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What is your name?

An imaginary is an equivalent class of an∅-definable equivalence relation.

Example
▸ Let (Xy)y∈Y be an ∅-definable family of sets. Define y1 ≡ y2 whenever
Xy1 = Xy2 . The set Y/≡ is a “moduli space” for the family (Xy)y∈Y.

▸ Let G be a definable group andH P G be a definable subgroup. The
group G/H is interpretable but a priori not definable.

Definition
A theory T eliminates imaginaries if for all ∅-definable equivalence
relation E ⊆ D2, there exists an ∅-definable function f defined on D such
that for all x, y ∈ D:

xEy ⇐⇒ f(x) = f(y).
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What is your quest?

Definition
▸ A type p overM is said to be definable (over A) if for all formula
ϕ(x; y) there is a formula θ(y) such that

ϕ(x;a) ∈ p if and only ifM ⊧ θ(a).

We will often write dp xϕ(x; y) = θ(y).
▸ A theory is said to be stable if every type over every model of T is
definable.

Proposition (Shelah, 1978)
Let A ⊆M ⊧ T stable, p ∈ S(A) and p1,p2 ∈ S(M) be two distinct
extensions of p toM definable over A. Then there exists an
L(A)-definable finite equivalence relation E and a1, a2 ∈M such that:
▸ a1 and a2 are not E-equivalent;
▸ pi(x) ⊢ xEai.
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What is your quest?

▸ If T is stable and eliminates imaginaries, A = acl(A) ⊆M ⊧ T, then
types over A have a unique definable extension toM.

Assume T eliminates imaginaries.

▸ If X if definable, then X has a smallest (definably closed) set of
definition. We denote it ⌜X⌝.

▸ If p is a definable type, then p has a smallest (definably closed) set of
definition. It is called the canonical basis of p.

▸ Proving elimination of imaginaries in specific structures can have
(more or less direct) applications.
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What is the airspeed velocity of an unladen swallow?

▸ The theory of algebraically closed fields eliminates imaginaries in the
language of rings.

▸ The theory of differentially closed fields of characteristic zero
eliminates imaginaries in the language of differential rings.

▸ O-minimal groups eliminate imaginaries.
For example, anyO-minimal enrichment of (R,0, 1,+,−, ⋅).

▸ Infinite sets do not eliminate imaginaries:
▸ The quotient ofMn by the action ofSn is not represented.

▸ Qp does not eliminate imaginaries in the ring language :
▸ Z can be interpreted asQ⋆p /Z

⋆
p ;

▸ All infinite definable subsets ofQn
p have cardinality continuum.

▸ Henselian valued fields do not eliminate imaginaries in the language
of valued rings.
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Shelah’s eq construction

Definition
Let T be a theory. For all ∅-definable equivalence relation E ⊆∏i Si, let SE
be a new sort and fE ∶∏ Si → SE be a new function symbol. Let

Leq ∶= L∪{SE, fE ∣ E is an ∅-definable equivalence relation}

and
Teq ∶= T ∪ {fE is onto and ∀x, y (fE(x) = fE(y)↔ xEy)}.

Remark
▸ LetM ⊧ T, thenM can naturally be enriched into a model of Teq that
we denoteMeq.

▸ We will denote byR the set of L-sorts. They are called the real sorts.
▸ The theory Teq eliminates imaginaries.
▸ We will denote by dcleq (acleq) the definable (algebraic) closure in Teq.
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Shelah’s eq construction

Definition
Let T be a theory. For all ∅-definable equivalence relation E ⊆∏i Si, let SE
be a new sort and fE ∶∏ Si → SE be a new function symbol. Let

Leq ∶= L∪{SE, fE ∣ E is an ∅-definable equivalence relation}

and
Teq ∶= T ∪ {fE is onto and ∀x, y (fE(x) = fE(y)↔ xEy)}.

Proposition
A theory T (with two constants) eliminates imaginaries if and only if for
allM ⊧ T and e ∈Meq, there exists a tuple a ∈M such that

e ∈ dcleq(a) and a ∈ dcleq(e).
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Weak elimination

Definition
A theory T weakly eliminates imaginaries if for allM ⊧ T and e ∈Meq,
there exists a tuple a ∈M such that

e ∈ dcleq(a) and a ∈ acleq(e).

Proposition
A theory T eliminates imaginaries if and only if:

1. T weakly eliminates imaginaries.

2. For allM ⊧ T, the quotient ofMn by the action ofSn is represented.

Example
▸ Infinite sets weakly eliminate imaginaries.
▸ Any strongly minimal theory weakly eliminates imaginaries.
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Encoding functions

▸ A finite valued function X→ Y is a subset of X × Y such that for all
x ∈ X, the set Yx is finite.

Proposition
The following are equivalent:

1. T weakly eliminates imaginaries

2. Every set definable in models of T has a smallest (algebraically closed)
set of definition.

3. Every finite valued functionM→M definable inM ⊧ T has a smallest
(algebraically closed) set of definition.
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Covering functions

▸ Let T be an L-theory and T′ ⊇ T∀ be an L′-theory. LetM′ ⊧ T′ and
M ⊧ T containingM′.

▸ Assume that every finite valued function f definable inM′ is covered
by a finite valued function g defined inM.

▸ One would like to deduce elimination of imaginaries in T′ from
elimination of imaginaries in T.

▸ There are a number of problems:
▸ No control the domain of f.
▸ g is not canonical (unless it can somehow be taken minimal).
▸ The smallest set of definition of gmight contain points fromM ∖M′.
▸ Unclear how to recover f from g.
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Covering functions

In the case of the field (R,0, 1,+,−, ⋅):
▸ Take any finite valued function f definable in R. Let g be the Zariski
closure of f. Then g is a finite valued function definable in C.

▸ Let A ⊆ C be the the smallest set of definition of g.
▸ The smallest set of definition of g ∩R is A ∩R.
▸ f can be recovered from g ∩R using the order and the fact that every
definable X ⊆ R has a smallest subset of definition.

Proposition (Hrushovski-Martin-R., 2014)
Let T′ be a theory of fields such that, for allM ⊧ T′ and A ⊆M:

1. dcl(A) = acl(A) ⊆ Aalg;
2. Every definable X ⊆M has a smallest subset of definition.

Then T eliminates imaginaries.

Remark
Hypothesis 1 holds inQp but not hypothesis 2 (in the language of rings).
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Covering functions

Proposition (Hrushovski-Martin-R., 2014)
Let T be an L -theory that eliminates quantifiers and imaginaries and
T′ ⊇ T∀ an L′-theory. Assume that, for allM′ ⊧ T′,M ⊧ T containingM′
and A ⊆M′:
1. dclL′(A) = aclL′(A) ⊆ aclL (A);
2. Every definable X ⊆M′ has a smallest subset of definition;

3. For all e ∈ dclM(M′), there exists e′ ∈M′ such that for all σ ∈ Aut(M)
stabilisingM′ globally,

σ(e) = e if and only if σ(e′) = e′;

4. Assume A = aclL′(A) and let p ∈ SL
′

1 (A). Then there exists
p̃ ∈ SL1 (M) definable over A such that p ∪ p̃∣M′ is consistent.

Then T′ eliminates imaginaries.

11 / 22



Covering functions

Proposition
Let Ti be an L i-theory that eliminates quantifiers and imaginaries and
T′ ⊇ ⋃i Ti,∀ an L′-theory. Assume that, for allM′ ⊧ T′,Mi ⊧ Ti containing
M′ and A ⊆M′:
1. dclL′(A) = aclL′(A) ⊆ aclL i(A);
2. Every definable X ⊆M′ has a smallest subset of definition;

3. For all e ∈ dclMi(M′), there exists e′ ∈M′ such that for all σ ∈ Aut(Mi)
stabilisingM′ globally,

σ(e) = e if and only if σ(e′) = e′;

4. Assume A = aclL′(A) and let p ∈ SL
′

1 (A). Then there exists
p̃i ∈ SL i

1 (Mi) definable over A such that p ∪ ⋃i p̃i∣M′ is consistent.
Then T′ weakly eliminates imaginaries.
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Some results

▸ All the imaginaries in R come from ACF (and hence they can be
eliminated).

▸ All the imaginaries in real closed valued fields come from ACVF
(whose imaginaries were described by Haskell, Hrushovski and
Macpherson).

▸ All the imaginaries inQp come from ACVF.
▸ All the imaginaries in∏pQp /U come from ACVF.
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Adding new functions

▸ If T is an L-theory, we may want to form Tσ the L∪{σ}-theory of
models of T with an automorphism.

▸ We will mainly be interested in TA, the model companion of Tσ , if it
exists (and from now on, we will assume it exists).

Proposition (Chatzidakis-Pillay, 1998)
Assume T is strongly minimal, then TA weakly eliminates imaginaries.

Proposition (Hrushovski, 2012)
Let T be a stable theory that eliminates imaginaries. Assume that T has
3-uniqueness, then TA eliminates imaginaries.
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Adding new functions

▸ Let T be some L-theory, f be new function symbol and T′ ⊇ T be an
L∪{f}-theory.

▸ LetM ⊧ T′. We define:

∇ω ∶ SL
′

x (M) → SLxω(M)
tpL′(a/M) ↦ tpL(fω(a)/M)

where fω(a) = (fn(a))n∈N.
▸ We assume that ∇ω is injective (this is a form of quantifier
elimination).

▸ That does not, in general, hold in TA.
▸ It does hold in differentially closed fields of characteristic zero and
separably closed fields of finite imperfection degree (and their valued
equivalents).
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Imaginaries and definable types

Proposition (Hrushovski, 2014)
Let T be a theory such that:

1. For every definable set X there exist an Leq(acleq(⌜X⌝))-definable
type p which is consistent with X.

2. Let A = acleq(A) ⊆Meq ⊧ Teq. If p ∈ S(M) is Leq(A)-definable, then p
is L(R(A))-definable.

Then T weakly eliminates imaginaries.

Remark
It suffices to prove hypothesis 1 in dimension 1.
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Prolongations and canonical basis

In the case of differentially closed fields (K,0, 1,+,−, ⋅, δ):
▸ Hypothesis 1 is true because DCF0 is stable.
▸ LetM ⊧ DCF0 and p ∈ SL∂ (M).
▸ Let A = acleq(A) ⊆Meq and assume p is Leq∂ (A)-definable. By
elimination of imaginaries in ACF, the canonical basis of∇ω(p) is
contained in K(A). In particular, p is L∂(K(A))-definable.
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Prolongations and canonical basis

If T is not stable, the previous strategy has a serious flaw:
▸ If p is L′(M)-definable, there is no reason for∇ω(p) to be
L(M)-definable.

▸ Let ϕ(xω; y) be an L-formula then

ϕ(xω; a) ∈ ∇ω(p) if and only ifM ⊧ dp xϕ(fω(x);a).

▸ Let a ⊧ ∇ω(p) we have:

ϕ(a;M)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

externallyL-definable

= dp xϕ(fω(x);M)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L′ -definable

.

and we wish this set to be L-definable.
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NIP theories

Definition
Let ϕ(x; y) be a formula andM a structure, we say that ϕ has the
independence property inM if there exists (an)n∈N and (bX)X⊆N such that:

M ⊧ ϕ(an; bX) if an only if n ∈ X

We say that the theory T is NIP (not the independence property) if no
formula has the independence property in any model of T.

Example
▸ All stable theories are NIP.
▸ All O-minimal theories are NIP.
▸ ACVF is NIP.
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Definable types in enrichments of NIP theories

Definition (Stable embeddedness)
LetM be some structure and A ⊆M. We say that A is stably embedded in
M if for all formula ϕ(x; y) and all c ∈M, there exists a formula ψ(x; z)
such that

ϕ(A; c) = ψ(A; a)

for some tuple a ∈ A.

Proposition (Simon-R., 2015)

Let T be an NIP be an L-theory and T̃ be a complete enrichment of T in a
language L̃. Assume that there exitsM ⊧ T̃ such that M∣L is uniformly
stably embedded in every elementary extension.
Let X be a set that is both externally L-definable and L̃-definable, then X
is L-definable.

In particular, any L-type which is L̃-definable is in fact L-definable.
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Definable types in enrichments of NIP theories

Definition (Uniform stable embeddedness)
LetM be some structure and A ⊆M. We say that A is uniformly stably
embedded inM if for all formula ϕ(x; y) , there exists a formula ψ(x; z)
such that for all tuple c ∈M,

ϕ(A; c) = ψ(A; a)

for some tuple a ∈ A.

Proposition (Simon-R., 2015)

Let T be an NIP be an L-theory and T̃ be a complete enrichment of T in a
language L̃. Assume that there exitsM ⊧ T̃ such that M∣L is uniformly
stably embedded in every elementary extension.
Let X be a set that is both externally L-definable and L̃-definable, then X
is L-definable.

In particular, any L-type which is L̃-definable is in fact L-definable.
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Prolongations and canonical basis II

Proposition
Let T be some L-theory that eliminates imaginaries, f be new function
symbol and T′ ⊇ T be a complete L∪{f}-theory. Assume that:

1. ∇ω is injective.

2. For every L′-definable set X there exist an Leq(acleq(⌜X⌝))-definable
L-type p which is consistent with X.

3. There exitsM ⊧ T̃ such that M∣L is uniformly stably embedded in
every elementary extension.

Then T′ eliminates imaginaries.
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Some results II

▸ All the imaginaries in DCF0 come from ACF (and hence they can be
eliminated).

▸ All the imaginaries from separably closed fields (be it with
λ-functions or Hasse derivations) come from ACF.

▸ All the imaginaries in Scanlon’s theory of differential valued fields
come from ACVF.

▸ All the imaginaries from separably closed valued fields come from
ACVF.
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Thanks!
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