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Valued fields with operators

We want to study (quantifier free) definable sets in (existentially closed):

VDFEC Equicharacteristic zero valued fields with a contractive derivation:
for all x > K, v�∂�x�� C v�x�.

E.g.

k��tΓ�� with ∂�Q
γ

cγtγ� �Q
γ

∂k�cγ�t
γ ,

where �k, ∂k� à DCF and Γ is divisible.

SCVHp,e Characteristic p valued fields with e commuting Hasse derivations.
VFA Equicharacteristic zero valued field with an ω-increasing

automorphism: for all x > O and n > ZC, v�σ�x�� C n � v�x�.

E.g.

k��tΓ�� with σ�Q
γ

cγtγ� �Q
γ

σk�cγ�t
σΓ�γ�,

where �k, σk� à ACVA, Γ is divible and σΓ is ω-increasing,

or:

M
p�U

�Fp�t�, vt, φp�

where U is a non-principal ultrafilter on the set of primes.
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Prolongations I

Let �K, ∂� à DCF.

L Let V be an affine ∂-variety over K. We defineDn�x� �� �x, . . . , ∂n�x��,

Vn � �Dn�x� � x > V�
Zar

and Vω �� lim
�Ð
n

Vn.

L The ∂-variety V is completely determined by the pro-algebraic
variety Vω .

L Vω can be identified with the ideal:

�P > K�X� � ¦x > V, P�Dn�x�� � � b K�Xi � i C �,

or, when V is irreducible, with the complete type in
Lrg � ��,�, �,, � over K:

pω �� �P�Dn�x�� �  � P > I� 8 �P�Dn�x�� x  � P ¶ I�.

 / 



Prolongations I

Let �K, ∂� à DCF.
L Let V be an affine ∂-variety over K. We defineDn�x� �� �x, . . . , ∂n�x��,

Vn � �Dn�x� � x > V�
Zar

and Vω �� lim
�Ð
n

Vn.

L The ∂-variety V is completely determined by the pro-algebraic
variety Vω .

L Vω can be identified with the ideal:

�P > K�X� � ¦x > V, P�Dn�x�� � � b K�Xi � i C �,

or, when V is irreducible, with the complete type in
Lrg � ��,�, �,, � over K:

pω �� �P�Dn�x�� �  � P > I� 8 �P�Dn�x�� x  � P ¶ I�.

 / 



Prolongations I

Let �K, ∂� à DCF.
L Let V be an affine ∂-variety over K. We defineDn�x� �� �x, . . . , ∂n�x��,

Vn � �Dn�x� � x > V�
Zar

and Vω �� lim
�Ð
n

Vn.

L The ∂-variety V is completely determined by the pro-algebraic
variety Vω .

L Vω can be identified with the ideal:

�P > K�X� � ¦x > V, P�Dn�x�� � � b K�Xi � i C �,

or, when V is irreducible, with the complete type in
Lrg � ��,�, �,, � over K:

pω �� �P�Dn�x�� �  � P > I� 8 �P�Dn�x�� x  � P ¶ I�.

 / 



Prolongations I

Let �K, ∂� à DCF.
L Let V be an affine ∂-variety over K. We defineDn�x� �� �x, . . . , ∂n�x��,

Vn � �Dn�x� � x > V�
Zar

and Vω �� lim
�Ð
n

Vn.

L The ∂-variety V is completely determined by the pro-algebraic
variety Vω .

L Vω can be identified with the ideal:

�P > K�X� � ¦x > V, P�Dn�x�� � � b K�Xi � i C �,

or, when V is irreducible, with the complete type in
Lrg � ��,�, �,, � over K:

pω �� �P�Dn�x�� �  � P > I� 8 �P�Dn�x�� x  � P ¶ I�.

 / 



Prolongations I

Let �K, ∂� à DCF.
L Let V be an affine ∂-variety over K. We defineDn�x� �� �x, . . . , ∂n�x��,

Vn � �Dn�x� � x > V�
Zar

and Vω �� lim
�Ð
n

Vn.

L The ∂-variety V is completely determined by the pro-algebraic
variety Vω .

L Vω can be identified with the ideal:

�P > K�X� � ¦x > V, P�Dn�x�� � � b K�Xi � i C �,

or, when V is irreducible, with the complete type in
Lrg � ��,�, �,, � over K:

pω �� �P�Dn�x�� �  � P > I� 8 �P�Dn�x�� x  � P ¶ I�.

 / 



Prolongations II

Let �K, v,D� be a valued field with operatorsD.

Let L �� ��,�, �,, , S� be
the language of valued fields and LD �� L 8D.

L LetDω denote all possible compositions of the operators.
L For all complete LD-type p�x� over K we define:

pω � �φ�x� L � formula � φ�Dω�x�� > p�.

VDFEC The map p( pω is injective. This is Scanlon’s elimination of
quantifiers.

SCVHp,e The type pω has a unique extension to a complete type over K. The
map p( pω is injective. This is Delon’s elimination of quantifiers.

VFA The map p( pω is not injective. Indeed the corresponding map on
the residue field is not.
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Definable types

L Let K � K, p�x� a complete type in Lrg over K, I � �P � ”P�x� � ” > p�
and V � V�I�. For all varietiesW over K, we have:

”x >W” > p if and only if V bW.

Definition
A complete type p�x� overM is said to be definable if for every formula
φ�x, y�, there exists a formula θ�y� (with parameters inM) such that, for
all a >My:

φ�x,a� > p if and only if θ�a� holds.

We say that p is defined over A bM is all the θ have parameters in A.

Example
L All complete types in algebraically (respectively differentially) closed
fields are definable.

L The generic type of a ball in an algebraically closed valued field is
definable.
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Prolongations of definable types

L If p�x� is definable, then for all L-formula φ�x, y�, there exists an
LD-formula θ�y� such that for all a > Ky, φ�x,a� > pω if and only if
θ�a� holds.

L But, a priori, there is no such L-formula θ.

Proposition (R.-Simon, Hils-Kamensky-R., Hils-R.)
In VDFEC , SCVHp,e and VFA, if p is definable then pω is definable.
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Density of definable types

L Ideally, each definable X set should contain a ”canonical” definable
type: a definable type which is defined over the same parameters as X
and does not depend on the choice of parameters.

Proposition (R.,Hils-Kamensky-R.)
In VDFEC and SCVHp,e, if X is a definable set, there exists a definable type
p�x� containing ”x > X”. Moreover, for any A such that X is definable over
A, p is definable over A.

L In fact, we build pω first and then get p.
L A similar result holds for VFA but because of the lack of elimination
of quantifiers, we have to consider quantifier free types.
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Elimination of imaginaries

L Let A B K, we say that A is definably closed if it is closed under all
definable functions.

L A structure eliminates imaginaries if every definable set has a
smallest definably closed set of over which it is defined. In that case,
every definable type also has a smallest definably closed set of over
which it is defined.

Example
L Algebraically closed and differentially closed fields eliminate
imaginaries.

L Algebraically closed valued fields do not eliminate imaginaries. By a
result of Haskell-Hrushovski-Macpherson, they do once you add
points for elements of GLn�K�~GLn�O� and GLn�K�~ker�ρ� where
ρ � GLn�O�� GLn�O~m� is the reduction map. We then say that we
are working in the geometric language.
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Imaginaries in valued with operators

L It suffice to show that for all g-definable equivalence, every
equivalence class has a smallest definably closed set of definition.

L Pick X a class of an g-definable equivalence E (in VDFEC or SCVHp,e).
L Find p ”canonical” definable type containing ”x > X”. Then pω has a
smallest definably closed set of definition A. So does p.

L Since x > X is equivalent to ”xEy”> p�y�, X is definable over A.
L If X is defined over some definably closed A, then so is p. Thus A b A.

Theorem (R.,Hils-Kamensky-R.)
VDFEC and SCVHp,e eliminate imaginaries in the geometric language.

 / 



Imaginaries in valued with operators

L It suffice to show that for all g-definable equivalence, every
equivalence class has a smallest definably closed set of definition.

L Pick X a class of an g-definable equivalence E (in VDFEC or SCVHp,e).

L Find p ”canonical” definable type containing ”x > X”. Then pω has a
smallest definably closed set of definition A. So does p.

L Since x > X is equivalent to ”xEy”> p�y�, X is definable over A.
L If X is defined over some definably closed A, then so is p. Thus A b A.

Theorem (R.,Hils-Kamensky-R.)
VDFEC and SCVHp,e eliminate imaginaries in the geometric language.

 / 



Imaginaries in valued with operators

L It suffice to show that for all g-definable equivalence, every
equivalence class has a smallest definably closed set of definition.

L Pick X a class of an g-definable equivalence E (in VDFEC or SCVHp,e).
L Find p ”canonical” definable type containing ”x > X”. Then pω has a
smallest definably closed set of definition A. So does p.

L Since x > X is equivalent to ”xEy”> p�y�, X is definable over A.
L If X is defined over some definably closed A, then so is p. Thus A b A.

Theorem (R.,Hils-Kamensky-R.)
VDFEC and SCVHp,e eliminate imaginaries in the geometric language.

 / 



Imaginaries in valued with operators

L It suffice to show that for all g-definable equivalence, every
equivalence class has a smallest definably closed set of definition.

L Pick X a class of an g-definable equivalence E (in VDFEC or SCVHp,e).
L Find p ”canonical” definable type containing ”x > X”. Then pω has a
smallest definably closed set of definition A. So does p.

L Since x > X is equivalent to ”xEy”> p�y�, X is definable over A.

L If X is defined over some definably closed A, then so is p. Thus A b A.

Theorem (R.,Hils-Kamensky-R.)
VDFEC and SCVHp,e eliminate imaginaries in the geometric language.

 / 



Imaginaries in valued with operators

L It suffice to show that for all g-definable equivalence, every
equivalence class has a smallest definably closed set of definition.

L Pick X a class of an g-definable equivalence E (in VDFEC or SCVHp,e).
L Find p ”canonical” definable type containing ”x > X”. Then pω has a
smallest definably closed set of definition A. So does p.

L Since x > X is equivalent to ”xEy”> p�y�, X is definable over A.
L If X is defined over some definably closed A, then so is p. Thus A b A.

Theorem (R.,Hils-Kamensky-R.)
VDFEC and SCVHp,e eliminate imaginaries in the geometric language.

 / 



Imaginaries in valued with operators

L It suffice to show that for all g-definable equivalence, every
equivalence class has a smallest definably closed set of definition.

L Pick X a class of an g-definable equivalence E (in VDFEC or SCVHp,e).
L Find p ”canonical” definable type containing ”x > X”. Then pω has a
smallest definably closed set of definition A. So does p.

L Since x > X is equivalent to ”xEy”> p�y�, X is definable over A.
L If X is defined over some definably closed A, then so is p. Thus A b A.

Theorem (R.,Hils-Kamensky-R.)
VDFEC and SCVHp,e eliminate imaginaries in the geometric language.

 / 


