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We want to study (quantifier free) definable sets in (existentially closed):

VDF¢e Equicharacteristic zero valued fields with a contractive derivation:
forall x € K, v(9(x)) > v(x). E.g.

k((E7)) with O(Y e, t7) = 3 k()7

where (k, d;) E DCFj and T is divisible.
SCVH, . Characteristic p valued fields with e commuting Hasse derivations.

VFA, Equicharacteristic zero valued field with an w-increasing
automorphism: for allx € @ and n € Z, v(c(x)) > n-v(x). E.g.

k((tF)) with U(Z C»\/tv) = Z Uk(Cy)tUF(W),

where (k, 0;) E ACVAy, I is divible and or is w-increasing, or:

H (M7 Vta ¢p)

p—4l

where 4l is a non-principal ultrafilter on the set of primes.
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Let (K, 0) = DCF,.
» Let Vbe an affine 0-variety over K. We define D, (x) := (x, ..., 0"(x)),

S}
Vo= {Du(x)ix €V} andV,:=limV,.

n

» The O-variety Vis completely determined by the pro-algebraic
variety V.

» V,, can be identified with the ideal:
{PeK[X]:VxeV, P(Dn(x)) =0} cK[X;:i>0],

or, when Vis irreducible, with the complete type in
Lrg ={+,—,-,0,1} over K:

P = (P(Da(x)) = 0: Pe I U {P(D,(x)) # 0: P I},
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Let (K, v, D) be a valued field with operators D. Let £ := {+,-,-,0,1,|} be
the language of valued fields and £ := LuD.

» Let D, denote all possible compositions of the operators.
» For all complete Lp-type p(x) over K we define:

pw = {¢(x) £ - formula: ¢(D, (x)) € p}.
VDF¢- The map p — p,, is injective. This is Scanlon’s elimination of

quantifiers.

SCVH, . The type p,, has a unique extension to a complete type over K. The
map p ~ p,, is injective. This is Delon’s elimination of quantifiers.

VFA( The map p ~ p,, is not injective. Indeed the corresponding map on
the residue field is not.
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» Let K = K, p(x) a complete type in L5 over K, I = {P:"P(x) = 0" e p}
and V = V(I). For all varieties W over K, we have:

"x e W epifandonlyif Ve W.

Definition

A complete type p(x) over M is said to be definable if for every formula
o(x,y), there exists a formula 6(y) (with parameters in M) such that, for
allae M.

¢(x,a) € pif and only if 8(a) holds.

We say that p is defined over A ¢ M is all the 6 have parameters in A.

Example

» All complete types in algebraically (respectively differentially) closed
fields are definable.

» The generic type of a ball in an algebraically closed valued field is
definable.
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Prolongations of definable types

» 1f p(x) is definable, then for all £-formula ¢(x,y), there exists an
Lp-formula 6(y) such that for all a € K, ¢(x,a) € p,, if and only if
6(a) holds.

» But, a priori, there is no such £-formula 6.

Proposition (R.-Simon, Hils-Kamensky-R., Hils-R.)
In VDF¢¢, SCVH, . and VFA, if p is definable then p,, is definable.
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Density of definable types

» ldeally, each definable X set should contain a "canonical” definable
type: a definable type which is defined over the same parameters as X
and does not depend on the choice of parameters.

Proposition (R.,Hils-Kamensky-R.)

In VDF¢¢ and SCVH,, if X is a definable set, there exists a definable type
p(x) containing "x € X”. Moreover, for any A such that X is definable over
A, p is definable over A.

» In fact, we build p,, first and then get p.
» A similar result holds for VFA( but because of the lack of elimination
of quantifiers, we have to consider quantifier free types.
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Elimination of imaginaries

» Let A < K, we say that A is definably closed if it is closed under all
definable functions.

» A structure eliminates imaginaries if every definable set has a
smallest definably closed set of over which it is defined. In that case,
every definable type also has a smallest definably closed set of over
which it is defined.

Example

» Algebraically closed and differentially closed fields eliminate
imaginaries.

» Algebraically closed valued fields do not eliminate imaginaries. By a
result of Haskell-Hrushovski-Macpherson, they do once you add
points for elements of GL, (K)/GL,(Q) and GL,(K)/ker(p) where
p: GL,(O) - GL,(O/m) is the reduction map. We then say that we
are working in the geometric language.
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» It suffice to show that for all @-definable equivalence, every
equivalence class has a smallest definably closed set of definition.

» Pick X a class of an @-definable equivalence E (in VDF¢¢ or SCVH, ).

» Find p “canonical” definable type containing "x € X”. Then p,, has a
smallest definably closed set of definition Ag. So does p.

» Since x € X is equivalent to "xEy”e p(y), X is definable over A,.
» 1f X is defined over some definably closed A, then so is p. Thus A € A.

Theorem (R.,Hils-Kamensky-R.)

VDF¢¢ and SCVH,, . eliminate imaginaries in the geometric language.



