)) ⊆ dcl0(rv∞(M(a))ρ(ac)).

Note that the cases (1) and (2) are not mutually exclusive.

Proof. Let ν ∶ Kxy →RVξ be as in Lemma 4.3.9.

Claim 4.3.11. For every F ∈ E, the ball b ∈ F (a) containing c is in
dcl0(Maν(ac)).

Proof. Assume that there exist G ∈ E with G[m] ⩽q F , for every m ∈ Z>0.
Then, by Lemma 4.3.9 applied to G, the ball b′ ∈ G(a)[m] containing c is
L0(Maν(ac))-definable. The claim follows since b′ ⊆ b.
Otherwise, by case (2), we can find a minimal r such that for every F ∈ E
and m ∈ Z>0, there exists an open G ∈ E ∩B[r]

x with G[m] ⩽q F . Then for
m sufficiently large, depending on r, by Lemma 4.3.9, the ball b′ ∈ G[m]
containing c is L0(Maν(ac))-definable. The claim follows since b′ ⊆ b. �

If there does not exist g ∈ K[<∞]
x (M) such that ∅ <q g ⩽q E, let ρ(ac) =

ν(ac). If such a g exists, we may assume that it is irreducible and, then,
the cardinality of the F ∈ E irreducible over q is bounded by ∣g(a)∣. Let
F ∈ E be irreducible over q of maximal cardinality r and let b(ac) ∈ F (a)
contain c. Note that the partition of g(a) induced by F , and in particular
h(ac) ∶= g(a) ∩ b(ac), does not depend on F . Moreover, since there is some
(irreducible) G ∈ E ∩B[r]

x with G[∣h(ac)∣] ⩽q F , the average of h(ac) is in
b(ac). So, replacing h(ac) by its average, we may assume that h(ac) is a
singleton. Then, h(ac) ∈ dcl0(g(a)b(ac)) ⊆ dcl0(Maν(ac)) by Claim 4.3.11.
Let ρ(ac) = (ν(ac), rv∞(c − h(ac))).
For every σ ∈ Aut(M/A), applying the previous argument to g and F σ−1 ∈ E,
we have h(ac) ∈ bσ−1(ac), and hence, by invariance of p, hσ(ac) ∈ b(ac). Note
that the smallest (closed) ball containing h(ac) and hσ(ac) is algebraic over
Ma and let D(a) be its finite orbit overMa. We have D ⩽q E. If D[m] ∈ E,
for some m ∈ Z>0, then there is G ∈ E open (irreducible) such that G[m] ⩽q
D[m] and hence D >q G ∈ E. But then either h(ac) ∉ G(ac) or hσ(ac) ∉ G.
By invariance of p, we may assume that h(ac) ∉ G(ac), contradicting the
fact that h(ac) does not depend on the choice of F . Thus D(a)[m] /∈ E and
so c ∉D(a)[m]∪. It follows that rv∞(c−h(ac)) = rv∞(c−hσ(ac)). We have
just proved the Aut(M/A)-invariance of [ρ]p.
Now, to prove that rv∞(M(ac)) ⊆ dcl0(rv∞(M(a))ρ(ac)), by Lemma 4.3.3,
it suffices to prove that, for every irreducible P ∈ K(dcl0(Maν(ac)))[x],
rv∞(P (c)) ∈ dcl0(rv∞(M(a))ρ(ac)). Recall that, by Lemma 4.3.9, ν(ac) ∈
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acl0(Ma). Let z(a) be the finite set, irreducible over M(a), containing the
set Z of roots of P . If z ⩽q E, then, as above c avoids d(ac)[m], where d(ac)
is the smallest closed ball around Z ∪ {h(ac)}. By Lemma 4.3.1.(2), tak-
ing into account Remark 4.3.2, rv∞(P (c)) = rv∞(c − h(ac))d ∈ dcl0(ρ(ac)).
Otherwise, there is some F ∈ E such that Z ∩ F (a)∪ = ∅. Then, by
Lemma 4.3.1.(1), rv∞(P (c)) ∈ dcl0(rv∞(M(a))ν(ac)). �

Remark 4.3.12. There are actually two distinct possible behaviours in
Lemma 4.3.10:

● If there does does not exist g ∈ K[<∞]
x such that g ⩽q F for every F ∈

E, then rv∞(M(ac)) ⊆ dcl0(rv∞(M(a))ν(ac)) ⊆ acl0(rv∞(M(a)));
● If such a g exists, then v(M(ac)) /⊆ acl0(v(M(a))).

The last remaining case to consider is when c is generic over Ma in some
closed v∞-ball. For every B ∈ B[<∞], we define RB,m ∶= {b′ ⊆ B∪ ∶ b′
open ball of radius rad(B) + v(m)} and RB,∞ = lim←ÐmRB,m. For every
x ∈ B∪, let resB,m(x) denote the unique element of RB,m containing x and
resB,∞ ∶ B∪ →RB,∞ be the induced map.

Lemma 4.3.13 (Closed balls). Assume that there exists an F ∈ E such that
for every g ∈ K[<∞]

x (M) with g ⩽q F , c ∉ resF (a),∞(g(a))∪. Let b ∈ F (a)
contain c, ξ ∈ RVn such that b ∈ dcl0(Maξ) and G ∈ resb,∞(dcl0(Maξ)).
Then rv∞(M(ac)) ⊆ dcl0(rv∞(M(a))ξrv∞(resF (a),∞(c) −G(aξ))).

In later applications of this lemma, we will take ξ = ν(ac) as given by
Lemma 4.3.9.

Proof. Note that for anym ∈ Z>0, the hypothesis on F remains true of F [m].
So, replacing F by some F [m], with ∣F [m](a)∣ minimal, we may assume that
∣F [m](a)∣ is constant. By Lemma 4.3.5, we can now find f ∈ K[<∞]

x (M)
such that f(a) has exactly one point in every ball of F (a). By hypothesis,
c ∉ resF (a),∞(f(a)). Let h ∈ dcl0(Maξ) denote the unique element of f(a)∩b.
Since rad(F (a))/∆∞ = v∞(c − h) = v∞(c − G(a, ξ)) ⩽ v∞(G(a, ξ) − h), we
have rv∞(c−h) = rv∞(resF (a),∞(c)−G(aξ))⊕ rv∞(G(aξ)−h). So it suffices
to prove that rv∞(M(ac)) ⊆ dcl0(rv∞(M(a))ξrv∞(c − h)).
By Lemma 4.3.3, it further suffices to prove that, for every irreducible P ∈
K(dcl0(Maξ))[x], rv∞(P (c)) ∈ dcl0(rv∞(M(a))ξrv∞(c − h)). If, for every
m ∈ Z>0, no root of P is in b[m], then, by Lemma 4.3.1.(1), rv∞(P (c)) ∈
dcl0(rv∞(M(a))ξ). Otherwise, let m ∈ Z>0 be such that every root of P is
in b[m]. Since K(acl0(Maξ)) ⊆ acl0(Ma), let z(a) be finite irreducible over
M(a) containing the roots of P . By hypothesis, c ∉ resF (a)[m](z(a)). By
Lemma 4.3.1.(3), rv∞(P (c)) ∈ dcl0(rv∞(M(a))rv∞(c − h)). �

Notation. Let Â ⊆ K(M) contain a realisation of every L(A)-type and
assume that M is sufficiently saturated and homogeneous.

We can now wrap up the relative arity one case:
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Proposition 4.3.14. There exists a pro-L0(Â)-definable map ρ ∶ Kxy →
RVξ such that rv∞(M(ac)) ⊆ dcl0(rv∞(M(a))ρ(ac)).

Proof. Note first that any Aut(M/A)-invariant p-germ of L0(M)-definable
functions is represented by an L0(Â)-definable function — it suffices to
consider a realisation in Â of the type of the parameters over A.
If E∩K[<∞]

x ≠ ∅, we apply Lemma 4.3.8. So let us assume that E∩K[<∞]
x = ∅.

If for every F ∈ E, there exists G ∈ E with G[m] <q F , for every m ∈ Z>0, we
are in case (1) of Lemma 4.3.10 and we can conclude. So we may assume that
there exists F such that for every G ∈ E, F ⩽q G[m], for some m ∈ Z>0. If
there exists g ∈ K[<∞]

x with g ⩽q F and c ∈ resF (a),∞(g(a)), then, for allH ∈ E
and n ∈ Z>0, H ⩽q F [m], for some m ∈ Z>0. Let G(a) ∶= resF (a),mn(g(a)),
then c ∈ G[n] ⩽q H and hypothesis (2) of Lemma 4.3.10 holds with r = ∣g∣.
So we may assume that no such g exist, i.e., the hypotheses of Lemma 4.3.13
hold. As previously, we may assume that ∣F [m]∣ is constant. Let ν be as in
Lemma 4.3.9; we may assume that ν is L0(Â)-definable. Let b(ac) ∈ F (a)
contain c.

Claim 4.3.15. There exists G(ac) ∈ resb(a)[m],∞(dcl0(Âaν(ac))), for some
m ∈ Z>0.

Proof. By construction of Â, there exists σ ∈ Aut(M/A) such that F σ is
L0(Â)-definable. By Aut(M/A)-invariance of p, we have F σ ∈ E and hence
F σ ⩽q F [m], for some m ∈ Z>0. So, up to replacing F by F σ, we may assume
F is L0(Â)-definable. By Lemma 4.3.5, and replacing F by some F [m], we
find g ∈ K[<∞]

x (Â) with exactly one element in each ball of F . It then suffices
to consider the only element of kF (a),∞(g(a)) contained in b(ac). �

By Lemma 4.3.13, rv∞(M(ac)) ⊆ dcl0(rv∞(M(a))ν(ac)rv∞(resF (a),∞(c) −
G(ac))) ⊆ dcl0(rv∞(Ma)Âac). �

Corollary 4.3.16. There exists a pro-L0(Â)-definable map ρ ∶ Kx →RVξ,
such that rv∞(M(a)) ⊆ dcl0(rv∞(M)ρ(a)).

Proof. We proceed by induction on an enumeration of a. The induction step
is Proposition 4.3.14 and the limit case is trivial. �

Corollary 4.3.17. The type tp(a/M) is Aut(M/ÂRV)-invariant.

Proof. It follows from Corollary 4.3.16 and Lemma 4.2.5. �

4.4. Invariant resolutions.

Notation. Let M ≼ N ⊧ T both be sufficiently saturated and homogeneous
and A ⊆ G(M).

By transitivity, there remains to build a sufficiently saturated model con-
taining A whose type is invariant.
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Lemma 4.4.1. Assume that A ⊆ K(M) and let R ⊆ RV(M). There exists
C ⊆ K(N) and a pro-L0(M)-definable map ρ ∶ K∣C∣ → RVξ such that R ⊆
rv∞(A(C)) ⊆ dcl0(AR), q ∶= tp0(C/M) and [ρ]q are Aut(M/AR)-invariant
and rv∞(M(C)) ⊆ dcl0(rv∞(M)ρ(C)).

Proof. We proceed by induction on an enumeration of R. Assume the
property holds of R for some C and ρ and pick any ζ ∈ RV∞(M). If
ζ ∈ rv∞(acl0(AC)), let c ∈ K(acl0(AC)) be such that rv∞(c) = ζ. Let D be
a minimal finite L0(ACζ)-definable set containing c. Replacing c by the av-
erage of D, we may assume that c ∈ dcl0(ACζ) ⊆ dcl0(MC) ⊆ N . We have
Rζ ⊆ rv∞(A(Cc)) ⊆ RV(dcl0(ACζ)) ⊆ dcl0(rv∞(A(C))ζ) ⊆ dcl0(ARζ),
tp0(Cc/M) is Aut(M/ARζ)-invariant and, since c ∈ dcl0(MC) = M(C)h,
rv∞(M(Cc)) = rv∞(M(C)) ⊆ dcl0(rv∞(M)ρ(C)).
If ζ ∉ rv∞(acl0(AC)), let c ∈ N be generic in rv−1

∞ (ζ) over M . Then
p ∶= tp0(Cc/M) is Aut(M/ARζ)-invariant. By Lemma 4.3.10, we find a
pro-L0(M)-definable map ρ′ ∶ K∣C∣+1 → RVξ

∞ such that rv∞(M(Cc)) ⊆
dcl0(rv∞(M(C))ρ′(Cc)) ⊆ dcl0(rv∞(M)ρ(C)ρ′(Cc)) and whose p-germ is
Aut(M/ARζ)-invariant. Moreover, no root of any P ∈ K(dcl(AC))[x] is in
rv−1

∞ (ζ). For any g ∈ rv−1
∞ (ζ), by Lemma 4.3.1.(1), rv∞(P (c)) = rv∞(P (g))

does not depend on g and is thus in RV(dcl0(ACζ)) ⊆ dcl0(rv∞(AC)ζ) ⊆
dcl0(ARζ). By Lemma 4.3.3, rv∞(A(Cc)) ⊆ dcl0(ARζ). �

Corollary 4.4.2. Assume that A ⊆ K(M). There exists A ⊆ C ≼ N and
a pro-L0(M)-definable map ρ ∶ K∣C∣ → RVξ, such that p ∶= tp0(C/M)
is Aut(M/ARV(M))-invariant, [ρ]p is Aut(M/ARV(M))-invariant and
rv∞(MC) ⊆ dcl0(rv∞(M)ρ(C)).

In particular, by Lemma 4.2.5, tp(C/M) is Aut(M/ARV)-invariant.

Proof. Let A ⊆M1 ≼M , withM1 small. Applying Lemma 4.4.1 to rv∞(M1),
we find C ⊆ N and ρ such that rv∞(M1) ⊆ rv∞(A(C)) ⊆ dcl0(Arv∞(M1)) ∩
rv∞(N) ⊆ rv∞(M1), p ∶= tp0(C/M) and [ρ]p are Aut(M/Arv∞(M1))-
invariant and rv∞(M(C)) ⊆ dcl0(rv∞(M)ρ(C)). By replacing C with
K(dcl0(AC)), we may assume A ⊆ C = Ch. Since rv∞(C) = rv∞(A(C)) =
rv∞(M1) ≼ rv∞(N) and C is a characteristic zero henselian field, it follows
from Fact 2.2.6 that C ≼ N . �

Corollary 4.4.3. Assume that A ⊆ K(M). There exists Â ≼ N contain-
ing a realisation of every L(A)-type such that tp(Â/M) is Aut(M/ARV)-
invariant.

Proof. Corollary 4.4.2 implies that, for every L(A)-definable setX, there ex-
ists an Aut(M/ARV)-invariant type concentrating onX — since the C from
Corollary 4.4.2 is a model containing A. Since the set of Aut(M/ARV)-
invariant types is closed, it follows by compactness that any L(A)-type has
an Aut(M/ARV)-invariant extension. The corollary follows by the stan-
dard construction relying on transitivity, Lemma 4.2.4 — for the limit steps,
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note that Aut(M/ARV)-invariance is finitary: tp(c/M) is Aut(M/ARV)-
invariant if and only if for every finite c0 ⊆ c, tp(c0/M) is Aut(M/ARV)-
invariant. �

Recall that, by Convention 2.1, LinA(M) denotes the set of cosets c + `ms
where s ∈ S(dcl0(A)) has a basis in M and c ∈ s(M).
Lemma 4.4.4. Assuming:

(Ik) The residue field k is infinite in models of T ,
there exists C ⊆ K(N) and an L0(A)-definable map ρ ∶ K∣C∣ → LinξA such
that, for all n ∈ Z>0, Sn(A) ⊆ sn(C), tp0(C/M) is L0(A)-definable and
rv∞(M(C)) ⊆ dcl0(rv∞(M)LinA(M)ρ(C)).
In mixed characteristic, we may further assume that ⋃n>0 Tn(A) ⊆ dcl0(C).
Proof. Fix s ∈ Sn(A) and let β ∈ GLn(M) be a basis of s. Then, any
α ⊧ β ⋅ (ηO ∣M)⊗n2 — which is realised in N by (Ik) — where ηO is the
generic (quantifier free) type of O, is a basis of s. Note that tp0(α/M) =
β ⋅η⊗n2

O only depends on s and is indeed L0(A)-definable. Let α, respectively
β, be the basis of s/m∞s — seen as a pro-definable set— induced by α,
respectively β. The matrix of k∞-coefficients of α in the basis β is res∞(β−1 ⋅
α) where β−1 ⋅ α ⊧ (ηO ∣M)⊗n2 . It follows that rv∞(M(α)) = rv∞(M(β−1 ⋅
α)) ⊆ dcl0(RV(M)res∞(β−1 ⋅ α)) ⊆ dcl0(RV(M)βα). The first part of
the statement follows by iterating the above construction independently for
every s ∈ Sn(A).
Let us now assume that we are in mixed characteristic. For every c ⊧ ηm∣M ,
rv∞(M(Cc)) ⊆ dcl0(rv∞(M(C))res∞(c)). This also holds for all maximal
open subballs of O. So, enlarging C further, we may also assume that
k(dcl0(AC)) ∩M ⊆ res(C). Then, for every e ∈ Tn(A), s = τn(e) ∈ S(A)
has a basis in C and every coordinate of e in that basis is the residue of an
element of C. It then follows that e ∈ tn(C). �

Lemma 4.4.5. In equicharacteristic zero, assuming that, for all n ∈ Z>0,
τn(Tn(A)) ⊆ sn(K(A)). Then there exists C ⊆ K(N) and an L0(M)-
definable map ρ ∶ K∣C∣ → RVξ such that A ⊆ dcl0(C), q ∶= tp0(C/M)
is Aut(M/A)-invariant, [ρ]q is Aut(M/A)-invariant and rv∞(M(C)) ⊆
dcl0(rv∞(M)ρ(C)).
Proof. For every e ∈ Tn(A), by hypothesis, s ∶= τ(e) has a basis in K(A).
It follows that s/ms also has a basis of dcl0(A)-points and hence is L0(A)-
definably isomorphic to kn. By Lemma 4.4.1 applied to R ∶= k(dcl0(A)) ∩
M ⊆ dcl0(A), we find K(A) ⊆ C ⩽ K(N) such that k(dcl0(A))∩M ⊆ res(C),
q ∶= tp0(C/M) is Aut(M/A)-invariant, [ρ]q is Aut(M/A)-invariant and
rv∞(M(C)) ⊆ dcl0(rv∞(M)ρ(C)). Then, we have A = K(A) ∪ ⋃n Sn(A) ∪
⋃nTn(A) ⊆ dcl0(C). �

Corollary 4.4.6. Assume that (Ik) holds. Then there exists C ⊆ K(N)
such that tp0(C/M) has Aut(M/ARV(M)LinA(M))-invariant RV-germs
and A ⊆ dcl0(C).
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Proof. In mixed characteristic, this follows immediately from Lemmas 4.2.5
and 4.4.4. In residue characteristic zero, it follows from Lemmas 4.4.4
and 4.4.5 and transitivity, cf. Lemma 4.2.4. �

Proof of Theorem 4.1.1. By Corollary 4.4.6, we find C ⊆ K(N) such that
A ⊆ dcl0(C) and tp(C/M) has Aut(M/ARV(M)LinA(M))-invariant RV-
germs. Let M ≼ M1 ≼ N be sufficiently saturated and homogeneous and
contain C. By Corollary 4.4.3, we find Ĉ ≼ N containing a realisation
of every L(C)-type such that tp(Ĉ/M1) is Aut(M1/CRV)-invariant. Let
M1 ≼M2 ≼ N be sufficiently saturated and homogeneous and contain Ĉ.
Let p ∶= tp0(a/M), which is Aut(M/A)-invariant by assumption.
Claim 4.4.7. tp(a/M) ∪ p∣M2

is consistent.

Proof. Let ϕ(x,m) be some L(M)-formula such that N ⊧ ϕ(a,m) and let
ψ(x, d) ∈ p∣M2

. Let σ ∈ Aut(N/Amd) be such that σ(d) ∈ M . Then N ⊧
ψ(a, σ(d)) and hence σ−1(a) ⊧ ψ(x, d) ∧ ϕ(x,m). �

Let a′ ⊧ tp(a/M) ∪ p∣M2
. Then tp0(a′/M2) = p∣M2

is Aut(M2/C)-invariant
and thus, by Corollary 4.3.17, tp(a′/M2) is Aut(M2/ĈRV)-invariant. Since
tp(Ĉ/M1) is Aut(M1/CRV)-invariant, by transitivity, cf. Lemma 4.2.4,
tp(a′/M1) is Aut(M1/CRV)-invariant. By transitivity, since tp(C/M) has
Aut(M/ARV(M)LinA(M))-invariant RV-germs, tp(a/M) = tp(a′/M) is
Aut(M/ARV(M)LinA(M))-invariant. �

Let us conclude this section by relating Theorem 4.1.1 to imaginaries:
Proposition 4.4.8. Let T ⊇ Hen0 be an L-theory, such that:
(D) For every strict pro-L(A)-definable X ⊆ Kx, with A = acleq(A) ⊆

M eq ⊧ T eq, there exist an Aut(M/G(A))-invariant p ∈ S0
x(M) con-

sistent with X;
(QK) For every tuple a ∈ K(M), with M ⊧ T , tp1(f(a)) ⊢ tp(a), where

f ∶ K → Kx is pro-L-definable and L0 ⊆ L1 ⊆ L such that L1 is an
RV-enrichment of L0;

(Ik) The residue field k is infinite;
(SE) RV and R = ⋃`O/`m are stably embedded.

Let M ⊧ T , e ∈M eq and A = acleq(e). Then
e ∈ dcleq(K(A) ∪ (RV ∪LinG(A))eq(A)).

Proof. Let M ⊧ T be saturated and sufficiently large, e ∈ M eq and A =
acleq(e). Then e = g(a) for some L-definable map g and tuple a ∈ K(M).
Let Y = g−1(e) and X = f(Y ), which is a strict pro-L(A)-definable set.
By (D), there exists an Aut(M/G(A))-invariant p ∈ S0

x(M) consistent with
X. We may assume that f(a) ⊧ p. By Theorem 4.1.1, tp1(f(a)/M) is
Aut(M/G(A)RV(M)LinG(A)(M))-invariant. By (QK), tp(a/M) — and
hence e ∈M eq — is also Aut(M/G(A)RV(M)LinG(A)(M))-invariant.
Since LinG(A) is a collection of free O/`m-modules, LinG(A) and, in fact
LinG(A) ∪ RV, is stably embedded. By Lemma 4.2.3, e ∈ dcleq(G(A) ∪
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RV(M) ∪ LinG(A)(M)) — i.e., e = h(c) for some L(G(A))-definable map
h and tuple c ∈ RVm(M) × LinnG(A)(M). Let Z = h−1(e). Then ⌜Z⌝ ∈
(RV ∪LinG(A))eq(A) and

e ∈ dcleq(G(A)⌜Z⌝) ⊆ dcleq(G(A) ∪ (RV ∪LinG(A))eq(A))
⊆ dcleq(K(A) ∪ (RV ∪LinG(A))eq(A)),

since G(A) ∖K(A) ⊆ Lineq
G(A)(A). �

5. Imaginaries in short exact sequences

In this section we will establish results which yield a relative understanding
of imaginaries in certain pure short exact sequences of modules.

5.1. The core case. We start with a well known lemma. We include a
proof for convenience.

Lemma 5.1.1. Let D and C be stably embedded (ind-)definable sets in
D ∪C, such that D ⊥ C.

(1) Assume that both D and C (considered with the full induced struc-
tures) weakly eliminate imaginaries. Then D ∪C weakly eliminates
imaginaries.

(2) Assume that both D and C eliminate imaginaries and that in C one
has dcl = acl. Then D ∪C eliminates imaginaries.

Proof. (1) Let X ⊆Dm ×Cn be a definable subset. Since D ⊥ C, the
equivalence relation ∼ on Cn, given by c ∼ c′ ∶⇔Xc =Xc′ , has finitely many
equivalence classes Z1 = c1/ ∼, . . . , Zk = ck/ ∼. As ∼ is ⌜X⌝-definable and C
is stably embedded, the Zi are all Ceq(acleq(⌜X⌝))- definable.
For i = 1, . . . , k, set Yi =Xci ⊆Dm, which is Deq(acleq(⌜X⌝))-definable since
D is stably embedded. As D and C weakly eliminate imaginaries, there
are finite tuples d ∈ D(acleq(⌜X⌝)) and c ∈ C(acleq(⌜X⌝)) such that the Yi
are all d-definable and the Zi are all c-definable. Thus X = ⋃ki=1(Yi ×Zi) is
dc-definable, so in particular D(acleq(⌜X⌝))C(acleq(⌜X⌝)-definable.
(2) The assumptions on C yield Ceq(acleq(⌜X⌝)) ⊆ dcleq(C(⌜X⌝)), and so
the sets Z1, . . . Zk are c-definable for some c ∈ C(⌜X⌝). In particular the
Yi are then all ⌜X⌝-definable, thus Deq(⌜X⌝)-definable. By elimination of
imaginaries in D, we find d ∈ D(⌜X⌝) such that all Yi are d-definable. We
now finish as in (1). �

Fact 5.1.2. Let G be a group, and let H1, . . . ,HN be subgroups of G. Then
the left cosets of the Hi form a pre-basis of closed sets for a noetherian
topology on G. Moreover, setting HI ∶= ⋂i∈I Hi for I ⊆ {1, . . . ,N}, the
irreducible closed sets for this topology are precisely the left cosets of those
HI with the property that any proper subgroup of HI of the form HJ is of
infinite index in HI .

Proof. This is an easy consequence of Neumann’s Lemma. �
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Let R be an integral domain, L ⊇ LR−mod and M an L-expansion of an
infinite torsion free R-module. Let Z ⊆Mn be an L(M)-definable set. We
set dimR(Z) ∶= max{dimR(c/M) ∶ c ∈ Z(N)}, where N ≽ M is sufficiently
saturated and dimR(a/B) denotes the Q(R)-linear dimension of a over B,
for Q(R) the field of fractions of R.

Lemma 5.1.3. In the above situation, assume dimR(Z) ⩽ r. Then there
are definable sets C1, . . . ,Cs ⊆Mn with the following properties:

(1) ⋃si=1Ci is ⌜Z⌝-definable.
(2) Each Ci is acleq(⌜Z⌝)-definable.
(3) Each Ci is of the form γi +Hi, where Hi is a definable R-submodule

of Mn given by a condition Lix
′ = mx′′, for some splitting of the

variables x = x′x′′ with ∣x′∣ = r and ∣x′′∣ = n − r, matrix Li ∈ R(n−r)×r

and m ∈ R ∖ {0}. (In particular, dimR(Ci) = r for all i.)
(4) Z ⊆ ⋃si=1Ci

Moreover, if Z is a definable family such that dimR(Zb) ⩽ r for all b, there
are finitely many R-submodules H1, . . . ,HN as in the statement such that
for any b the Ci may be chosen among the cosets of the Hk.

Proof. By compactness there are sets C1, . . . ,CN with Ci = δi +Hi as in (3)
such that Z ⊆ ⋃Ni=1Ci. Note that all Hi are ∅-definable subgroups.
By Fact 5.1.2, the cosets of the Hi form a pre-basis of closed sets for a
noetherian topology on Mn. In particular, in this topology there exists a
smallest closed subset W of Mn containing Z, and this W is clearly ⌜Z⌝-
definable. The (finitely many) irreducible components of W are then all
acleq(⌜Z⌝)-definable. If Wj is such an irreducible component, it is of the
form Wj = γj +⋂i∈Ij Hi (where Ij ≠ ∅ in case r < n, since Z ⊆ ⋃Ni=1 δi +Hi by
assumption). As the Hi are ∅-definable, it is easy to see that if we replace
each component Wj = γj + ⋂i∈Ij Hi by W ′

j = ⋃i∈Ij γj +Hi, then the union
of all W ′

j is ⌜Z⌝-definable and each coset γj +Hi occurring in this union is
acleq(⌜Z⌝)-definable.
The moreover part follows by compactness. �

Theorem 5.1.4. Let R be an integral domain and M be
0→A→ B→C→ 0

a short exact sequence of R-modules, in an A-C-enrichment L of the pure
(in the sense of model theory) three sorted sequence of R-modules. Assume
the following properties hold:

(1) A is a pure submodule of B (in the sense of module theory),
(2) C is torsion free,
(3) For any l ∈ R ∖ {0}, the quotient C/lC is finite and the preimage in

B of any coset c+ lC contains an element which is algebraic over ∅.
Let e ∈M eq. Then, setting E ∶= acleq(e) and ∆ ∶= C(E), we have

e ∈ dcleq(Ceq(E)Beq
∆ (E)),

where B∆ denotes the union of all fibers Bδ with δ ∈ ∆.
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We will prove a a slight generalization of Theorem 5.1.4, namely the following
Theorem 5.1.5.

Theorem 5.1.5. Let R̃ be a ring and R = R̃/I an integral domain, with I
a finitely generated ideal. Let M be

0→ Ã→ B̃→ C̃→ 0

a short exact sequence of R̃-modules, in an Ã-C̃-enrichment L of the pure
(in the sense of model theory) three sorted sequence of R̃-modules. Let A =
{a ∈ Ã ∶ Ia = (0)}, and let B and C be the R̃-submodules of B̃ and C̃ defined
similarly. Consider A,B,C as R-modules in the natural way.
Assume the following properties hold:

(1) Ã is a pure R̃-submodule of B̃ (in the sense of module theory),
(2) C = C̃,
(3) C is a torsion free R-module,
(4) For any l ∈ R ∖ {0}, the quotient C/lC is finite and the preimage in

B̃ of any coset c+ lC contains an element which is algebraic over ∅.
Let e ∈M eq. Then, setting E ∶= acleq(e) and ∆ ∶= C(E), we have

e ∈ dcleq(Ceq(E)B̃eq
∆ (E)),

where B̃∆ denotes the union of all B̃δ for δ ∈ ∆.

Proof. Denote ι ∶ Ã→ B̃ and v ∶ B̃→ C̃ the structural maps.
Note that in particular Ã = B̃0 ⊆ B̃∆. By (1), Ã and C̃ are (purely)
stably embedded in T , with Ã ⊥ C̃. Indeed, replacing M by a sufficiently
saturated extension, the purity assumption (1) entails that the short exact
sequence of R̃-modules is split, and adding a splitting yields an expansion
in which B̃ is just the product structure of Ã and C̃. Thus the claimed
properties hold in an expansion in which Ã and C̃ are unchanged, so the
same properties already hold inM . As B̃∆ is internally Ã-internal, it follows
from Lemma 2.5.18 that B̃∆ is stably embedded in T (over ∆), and one has
B̃∆ ⊥ C̃.
Since I is finitely generated, A,B and C are definable, and it follows from
purity of the initial exact sequence that the induced sequence of R-modules

0→A→ B→C→ 0

is also exact.
Let X ⊆ B̃n be L(M)-definable with ⌜X⌝ = dcleq(e). Assume dimR(v(X)) =
r. Up to passing to some subset of X which is definable over acleq(⌜X⌝) = E,
we may assume, using Lemma 5.1.3, that there are L ∈ R(n−r)×r, m ∈ R∖{0}
and δ′′ ∈ Cn−r such that for x = x′x′′ with ∣x′∣ = r, we have mv(x′′) =
Lv(x′) + δ′′ for any x = x′x′′ ∈X. We now consider the (fiberwise) action of
(Ar,+) on B̃n given by

a ⋅ (x′, x′′) ∶= (x′ +ma,x′′ +La).
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Claim 5.1.6. There is l ∈ R ∖ {0} such that

dimR({z ∈ v(X) ∶Xz is not lAr-invariant}) < r.

Proof. Let π(z) be the partial type expressing that z ∈ v(X) and that
dimR(z/M) = r, and let τ(y) be the partial type expressing that y ∈ lAr

for any l ∈ R ∖ {0}. Given a solution (c, a) ⊧ π(z) ∪ τ(y) in N ≽ M , with
c = c′c′′. Then there is an R-linear map θ ∶ C(N) →A(N) which is trivial on
C(M) and such that θ(c′) =ma. Indeed, such a map θ may be found as the
restriction of an R-linear map from C(N) ⊗R Q(R) to A(N), by choosing
a coherent sequence of integer divisors of a.
For b ∈ B̃(N), let ρ(b) ∶= b+ θ(v(b)). Then ρ is an R̃-module-automorphism
of B̃(N) which induces the identity on B̃(M) ∪ Ã(N) ∪C(N). It follows
from the assumptions that ρ ∈ AutL(N/M).
In particular, for any b ∈ Xc, we have tp(b/M) = tp(ρ(b)/M) and so ρ(b) ∈
Xc. On the other hand, as c′′ = (Lc′ + δ′′)/m = Lc′/m + δ′′/m and v(b) =
(c′, c′′), using L ○ θ = θ ○L we compute

θ(v(b)) = (θ(c′), θ(c′′)) = (θ(c′), θ(Lc′/m) + θ(δ′′/m)) = (ma,La),
from which it follows that

ρ(b) = b + θ(v(b)) = (b′ + θ(c′), b′′ + θ(c′′)) = (b′ +ma, b′′ +La) = a ⋅ (b′, b′′).
Thus Xc is invariant under the action by ⋂l∈R∖{0} lAr. Claim 5.1.6 now
follows by compactness. �

Fix l ∈ R ∖ {0} as in the claim. Arguing by induction on r, we may assume
that Xz is lAr-invariant for any z ∈ v(X). In addition, using assumption (4),
we may suppose that v(X) ⊆ mlCn. Indeed, there are only finitely many
cosets of mlCn, all acleq(∅)-definable, so we may assume X ⊆ v−1(W ) for
a coset W of mlCn. Replacing X by X − h for some h ∈ W ∩ acl(∅) if
necessary, we may assume W =mlCn. Let a ∈ Ãr and c ∈ Cn. If there exist
b1 = b′1b′′1 ∈Xc and b′0 ∈ Br such that b′1 = a +mlb′0, we set

Ya,c ∶= {b′′ − lLb′0 ∶ (b′1, b′′) ∈X} =X(b′1) − lLb
′
0,

where X(b′1) denotes the fiber {b
′′ ∈ B̃n−r ∶ (b′1, b′′) ∈X}. Else we set Ya,c ∶= ∅.

Let us first show that in the first case, Ya,c does not depend on the choice of
b1 and b′0. Indeed, if d1 = d′1d′′1 ∈Xc and d′0 ∈ Br are such that d′1 = a+mld′0,
then b′1 − d′1 = ml(b′0 − d′0), so mlv(b′0 − d′0) = 0, thus v(b′0 − d′0) = 0, i.e.,
b′0 − d′0 ∈ Ar. Set a′0 ∶= l(b′0 − d′0). For d′′ ∈ X(d′1), the invariance of Xc under
lAr then yields

a′0 ⋅ (d′1, d′′) = (d′1 +ma′0, d′′ +La′0) = (b′1, d′′ +La′0) ∈Xc,

so d′′+lL(b′0−d′0) = d′′+La′0 ∈X(b′1), showing that X(d′1)−lLd
′
0 ⊆X(b′1)−lLb

′
0.

By symmetry, we get the other inclusion X(b′1) − lLb
′
0 ⊆ X(d′1) − lLd

′
0, thus

X(b′1) − lLb
′
0 =X(d′1) − lLd

′
0.
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Let δ′′ = (δ′′i )1⩽i⩽n−r and let b′ = a+mlb′0 be as in the definition of Ya,c. Then
for y = b′′ − lLb′0 ∈ Ya,c, we compute

mv(y) =mv(b′′) −mlLv(b′0) = (Lv(b′) + δ′′) −Lv(b′) = δ′′,

yielding Ya,c ⊆ B̃δ′′/m = ∏n−r
i=1 B̃δ′′i /m. It follows that

Y ⊆ (B̃δ′′/m × Ãr) ×Cn.

As δ′′/m ∈ C(E) = ∆ and B̃∆ ⊥ C, using Lemma 5.1.1(1), we finish the
proof of the theorem once the following claim is established.

Claim 5.1.7. ⌜X⌝ and ⌜Y ⌝ are interdefinable.

It is clear by construction that Y is ⌜X⌝-definable. For the converse, we will
use that we have reduced to the case where v(X) ⊆ mlCn. We may thus
reconstruct X from Y as follows:

d = d′d′′ ∈X⇔∃a ∈ Ẽr ∃d′0 ∈ Br ∶ d′ = a +mld′0 and d′′ ∈ Ya,v(d) + lLd′0
This yields the claim. �

5.2. Some variants. We will now state two variants of Theorem 5.1.5,
tailor made for our applications to (enriched) henselian valued fields.

Variant 5.2.1. Let L be a multisorted language, A⊔{B̃} ⊔ C a partition of
the sorts of L and let Ã ∈ A and C̃ ∈ C. Let R̃ be a ring and R = R̃/I an
integral domain, with I a finitely generated ideal. Let

(5.1) 0→ Ã→ B̃→ C̃→ 0

be a short exact sequence of R̃-modules. Let M be an L-structure which is
an A-C-enrichment of the pure (in the sense of model theory) sequence of
R̃-modules (5.1). Assume that the properties (1)-(4) from the statement of
Theorem 5.1.5 hold.
Let e ∈M eq. Then, setting E ∶= acleq(e) and ∆ ∶= C(E), we have

e ∈ dcleq(Ceq(E) ∪ (A ∪ B̃∆)eq(E)),

where B̃∆ denotes the union of all B̃δ for δ ∈ ∆.

Proof. The proof is a slight variation of the proof of Theorem 5.1.5. Let us
indicate the necessary adaptations.
Firstly, it follows from the assumptions that A and C are (purely) stably
embedded with A ⊥ C. Thus, by Lemma 2.5.18, (A ∪ B̃∆) ⊥ C and A∪ B̃∆
is stably embedded.
Given e ∈ M eq, we choose an L(M)-definable set X ⊆ A′ × C′ × B̃n with
e = ⌜X⌝, where A′ is a finite product of sorts from A and C′ is a finite
product of sorts from C. For (a′, c′) ∈ A′ ×C′, let

(a′,c′)X ⊆ B̃n
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be the fiber over (a′, c′). Performing the same reductions as in the proof of
Theorem 5.1.5, by compactness, we may assume that there is an ∅-definable
set

Y ⊆ A′ ×C′ × B̃δ ×Cn

for some finite tuple δ ∈ ∆ such that for any (a′, c′) ∈ A′ ×C′, ⌜(a′,c′)X⌝ and
⌜(a′,c′)Y ⌝ are interdefinable, so in particular, ⌜X⌝ and ⌜Y ⌝ are interdefinable.
The result then follows from Lemma 5.1.1, since (A ∪ B̃∆) ⊥ C. �

The second variant is designed for applications to henselian valued fields in
mixed characteristic.

Variant 5.2.2. Let L be a multisorted language, A ⊔ {B̃n ∶ n ∈ N} ⊔ C a
partition of the sorts of L. For any n ∈ N, let Ãn ∈ A, and let C̃ ∈ C. Let
R̃ be a ring and R = R̃/I an integral domain, with I a finitely generated
ideal. Let Ã = (Ãn)n∈N, B̃ = (B̃n)n∈N be projective systems of R̃-modules
with surjective transition functions, let C = (C̃n)n∈N be the projective system
with C̃n = C̃ for all n and identical transition functions. Let

(5.2) 0→ Ã→ B̃→ C̃→ 0

be a short exact sequence of projective systems of R̃-modules.
Let M be an L-structure which is an A-C-enrichment of the pure (in the
sense of model theory) sequence of projective systems of R̃-modules (5.2).
Assume that for very n ∈ N the exact sequence 0 → Ãn → B̃n → C̃ → 0
satisfies the properties (1)-(4) from the statement of Theorem 5.1.5.
Let e ∈M eq. Then, setting E ∶= acleq(e) and ∆ ∶= C(E), we have

e ∈ dcleq(C̃eq(E)(A ∪ B̃∆)eq(E)),

where B̃∆ denotes the union of all (B̃n)δ for δ ∈ ∆ and n ∈ N.

Proof. Let us first show that A and C are (purely) stably embedded in M
such that A ⊥ C. For this, given N ∈ N, we consider the structure MN given
by restricting M to the sorts A⊔ {B̃m ∶ m ⩽ N} ⊔ C. For m ⩽ N we denote
by pN,m the structural map from B̃N to B̃m and by qN,m the one from ÃN

to Ãm. For any m ⩽ N , the sequence S̃m of R̃-modules

0→ Ãm → B̃m → C̃→ 0

is interpretable in the sequence S̃N once a predicate for ker(qN,m) ⩽ ÃN is
added. Thus, MN may be seen as an A-C-enrichment of S̃N
As in the previous proofs, it follows that A ∪ B̃∆ is stably embedded in
M , with (A ∪ B̃∆) ⊥ C̃. Given e ∈ M eq, we choose X ⊆ A′ × C′ × B̃n

k
L(M)-definable with e = ⌜X⌝, where A′ is a finite product of sorts from
A, C′ is a finite product of sorts from C and k ∈ N. Let N ⩾ k be such
that X may be defined using formulas involving only variables from sorts
in A ∪ C ∪ {B̃i ∶ i ⩽ N}. Since, for N ⩾ m, S̃m is interpretable in an A-C-
enrichment of S̃N , we may conclude with Variant 5.2.1. �
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5.3. Imaginaries in RV. Recall that in a finitely ramified henselian valued
field, the projective system of short exact sequences:

1→R×
n →RV×

n → Γ× → 0
is stably embedded with the induced structure a Γ-R-enrichment of the
pure short exact sequence of abelian groups. Thus Variant 5.2.2 applies and
yields the following elimination of imaginaries:

Proposition 5.3.1. Let M be a Γ-R-enriched finitely ramified henselian
field, A ⊆ G(M), e ∈ (RV ∪LinA)eq(M) and E = acleq(e). Assume that:

● For every n, ` ∈ Z>0, Γ/`Γ is finite and the preimage in RVn of any
coset of `Γ contains an element which is algebraic over ∅.

Then e ∈ dcleq(Γeq(E) ∪ (LinA ∪RVΓ(E))eq(E)).

In particular, for A = acleq(A) ⊆M eq, (RV∪LinG(A))eq(A) ⊆ dcleq(Γeq(A)∪
Lineq

G(A)(A)).

Proof. We apply Variant 5.2.2 with R = R̃ = Z. Since Γ is ordered is it a
torsion free Z-module, so (1) - (3) hold and (4) holds by hypothesis. �

These result also apply with an automorphism:

Proposition 5.3.2. Let M ⊧ VFAmult
0,0 , A ⊆ G(M), e ∈ (RV ∪LinA)eq(M)

and E = acleq(e). Then e ∈ dcleq(AΓ(E)RVΓ(E)(E)LinA(E)).

In particular, for A = acleq(A) ⊆M eq, (RV ∪LinG(A))eq(A) ⊆ dcleq(G(A)).

Proof. We apply Variant 5.2.1 with R = Z[σ] and I ∶= {P ∈ Z[σ] ∶ P (Γ) =
0}. Hypothesis (1) holds by assumption. Hypothesis (2) and (3) hold by
multiplicativity: if c ∈ Γ>0 and P ∈ Z[σ] are such that P (c) = 0, then for all
c ∈ Γ, P (c) = 0 and P ∈ I. Finally hypothesis (4) holds by divisibility.
So e ∈ dcleq(Γeq)(E) ∪ (LinA ∪RVΓ(E))eq(E). But Γ is an ordered vector
field over (the field of fraction of) Z[σ]/I, so it eliminates imaginaries. Also,
by Proposition 2.5.19, LinA ∪ RVΓ(E) weakly eliminate imaginaries. So
Γeq(E) ⊆ dcleq(Γ(E)) and

(LinA ∪RVΓ(E))eq(E) ⊆ dcleq(LinA(E)RVΓ(E)(E)).
The result follows. �

6. Imaginaries in valued fields

6.1. The henselian case. Let Henac
0 denote the RV-enrichment of Hen0

with a compatible system of angular components acn ∶ K→R×
n — we denote

this language by Lac. We fix T a Γ-k-enrichment of either Hen0 or Henac
0 .

Recall that the two sorted language Lmod is given by a sort A endowed
with the language of rings, a sort V endowed with the language of abelian
groups and a function symbol µ ∶ A × V → V for scalar multiplication.
Let t` denote the ∅-induced theory on R`. For every X ⊆ V2 definable
in the A-enriched theory of free rank n ∈ Z>0 modules over models of t`,
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we define the equivalence relation EX on V by vEXw if Xv = Xw and
Tn,`,X ∶= ⊔s∈Sn(V/EX)(R`,s/`ms). Let Rleq denote ⊔n,`,X Tn,`,X , the R-
linear imaginaries. We can now prove our imaginary Ax-Kochen-Ershov
principle:

Theorem 6.1.1 (Theorem A). Let T be a Γ-k-enrichment of either Hen0
or Henac

0 , such that:
(CΓ) T has definably complete value group;
(FR) For every ` ∈ Z>0, the interval [0,v(`)] is finite and k is perfect;
(Ik) The residue field k is infinite;
(E∞

k ) The induced theory on k eliminates ∃∞.
Then T weakly eliminates imaginaries in K ∪Γeq ∪Rleq.

Proof. We will use Proposition 4.4.8. By Theorem 3.1.3, hypothesis (D)
holds. Hypothesis (QK) holds trivially for L1 = L — and f = id. Also,
RV and R are stably embedded in characteristic zero henselian fields. Let
M ⊧ T , e ∈ M eq and A = acleq(e). By Proposition 4.4.8, e ∈ dcleq(K(A) ∪
(RV ∪LinG(A))eq(A)).

Claim 6.1.2. (RV ∪LinG(A))eq(A) ⊆ dcleq(Γeq(A) ∪Lineq
G(A)(A))

Proof. If T ⊇ Henac
0 , then RVn is Lac isomorphic to R×

n × Γ and the iso-
morphisms are compatible as n varies. It follows that (RV ∪ LinG(A))eq ⊆
(Γ∪LinG(A))eq, and since Γ and LinG(A) are orthogonal, the claim follows.
If T is a Γ-k-enrichment of Hen0, the claim follows from Proposition 5.3.1.
Note that by (CΓ), Γ ≡ Q or Γ ≡ Z and hence Γ/nΓ is finite and every coset
is represented in Γ(dcleq(∅)). �

Claim 6.1.3. Lineq
G(A)(A) ⊆ dcleq(Rleq(A))

Proof. Recall that LinG(A) is stably embedded. It follows that, for every
e ∈ Lineq

G(A)(A), taking tensor products of lattices, we may assume that there
exists n, ` ∈ Z>0 and s ∈ Sn(A) such that e codes some subset Xa of s/`ms
and a a single parameter in s/`ms. Since s/`ms is definably isomorphic to
Rn
` once we name a basis, it follows that X is definable with parameters in

the Lmod-structure (R`, s/`ms) — so e ∈ dcleq(Tn,`,X(A)). �

It follows that e ∈ dcleq(K(A) ∪ Γeq(A) ∪ Rleq(A)), which concludes the
proof. �

Let kleq ∶= ⊔s,n,X(V/EX)(k,s/ms).
Corollary 6.1.4. Let F be a characteristic zero field that eliminates ∃∞.
Then any valued field elementarily equivalent to F ((t)) or F ((tQ)) (with or
without angular components) weakly eliminate imaginaries in K ∪ kleq. �

In certain cases, the elimination of imaginaries in Th(k)-linear structures
allows to further reduce this result to the geometric sorts. We can then also
code finite sets, by adapting an argument of Johnson [Joh20, Section 5.3]:
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Proposition 6.1.5. Let M be a henselian valued field such that:
(Ik) The residue field k is infinite;

(CbK) For any A = dcleq(A) ⊆M eq, any L(A)-definable type p ∈ S0
Kn(M)

finitely satisfiable in M is L0(G(A))-definable.
Then every finite set in G is coded in G.

Proof. The proposition follows from:

Claim 6.1.6. Let C ⊆ G be a finite set. There exists an L(⌜C⌝)-definable
type pC ∈ S0

Kn(M) finitely satisfiable in M such that C is L(a)-definable for
any a ⊧ pC .

Indeed taking pC as in the claim, by (CbK), pC is G(dcleq(⌜C⌝))-definable
and hence, so is C.
We now prove the claim. We start by considering C = {s} ⊆ Sn. By (Ik),
the generic type qn of GLn(O) (that is, the quantifier free type that reduces
to the generic of GLn(k) modulo m) is finitely satisfiable in M . Note also
that it is L0-definable and symmetric (cf., [Joh20, Section 3.3]): for every
definable quantifier free type r, qn⊗r = r⊗qn. Let B be the matrix associated
to some basis of s in M and let ps = B ⋅ qn. This type does not depend on
B, is L0(s)-definable, finitely satisfiable in M and symmetric.
If C ⊆ Sn, let a ⊧ ⊗s∈C ps and A be the set of the as, for s ∈ S. Since finite
subsets of K are coded in K, ⌜A⌝ can be identified with a tuple in K. Then
pC = tp0(⌜A⌝/M) does not depend on a choice of enumeration of C and thus
it is L(⌜C⌝)-definable (and finitely satisfiable in M). Note that if Γ(M)
has a smallest positive element, we are done since, for any lattice s, ms is
(L-definably isomorphic to) a lattice and hence Tn L-definably embeds in
Sn+1 by the usual identification of translates of linear spaces with higher
dimensional linear spaces.
Let us now assume that Γ(M) does not admit a smallest positive element.
We first consider the case where C ⊆ Ki × kj . Let E ⊆ k be the set of
elements of k appearing as coordinates of elements in C, let b be the tuple
of coefficients of the polynomial ∏e∈E(x−e) and let pE ∈ S0(M) be the type
of generic lifts of b ∈ k to O. This type is L(⌜C⌝)-definable and finitely
satisfiable in M since the value group does not admit a smallest positive
element. Then for any a ⊧ pE , res induces a bijection between the L0(a)-
definable set of roots of the polynomial ∑` a`x` and E. It follows that C is
in L0(a)-definable bijection with a subset D of Ki+j , which is coded in some
cartesian power of K. Then pC = tp0(a⌜D⌝/M) has the required properties.
Let us finally consider e ∈ Tn(M) and let s = τn(e) (see page 9). If a ⊧
ps, then e is L0(a)-definably isomorphic to a tuple b ∈ k. The type pe =
tp0(ab/M) is L0(e)-definable, finitely satisfiable in M and symmetric —
since k is quantifier free stable. If C ⊆ Tn, let a ⊧ ⊗e∈C pe and A ⊆ Ki × kj
be the set of the ae, for e ∈ C. Then, applying the previous paragraph to A,
we find pC as required. �
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The authors would like to thank Ehud Hrushovski for his insights on the
correct statement of the following corollary.

Corollary 6.1.7. Let F be a characteristic zero field that is either alge-
braically closed, pseudofinite or real closed. Then any valued fieldM elemen-
tarily equivalent to F ((t)) or F ((tQ)) (with or without angular components),
eliminates imaginaries in G provided we add the following (imaginary) con-
stants:

● if F is real closed and the value group is a Z-group with minimal
positive element γ0, a constant for a half line of RV1,γ0;

● if F is pseudofinite, constants for a generator of Galois of F — see
[Hru12, Section 5.9];

● if F is pseudofinite and the value group is a Z-group with minimal
positive element γ0, a constant for a (k⋆)n-orbit in RV1,γ0, for every
n ⩾ 1.

Proof. Let A = dcleq(A) ⊆M eq. By 2.5.13, LinA(M) is a Th(k(M))-linear
structure with flags. If k(M) is algebraically closed, by [Hru12, Lemma 5.6],
it eliminates imaginaries. If k(M) is real closed, LinA also eliminates imag-
inaries by Propositions 2.5.21 and 2.5.24 and Remark 2.5.25. If k(M) is
pseudofinite and Γ(M) is divisible, LinA(M) has roots and we conclude
with [Hru12, Theorem 5.10]. If Γ(M) is a Z-group, LinA does not have
roots, but by [Hru12, Remark 5.8] it suffices to insure the existence of an
∅-definable (k⋆)n-orbit inside each one dimensional vector space of LinA,
i.e., each RV1,γ with γ ∈ Γ(A). For every n, write γ as iγ0+nδ. By assump-
tion, there exists ∅-definable (k⋆)n ⋅ ξ ⊆ RV1,γ0 . Then (k⋆)n ⋅ ξiζn ⊆ RV1,γ
is independent of the choice of ζ ∈ RV1,δ and thus ∅-definable.
It now follows from Corollary 6.1.4 that M weakly eliminates imaginaries in
G and we conclude with Proposition 6.1.5. �

Not all of these results are new, although all of the statements with angular
components are. The case of C((tQ)) just amounts to Haskel-Hrushovski-
Macpherson’s result [HHM06] for ACVF. The case of R((tQ)) is Mel-
lor’s result [Mel06] for RCVF and the case of F ((t)), with F pseudofi-
nite, is Hrushovski-Martin-Rideau’s result [HMR18] for pseudolocal fields
— slightly improved since we only require algebraic constants in RVeq

1 and
not in K.

Corollary 6.1.8. Let F be a positive characteristic perfect field that elim-
inates ∃∞. Then W(F ) (with or without compatible angular components)
weakly eliminate imaginaries in K ∪Rleq. �

It seems plausible that, if F ⊧ ACF, the R-linear imaginaries can also be
eliminated, yielding elimination of imaginaries in G for W(Fa

p). However,
this remains an open problem.

6.2. The σ-henselian case. Let us conclude with the description of the
imaginaries in VFAmult

0,0 :
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Theorem 6.2.1 (Theorem B). The theory VFAmult
0,0 (with or without equi-

variant angular components) eliminates imaginaries in G.

Proof. Any model of VFAmult
0,0 is elementarily equivalent to a maximally com-

plete one and hence (CB) holds. By Fact 2.4.7, the structure induced on
Γ is o-minimal. So (CΓ) and (E∞

Γ ) hold. Finally, (E∞
k ) holds since ACFA

eliminates ∃∞. By Theorem 3.1.1, (D) holds. Hypothesis (QK) follows
from Fact 2.4.4, with L1 ∶= LRV ∪ {σRV} and f(x) ∶= (σn(c))n∈Z⩾0 . So, by
Proposition 4.4.8, for everyM ⊧ VFAmult

0,0 , e ∈M eq and A = acleq(e), we have
e ∈ dcleq(K(A)∪(RV∪LinG(A))eq(A)). By Proposition 5.3.2 — or using the
angular components — we have (RV ∪LinG(A))eq(A) ⊆ dcleq(G(A)). �

Similar results hold in differential valued fields.

Corollary 6.2.2. The following two families of difference valued fields, in-
dexed by integer primes p:

(1) Kp ∶= (Fp(t)a,vt, φp), where φp is the Frobenius automorphism;
(2) Kp ∶= (Cp,vp, σp), where σp is an isometric lift of the Frobenius

automorphism on k(Cp) = Fa
p.

uniformly eliminate imaginaries in G for large p: for every LσRV-definable
sets X ⊆ Y × Z, there exists an LσRV-definable map f ∶ Z →W , where W is
a product of sorts in G and some N ∈ Z⩾0 such that, for every prime p > N
and z1, z2 ∈ Z(Kp), f(z1) = f(z2) iff and only if Xz1(Kp) =Xz1(Kp). �

As noted earlier, in case (1), since Kp is a definable expansion of a model of
ACVF which also eliminates imaginaries in the geometric sorts, the result
is even uniform in all p.
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